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and Painlevé 3 equation∗

Y Bibilo1,∗∗ and A A Glutsyuk2,3,4

1 University of Toronto, Mississauga, Canada
2 CNRS, [UMR 5669 (UMPA, ENS de Lyon) and UMI 2615 (ISC J-V Poncelet)],
France
3 HSE University, Moscow, Russia
4 Kharkevich Institute for Information Transmission Problems (IITP RAS), Moscow,
Russia

E-mail: yulia.bibilo@utoronto.ca and aglutsyu@ens-lyon.fr

Received 17 May 2021, revised 18 July 2022
Accepted for publication 18 August 2022
Published 19 September 2022

Abstract
The tunnelling effect predicted by Josephson (Nobel Prize, 1973) concerns
the Josephson junction: two superconductors separated by a narrow dielec-
tric. It states existence of a supercurrent through it and equations governing
it. The overdamped Josephson junction is modelled by a family of differential
equations on two-torus depending on three parameters: B (abscissa), A (ordi-
nate), ω (frequency). We study its rotation number ρ(B, A; ω) as a function
of (B, A) with fixed ω. The phase-lock areas are the level sets Lr := {ρ = r}
with non-empty interiors; they exist for r ∈ Z (Buchstaber, Karpov, Tertych-
nyi). Each Lr is an infinite chain of domains going vertically to infinity and
separated by points. Those separating points for which A �= 0 are called con-
strictions. We show that: (1) all the constrictions in Lr lie on the axis {B = ωr};
(2) each constriction is positive: this means that some its punctured neigh-
bourhood on the axis {B = ωr} lies in Int(Lr). These results confirm exper-
iments by physicists (1970ths) and two mathematical conjectures. We first
prove deformability of each constriction to another one, with arbitrarily small
ω and the same � := B

ω
, using equivalent description of model by linear systems

of differential equations on C (Buchstaber, Karpov, Tertychnyi) and studying
their isomonodromic deformations described by Painlevé 3 equations. Then
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non-existence of ghost constrictions (i.e., constrictions either with ρ �= � = B
ω

,
or of non-positive type) with a given � for small ω is proved by slow-fast
methods.

Keywords: Josephson junction, Painleve equation, isomonodromic deformation,
slow–fast system, rotation number, phase-lock areas, dynamical system
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1. Introduction

1.1. Model of Josephson junction: a brief survey and main results

The Josephson effect is a tunnelling effect in superconductivity predicted theoretically by
Josephson in 1962 [41] (Nobel Prize in physics, 1973) and confirmed experimentally by
Anderson and Rowell in 1963 [1]. It concerns the so-called Josephson junction: a system of
two superconductors separated by a very narrow dielectric fibre. The Josephson effect is the
existence of a supercurrent crossing the junction (provided that the dielectric fibre is narrow
enough), described by equations discovered by Josephson4.

The model of the so-called overdamped Josephson junction, see [45, 53, 58, 63], [6, p 306],
[46, pp 337–40], [47, p 193], [49, p 88] is described by the family of nonlinear differential
equations

dφ
dt

= − sin φ+ B + A cos ωt, ω > 0, B � 0. (1.1)

Here φ is the difference of phases (arguments) of the complex-valued wave functions describ-
ing the quantum mechanic states of the two superconductors. Its derivative is equal to the
voltage up to known constant factor.

Equation (1.1) also arise in several models in physics, mechanics and geometry, e.g., in
planimeters, see [26, 27]. Hereω is a fixed constant, and (B, A) are the parameters. The variable
and parameter changes

τ :=ωt, θ :=φ+
π

2
, � :=

B
ω

, μ :=
A

2ω
, (1.2)

transform (1.1) to a non-autonomous ordinary differential equation on the two-torus
T2 = S1 × S1 with coordinates (θ, τ ) ∈ R2/2πZ2:

dθ
dτ

=
cos θ

ω
+ �+ 2μ cos τ. (1.3)

The graphs of its solutions are the orbits of the vector field⎧⎨⎩ θ̇ =
cos θ

ω
+ �+ 2μ cos τ

τ̇ = 1
(1.4)

on T2. The rotation number of its flow, see [2, p 104], is a function ρ(B, A) of parameters5:

ρ(B, A;ω) = lim
k→+∞

θ(2πk)
2πk

.

Here θ(τ ) is a general R-valued solution of the first equation in (1.4) whose parameter is the
initial condition for τ = 0. Recall that the rotation number is independent on the choice of the

4 Analytic deformability of each constriction to constrictions of the same type, ρ, � and arbitrarily small ω is a joint
result of the authors. Non-existence of ghost constrictions with a given � for every ω small enough is a result of the
second author (Glutsyuk) Theorem 1.13.
5 There is a misprint, missing 2π in the denominator, in analogous formulae in previous papers of the second author
(Glutsyuk) with co-authors: [28, formula (2.2)], [13, the formula after (1.16)].
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initial condition, see [2, p 104]. The parameter B is called abscissa, and A is called the ordinate.
Recall the following well-known definition.

Definition 1.1 (cf [28, definition 1.1]). The rth phase-lock area is the level set

Lr = Lr(ω) = {ρ(B, A) = r} ⊂ R
2,

provided that it has a non-empty interior.

Remark 1.2 phase-lock areas and Arnold tongues. H.Poincaré introduced the rotation
number of a circle diffeomorphism. The rotation number of the flow of the field (1.4) on
T2 equals (modulo Z) the rotation number of the circle diffeomorphism given by its time 2π
flow mapping restricted to the cross-section S1

θ × {0}. In Arnold family of circle diffeomor-
phisms x �→ x + b + a sin x, x ∈ S1 = R/2πZ the behaviour of its phase-lock areas for small
a demonstrates the tongues effect discovered by Arnold [2, p 110]. That is why the phase-lock
areas became ‘Arnold tongues’, see [28, definition 1.1].

Recall that the rotation number has physics meaning of the mean voltage over a long time
interval up to known constant factor.

Relation of phase-lock effect in model (1.1) to dynamical systems on torus was discovered
in [15]. In physics papers earlier than [15] the phase-lock area effect dealt with convergence
of differences φ(t + (n + 1)T) − φ(t + nT), where φ(t) is a solution of (1.1) and T = 2π

ω . This
effect was defined there as a phenomenon of convergence of the above differences to 2πk,
k ∈ Z, on an open subset of the parameter space. It was observed in [15] that their convergence
is equivalent to the statement that the rotation number of the corresponding dynamical system
(1.4) is equal to k.

Some figures of the phase-lock areas of family (1.4) are presented in physics books
[46, p 339, figure 11.4], [47, p 193, figure 11.4], [49, p 88, figure 5.2]. See also figures of
the phase-lock areas below.

The phase-lock areas of family (1.4) were studied by Buchstaber, Karpov, Tertychnyi et al,
see [12–22, 28–30, 34, 36, 43, 44, 65, 66] and references therein. The following statements
are known results proved mathematically:

(a) Phase-lock areas exist only for integer rotation number values (quantization effect
observed and proved in [17], later also proved in [34, 36]).

(b) The boundary of the rth phase-lock area consists of two analytic curves, which are the
graphs of two functions B = Gr,α(A), α = 0, π, (see [18]; this fact was later explained by
Klimenko via symmetry, see [44]).

(c) The latter functions have Bessel asymptotics⎧⎪⎪⎨⎪⎪⎩
Gr,0(s) = rω − Jr

(
− s
ω

)
+ O

(
ln |s|

s

)
Gr,π(s) = rω + Jr

(
− s
ω

)
+ O

(
ln |s|

s

) , as s →∞ (1.5)

(observed and proved on physics level in [59], see also [46, p 338], [6, section 11.1], [16];
proved mathematically in [44]).

(d) Each phase-lock area is a garland of infinitely many bounded domains going to infinity
in the vertical direction. In this chain each two subsequent domains are separated by one
point. This was proved in [44] using the above statement (c). Those separation points that
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Figure 1. Phase-lock areas and their constrictions for ω = 2. The abscissa is B, the
ordinate is A. Reproduced from [13], with permission from Springer Nature.

lie on the horizontal B-axis, namely A = 0, were calculated explicitly, and we call them
the growth points, see [18, corollary 3]. The other separation points, which lie outside the
horizontal B-axis, are called the constrictions.

(e) For every r ∈ Z the rth phase-lock area is symmetric to the −rth one with respect to the
vertical A-axis.

(f ) Every phase-lock area is symmetric with respect to the horizontal B-axis. See figures 1–3
below.

Definition 1.3. For every r ∈ Z and ω > 0 we consider the vertical line

Λr = {B = ωr} ⊂ R
2
(B,A)

and we will call it the axis of the phase-lock area Lr.

The figures for the phase-lock areas obtained experimentally are given in the physics books
on Josephson effect, see [47, p 193, figure 11.4], [49, p 88, figure 5.2], [46, p 339, figure 11.4]
(which refers to physics paper [48]). They had shown that in each phase-lock area Lr all the
constrictions should lie on the same vertical line. No mathematical proof was presented there.
Numerical illustrations which one can find in the paper [17] by Buchstaber, Karpov, Tertychnyi
have shown the same effect and that the line containing the constrictions of the area Lr should
coincide with its axisΛr. This constriction alignment phenomena was stated as an experimental
fact and conjecture in [28, experimental fact A].
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Figure 2. Phase-lock areas and their constrictions for ω = 0.7. Reproduced from [13],
with permission from Springer Nature.

The main results of the paper are the two following theorems. The first theorem confirms the
above constriction alignment phenomena. The second one confirms another, positivity property
of constrictions that can be also seen in the figures from physics books mentioned in the above
paragraph.

Theorem 1.4. For every r ∈ Z and every ω > 0 all the constrictions of the phase-lock area
Lr lie in its axis Λr.

Remark 1.5. It was proved in [28, theorem 1.2] that for every r ∈ Z the constrictions in Lr

have abscissas B = �ω, � ∈ Z, � ≡ r(mod 2), � ∈ [0, r]. For further results and discussion of
the constriction alignment conjecture see [13, section 5] and [28–30].

Definition 1.6 [29, p 329]. A constriction (B0, A0) is said to be positive, if the correspond-
ing germ of interior of phase-lock area contains the germ of punctured vertical line interval:
that is, if there exists a punctured neighbourhood U = U(A0) ⊂ R such that the punctured
interval B0 × (U \ {A0}) ⊂ B0 × R lies entirely in the interior of the corresponding phase-
lock area. A constriction is called negative, if the above punctured interval can be chosen to
lie in the complement to the union of the phase-lock areas. Otherwise it is called neutral.
See figure 4.

Theorem 1.7. 6All the constrictions are positive.

6 The main results of the paper (theorems 1.4 and 1.7) with a sketch of proof were announced in [7].
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Figure 3. Phase-lock areas and their constrictions for ω = 0.3. Reproduced from [13],
with permission from Springer Nature.

Figure 4. Positive, negative and neutral constrictions (figure made by Tertychnyi,
included to the paper with his permission). It is proved that negative and neutral con-
strictions do not exist.

Remark 1.8. It was shown in [29, theorem 1.8] that each constriction is either positive,
or negative: there are no neutral constrictions. Positivity of constrictions was stated there as
[29, conjecture 1.13]. It was also shown in [29] that theorem 1.7 would imply theorem 1.4.

Definition 1.9. A ghost constriction is a constriction (B, A; ω) in model of Josephson junc-
tion for which either � := B

ω
is different from the corresponding rotation number ρ(B, A; ω), or

the constriction is not of positive type. (Note that � ∈ Z for each constriction, see remark 1.5.)

Theorems 1.4 and 1.7 taken together are equivalent to the following theorem.

Theorem 1.10. There are no ghost constrictions in the model of overdamped Josephson
junction.
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Proof of theorem 1.10 is sketched in the next subsection, where the plan of the paper is
presented. It is based on the following characterization of constrictions.

Proposition 1.11 [28, proposition 2.2] . Consider the period 2π flow map h2π of system
(1.4) acting on the transversal coordinate θ-circle {τ = 0}. A point (B, A; ω) is a constriction,
if and only if ω, A �= 0 and h2π = Id.

Some applications of theorems 1.7 and 1.4 and open problems will be discussed in section 6.

1.2. Method of proof of theorem 1.10. Plan of the paper

We prove theorem 1.10 in two steps given by the two following theorems. To state them, let
us introduce the following notation. We set η :=ω−1. For every fixed � ∈ Z we consider the
set

Constr� = {(μ, η) ∈ R
2
+|(B, A;ω) = (�η−1, 2μη−1; η−1) is a constriction}.

Theorem 1.12. For every � ∈ Z the subset Constr� ⊂ R2
+ is a regular one-dimensional ana-

lytic submanifold in R
2
+. The restriction of the coordinate η to each its connected component

is unbounded from above (i.e., ω is unbounded from below). The rotation number and the type
of constriction ( positive or negative, see remark 1.8) are constant on each component.

Theorem 1.13. For every � ∈ Z there are no ghost constrictions in the axis Λ� := {B = ω�}
whenever ω > 0 is small enough (dependently on �).

Theorem 1.13 will be proved in section 5 by methods of the theory of slow–fast families of
dynamical systems. Theorem 1.10 immediately follows from theorems 1.12 and 1.13, see the
subsection 5.6.

The proof of theorem 1.12 is sketched below. It is based on the following equivalent descrip-
tion of model of Josephson junction by a family of two-dimensional linear systems of differ-
ential equations on the Riemann sphere, see [15, 17, 20, 26, 34, 36], [12, subsection 3.2]. The
variable change

z = eiτ = eiωt, Φ = eiθ = ieiφ

transforms equation (1.3) on the function θ(τ ) to the Riccati equation

dΦ
dz

= z−2
(

(�z + μ(z2 + 1))Φ+
z

2ω
(Φ2 + 1)

)
. (1.6)

Recall that � = B
ω

, μ = A
2ω , see (1.2). Equation (1.6) is the projectivization of the two-

dimensional linear system

Y ′ =

(
diag(−μ, 0)

z2
+

B
z
+ diag(−μ, 0)

)
Y, B =

⎛⎜⎝−� − 1
2ω

1
2ω

0

⎞⎟⎠, (1.7)

in the following sense: a function Φ(z) is a solution of (1.6), if and only if Φ(z) = v
u (z), where

the vector function Y(z) = (u(z), v(z)) is a solution of system (1.7). For μ > 0 system (1.7)
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has two irregular nonresonant singular points at 0 and at ∞. Its monodromy operator acts on
the space C2 of germs of its solutions at a given point z0 ∈ C∗ by analytic extension along a
counterclockwise circuit around zero.

Remark 1.14. The variable change E(z) := eμzv(z) transforms the family of systems (1.7) to
the following family of special double confluent Heun equations, see [19–23, 66]:

z2E′′ + ((�+ 1)z + μ(1 − z2))E′ + (λ− μ(�+ 1)z)E = 0, λ :=
1

4ω2
− μ2.

(1.8)

We will also deal with the so-called conjugate Heun equation obtained from (1.8) by change
of sign at �:

z2E′′ + ((−�+ 1)z + μ(1 − z2))E′ + (λ+ μ(�− 1)z)E = 0. (1.9)

Using this relation to well-known class of Heun equations a series of results on phase-
lock area portrait of model of Josephson junction and related problems were obtained in
[12, 13, 19–23, 66]. See also a brief survey in the next subsection.

Recall that an isomonodromic family of linear systems is a family in which the collection
of residue matrices of formal normal forms at singular points, Stokes matrices and transition
matrices between canonical solution bases at different singular points remain constant (up to
appropriate conjugacies).

It is known that (B, A; ω) is a constriction, if and only if A,ω �= 0 and system (1.7) has
trivial monodromy; then � = B

ω ∈ Z. See [28, proposition 3.2, lemma 3.3] and proposition 4.1
in section 4.

We denote by Jos the three-dimensional family of systems (1.7), which will be referred to, as
systems of Josephson type. For the proof of theorem 1.12 we study their isomonodromic defor-
mations in the four-dimensional space JN(R+) of linear systems of the so-called normalized
R+-Jimbo type

Y ′ =

(
−τ

K
z2

+
R
z
+ τN

)
Y, τ ∈ R+, K, R, N are real 2 × 2 − matrices,

(1.10)

N =

⎛⎝−1
2

0

0 0

⎞⎠, R =

(
−� −R21

R21 0

)
, K = −GNG−1, R21 > 0, � ∈ R,

(1.11)

where G ∈ SL2(R) is a matrix such that

G−1RG =

(
−� ∗
∗ 0

)
; (1.12)

here the matrix elements ∗ may be arbitrary.
Step 1. We study the real one-dimensional analytic foliation of the space JN(R+) by isomon-

odromic families of linear systems. These isomonodromic families are given by differential
equation (3.17). They are obtained (by gauge transformations and rescaling of the variable z)
from well-known Jimbo isomonodromic deformations [38], which are given by real solutions
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of Painlevé 3 equation (P3). Namely, the function w(τ ) = − R12(τ )
τK12(τ ) =

R21(τ )
τK12(τ ) should satisfy

the P3 equation

w′′ =
(w′)2

w
− w′

τ
+ w3 − 2�

w2

τ
− 1

w
+ (2�− 2)

1
τ

(1.13)

along the isomonodromic leaves. We show that the hypersurface Jos ⊂ JN(R+) corresponds
to poles of order 1 with residue 1 of solutions of (1.13). This implies that Jos is transversal to
the isomonodromic foliation. This is the key lemma in the proof. The only role of the Painlevé
3 equation in the proof is the above transversality statement. Relation to Painlevé 3 equation
led us to a series of new open problems presented in section 6.

Step 2. We consider the subset Σ ⊂ JN(R+) of systems (1.10) with trivial monodromy. We
show that � ∈ Z for these systems, and their germs at 0 and at ∞ are analytically equivalent to
their diagonal formal normal forms. Using this fact, we show that Σ is a real two-dimensional
analytic submanifold in JN(R+) with the following properties:

(a) Σ is a union of leaves of the isomonodromic foliation;
(b) (The key theorem in the proof) there exists a submersive projection R : Σ→ Rx given

by an analytic invariant R of linear systems, the so-called transition cross-ratio, that is
constant along the leaves.

Statement (a) follows from definition. Statement (b) is proved by showing that (x, τ ), x = R,
form local analytic coordinates onΣ. Fix an � ∈ Z, and letΣ� ⊂ Σ denote the subset of systems
with the given value of �. For every pair (x0, τ 0) corresponding to a system from Σ� realization
of any pair (x, τ ) close to (x0, τ 0) by a system from Σ� can be viewed as a solution of the
Riemann–Hilbert type problem. It is proved via holomorphic vector bundle argument, as in
famous works by Bolibruch on the Riemann–Hilbert problem and related topics: see [9–11]
and references therein. We glue a holomorphic vector bundle with connection on C realizing
given (x, τ ) from the two trivial bundles: one over the disk D2 ⊂ C, and the other one on the
complement of the closed disk D 1

2
⊂ C. The connections on the latter trivial bundles are given

by the diagonal normal forms prescribed by � and τ . The gluing matrix, which is holomorphic
on the annulus D2 \ D 1

2
, depends analytically on (x, τ ). The bundle thus obtained is trivial for

(x0, τ 0) (by definition). It remains trivial for all (x, τ ) close enough to (x0, τ 0). This follows
from the classical theorem stating that a holomorphic vector bundle close to a trivial one is
also trivial [11, appendix 3, lemma 1, theorem 2], [56, theorem 2.3], [31]. The connection on
the trivial bundle thus obtained is given by a meromorphic system with order two poles at 0
and at ∞ and the same normal forms. Its gauge equivalence to a normalized R+-Jimbo type
system (1.10), (1.11) is proved by a symmetry argument.

The submanifold Jos is transversal to Σ, by the result of step 1 and statement (a). Therefore,
the intersection Jos ∩ Σ� is a real one-dimensional submanifold in JN(R+). It is transversal to
the isomonodromic foliation of Σ� (step 1), and hence, is locally diffeomorphically projected
to an open subset in R by the mapping R. The above intersection is identified with Constr�.
This implies that Constr� is a one-dimensional submanifold; each its connected component is
analytically parametrized by an interval I = (a, b) of values of the parameter x = R and hence,
is non-compact.

Step 3. We show that the coordinateη = ω−1 is unbounded from above on each componentC
in Constr�. Assuming the contrary, i.e., that η is bounded on C, we have that for every c ∈ {a, b}
at least one of the functions μ±1, η−1 (depending on the choice of c) should be unbounded, as
x → c. Boundedness of μ is proved by using Klimenko–Romaskevich Bessel asymptotics of
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boundaries of the phase-lock areas [44]. For c �= 0 we prove boundedness of the functions
μ−1, η−1, as x → c, by studying accumulation points of the set Constr� in the union of coordi-
nate axes {η = 0} ∪ {μ = 0}.

Afterwards, to finish the proof of theorem 1.12, it remains to show that the rotation num-
ber and type of constriction are constant on each connected component in Constr�. We deduce
constance of type from the fact that no constriction can be a limit of the so-called generalized
simple intersections: those points of intersections Λ� ∩ ∂Lr, r ≡ �(mod 2), that are not con-
strictions and do not lie in the abscissa axis. This, in its turn, is implied by the two following
facts:

• The generalized simple intersections correspond to Heun equations (1.9) having a poly-
nomial solution [13, theorem 1.15]; this remains valid for their limits with A �= 0;

• No constriction can correspond to a Heun equation (1.9) with polynomial solution
[12, theorems 3.3, 3.10].

1.3. Historical remarks

Model (1.1) of overdamped Josephson junction was studied by Buchstaber, Karpov, Tertych-
nyi and other mathematicians and physicists, see [12–23, 28–30, 34, 36, 43–45, 65, 66] and
references therein. Hereby we present a brief survey of results that were not mentioned in the
introduction. Recall that the rotation number quantization effect for a family of dynamical sys-
tems on T2 containing (1.4) was discovered in [17]. Bizyaev, Borisov, and Mamaev noticed
that a big family of dynamical systems on torus in which the rotation number quantization
effect realizes was introduced by Hess (1890). It appears that in classical mechanics such sys-
tems were studied in problems on rigid body movement with fixed point in works by Hess,
Nekrassov, Lyapunov, Mlodzejewski, Zhukovsky and others. See [8, 51, 54, 55, 67] and ref-
erences therein. Nekrasov observed in [55] that the above-mentioned big family of systems
considered by Hess can be equivalently described by a Riccati equation (or by a linear second
order differential equation).

Transversal regularity of the fibration by level sets ρ(B, A) = const /∈ Z with fixed ω on
the complement to the union of the phase-lock areas was proved in [13, proposition 5.3].
Conjectures on alignment and positivity of constrictions (now theorems 1.4 and 1.7 respec-
tively) were stated respectively in [28, 29] and studied respectively in [28, 29], where some
partial results were obtained. Theorem 1.4 for ω � 1 was proved in [28]. For further survey on
these conjectures see [13, 28, 29] and references therein. A conjecture saying that the semiaxis
Λ+

� :=Λ� ∩ {A > 0} intersects the corresponding phase-lock area L� by a ray explicitly con-
structed in [29] was stated in [29, conjecture 1.14]. It was shown in [29, theorem 1.12] that the
ray in question indeed lies in L�. An equivalent description of model (1.1) in terms of a family
of special double confluent Heun equations (1.8) was found by Tertychnyi in [66] and further
studied in a series of joint papers by Buchstaber and Tertychnyi [19–23]. They have shown
that the constrictions are exactly those parameter values (B, A; ω) for which the corresponding
double confluent Heun equation (1.8) has an entire solution: holomorphic on C [20]. Using
this observation they stated a conjecture describing ordinates of the constrictions lying in a
given axis Λ� as zeros of a known analytic function constructed via an infinite matrix product
[20]. This conjecture was studied in [20, 21] and reduced to the conjecture stating that if the
Heun equation (1.8) has an entire solution, then the conjugate Heun equation (1.9) cannot have
polynomial solution. Both conjectures were proved in [12]. New automorphisms of solution
space of Heun equations (1.8) were discovered and studied in [22, 23].
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In [19] Buchstaber and Tertychynyi described those (B, A; ω), for which conjugate Heun
equation (1.9) has a polynomial solution. Namely, for a given � = B

ω
∈ N their set is a remark-

able algebraic curve, the so-called spectral curve (studied in [19, 30]): zero locus of determinant
of appropriate three-diagonal matrix with entries being linear non-homogeneous functions in
the coefficients of equation (1.9). The fact that those points (B, A; ω) for which (1.9) has
a polynomial solution are exactly the generalized simple intersections is a result of papers
[13, 19], stated and proved in [13].

There exists an antiquantization procedure that associates Painlevé equations to Heun
equations; double confluent Heun equations correspond to Painlevé 3 equations. See
[57, 61, 62] and references therein.

V.M.Buchstaber, O.V.Karpov, S.I.Tertychnyi, D.A.Filimonov, V.A.Kleptsyn, I.V.Schurov
made numerical experiences that have shown that as ω → 0, the ‘upper’ part of the phase-
lock area portrait converges to a kind of parquet in the renormalized coordinates (�, μ): the
renormalized phase-lock areas tend to unions of pieces of parquet, and gaps between the phase-
lock areas tend to zero. See figure 3 and the paper [43]. This is an open problem. In [43]
Kleptsyn, Romaskevich, and Schurov proved some results on smallness of gaps and their rate
of convergence to zero, as ω → 0, using methods of slow-fast systems.

A subfamily of family (1.3) of dynamical systems on two-torus was studied by Gucken-
heimer and Ilyashenko in [35] from the slow-fast system point of view. They obtained results
on its limit cycles, as ω → 0.

An analogue of the rotation number integer quantization effect in braid groups was
discovered by Malyutin [52].

2. Preliminaries: irregular singularities, normal forms, Stokes matrices
and monodromy–Stokes data of linear systems

2.1. Normal forms, canonical solutions and Stokes matrices

All the results presented in this subsection are particular cases of classical results contained in
[3–5, 37, 42, 60].

Recall that two germs of meromorphic linear systems of differential equations on a n-
dimensional vector function Y = Y(z) at a singular point (pole), say, 0 are analytically equiva-
lent, if there exists a holomorphic GLn(C)-valued function H(z) on a neighbourhood of 0 such
that the Y-variable change Y = H(z)Ỹ sends one system to the other one. Two systems are for-
mally equivalent, if the above is true for a formal power series Ĥ(z) with matrix coefficients
that has an invertible free term.

Consider a two-dimensional linear system

Y ′ =

(
K
z2

+
R
z
+ O(1)

)
Y, Y =

(
u
v

)
, (2.1)

on a neighbourhood of 0; here the matrix K has distinct eigenvalues λ1 �= λ2, and O(1) is a
holomorphic matrix-valued function on a neighbourhood of 0. Then we say that the singular
point 0 of system (2.1) is irregular non-resonant of Poincaré rank 1. Then K is conjugate to
K̃ = diag(λ1,λ2), K̃ = H−1KH, H ∈ GL2(C), and one can achieve that K = K̃ by applying the
constant linear change (gauge transformation) Y = HŶ. System (2.1) is formally equivalent to
a unique formal normal form
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Ỹ ′ =

(
K̃
z2

+
R̃
z

)
Ỹ, K̃ = diag(λ1,λ2), R̃ = diag(b1, b2), (2.2)

R̃ is the diagonal part of the matrix H−1RH. (2.3)

The matrix coefficient K in system (2.1) and the corresponding matrix K̃ in (2.2) are called the
main term matrices, and R, R̃ the residue matrices.

Generically, the normalizing series Ĥ(z) bringing (2.1) to (2.2) diverges. At the same time,
there exists a covering of a punctured neighbourhood of zero by two sectors S0 and S1 with
vertex at 0 in which there exist holomorphic matrix functions H j(z), j = 0, 1, that are C∞

smooth on S j ∩ Dr for some r > 0, and such that the variable changes Y = H j(z)Ỹ transform
(2.1) to (2.2). This sectorial normalization theorem holds for the so-called good sectors (or
Stokes sectors.) Namely, consider the rays issued from 0 and forming the set {Re λ1−λ2

z = 0}.
They are called imaginary dividing rays (or Stokes rays). A sector Sj is good, if it contains one
imaginary dividing ray and its closure does not contain the other one.

Let W(z) = diag(Ỹ1(z), Ỹ2(z)) denote the canonical diagonal fundamental matrix solution
of the formal normal form (2.2); here Ỹ�(z) are solutions of its one-dimensional equations.
The matrices X j(z) :=H j(z)W(z) are fundamental matrix solutions of the initial equation (2.1)
defining solution bases in Sj called the canonical sectorial solution bases. In their definition
we choose the branches W(z) = W j(z) of the (a priori multivalued) matrix function W(z) in S j,
j = 0, 1, so that W1(z) is obtained from W0(z) by counterclockwise analytic extension from
S0 to S1. And in the same way we define yet another branch W2(z) of W(z) in S2 := S0 that is
obtained from W1(z) by counterclockwise analytic extension from S1 to S0. This yields another
canonical matrix solution X2 :=H0(z)W2(z) in S0, which is obtained from X0(z) by multipli-
cation from the right by the monodromy matrix exp(2πiR̃) of the formal normal form (2.2).
Let Sj, j+1 denote the connected component of intersection S j+1 ∩ S j, j = 0, 1, that is crossed
when one moves from S j to Sj+1 counterclockwise, see figure 5. The transition matrices C0,
C1 between thus defined canonical solution bases X j,

X1(z) = X0(z)C0 on S0,1; X2(z) = X1(z)C1 on S1,2 (2.4)

are called the Stokes matrices.

Example 2.1. Let A = diag(λ1,λ2), and let λ2 − λ1 ∈ R. Then the imaginary dividing rays
are the positive and negative imaginary semiaxes. The good sectors S0 and S1 covering C∗

satisfy the following conditions:

• The sector S0 contains the positive imaginary semiaxis, and its closure does not contain
the negative one;

• The sector S1 satisfies the opposite condition. See figure 5.

Example 2.2. Let us numerate the sectors S0, S1 and the eigenvalues λ1, λ2 so that

S0,1 \ {0} ⊂
{

Re

(
λ1 − λ2

z

)
> 0

}
, S1,2 \ {0} ⊂

{
Re

(
λ1 − λ2

z

)
< 0

}
. (2.5)

This holds, e.g., in the conditions of the above example, if λ2 − λ1 > 0. The canonical solu-

tions of the formal normal form (2.2) are given by the solutions ckzbk e−
λk
z of one-dimensional

equations in (2.2). They are numerated by indices k = 1, 2 of the eigenvalues λk of the main
term matrix K. The corresponding solutions of the initial system (2.1) in Sj, j = 0, 1, 2, i.e.,
the columns of the fundamental matrix Xj(z), are also numerated by the same index k and will
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Figure 5. Good sectors in the case, when λ1 − λ2 ∈ R.

be denoted by fk j(z). The norm ‖ f1 j(z)‖ is asymptotically dominated by ‖ f2 j(z)‖ in S0,1, as
z → 0, and the converse asymptotic domination statement holds on S1,2. This implies (and it is
well-known) that f10 ≡ f11 on S0,1 and f22 ≡ f21 on S1,2. The Stokes matrices C0 and C1 are
unipotent: C0 is upper-triangular and C1 is lower-triangular. If the numeration of either eigen-
values, or sectors (but not both) is opposite, or if the singular point under question is ∞, not
zero (see remark 2.5 below), then the Stokes matrices are unipotent but of opposite triangular
type.

Remark 2.3. The tautological projection C2 \ {0}→CP
1 = C sends canonical sectorial

basic solutions fk j(z) of system (2.1) to canonical sectorial solutions qk j(z) of its projectiviza-
tion: the corresponding Riccati equation. These are the uniqueC-valued holomorphic solutions
of the Riccati equation in the sector Sj that extend C∞-smoothly to S j ∩ Dr for a sufficiently
small r > 0. Their values at 0 are the projections of the eigenlines of the main term matrix K
with eigenvalues λk.

Theorem 2.4 [3–5, 37, 42, 60] . A germ of linear system at an irregular nonresonant sin-
gular point is analytically equivalent to its formal normal form, if and only if it has trivial
Stokes matrices. Two germs of linear systems as above are analytically equivalent, if and only
if their formal normal forms are the same and their Stokes matrix collections are equivalent in
the following sense: they are simultaneously conjugated by one and the same diagonal matrix
(independent on the choice of sector S j, j+1).

Recall that the monodromy operator of a germ of linear system at 0 acts on the space of
germs of its solutions at a point z0 �= 0 sending a local solution to the result of its counter-
clockwise analytic extension along a circuit around the origin. Let the origin be an irregular
nonresonant singular point of Poincaré rank 1, and let S0, S1 be the corresponding good sec-
tors. Let M be the monodromy matrix written in the canonical sectorial basis of solutions in S0.
Let Mnorm denote the diagonal monodromy matrix of the formal normal form in the canonical
solution basis with diagonal fundamental matrix. We will call Mnorm the formal monodromy.
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Recall that Mnorm = exp(2πiR̃). The matrix M is expressed in terms of the formal monodromy
Mnorm and the Stokes matrices C0 and C1 via the following well-known formula [37, p 35]:

M = MnormC−1
1 C−1

0 . (2.6)

Remark 2.5. We will also deal with the case, when the singular point under question is ∞,
and the above statements hold in the local coordinate z̃ := 1

z . In the coordinate z the correspond-
ing equation and formal normal form take the form

Y ′ =

(
K +

R
z
+ O

(
1
z2

))
Y, Ỹ ′ =

(
K̃ +

R̃
z

)
Ỹ.

The matrices K, K̃ are called the main term matrices, and R, R̃ the residue matrices of the cor-
responding systems at ∞. Let λ1, λ2 be the eigenvalues of the matrix K. An imaginary dividing
ray at infinity is a ray issued from 0 and lying in the set {Re(λ1 − λ2)z = 0}. This yields the
definition of good sectors ‘at infinity’. The sectorial normalization and analytic classification
theorems and the definition of Stokes matrices at infinity are stated in the same way, as above;
the sectors S0, S0,1, S1, S1,2 at infinity are also numerated counterclockwise. Formula (2.6) also
holds at ∞.

2.2. Systems with two irregular singularities. Monodromy–Stokes data

Definition 2.6. By H1
0,∞ we will denote the class of linear systems on the Riemann sphere

having two singular points, at zero and at infinity, such that both of them are irregular nonres-
onant of Poincaré rank 1. Each system from the class H1

0,∞ has the type

Y ′ =

(
K
z2

+
R
z
+ N

)
Y, K, R, N ∈ End(C2), (2.7)

where each one of the main term matrices K and N at zero and at ∞ has distinct eigenvalues.

Definition 2.7. Consider a linear system L ∈ H1
0,∞. Fix a point z0 ∈ C∗ and two pairs of

good sectors (S0
0, S0

1), (S∞
0 , S∞

1 ) for the main term matrices at 0 and ∞ respectively, see remark
2.5. Fix two pathsαp in C∗ numerated by p = 0,∞, going from the point z0 to a point in Sp

0. Let
f1p, f2p be a canonical sectorial solution basis for the system L at p in Sp

0. Consider the analytic
extensions of the basic functions fkp to the point z0 along paths α−1

p . Let π : C2 \ {0}→ CP
1

denote the tautological projection. Set Φ := Y2
Y1

,

qkp :=π( fkp(z0)) ∈ CP
1 = CΦ. (2.8)

Let M denote the monodromy operator of the system L acting on the local solution space
at z0 (identified with the space C2 of initial conditions at z0) by analytic extension along
counterclockwise circuit around zero. The tuple

(q, M) := (q10, q20, q1∞, q2∞; M) (2.9)

taken up to the next equivalence is called the monodromy–Stokes data of the systemL. Namely,
two tuples (q, M), (q′, M′) ∈ (CP1)4 × GL2(C) are called equivalent7, if there exists a linear

7 Here is an equivalent group-action definition. The group PSL2(C) acts on C
4 × GL2(C) by action h : qkp �→ hqkp

on points in C and conjugation M �→ hMh−1 on matrices. The monodromy–Stokes data is the PSL2(C)-orbit of a
collection (q, M) under this action.
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operator H ∈ GL2(C) whose projectivization sends qkp to q′
kp and such that H−1 ◦ M′ ◦ H = M.

We will also deal with the transition matrix Q comparing the canonical bases at 0 and at ∞ at
z0: ( f1∞, f2∞) = ( f10, f20)Q.

Remark 2.8. The monodromy–Stokes data of a system L depends only on the homotopy
class of the pair of paths (α0,α∞) in the space of pairs of paths in C∗ with a common (variable)
starting point z0 and with endpoints lying in given sectors S0

0 and S∞
0 respectively. Indeed, let

a homotopy between two pairs of paths, (α0,α∞) with base point z0 and (α′
0,α′

∞) with base
point z′0, move z0 to z′0 along a path β in C∗. Let X(z) be the germ of fundamental matrix of
the system L at z0 such that X(z0) = Id. Let H = X(z′0) denote the value at z′0 of the analytic
extension of the fundamental matrix function X(z) along the path β. Then H transforms the
monodromy–Stokes data corresponding to z0 and the path pair (α0,α∞) to that corresponding
to z′0 and the path pair (β−1α0, β−1α∞), as at the end of the above definition.

Proposition 2.9. One has q1p �= q2p for every p = 0,∞. The monodromy–Stokes data
of a system L ∈ H1

0,∞ determines the collection of formal monodromies Mnorm,p, the Stokes
matrices C jp at p = 0,∞, j = 0, 1, and the transition matrix Q uniquely up to the follow-
ing equivalence. Two collections (Mnorm,p, Cjp, Q) and (M′

norm,p, C′
jp, Q′) are equivalent, if

Mnorm,p = M′
norm,p and there exists a pair of diagonal matrices D0, D∞ such that

C′
jp = DpCjpD−1

p for all j, p, and Q′ = D0 ◦ Q ◦ D−1
∞ .

Proof. The inequality q1p �= q2p follows from linear independence of the basic functions
f1p, f2p, which implies independence of their values at z0. A given pair of distinct points
q1p, q2p ∈ CP

1 defines a basis (v1p, v2p) in C
2 (whose vectors are projected to q jp) uniquely up

to multiplication of vectors by constants. Recall that in the basis ( f1p, f2p) of the local solution
space at z0 with fkp(z0) = vkp the monodromy matrix is given by formula (2.6):

M = Mnorm,pC−1
1p C−1

0p . (2.10)

Here the Stokes matrices C0p, C1p are unipotent of opposite triangular types (determined by the
main term matrix of the system L at p). Let they be, say, upper and lower triangular respectively
with the corresponding triangular elements c0 and c1. Recall that the formal monodromy matrix
Mnorm,p is diagonal, set Mnorm,p = diag(m1p, m2p); m jp �= 0. Then

m1p = M11, c0 = −M12M−1
11 , m2pc1 = −M21, (2.11)

m2p = M22 − m2pc0c1 = M22 − M12M21M−1
11 , c1 = −M21m−1

2p , (2.12)

by (2.10). This yields expression for the formal monodromy Mnorm,p and the Stokes matri-
ces in terms of M. All the latter matrices depend on choice of the basic functions fkp, which
are uniquely defined by q jp up to multiplication by constant factors. These rescalings replace
Mnorm,p and Cjp by their conjugates by a diagonal matrix Dp, and Q by D0QD−1

∞ . This does not
change the diagonal matrix Mnorm,p. The proposition is proved. �

Remark 2.10. Recall that two global linear systems on the Riemann sphere are globally
analytically (gauge) equivalent, if and only if they are sent one to the other by constant
linear change Y �→ HY, H ∈ GL2(C) (i.e., constant gauge equivalent). For simplicity every-
where below whenever we work with global systems on C we omit the word ‘analytically’
(‘constant’), and ‘gauge equivalence’ means ‘constant gauge equivalence’.
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Theorem 2.11. Two systems L1,L2 ∈ H1
0,∞ are gauge equivalent, if and only if they have

the same formal normal forms at each singular point and the same monodromy–Stokes data. In
this case each linear automorphism of the fibre {z = z0} � C2 sending the monodromy–Stokes
data of one system to that of the other system extends to a gauge equivalence of systems. Here
both monodromy–Stokes data correspond to the same sectors and path collections.

Proof. The statement of the theorem holds if one replaces the monodromy–Stokes data
by collection of Stokes matrices and the transition matrix up to equivalence from the above
proposition, see [39, proposition 2.5, p 319]. The collection of Stokes and transition matrices
(taken up to the latter equivalence) is uniquely determined by the monodromy–Stokes data, by
the same proposition. Conversely, the monodromy–Stokes data can be restored from the for-
mal monodromy and Stokes and transition matrices. Namely, the monodromy matrix M in the
basis ( f10, f20) is found from (2.10). Let us choose coordinates onC2 in which f10(z0) = (1, 0),
f20(z0) = (0, 1). Then one has q10 = (1 : 0), q20 = (0 : 1), and q1∞, q2∞ are the projections of
the columns of the transition matrix Q. Theorem 2.11 is proved. �

3. Isomonodromic deformations and Painlevé 3 equation

Here we introduce general Jimbo’s isomonodromic deformations of linear systems in H1
0,∞,

which form a one-dimensional holomorphic foliation of the spaceH1
0,∞ (subsection 3.2). After-

wards we study its restriction to the so-called Jimbo type systems, where isomonodromic
deformations are described by solutions of Painlevé 3 equation (3.14) (subsection 3.3). In
subsection 3.4 we consider the space of real Jimbo type systems (i.e., defined by real matri-
ces) with R21 > 0 > R12. We introduce the space JN(R+) of their appropriate normalizations
with R21 = −R12 > 0 by gauge transformations and variable rescalings: the so-called normal-
ized R+-Jimbo type systems. Their space JN(R+) contains the space Jos of systems (1.7) and
is foliated by isomonodromic families obtained from Jimbo deformations by normalizations.
We show that the family Jos is transversal to the isomonodromic foliation of JN(R+), and
it corresponds to poles of order 1 with residue 1 of solutions of Painlevé equations (3.14)
(subsection 3.5). A background material on isomonodromic deformations is recalled in
subsection 3.1.

3.1. Isomonodromic deformations: definition and Frobenius integrability sufficient condition

Let us give the following definition of isomonodromic family of linear systems in H1
0,∞, which

is equivalent to the classical definition, by proposition 2.9.

Definition 3.1. A family of systems in H1
0,∞ is isomonodromic, if the residue matrices of

formal normal forms at their singular points and the monodromy–Stokes data remain constant:
independent on the parameter of the family.

Remark 3.2. If a family of systems in question is continuously parametrized by a connected
parameter space, then constance of the monodromy–Stokes data automatically implies con-
stance of the residue matrices R̃p of the formal normal forms. Indeed, constance of formal
monodromies Mnorm,p follows by proposition 2.9. The formula Mnorm,p = exp(2πiR̃p) implies
that the residue matrices R̃p are uniquely determined by Mnorm,p up to addition of integer
diagonal matrices. Hence, they are constant, by continuity and connectivity.
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Theorem 3.3 [39] , [25, theorem 4.1] . A holomorphic family of linear systems in H1
0,∞

depending on a parameter t from a simply connected domain D ⊂ C,

Y ′ =
dY
dz

=

(
K2(t)

z2
+

K1(t)
z

+ K0(t)

)
Y (3.1)

is isomonodromic if there is a rational in z (with possible poles only at z = 0,∞) and analytic
in t matrix differential one-form Ω = Ω(z, t) on C×D such that

Ω|fixed t =

(
K2(t)

z2
+

K1(t)
z

+ K0(t)

)
dz, (3.2)

dΩ = Ω ∧ Ω. (3.3)

Condition (3.3) means that Ω is integrable in the Frobenius sense. See, e.g., [11, proof of
theorem 13.2].

An isomonodromic deformation with a scalar parameter is often defined by a system of
PDEs [25] ⎧⎪⎨⎪⎩

∂Y
∂z

= U(z, t)Y

∂Y
∂t

= V(z, t)Y,
(3.4)

where U(z, t), V(z, t) are rational in z ∈ C and analytic in t ∈ D. In that case, one can take
Ω = U(z, t)dz + V(z, t)dt. Then condition (3.2) of theorem 3.3 is satisfied if

U(z, t) =
K2(t)

z2
+

K1(t)
z

+ K0(t).

Condition (3.3) is equivalent to the equation

[U, V] = UV − VU =
∂V
∂z

− ∂U
∂t

. (3.5)

3.2. General Jimbo’s isomonodromic deformation

In this section, we consider an isomonodromic deformation introduced by Jimbo in
[38, p 1156, (3.11)] and describe its integrability condition (3.3). The deformation space will
be a simply connected domain D ⊂ C∗ containing R+. Though the deformation in [38] was
written in a seemingly special case, it works in the following general case. We are looking
for isomonodromic families of systems L(t) ∈ H1

0,∞ given by system (3.4) of the following
type: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂Y
∂z

=

(
− K̃(t)

z2
+

R(t)
z

+ N(t)

)
Y :=L(t)

∂Y
∂t

=
1
zt

K̃(t)Y,

t ∈ D. (3.6)

After the time variable change t = es (which cancels ‘t’ in the latter denominator), the integra-
bility condition (3.5) takes the form of a system of autonomouspolynomial ordinary differential
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equations on matrix coefficients in K̃, R, N (here and in what follows [U, V] :=UV − VU):⎧⎪⎪⎪⎨⎪⎪⎪⎩
K̃′

s = [R, K̃] + K̃

R′
s = [K̃, N]

N′
s = 0.

(3.7)

In the initial time variable t and the new matrix variable K := 1
t K̃ system (3.7) takes the

following simplified, though non-autonomous, form:⎧⎪⎪⎨⎪⎪⎩
tK′ = [R, K]

R′ = [K, N]

N′ = 0.

(3.8)

Remark 3.4. Vector field (3.7) is a polynomial vector field on the space H1
0,∞ identified with

a connected open dense subset in the space C12 with coordinates being matrix coefficients. Its
complex phase curves form a one-dimensional holomorphic foliation of the space H1

0,∞ by
isomonodromic families. The corresponding system (3.8) considered as a non-autonomous
differential equation in the linear-system-valued function L(t) ∈ H1

0,∞ has the following first
integrals:

• The matrix N;
• The conjugacy class of the matrix K = 1

t K̃;
• The residue matrices of the formal normal forms of L(t) at 0 and at ∞;
• The conjugacy class of the monodromy operator of the system L(t).

Invariance of residues and monodromy follows from theorem 3.3. Invariance of residues
can be also deduced directly from (3.8) and (2.3).

Proposition 3.5. Vector field (3.7) is equivariant under gauge transformations acting on
H1

0,∞. Its real flow preserves the space of systems in H1
0,∞ defined by real matrices.

The proposition follows immediately from expression (3.7).

3.3. Isomonodromic deformations of special Jimbo type systems

Definition 3.6. A special Jimbo type linear system is a system of type

Y ′ =

(
−t

K
z2

+
R
z
+

(
−1

2
0

0 0

))
Y, R =

(
−� ∗
∗ 0

)
, (3.9)

such that there exists a matrix G ∈ GL2(C) for which

K = G

(1
2

0

0 0

)
G−1, G−1RG =

(
−� ∗
∗ 0

)
. (3.10)

In (3.9) and (3.10) the symbol ∗ stands for an arbitrary unknown matrix element. Here all the
matrices are complex.
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Remark 3.7. The formal normal form at ∞ of a system (3.9) is

Y ′ =

(
diag

(
−1

2
, 0

)
+

1
z

diag(−�, 0)

)
Y.

Condition (3.10) is equivalent to the statement saying that its formal normal form at 0 is

Y ′ =

(
t

z2
diag

(
−1

2
, 0

)
+

1
z

diag(−�, 0)

)
Y,

by (2.3).

Proposition 3.8. The space of Jimbo type systems (3.9), (3.10) corresponding to a given
� ∈ C is invariant under the flow of field (3.7) and hence, is a union of its phase curves. The
number � is a first integral.

The proposition follows from remarks 3.4 and 3.7.
We study Jimbo’s isomonodromic families of systems (3.9) given by (3.8), which take the

following form:⎧⎪⎪⎨⎪⎪⎩
tK′ = −[K, R]

R′ =

[(1
2

0

0 0

)
, K

]
.

(3.11)

We denote the upper right entries of K(t) and R(t) by K12(t) and R12(t) respectively.

Theorem 3.9 [38, pp 1156–7] . Set

y(t) = −R12(t)
K12(t)

, τ =
√

t, w(τ ) =
y(τ 2)
τ

. (3.12)

For every Jimbo’s isomonodromic family (3.11) of Jimbo type systems (3.9) the corresponding
function w(τ ) satisfies the Painlevé 3 equation8

w′′ =
(w′)2

w
− w′

τ
+ α

w2

τ
+ β

1
τ
+ γw3 + δ

1
w

, P3(α, β, γ, δ)

whose parameters are expressed via the first integral � in the following way

α = −2�, β = 2�− 2, γ = 1, δ = −1: (3.13)

w′′ =
(w′)2

w
− w′

τ
− 2�

w2

τ
+ (2�− 2)

1
τ
+ w3 − 1

w
. (3.14)

Remark 3.10. The deformation considered in Jimbo’s paper [38, pp 1156–7] was of the
type

8 There is another frequently mentioned isomonodromic deformation that leads to the Painlevé 3 equation [25, 40].
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂Y
∂x

=

⎛⎝− t̃A(̃t)
x2

+
B(̃t)

x
+

⎛⎝1 0

0 0

⎞⎠⎞⎠Y, A(̃t) = G(̃t)

⎛⎝1 0

0 0

⎞⎠G−1(̃t)

∂Y
∂ t̃

=
A(̃t)

x
Y

(3.15)

with the (constant) residue matrices of formal normal forms at 0 and at ∞ being equal to
1
2 diag(θ0,−θ0) and− 1

2 diag(θ∞,−θ∞) respectively. Jimbo’s family (3.15) with θ∞ = −θ0 = �
can be transformed to our family (3.9), (3.11) by multiplication of the vector function Y(x)
by the scalar monomial x−

�
2 , variable rescaling z = −2x, and parameter rescaling t = −4̃t.

Our function w(τ ) is obtained from analogous function y(
√

t) from [38, p 1157] by rescaling
w(τ ) = −iy(− i

2τ ), which transforms the Painlevé 3 equation satisfied by y (with parameters
from [38, p 1157]) to (3.14).

3.4. Isomonodromic families of normalized R+-Jimbo systems

Definition 3.11. An R+-Jimbo type system is a system (3.9) given by real matrices K, R
satisfying (3.10) with R12 < 0 < R21 and t > 0. (The matrix G, whose inverse diagonalizes K,
can be chosen real and unimodular.) The space of R+-Jimbo type systems will be denoted by
J(R+). A linear system is of normalized R+-Jimbo type, if it has the form

Y ′
ζ =

(
−τ

K
ζ2

+
R
ζ
+ τ

(
−1

2
0

0 0

))
Y, R =

(
−� −R21

R21 0

)
, R21 > 0,

(3.16)

where K and R satisfy (3.10). The space of normalized R+-Jimbo type systems will be denoted
by JN(R+).

Remark 3.12. The space J(R+) ofR+-Jimbo type systems is a union of real isomonodromic
families L(t), real phase curves of vector field (3.7) (proposition 3.5). Each R+-Jimbo type
system can be transformed to a normalized one by composition of a unique diagonal gauge
transformation (Y1, Y2) �→ (Y1,λY2), λ > 0 and the variable change z = τζ , τ =

√
t > 0.

Example 3.13. The space Jos of linear systems of Josephson type, i.e., family (1.7), is con-
tained in JN(R+). Its natural inclusion to JN(R+) transforms a system (1.7) with parameters
(μ, �,ω) to a system (3.16) with K = diag( 1

2 , 0) and the parameters τ = 2μ, �, R21 =
1

2ω .

Proposition 3.14 (rigidity). No two distinct systems in JN(R+) are gauge equivalent.

Proof. A gauge equivalence must be diagonal: it should keep the main term matrix at ∞
diagonal. It should also preserve the equality R12 = −R21 and the inequality R21 > 0. There-
fore, it is a constant multiple of identity, and leaves the system in question invariant. This proves
the proposition. �

Lemma 3.15. Let H1,0
0,∞ ⊂ H1

0,∞ be the open subset consisting of systems with R21, R12 �= 0.

The set JN(R+) is a four-dimensional real-analytic submanifold in H1,0
0,∞. It carries a real
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analytic foliation by isomonodromic families (which will be referred to, as normalized real
isomonodromic families) given by the differential equation⎧⎪⎨⎪⎩

R′
τ = 2τ [K, N] + u[N, R]

K′
τ =

2
τ

[R, K] + u[N, K],
u = τ

K21 − K12

R21
, N =

(
−1

2
0

0 0

)
. (3.17)

Along its solutions the function w(τ ) = − R12(τ )
τK12(τ ) =

R21(τ )
τK12(τ ) satisfies Painlevé 3 equation (3.14).

The above foliation will be denoted by F .

Proof. Let us show that the closed subset JN(R+) ⊂ H1,0
0,∞ is a four-dimensional submani-

fold. For every matrix K ∈ Mat2(C) with distinct eigenvalues and any their fixed order (λ1,λ2),
the matrix G such that G−1KG = diag(λ1,λ2) is uniquely defined up to multiplication from
the right by a non-degenerate diagonal matrix. We will cover H1,0

0,∞ by two open subsets
W1, W2 ⊂ H1,0

0,∞:

W1 := {G11 �= 0}; W2 := {G12 �= 0}.

Let us show that the intersection JN(R+) ∩ W1 is a four-dimensional submanifold in W1. Then
we prove the similar statement for the intersection JN(R+) ∩ W2. For every system in JN(R+) ∩
W1 the corresponding matrix G can be normalized as above in a unique way so that

det G = 1, G11 = 1; G22 = 1 + G12G21. (3.18)

Hence, its matrix K is defined by two parameters G12 and G21, and the correspondence
(G12, G21) �→ K is bijective. Let us write the second equation in (3.10) for a normalized system
with R12 = −R21. It says that the matrix

G−1RG =

(
∗ ∗

G21�+ R21 G21R21

)(
∗ G12

∗ 1 + G21G12

)
has zero right-lower element. This is the equation

G21G12�+ R21G12 + G21R21 + G2
21G12R21 = 0, (3.19)

which is equivalent to the equation

G12 = − G21R21

G21�+ R21(1 + G2
21)

(3.20)

saying that G12 is a known rational function of three independent variables G21, R21, �. The
latter equivalence holds outside the exceptional set where the numerator and the denominator
in (3.20) vanish simultaneously. Vanishing of the numerator is equivalent to vanishing of G21

(since R21 �= 0, by assumption), and in this case the denominator equals R21 �= 0. Thus, the
exceptional set is empty. This implies that W1 ∩ JN(R+) is a real four-dimensional analytic
submanifold in W1 (the fourth parameter is τ =

√
t).

Let us now prove the above statement for JN(R+) ∩ W2. If G12 �= 0, then we can normalize
the matrix G in a unique way so that

det G = 1, G12 = 1; G21 = G11G22 − 1. (3.21)
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Then the second equation in (3.10), which says that the matrix

G−1RG =

(
G22 −1
−G21 G11

)(
−� −R21

R21 0

)(
G11 1
G21 G22

)
has zero right-lower element, is (G11G22 − 1)(�+ G22R21) + G11R21 = 0, which is equivalent
to the equation

G11 =
�+ G22R21

R21(1 + G2
22) + �G22

.

Now it suffices to show that the above numerator and denominator cannot vanish simul-
taneously, as in the previous discussion. Indeed, their vanishing means that G22R21 = −�
and R21 − �G22 + �G22 = R21 = 0, which is impossible. The first statement of the lemma is
proved.

The space J(R+) of R+-Jimbo type systems is a manifold projected to the space JN(R+)
via the diagonal gauge normalizations from remark 3.12. The projection is an analytic bundle
with fibreR+, by the same remark and since JN(R+) is a submanifold. It sends isomonodromic
families in J(R+) given by (3.11) to normalized isomonodromic families in JN(R+). Let us
find the differential equation describing them. Fix a τ 0 > 0 and matrices K0, R0 defining a
system in JN(R+). Set t0 = τ 2

0 . Consider the R+-Jimbo type system (3.9) defined by the same
matrices. Let L̃(t) be its isomonodromic deformation given by equation (3.11), and let K̃(t),
R̃(t) denote the corresponding matrices. LetL(t) denote its projection to JN(R+), which is given
by a gauge transformation family (Y1, Y2) �→ (Y1,λ(t)Y2) and z-variable rescalings z = τζ: the
matrices defining the systems L(t) are

K(t) = Λ(t)K̃(t)Λ−1(t), R(t) = Λ(t)R̃(t)Λ−1(t), Λ(t) = diag(1,λ(t)),

λ(t0) = 1. Isomonodromicity equation (3.11) on L̃(t) at t = t0 yields

⎧⎪⎨⎪⎩
t0K′

t = −[K, R + t0ν diag(0, 1)]

R′ =

[
diag

(
1
2

, 0

)
, K

]
+ ν[diag(0, 1), R],

ν = (ln λ(t0))′ = λ′(t0).

(3.22)

In the second equation in (3.22) R′
21 = −R′

12, since R12 ≡ −R21. This yields

K12 − K21 + 2ν(R21 − R12) = 0, ν =
K21 − K12

4R21
.

Substituting the above formula for ν to (3.22), replacing the matrix diag(0, 1) in the commu-
tators by diag(−1, 0) = diag(0, 1) − Id, and changing the variable t to τ =

√
t yields (3.17).

The function w(τ ) defined in (3.12) for the family L̃(t) coincides with the analogous function

defined for the family L(t), since R12
K12

= λ−1
˜R12

λ−1˜K12
=

˜R12
˜K12

. It satisfies equation (3.14), by theorem
3.9. Lemma 3.15 is proved. �

3.5. Transversality property of Josephson type systems

Lemma 3.16. Consider an arbitrary system L ∈ Jos. Let w(τ ) be the germ of solution of
Painlevé equation (3.14) defining its real isomonodromic deformation in the space JN(R+) at
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the point τ 0 corresponding to the system L. Then w(τ ) has first order pole at τ 0 with residue
1. Conversely, every system in JN(R+) corresponding to a first order pole τ 0 > 0 of solution
of equation (3.14) with residue 1 lies in Jos.

Proof. It is well-known that non-zero singular points of solutions of equation (3.14) are poles
of order 1 with residues ±1 [33, p 158]. Let us check that systems in Jos correspond to poles
with residue 1. Consider a system in JN(R+) with τ = τ 0 and K12 = 0 (e.g., a system lying
in Jos) and its isomonodromic deformation given by (3.17). The upper triangular term in the
second matrix equation in (3.17) has the form

K′
12 =

2
τ

R12(K22 − K11) + O(K12), as τ → τ0; K12(τ0) = 0. (3.23)

Therefore, K12(τ ) = 2
τ0

R12(τ0)(K22(τ0) − K11(τ0))(τ − τ0) + o(τ − τ0),

w(τ ) = − R12(τ )
τK12(τ )

= − 1 + o(1)
2(K22(τ0) − K11(τ0))(τ − τ0) + o(τ − τ0)

. (3.24)

If the initial system corresponding to τ = τ 0 lies in Jos, then K22(τ0) − K11(τ0) = − 1
2 , hence

w(τ ) = 1
τ−τ0

(1 + o(1)), and w has simple pole with residue 1 at τ 0.
Conversely, let w(τ ) have a simple pole with residue 1 at τ 0. Then K12(τ 0) = 0, and

K22(τ0) − K11(τ0) = − 1
2 , by (3.24). Note that the trace of the matrix K is constant and equal to

1
2 . Hence, K22(τ 0) = 0, K11(τ0) = 1

2 . Now to show that the system in question lies in Jos, it suf-
fices to prove that K21(τ 0) = 0. Suppose the contrary: K21(τ 0) �= 0. Then the matrix G, whose
inverse conjugates K(τ 0) to diag( 1

2 , 0), is lower triangular with G21 �= 0. We normalize it by
constant factor to have G11 = 1. Equation (3.19) together with G12 = 0 yield G21R21(τ 0) = 0,
while G21, R21(τ 0) �= 0. The contradiction thus obtained proves that K(τ0) = diag( 1

2 , 0) and the
system in question lies in Jos. Lemma 3.16 is proved. �

Lemma 3.17 (key lemma). The submanifold Jos ⊂ JN(R+) is transversal to the isomon-
odromic foliation F from lemma 3.15.

Proof. Way 1 of proof. In an isomonodromic family given by (3.17) the derivative K′
12 is non-

zero at τ corresponding to a system lying in Jos, see (3.23). Hence, this family is transversal
to the hypersurface Jos.

Way 2 of proof. Points of the hypersurface Jos correspond to simple poles of solutions
of equation (3.14) satisfied along leaves. This together with the fact that a simple pole of
an analytic family of functions depends analytically on parameter implies the statement of
lemma 3.17. �

4. Analytic families of constrictions. Proof of theorem 1.12

For every linear system L let M(L) denote its monodromy operator.
In the proof of theorem 1.12 we use the following proposition.

Proposition 4.1. A point (B, A; ω) is a constriction, if and only if A,ω �= 0 and the corre-
sponding system (1.7) has trivial monodromy.

Proof. Proposition 3.2 from [28] states that a point is a constriction, if and only if (1.7)
has projectively trivial monodromy: the monodromy matrix is a scalar multiple of identity.
Another criterion given by [28, lemma 3.3] states that a point is a constriction, if and only if
� ∈ Z and the germ of linear system (1.7) at the origin is analytically equivalent to its formal
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normal form. In this case system (1.7) and its formal normal form have the same monodromy
matrices in appropriate bases. The monodromy of the normal form is given by the diagonal
matrix diag(e−2πi�, 1), which is identity if � ∈ Z. Proposition 4.1 is proved. �

Corollary 4.2. The systems (1.7) corresponding to constrictions lie in the set

Σ := {L ∈ JN(R+)|M(L) = Id}.

For every system L ∈ JN(R+) let us choose good sectors S0 and S1 that contain the upper
(respectively, lower) half-plane punctured at 0, see figure 5. Consider its monodromy–Stokes
data (q10, q20, q1∞, q2∞; M) defined by the base point z0 = 1 ∈ S1,2 ⊂ S0 ∩ S1 and trivial paths
α0,α∞ ≡ 1. Set

R(L) :=
(q10 − q1∞)(q20 − q2∞)
(q10 − q2∞)(q20 − q1∞)

∈ C. (4.1)

We will call R(L) the transition cross-ratio of the system L. It depends only on the mon-
odromy–Stokes data and not on choice of its representative.

For the proof of theorem 1.12 we first prove the following theorem and lemma in subsec-
tions 4.1 and 4.2 respectively.

Theorem 4.3 (key theorem). The subset Σ ⊂ JN(R+) is a two-dimensional analytic sub-
manifold, a union of leaves of the real isomonodromic foliation F from lemma 3.15. One
has � ∈ Z for every system in Σ. The function R is constant on leaves of F in JN(R+). The
restriction R|Σ is real-valued; it is an analytic submersion Σ→ RP

1 = R ∪ {∞}. The map
(R, τ ) : Σ→ RP

1 × R+ is a local diffeomorphism.

For every � ∈ Z by Σ� ⊂ Σ we denote the subset of systems with given �.

Lemma 4.4. For every � ∈ Z the subset Constr� ⊂ (R2
+)(μ,η), η = ω−1, is a real-analytic

one-dimensional submanifold identified with the intersection Jos ∩Σ�. The restriction of the
function R to the latter intersection yields a mapping Constr� → R \ {0, 1} that is a local
analytic diffeomorphism.

Afterwards in subsection 4.3 we prove the following more precise version of the first two
statements of theorem 1.12.

Theorem 4.5.

(a) For every connected component C of the submanifold Constr� the mapping R : C → R is
a diffeomorphism onto an interval I = (a, b).

(b) Let C :=R−1 : I →C denote the inverse function. For every c ∈ {a, b}\{0} there exists a
sequence xn ∈ I, xn → c, as n →∞, such that ηn = η(C(xn)) →∞, i.e., ω(C(xn)) → 0.

In subsection 4.4 we prove constance of the rotation number and type of constriction on
each connected component in Constr� and finish the proof of theorem 1.12.

4.1. Systems with trivial monodromy. Proof of theorem 4.3
In the proof of theorem 4.3 we use a series of propositions.

Proposition 4.6. Every system L ∈ H1
0,∞ with trivial monodromy (e.g., every system in Σ)

has trivial Stokes matrices and trivial formal monodromies at both singular points 0, ∞. In
particular, the residue matrices of its formal normal forms have integer elements. If L ∈ Σ,
then one has � ∈ Z.
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Proof. The proof repeats arguments from [28, proof of lemma 3.3]. Triviality of the Stokes
matrices follows from formulae (2.11) and (2.12). Then M = Mnorm = Id, by (2.6). Hence,
� ∈ Z, if L ∈ Σ. �

Proposition 4.7. Let in a system L ∈ H1
0,∞, see (2.7), the matrices K, R, N be real, and

let each one of the matrices K, N have distinct real eigenvalues. Let the Stokes matrices of
the system L at 0 and at ∞ be trivial. Then the transition cross-ratio R(L) is either real, or
infinite.

Proof. Let f1 j,p, f2 j,p denote the canonical sectorial solution basis of the system L at point
p = 0,∞ in the sector Sj, j = 0, 1, see figure 5. The complex conjugation σ̂ : (Y1, Y2; z) �→
(Y1, Y2; z̄) leaves L invariant and sends graphs of its solutions to graphs of solutions. Its
projectivization σ : (Φ, z) �→ (Φ, z̄), Φ := Y2

Y1
, permutes the sectors S0, S1 and graphs of the

projectivized solutions

gk0,p :=π ◦ fk0,p, gk1,p :=π ◦ fk1,p.

Here π : C2 \ {0}→ CP
1 = CΦ is the tautological projection. This follows from uniqueness

of projectivized sectorial basic solutions (remark 2.3). Triviality of Stokes matrices implies
that gk0,p = gk1,p is a global holomorphic C-valued function on C∗. In particular, for every
z ∈ R one has gk0,p(z) = gk1,p(z); hence, (gk0,p(z), z) is a fixed point of the involution σ and

gk0,p(z) ∈ R ∪ {∞}. Finally, qkp = gk0,p(1) ∈ R ∪ {∞} for every k = 1, 2 and p = 0,∞, and
thus, R(L) ∈ R ∪ {∞}. Proposition 4.7 is proved. �

Proposition 4.8. For every system L ∈ Σ the corresponding collection of points qkp,
k = 1, 2, p = 0,∞ consists of at least three distinct points. One has q1p �= q2p for every
p = 0,∞.

Proof. One has qkp = gk0,p(1) = π ◦ fk0,p(1), where f10,p, f20,p form the canonical basis of
solutions of the system in S0. Their linear independence implies linear independence of their
values at z = 1, and hence, the inequality q1p �= q2p. Let us now prove that among the points qkp

there are at least three distinct ones. To do this, we use the fact that gk,p(z) := gk0,p(z) = gk1,p(z)
are two meromorphic functions on C∗ ∪ {p}, p = 0,∞. Meromorphicity on C∗ follows from
proposition 4.6 and the proof of proposition 4.7. Meromorphicity at p follows from remark
2.3. Suppose the contrary: there are only two distinct points among qkp. Then g1,0 ≡ gk1,∞,
g2,0 ≡ gk2,∞, where (k1, k2) is some permutation of (1, 2). Therefore, g1,p and g2,p are mero-
morphic on C, by the above discussion. Their graphs are disjoint, since so are graphs of
their restrictions to C∗ (being phase curves of the Riccati foliation on CP

1 × C defined by
L), and their values at each point p ∈ {0,∞} are distinct and equal to the projections of the
eigenlines of the main term matrix at p (remark 2.3). The main term matrix at infinity being
diagonal, one has g1,∞(∞) = [1 : 0], g2,∞(∞) = [0 : 1]. But graphs of two meromorphic func-
tions on C with values in CP

1 = C may be disjoint only if the functions are constant. Indeed,
H2(C× C,Z) = Z⊕ Z (Künneth formula), and the intersection form on the latter homology
group is given by the formula 〈(m1, n1), (m2, n2)〉 = m1n2 + m2n1. See the corresponding back-
ground material in [32, chapter 0, section 4]. The homology class of graph of a rational function
F of degree n is (1, n); n > 0, if F �≡ const. Therefore, if F �≡ const, then the intersection
index of its graph with the graph of any rational function is positive. Hence, g1,∞ ≡ [1 : 0],
g2,∞ ≡ [0 : 1], and the constant functions Φ(z) ≡ 0, Φ(z) ≡ ∞ are solutions of the Riccati
equation corresponding toL. This implies that the matrices of the systemL are diagonal, which
is obviously impossible for a system from JN(R+). The contradiction thus obtained proves the
proposition. �
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Proposition 4.9. For every collection q0 = (q10, q20, q1∞, q2∞) ∈ C4 that has at least three
distinct points there exists a neighbourhood V = V(q0) ⊂ C4 such that two collections in V
lie in the same PSL2(C)-orbit, if and only if they have the same cross-ratio.

Proof. Fix a neighbourhood V such that three distinct points in q0 remain distinct in each
collection from V . Let us normalize them by the PSL2(C) action in such a way that these points
be 0, 1, ∞: such normalization is unique. Then the fourth point is uniquely determined by the
cross-ratio. �

Proof of theorem 4.3. A system L ∈ JN(R+) is uniquely defined by the formal invariants
�, τ and the monodromy–Stokes data (theorem 2.11 and proposition 3.14). Let now M(L) = Id.
Then the latter data are reduced to the PSL2(C)-orbit of the collection (q10, q20, q1∞, q2∞).
The latter collection consists of at least three distinct points (proposition 4.8). Therefore, each
system L ∈ Σ� has a neighbourhood W = W(L) ⊂ Σ� such that two systems in W have the
same monodromy–Stokes data, if and only if the corresponding cross-ratios R are equal. This
follows from proposition 4.9 and the above discussion. One has (R, τ )(L) ∈ RP

1 × R, by
propositions 4.6 and 4.7. This together with the above statement on unique local determination
by R imply that the mapping Π : (R, τ ) : Σ→ RP

1 × R is locally injective.

Proposition 4.10. For every � ∈ Z and L0 ∈ Σ�, set T0 = (R0, τ0) := (R, τ )(L0), there
exist neighbourhoods V1 = V1(L0) ⊂ JN(R+), V2 = V2(T0) ⊂ RP

1 × R and an analytic
inverse g = (R, τ )−1 : V2 → V1 with g(V2) = V1 ∩ Σ�.

Proof. We have to realize each T = (R, τ ) close to T0 by a linear system from Σ. To this
end, we first realize T by an abstract two-dimensional holomorphic vector bundle over C with
connection. Namely, we take two linear systems defined by the given formal normal forms at
0 and ∞ respectively:

H0 : Y ′ =

(
1
z2

diag
(
−τ

2
, 0
)
+

1
z

diag(−�, 0)

)
Y; (4.2)

H∞ : Y ′ =

(
diag

(
−τ

2
, 0
)
+

1
z

diag(−�, 0)

)
Y. (4.3)

We consider the following trivial bundles with connections over discs covering C: the bundle
F0 :=C2

Y0 × D2 equipped with the system H0; the bundle F∞ :=C2
Y∞ × (C \ D 1

2
) equipped

with the system H∞. The bundle realizing T is obtained by the following gluing F0 and
F∞ over the annulus A :=D2 \ D 1

2
. Let v1 = (1, 0), v2 = (0, 1) denote the standard basis

in C2. For every R close enough to R0 fix a linear isomorphism L1 : C2 → C2 such that
the tautological projection to CP

1 = C of the collection of vectors L1v1, L1v2, v1, v2 has
the given cross-ratio R and L1 depends analytically on R. Let W0(z) = diag(e

τ
2 ( 1

z −1)z−�, 1),
W∞(z) = diag(e−

τ
2 (z−1)z−�, 1) be the standard fundamental matrix solutions of systems

H0, H∞ normalized to be equal to the identity at z = 1. Set

Lz = Lz,R,τ = W∞(z)L1(W0(z))−1. (4.4)

Let E = E(R, τ ) denote the disjoint union F0 � F∞ pasted by the following identification: for
every z ∈ A the point (Y0, z) ∈ F0 is equivalent to (Y∞, z) ∈ F∞, if Y∞ = LzY0. The space E
inherits a structure of holomorphic vector bundle over C with a well-defined meromorphic
connection induced by the formal normal forms H0, H∞ in the charts F0 and F∞ (which
paste together by Lz to the same connection over A). This connection has two Poincaré rank
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1 irregular nonresonant singular points at 0 and ∞ where it is analytically equivalent to H0

and H∞. Note that the monodromy–Stokes data and the transition cross-ratio are well-defined
for bundles with connections as well, provided that the singularities at 0 and at ∞ are irregular
nonresonant of Poincaré rank 1. The transition cross-ratio of the bundle E(R, τ ) coincides with
R, by construction.

Let now V̂2 be a small ball centred at T0 = (R0, τ0) in the complex product CR × Cτ (in its
local chart centred at T0). Set Ê :=�(R,τ )∈̂V2

E(R, τ ). This is a holomorphic vector bundle over

the product C× V̂2.
Claim 1. The bundle Ê is trivial, if the ball V̂2 is small enough.

Proof. The bundle E(T0) is trivial, since it has the same monodromy–Stokes data and for-
mal normal forms, as the system L0 (which is a connection on trivial bundle), and by theorem
2.11 (which remains valid for bundles with connections). It is glued from two trivial bundles
over the domains D2 and C \ D 1

2
by the transition matrix function Lz,T0 . Triviality implies that

there exist (and unique) GL2(C)-valued matrix functions U0(z) and U∞(z) holomorphic on
D2 and C \ D 1

2
respectively such that U0(z) = U∞(z)Lz,T0 on A and U∞(∞) = Id. They are

holomorphic on bigger domains D3 � D2, C \ D 1
3
� C \ D 1

2
, by the above statement applied

to the latter bigger domains and holomorphicity of the transition matrix function Lz,T0 on
C∗. Consider the following new trivializations of the trivial bundles C2

Y0 × (D2 × V̂2) and

C2
Y∞ × ((C \ D 1

2
) × V̂2):

Ỹ0 :=U0(z)Y0, Ỹ∞ :=U∞(z)Y∞.

In the new coordinates Ỹ0 and Ỹ∞ the fibre identifications gluing Ê of the above trivial bun-
dles over points (z, T) ∈ A× V̂2 become the following: a point (Ỹ0, z, T) is identified with
(Ỹ∞, z, T), if M(z, T)Ỹ0 = Ỹ∞, where

M(z, T) = U∞(z)Lz,T U−1
0 (z).

Therefore, Ê can be viewed as the bundle glued from two trivial bundles on D2 × V̂2 and
(C \ D 1

2
) × V̂2 by the transition matrix function M(z, T) holomorphic on A× V̂2. One has

M(z, T0) = Id, by construction. Choosing V̂2 small enough, one can make M(z, T) continu-

ous on A× V̂2 and make the C0-norm ‖M(z, T) − Id‖ on A× V̂2 arbitrarily small. Therefore,
the bundle Ê glued by M(z, T) is ‘close to trivial’, and hence, is trivial, whenever V̂2 is small
enough, by [11, appendix 3, lemma 1]. (Formally speaking, this lemma should be applied after
rescaling the coordinates in the chart containing V̂2 in the parameter space to make V̂2 the unit

ball.) The claim is proved. �

Let V2 ⊂ V̂2 be the subset of real points of the complex ball V̂2, which is a real planar
disk. The claim implies that the family E(T)|T∈V2 yields a family of connections on the trivial
bundle C2 × C depending analytically on the parameter T ∈ V2. They should be linear sys-
tems in H1

0,∞, since the singularities at 0 and ∞ are irregular non-resonant of Poincaré rank 1.
This yields an analytic map g : V2 → V1 from a neighbourhood V2 = V2(T0) ⊂ RP

1 × R to a
domain V1 ⊂ H1

0,∞ such that for every (R, τ ) ∈ V2 the system g(R, τ ) has trivial monodromy,
transition cross-ratio equal to R, and is analytically equivalent to formal normal forms (4.2),
(4.3) near 0 and ∞ respectively. Without loss of generality we consider that g(T0) = L0, apply-
ing a gauge transformation independent on (R, τ ). For every system in g(V2) the corresponding
points qkp ∈ CΦ from the monodromy–Stokes data given by the base point z0 = 1 and trivial
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paths α0 ≡ α∞ ≡ 1 lie on the same circle, since their cross-ratio R lies in R ∪ {∞}. The lat-
ter circle is unique, since there are at least three distinct points qkp: this is true for T = T0

(proposition 4.8) and remains valid for all T ∈ V2, provided that V̂2 is chosen small enough.
We normalize the systems in g(V2) so that the latter circle is the real line, applying an analytic
family of gauge transformations depending on (R, τ ).

Claim 2. The systems in g(V2) are defined by real matrices.

Proof. The transformation σ̂ : (Y1, Y2; z) �→ (Y1, Y2; z̄) applied to systems in g(V2) preserves
formal normal forms and monodromy–Stokes data, by construction and the above normal-
ization. Therefore, it sends each system in g(V2) to a system gauge equivalent to it, and the
collections of points qkp in the fibre C× {1} are the same for both systems. Their gauge equiv-
alence restricted to the fibre C

2 × {1} should fix the lines corresponding to qkp. Hence, it is
identity up to scalar factor, since the number of distinct points qkp is at least three. Therefore,
the systems in question coincide. Thus, σ̂ fixes each system in g(V2), which means that its
matrices are real. �

The main term matrix N at ∞ of each system in g(V2) is real, and its eigenvalues are − τ
2 ,

0. It is close to diag(− τ
2 , 0), if V2 is small enough. Therefore, it is conjugated to the diago-

nal matrix diag(− τ
2 , 0) by a real matrix H close to the identity. The matrix H is unique up

to left multiplication by a real diagonal matrix. It can be chosen in a unique way so that the
gauge transformation Y = H−1Ỹ makes R21 = −R12 > 0. This yields a family of gauge trans-
formations sending systems in g(V2) to systems lying in JN(R+), and hence, in Σ� (triviality of
monodromy). From now on, the mapping V2 → JN(R+) thus constructed will be denoted by
g. By construction, its image lies in Σ�, and for every (R′, τ ′) ∈ V2 the transition cross-ratio R
and the formal invariant τ of the system g(R′, τ ′) are respectively R′ and τ ′. Conversely, every
system L ∈ Σ� close enough to L0 has invariants (R, τ ) lying in V2, and hence L = g(R, τ ),
by construction, theorem 2.11 and proposition 3.14. This proves proposition 4.10. �

The mapping g is an immersion, since the projection L �→ (R, τ )(L) is real-analytic and
(R, τ ) ◦ g = Id. This together with proposition 4.10 implies that Σ� is a two-dimensional
submanifold, and (R, τ ) : Σ� → RP

1 × R is a local diffeomorphism. Hence, the projection
R : Σ� → RP

1 (which is constant along isomonodromic leaves) is a submersion. Theorem 4.3
is proved. �

4.2. The manifold of constrictions. Proof of lemma 4.4

The space of systems (1.7) with given � is identified with (R+)2
μ,η, η = ω−1. They are rep-

resented as systems in Jos ⊂ JN(R+) with parameters τ = 2μ, �, R21 =
η
2 . The constriction

subset Constr� ⊂ (R+)2
μ,η is thus identified with the intersection Jos ∩ Σ�, by proposition 4.1.

The latter intersection is transversal, since Σ� is a union of leaves of the isomonodromic foli-
ation F and Jos is transversal to F (lemma 3.17). Therefore, Constr� is a one-dimensional
submanifold transversal to the isomonodromic foliation on Σ�. Hence, R : Constr� → RP

1 is
a local analytic diffeomorphism (submersivity of the projection R : Σ� → RP

1, see theorem
4.3). It remains to show that R �= 0, 1,∞ on Constr�.

Proposition 4.11. For every constriction (B, A; ω) the collection of points qkp from the
monodromy–Stokes data of the corresponding linear system (1.7) consists of four distinct
points. Or equivalently, R �= 0, 1,∞.

Proof. One has q1p �= q2p. Hence, the only a priori possible coincidences are the following.
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Case (1): qk0 = qk∞ for some k. Then the same equality holds for the other k, by symmetry
(Φ, z) �→ (Φ−1, z−1) of the corresponding Riccati equation (1.6). Thus, the collection of points
qkp consists of two distinct points. This contradicts to proposition 4.8.

Case (2): qk0 = q(3−k)∞ for some k. This means that the transition matrix between the canon-
ical solution base of system (1.7) at 0 and the canonical base at ∞ taken in inverse order is a
triangular matrix. But this contradicts to [29, theorem 2.10, statement (2.19)].

Finally none of cases (1) and (2) is possible. Proposition 4.11 is proved. �
Lemma 4.4 follows from proposition 4.11 and the discussion before it.

4.3. Asymptotics and unboundedness. Proof of theorem 4.5

The subset Constr� ⊂ (R2
+)μ,η is a submanifold that admits a locally diffeomorphic projection

R toR \ {0, 1} (lemma 4.4). This implies that it has no compact components, since no compact
component can admit a locally diffeomorphic mapping to R. Therefore, each its component
C is diffeomorphic to some interval I = (a, b) with coordinate x :=R. This implies the first
statement of theorem 4.5. To prove its second statement, the existence of a sequence xn → c
with η(C(xn)) →∞ for c ∈ {a, b}\{0}, C = R−1, we will

• Use the following Klimenko–Romaskevich Bessel asymptotic result [44] to show that
boundedness of η implies boundedness of μ;

• Prove that (μ, η)(xn) cannot converge to (0, 0), by using solution of variational equation to
(1.3) and studying local parametrization of the analytic subset in R2 containing Constr�;

• Show that if η(xn) → 0, then c = lim xn = 0.

Let us recall that the boundary of the phase-lock area Lr consists of two curves ∂Lr,0, ∂Lr,π ,
corresponding to those parameter values, for which the Poincaré map of the corresponding
dynamical system (1.4) acting on the circle {τ = 0} has fixed points 0 and π respectively.
These are graphs

∂Lr,α = {B = Gr,α(A)}, Gr,α are analytic functions onR; α = 0, π.

Theorem 4.12 [44, theorem 2] . There exist positive constants ξ1, ξ2, K1, K2, K3 such that
the following statement holds. Let r ∈ Z, A, ω > 0 be such that

|rω|+ 1 � ξ1

√
Aω, A � ξ2ω. (4.5)

Let Jr denote the rth Bessel function. Then∣∣∣∣ 1
ω

Gr,0(A) − r +
1
ω

Jr

(
−A
ω

)∣∣∣∣ � 1
A

(
K1 +

K2

ω3
+ K3 ln

(
A
ω

))
, (4.6)

∣∣∣∣ 1
ω

Gr,π(A) − r − 1
ω

Jr

(
−A
ω

)∣∣∣∣ � 1
A

(
K1 +

K2

ω3
+ K3 ln

(
A
ω

))
. (4.7)

Proposition 4.13. Fix an � ∈ Z. For every η0 > 0 the intersection

Constr�,η0 :=Constr� ∩ {0 < η < η0} ⊂ R+ × (0, η0)

is a one-dimensional analytic submanifold with infinitely many connected components, and
each component is bounded.

Proof. Let u1 < u2 < . . . denote the sequence of points of local maxima of the modulus
|J�(−u)|, which tends to plus infinity.
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Claim. Fix an η0 > 0 and an � ∈ Z. For every k ∈ N large enough (dependently on η0

and �) the interval Îk := {μ = uk
2 } × (0, η0) does not intersect the constriction set Constr�.

Proof. In the coordinates (μ, η) inequalities (4.5)–(4.7) can be rewritten for r = � respec-
tively as

| �
η
|+ 1 � ξ1

η

√
2μ, μ � ξ2

2
, (4.8)

∣∣∣∣ηG�,0

(
2μ
η

)
− �+ ηJ�(−2μ)

∣∣∣∣ � η

2μ

(
K1 + K2η

3 + K3 ln(2μ)
)
, (4.9)

∣∣∣∣ηG�,π

(
2μ
η

)
− �− ηJ�(−2μ)

∣∣∣∣ � η

2μ

(
K1 + K2η

3 + K3 ln(2μ)
)
. (4.10)

For every k large enough the valueμ = uk
2 satisfies inequality (4.8) for all η ∈ (0, η0). Substitut-

ing μ = uk
2 to the right-hand side in (4.9) transforms it to a sequence of functions of η ∈ (0, η0)

with uniform asymptotics η(O( 1
uk

) + O( ln uk
uk

)), as k →∞. The values |J�(−uk)| are known to

behave asymptotically as 1√
uk

(up to a known constant factor). Therefore, they dominate the
right-hand sides in (4.9) and (4.10). This together with (4.9), (4.10) implies that for every k
large enough, set Ak =

uk
η ,

G�,0(Ak) = �ω − J�(−uk)(1 + o(1)), G�,π(Ak) = �ω + J�(−uk)(1 + o(1)),

as k →∞, uniformly in ω > ω0 = η−1
0 . This implies that �ω lies between G�,0(Ak) and G�,π(Ak)

for large k. Therefore, for every k large enough and every ω > ω0 the point (�ω, Ak; ω) lies
in the interior of the phase-lock area L�, and hence, is not a constriction. This proves the
claim. �

For every point q ∈ Constr� and every k large enough dependently on q the connected com-
ponent of the point q in Constr� is separated from infinity by the segment Îk from the above
claim. This proves boundedness of connected components. Infiniteness of number of connected
components follows from their boundedness and the fact that for every given � ∈ Z and ω > 0
the vertical line Λ� = {B = ω�} contains an infinite sequence of constrictions with A-ordinates
converging to +∞; the latter fact follows from [44, the discussion after definition 2] and
[28, theorem 1.2]. This finishes the proof of proposition 4.13. �

Lemma 4.14. For every � ∈ Z the subset Constr� ⊂ R2
+ does not accumulate to zero. That

is, there exists no sequence of constrictions (Bk, Ak; ωk) with Bk = �ωk where ωk →+∞ and
μk := Ak

2ωk
→ 0, as k →∞.

For the proof of lemma 4.14 (given below) let us recall that the first equation in system (1.4)
describing model of Josephson junction takes the following form in the new parameters μ and
η:

θ̇ :=
dθ
dτ

= η cos θ + �+ 2μ cos τ , η = ω−1, μ =
A

2ω
. (4.11)

The constrictions correspond to those values of (μ, η) ∈ R
2
+ for which the time 2π flow map

h = h2π = hμ,η
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of equation (4.11) acting on the θ-circle {τ = 0} is identity (proposition 1.11). For the
proof of the lemma it suffices to show that (0, 0) is an isolated point in the analytic subset
{hμ,η = Id} ⊂ R2

μ,η . This is done by using the following formulae for a solution θ(τ ) of (4.11)
and its derivatives in parameters for η = 0.

Proposition 4.15. Let θ(τ , θ0; μ, η) denote the solution of equation (4.11) with initial con-
dition θ(0) = θ0. One has the following formulae for the solution and its partial derivatives
in the parameters (μ, η):

θ(τ , θ0;μ, 0) = θ0 + �τ + 2μ sin τ , hμ,0 = Id, (4.12)

θ(τ , θ0) := θ(τ , θ0, 0, 0) = θ0 + �τ , (4.13)

θ′η =
∂θ

∂η
=

1
�

(sin (θ0 + �τ ) − sin θ0) at the locus {μ = η = 0}, (4.14)

θ′μ = 2 sin τ , θ(k)
μ...μ =

∂kθ

∂μk
= 0 for k � 2 at the locus {η = 0}. (4.15)

The following two formulae hold at the locus {μ = η = 0}:

∂2θ

∂η2
= −τ

�
+

1
2�2

(sin 2(θ0 + �τ ) − sin 2θ0) − 2
�2

sin θ0(cos(θ0 + �τ ) − cos θ0);

(4.16)

∂k+1θ̇

∂η∂μk
= 2ksk(θ0 + �τ )sink τ , where sk(y) =

⎧⎨⎩(−1)
k
2 cos y for even k

(−1)
k+1

2 sin y for odd k.
(4.17)

Here ‘dot’ is the derivative in τ .

Proof. Formulae (4.12) and (4.13) are obvious. The equation in variations for the derivative
θ′η is

θ̇′η = cos(θ0 + �τ + 2μ sin τ ) + O(η), as η → 0. (4.18)

The derivative θ′η is a solution of (4.18) vanishing at τ = 0. Therefore, for μ = η = 0 it is
given by (4.14). Formulae (4.15) follow immediately by differentiating (4.12) in μ. Formula
(4.17) follows by differentiating (4.18) in μ and taking the value thus obtained at μ = η = 0.
It remains to prove (4.16). Differentiating equation (4.11) in η twice at η = μ = 0 and substi-
tuting (4.14) yields the following differential equation for the derivative θ′′ηη =

∂2 θ
∂η2 :

θ̇′′ηη = −2 sin θθ′η = −2
�

sin(θ0 + �τ )(sin(θ0 + �τ ) − sin θ0).

Taking the primitive in τ of the right-hand side that vanishes at τ = 0 yields (4.16). The
proposition is proved. �

Proposition 4.16. Let � ∈ N. The Taylor expansion in (μ, η) of the time 2π flow map
hμ,η(θ0) takes the form

hμ,η(θ0) = θ0 −
π

�
η2 + g(θ0)ημ� + o(η2) + o(ημ�), as μ, η → 0, (4.19)
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where g(θ0) is a non-constant function of θ0 that is equal to either sin θ0, or cos θ0 up to non-
zero constant factor.

Proof. The Taylor coefficient of the difference hμ,η(θ0) − θ0 at μkηm at the locus

μ = η = 0 equals 1
k!m!

∂k+mθ
∂μk∂ηm (τ , θ0; 0, 0) where τ = 2π. The latter derivative at τ = 2π van-

ishes for (k, m) = (0, 1), (n, 0), by (4.14), (4.15); it equals − 2π
�

for (k, m) = (0, 2), by (4.16).
Claim. The above (k, 1)th derivative is 2π-periodic in τ , if 1 � k � �− 1. If k = �,

it is equal to g(θ0)τ plus a 2π-periodic function; here g(θ0) has the same type, as in
proposition 4.16.

Proof. The (k, 1)th derivative equals the primitive of the right-hand side in (4.17). The latter
right-hand side is a linear combination of values of sin (or cos) of θ0 + rτ , r ∈ Z, �− k � r �
�+ k. Moreover, the coefficient at the ‘lower term’, the sin (cos) of θ0 + (�− k)τ , is non-zero,
by elementary trigonometry. Therefore, the primitive of the latter right-hand side in (4.17)
is a linear combination of cos (sin) of the above arguments, except for a possible term with
r = 0, which is τ cos θ0 (τ sin θ0) up to constant factor. For k � �− 1 the latter term does not
arise. For k = � it arises with a non-zero constant factor, by the above discussion. The claim is
proved. �

One has ∂k+mθ
∂μk∂ηm (0, θ0; 0, 0) = 0, by definition. This together with the above claim and dis-

cussion implies the statements of proposition 4.16. �

Proof of lemma 4.14. Suppose the contrary: the set Constr� accumulates to zero. Recall
that it lies in the ambient analytic subset in R× R defined by the equation hμ,η = Id. (The
Poincaré map hμ,η is Möbius, being the restriction to S1 = {|Φ| = 1} of the monodromy map of
Riccati equation (1.6); the equation hμ,η = Id is written in the Lie group Aut(D1) � PSL2(R).)
Therefore, the latter analytic subset contains an irreducible germ of analytic curve Γ at 0 with
η|Γ, μ|Γ �≡ 0, since η, μ �= 0 on Constr�. Hence, Γ can be considered as a graph of (may be
singular) analytic function μ = cηα(1 + o(1)), α > 0, c �= 0. Substituting the latter expression
for μ to the Taylor formula (4.19) yields

hμ,η(θ0) = θ0 −
π

�
η2 + c�g(θ0)η1+�α + o(η2) + o(η1+�α). (4.20)

The right-hand side in (4.20) should be identically equal to θ0, since hμ,η = Id for (μ, η) ∈ Γ.
This together with (4.20) implies that its second and third terms should cancel out: 1 + �α = 2
and g(θ0) ≡ c−� π

� . But we know that g(θ0) �≡ const. The contradiction thus obtained proves
lemma 4.14. �

Proof of the second statement of theorem 4.5. Suppose the contrary: as x ∈ I tends
to a non-zero endpoint c ∈ {a, b} of the interval I, the function η = η(C(x)) is bounded from
above. But then μ(C(x)) is also bounded from above, by proposition 4.13. The component
C being a non-compact submanifold in R2

+, it should go to ‘infinity’ (to the boundary), as
x → c. Therefore, there exists a sequence xk → c such that C(xk) → C∗ ∈ {μη = 0|μ, η � 0}
(boundedness of μ and η). One has C∗ �= (0, 0), by lemma 4.14. Let show that two other
possible cases treated below are impossible.

Case (1): C∗ = (0, η), η > 0. Then the equation (4.11) corresponding to C(xk) = (μk, ηk)
have identity Poincaré map and limit to the equation

dθ
dτ

= η cos θ + �, (4.21)
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which should also have identity Poincaré map. In the case, when � = 0, this is obviously impos-
sible, since the dynamical system onT2 given by (4.21) is hyperbolic with an attracting periodic
orbit θ ≡ π

2 . In the case, when � ∈ N, the rotation number of the above system is an inte-
ger non-negative number ρ < �. This follows from the fact that the �-th phase-lock area L�

intersects the B-axis {A = 0} = {μ = 0} at the so-called growth point with known abscissa
B(�,ω) =

√
�2ω2 + 1, ω = η−1, see [18, corollary 3], while C(xk) correspond to constrictions

with the abscissas �ωk < B(�,ωk). Therefore, the points C(xk) ∈ Constr� also correspond to
the same rotation number ρ < �, whenever k is large enough (continuity of the rotation number
function and its integer-valuedness on the points (Bk, Ak; ωk) corresponding to C(xk)). Thus, the
points C(xk) correspond to constrictions lying on the axis Λ� = {B = �ω} with non-negative
rotation number ρ < �. But all the constrictions lying in Λ� should correspond to rotation num-
bers no less than �, by [28, theorem 1.2]. The contradiction thus obtained shows that the case
under consideration is impossible.

Case (2): C∗ = (μ, 0), μ > 0. Then the linear system (1.7) corresponding to C∗ is diagonal,
and hence, has zero cross-ratio R = x. Hence, the cross-ratios xk corresponding to C(xk) tend
to zero. But their limit c is non-zero, by assumption. The contradiction thus obtained shows
that case (2) is also impossible and finishes the proof of theorem 4.5. �

4.4. Constance of rotation number and type. Proof of theorem 1.12

Without loss of generality we can and will restrict ourselves to the case, when � ∈ Z�0, due to
symmetry.

All the statements of theorem 1.12 except for the last one follow immediately from theorem
4.5. Let us prove its last statement: constance of rotation number and type. Fix a connected
component C of the manifold Constr�. Constance of the rotation number function on C follows
from its continuity and integer-valuedness. Constance of the constriction type is obvious for
� = 0: the A-axis lies in L0, hence, all its constrictions are positive. Thus, everywhere below we
consider that � ∈ N (symmetry). To prove constance of type, we use the following proposition.
To state it, let us recall that for everyω > 0 a generalized simple intersection is a point (B, A; ω)
with � = B

ω ∈ Z, A �= 0 and ρ = ρ(B, A;ω) ≡ �(mod 2Z) that lies in the boundary of the phase-
lock area Lρ = Lρ(ω) and that is not a constriction [30, definition 1.16]; they exist only
for � �= 0.

Proposition 4.17. A constriction C = (B, A; ω) cannot be a limit of generalized simple
intersections with some ωk → ω.

Proof. One has � = B
ω
∈ Z. Without loss of generality we can and will consider that � � 1

(symmetry). Generalized simple intersections correspond to special double confluent Heun
equations (1.9) having polynomial solution [13, theorem 1.15]. If, to the contrary, the con-
striction C were a limit of generalized simple intersections, then it would also corresponds to
equation (1.9) having polynomial solution. But this is impossible, by [12, theorems 3.3 and
3.10]. The contradiction thus obtained proves the proposition. �

Let a constriction C(x0) ∈ Constr� be negative. Let us show that for every x close to
x0 the constriction C(x) = (B(x), A(x); ω(x)) is also negative: the case of positive constric-
tion is treated analogously. (Note that each constriction is either positive, or negative, by
[29, theorem 1.8].) Let ρ ∈ Z denote the rotation number of the constriction C(x0). Set
ω0 :=ω(x0), Λ�(ω) := {B = �ω} ⊂ R2

B,A. For every r > 0 let Ur ⊂ R2 denote the disk of
radius r centred at (B(x0), A(x0)). Fix an r > 0 such that (B(x0), A(x0)) is the only point of
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intersection ∂Lρ(ω0) ∩ Λ�(ω0) lying in U2r. Such an r exists, since the latter intersection is dis-
crete, by analyticity of the graphs ∂Lρ,0, ∂Lρ,π forming ∂Lρ, and since none of these graphs is
a vertical line.

Case (1). Let for every x close enough to x0 the point (B(x), A(x)) be the only point of
intersection ∂Lρ(ω(x)) ∩ Λ�(ω(x)) lying in Ur. Then all the above constrictions C(x) have the
same, negative type, by definition.

Case (2). Let now the unique point C(x0) of intersection ∂Lρ(ω(x0)) ∩ Λ�(ω(x0)) split
into several intersection points, as we perturb x = x0 slightly. Then all these points are con-
strictions, by proposition 4.17 and since ρ ≡ �(mod 2), see [28, theorem 3.17]. Their num-
ber is finite, and they split the intersection Λ�(ω(x)) ∩ Ur into a finite number of intervals.
Any two adjacent division intervals either both lie outside the phase-lock area Lρ(ω(x)), or
both lie inside Lρ(ω(x)), since the constriction separating them is either negative, or positive
(see [29, theorem 1.8] and remark 1.8). The division intervals adjacent to ∂Ur should lie out-
side, since this is true for x = x0 and by continuity. Therefore, all the above intervals lie outside.
Hence, all the constrictions bounding them are negative. Theorem 1.12 is proved.

5. Slow–fast methods. Absence of ghost constrictions for small ω

We prove theorem 1.13 in subsections 5.1–5.5. Theorem 1.10 will be proved in subsection 5.6.
It suffices to prove absence of ghost constrictions with B = ω�, � ∈ N, and A > 0, by sym-

metry and since the constrictions with � = 0 are positive and lie in L0. Thus, everywhere below
without loss of generality we consider that � ∈ N. It is already known that

there are no constrictions (�ω, A) with A ∈ (0, 1 − �ω], (5.1)

since all the points (B, A) with |B|+ |A| � 1 lie in the phase-lock area L0 [13, proposition 5.22],
and all the constrictions in L0 lie in the A-axis.

First in subsection 5.1 for small ω we prove absence of ghost constrictions in the semiaxis
Λ� with ordinate greater than

A 1
2
= A 1

2
(ω) := 1 +

(
� − 1

2

)
ω. (5.2)

Their absence follows from results of [29, 30], which imply that the whole ray
{�ω} × [A 1

2
,+∞) lies in the phase-lock area L� for small ω. In subsection 5.5 we show that

there are no constrictions (�ω, A) with A ∈ (1 − �ω, A 1
2
(ω)), whenever ω is small enough. This

is done by studying family of systems (1.4) modelling Josephson junction as a slow–fast family
of dynamical systems, with small ω and A = Aα(ω) = 1 + (�− α)ω + o(ω). The correspond-
ing background material on slow-fast systems is given in subsection 5.2. The key lemma used
in the proof of absence of the above-mentioned constrictions is the monotonicity lemma stated
and proved in subsection 5.4. It concerns a pair of slow–fast families (1.4) corresponding to
two families of ordinates Aα1 and Aα2 as above with 0 < α1 < α2. It deals with their Poincaré
maps of the cross-section {τ = 0} lifted to the universal cover as maps of the line {τ = 0}
to {τ = 2π}. The monotonicity lemma states that the Poincaré map of the system (1.4) corre-
sponding to Aα2 is less than the analogous Poincaré map for Aα1 , whenever ω is small enough.
Its proof is based on the comparison lemma on arrangement and disjointness of slow flowboxes
of the systems in question (stated and proved in subsection 5.3).
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5.1. Absence of ghost constrictions with big ordinates

Lemma 5.1. For every � ∈ N and every ω > 0 small enough dependently on � the ray

Λ�, 1
2

:=Λ� ∩
{

A � A 1
2

}
⊂ Λ�,

see (5.2), lies in the phase-lock area with the rotation number �. It contains no ghost
constrictions.

Proof. The intersection of the phase-lock area L� with the semiaxis Λ+
� :=Λ� ∩ {A > 0}

contains a ray S� bounded by a point P�, the so-called higher generalized simple intersection
[29, theorem 1.12]. Therefore, for the proof of the inclusion Λ�, 1

2
⊂ L� it suffices to show that

A(P�) < A 1
2

whenever ω is small enough. Let us show that

A(P�) = 1 + (�− 1)ω + o(ω), as ω → 0. (5.3)

To do this, let us recall the definition of the point P�. Set

μ :=
A

2ω
, λ :=

1
4ω2

− μ2 =
1 − A2

4ω2
.

Consider the corresponding Heun equation (1.9). Fix an ω > 0. The value μ(P�) =
A(P�)

2ω
is the maximal number μ > 0 for which equation (1.9) has a polynomial solution, see
[29, definition 1.9], [13, theorem 1.15]. It was shown in [19] that existence of polynomial
solution is equivalent to the condition that the point (λ, μ) lies in a remarkable algebraic
curve Γ� ⊂ R2, the so-called spectral curve. Thus, for every ω > 0 the point (λ(P�),μ(P�))
lies in Γ�, and it is the point in Γ� with the biggest coordinate μ. As ω → 0, one has
1
ω
=
√

4(λ+ μ2) →∞, thus, (λ, μ) →∞. It is known that the complexified curve Γ� inter-
sects the complex infinity line in CP

2 at � distinct regular real points. Their asymptotic direc-
tions correspond to the ratios λ

μ equal to �− 1, �− 3, . . . ,−(�− 1), and the corresponding local
branches are real. This was proved by Netay [30, proposition 1.10]. Therefore, as a point of
the curve Γ� tends to its infinite point, one has μ→∞,

λ = O(μ) = o(μ2),
1

4ω2
= λ+ μ2 � μ2, 2ωμ = A � 1,

λ

μ
=

1 − A2

4ω2μ
� k, k ∈ {�− 1, �− 3, . . . ,−(�− 1)}.

But 1−A2

4ω2μ
= (1−A)(1+A)

2ωA � 1−A
ω

. The latter ratio should tend to a number k as above. Therefore,
as a point in Γ� tends to infinity, one of the following asymptotics takes place:

A = 1 + mω + o(ω), m = −k ∈ {�− 1, �− 3, . . . ,−(�− 1)}.

The asymptotics corresponding to points with the maximal possible A is given by m = �− 1.
This proves (5.3). Hence, A(P�) < A 1

2
= 1 + (�− 1

2 )ω, whenever ω is small enough, by (5.3).
The inclusion Λ�, 1

2
⊂ L� is proved. It implies that all the constrictions in Λ�, 1

2
are positive, lie

in L�, and hence, are not ghost. The lemma is proved. �
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Figure 6. Different topological types of the curve γB,A = { f (θ, τ ) = 0} for B, A > 0,
A < 1 + B. We present its liftings to the universal covering R

2
θ,τ .

5.2. Model of Josephson junction with small ω as slow–fast system

We study one-parameter subfamilies of vector fields (1.4) on T2 parametrized by small ω as
slow–fast families of dynamical systems, where � = B

ω ≡ const and A depends on ω. To do
this, we recall the following results on topology of the zero level curve of the θ-component in
(1.4): the so-called slow curve

γ = γB,A := { f (θ, τ ) = 0}, f (θ, τ ) := cos θ + B + A cos τ.

Proposition 5.2 (see [43, proposition 2]). For every (A, B) ∈ R2
+ with |1 − B| < A <

1 + B the curve γ is a regular strictly convex contractible curve lying in the interior of the
fundamental square [0, 2π]2 of the torus T2. See figure 6(a)).

Remark 5.3. The curve γ is always symmetric with respect to the horizontal and vertical
lines through the centre of the latter square.

For completeness of presentation we give the proof of proposition 5.2.

Proof of proposition 5.2. Let 1 − B < A < 1 + B. Let us now show that the curve γ does
not intersect the boundary of the above fundamental square. Indeed, on the boundary either
cos θ = 1, or cos τ = 1. If cos θ = 1, then f (θ, τ ) = cos θ + B + A cos τ � 1 + B − A > 0. If
cos τ = 1, then f (θ, τ ) � −1 + B + A > 0. Therefore, f (θ, τ ) �= 0 on the boundary of the fun-
damental square, and γ lies in its interior. For the proof of strict convexity it suffices to show
that the value9 of the Hessian form of the function f on its skew gradient tangent to its level
curves is positive on γ. That is,

∂2 f
∂θ2

(
∂ f
∂τ

)2

+
∂2 f
∂τ 2

(
∂ f
∂θ

)2

− 2
∂2 f
∂θ∂τ

(
∂ f
∂τ

)(
∂ f
∂θ

)
> 0 on γ. (5.4)

9 The value of the Hessian form of a function f on its skew gradient, i.e., the expression in the left-hand side in (5.4)
was introduced by Tabachnikov in [64].
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Substituting u := cos θ, v := cos τ to the latter left-hand side and dividing it by A yields the
following equivalent inequality:

−Au(1 − v2) − v(1 − u2) > 0, whenever u + B + Av = 0 and |u|, |v| � 1.

(5.5)

Substituting u = −B − Av to the left-hand side in (5.5) transforms it to the polynomial

P(v) = ABv2 + v(A2 + B2 − 1) + AB.

One has P(v) > 0 for every v ∈ R, since its discriminant is negative, i.e., −2AB < A2 + B2 −
1 < 2AB. Indeed, the latter inequality can be rewritten as |A − B| < 1 < A + B, which is equiv-
alent to the system of inequalities of the proposition for positive A and B. The proposition is
proved. �

Proposition 5.4. In the case, when A, B > 0 and A = 1 − B, the curve γ is regular, except
for one singular point q = (π, 0) of type ‘transversal double self-intersection’. Its intersection
with the interior of the fundamental square [0, 2π]2 is a convex curve. In the case, when B > 0
and 0 < A < 1 − B, the curve γ is regular and consists of two non-contractible closed con-
nected components of homological type (0, 1) in the standard basis in H1(T2

θ,τ ). See figures 6(b)
and (c).

Proof. Consider the first the case: A = 1 − B. Convexity is preserved under passing to limit,
as A > 1 − B tends to 1 − B. The singular point statement and uniqueness of singular point
follow by straightforward calculation, the implicit function theorem and Morse lemma. In more
detail, γ being a level curve of an analytic function f (θ, τ ), its singular points (if any) are
the critical points of the function f contained in γ. The critical points are those with cos θ,
cos τ = ±1. The only critical point in γ is the one with cos θ = −1, cos τ = 1, i.e., q = (π, 0).
This is a Morse critical point with index −1, i.e., the Hessian form of the function f at q has
eigenvalues of opposite signs: ∂2 f

∂θ∂τ
= 0, ∂2 f

∂θ2 = 1, ∂2 f
∂τ2 = −A < 0. Hence, it is a transversal

self-intersection singular point of the curve γ (Morse lemma). See figure 6(b)).
As A and B vary, the topological type of the curve γ may change only near those param-

eter values, for which γ is a critical level curve of the function f (θ, τ ). It follows from the
above critical point description that γ is a critical level curve, if and only if ±1 + B ± A = 0
for some of the four possible sign choices. Therefore, the topological type is constant in the
domain {B > 0, 0 < A < 1 − B} in the parameter space. To find this topological type, fix a
point (B0, A0) ∈ R2

+ with A0 = 1 − B0. We show that as A > A0 decreases and crosses the value
A0, a connected contractible curve γB0,A given by proposition 5.2 is transformed to two disjoint
curves isotopic to the τ -circle. For A close to A0 the complement of each γB0,A to a small disk
U centred at the singular point q is a regular curve depending analytically on the parameter A.
It consists of two connected components γB0,A;±(U) disjoint from the circle {θ = π} and pro-
jected diffeomorphically to an interval (ε, 2π − ε) of the τ -circle; here ε = ε(U) is small. (The
projection interval is the same for both components, since the symmetries θ �→ −θ, τ �→ −τ
preserve each curve γB,A.) The curves γB0,A ∩ U form a singular foliation in U by level curves
of the function g(θ, τ ) := − 1

cos τ
(cos θ + B0) with critical value A0 corresponding to a Morse

critical point q of index 1. The union of local branches of the singular curve γB0,A0 at q is
invariant under the above symmetries, and the local branches intersect transversally. There-
fore, they are transversal to the circles {θ = π}, {τ = 0}. For A > A0 close to A0 the curve
γB0,A is strictly convex, and its intersection with U is a union of two connected components
separated by the circle {τ = 0}, by proposition 5.2. This implies that for A < A0 close to A0
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the local level curve γB0,A ∩ U consists of two components intersecting the circle {τ = 0}, dif-
feomorphically projected to an interval in the τ -circle and disjoint from the circle {θ = π}.
Adding the latter components to γB0,A;±(U) results in two closed curves in T2 disjoint from the
circle {θ = π} and projected diffeomorphically onto the τ -circle. See figure 6(c). Thus, they
are isotopic to the τ -circle. This proves the last statement of proposition 5.4. �

Consider family (1.4) with a fixed � ∈ N and μ = A(ω)
2ω where

A(ω) = Aα(ω) = 1 + (�− α)ω + o(ω), as ω → 0; α > 0 is a constant. (5.6)

Multiplying family (1.4) by ω yields a slow-fast family of dynamical systems{
θ̇t = fα(θ, τ ;ω)

τ̇ t = ω,
t = ω−1τ , fα(θ, τ ;ω) = cos θ + �ω + Aα(ω) cos τ (5.7)

on T2 with ω → 0. According to the commonly used terminology in the theory of slow-fast
systems, see e.g. [35], we will call the curve

γα(ω) := { fα(θ, τ ;ω) = 0} ⊂ T
2 = R

2
(θ,τ )/2πZ

the slow curve of family (5.7). Propositions 5.2 and 5.4 imply the following.

Corollary 5.5. For every fixed �,α ∈ R+ with α �= 2�, for every ω small enough depen-
dently on � and α

(a) If 0 < α < 2�, then the slow curve of system (5.7) is convex, regular, contractible and lies
in the interior of the fundamental square [0, 2π]2;

(b) If α > 2�, then the slow curve is regular and consists of two non-contractible closed
connected components of homological type (0, 1).

Remark 5.6. Fix an arbitrary α > 0. As ω → 0, the slow curve tends to the square
with vertices (0,π), (π, 2π), (2π, π), (π, 0), whose sides lie in the lines {θ + τ = 2π ± π},
{τ − θ = ±π}. The corresponding vector fields converge to a vector field with zero τ -
component and whose θ-component has simple zeros on the edges of the above square (with
vertices deleted).

We deal with the liftings to the universal cover R2 over T2 of vector fields (5.7) and
their phase portraits. The lifted fields will be denoted by the same symbol (5.7). The slow
curve γα = γα(ω) ⊂ T

2 will be identified with its lifting γ0
α to the square [0, 2π]2 ⊂ R

2. Its
other lifting, obtained from the latter one by translation by the vector (2π, 0) will be denoted
by γ1

α.

Definition 5.7. The interior component of the complement T2 \ γα is its connected compo-
nent containing the point (π, π). Its liftings to the squares [0, 2π]2 and [2π, 4π] × [0, 2π] will
be called the interior components of the complements of the latter squares to the curves γ0

α and
γ1
α respectively.

Fix constants h0, h1, h2 such that

3π
2

< h0 < h1 < h2 < 2π.

For example, one can take, h0 =
6.5π

4 , h1 = 7π
4 , h2 =

15π
8 .

Proposition 5.8. For every ω > 0 small enough the restriction of the function
fα(θ, τ ) := fα(θ, τ ; ω) to the rectangle [0, 4π] × [0, 2π] is negative exactly in the interior
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Figure 7. The slow flowboxes Fα,± (black) and orbits of points C j.

components of complements of the curves γ j
α, j = 0, 1, and positive outside the closure of

the latter components. The strip

Π := {h1 � τ � h2}

intersects the curve γ1
α by two disjoint graphs (called left and right)

L1,α := {θ = ψ1(τ )}, L2,α := {θ = ψ2(τ )}, τ ∈ [h1, h2], ψ1 < ψ2.

The latter graphs converge uniformly in the C1-norm to segments parallel to the lines {τ = θ}
and {τ = −θ} respectively, as ω → 0.

Proposition 5.8 follows from remark 5.6.

Proposition 5.9. Let α > 0. Let I+ ⊂ R2 denote the horizontal segment connecting the
points (2π, h0) and (3π, h0). The intersection of the strip Π with the orbit of the segment I+ by
flow of vector field (5.7) is a flowbox denoted by

Fα,+ = Fα,+(ω).

It will be called a slow flowbox. Its flow lines are uniformly ω-close to L1,α in the C1-norm.
The intersections Fα,+ ∩ {τ = h} with h ∈ [h1, h2] are segments whose lengths are uniformly
bounded (in h, ω) by an exponentially small quantity exp(− c

ω
); c > 0 is independent on h and

ω. See figure 7.

Proof. The proposition follows from proposition 5.8 and the classical theory of slow–fast
systems. See, e.g., [35, theorem 3 and proposition 4]. �

Remark 5.10. The phase-portrait of vector field (5.7) is symmetric with respect to the points

C0 := (π, π), C1 := (2π, π), C2 := (3π, π);

the symmetry changes the sign (i.e., orientation) of the field. Let I− denote the horizontal
segment symmetric to I+ with respect to the point C1, see figure 7. The above construction
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applied to the inverse vector field, the segment I− and the heights h−
j := 2π − h j yields the

slow flowbox

Fα,− symmetric to Fα,+ with respect to the point C1.

5.3. The comparison lemma

Lemma 5.11 (comparison lemma). Let 0 < α1 < α2. Consider two families (5.7) j,
j = 1, 2, of dynamical systems (5.7) with A = Aα j(ω) satisfying (5.6). For every ω > 0 small
enough the corresponding flowboxes Fα1+ and Fα2,+ are disjoint and Fα2,+ lies on the left
from the flowbox Fα1,+. Similarly, the flowboxes Fα1− and Fα2,− are disjoint and Fα2,− lies on
the right from the flowbox Fα1,−.

It suffices to prove the statement of the lemma for the flowboxes Fα j,+, by symmetry (remark
5.10). Here and below we use the next proposition.

Proposition 5.12. For every ω small enough the following statements hold. The vectors of
the fields (5.7)1 and (5.7)2 form a positively oriented basis at each point of the union of two
strips

W :=
{

0 � τ <
π

2

}
∪
{

3π
2

< τ � 2π

}
.

At each point in the ω
8 -neighbourhood of the flowbox Fα1,+ the angles between the vectors of

the fields are greater than σ := arctan(2 + b) − arctan 2, b = cos h0
2 (α2 − α1). The image of the

flowbox Fα1,+ under the unit time flow map of the field (5.7)2 is disjoint from Fα1,+, and its
intersection with the strip Π lies on the left from Fα1,+.

Proof. The vectors of the fields (5.7)1 and (5.7)2 have the same τ -component equal to ω.
The difference of their θ-components is f α1 (θ, τ ;ω) − f α2 (θ, τ ;ω) = (α2 − α1)ω(1 +
o(1)) cos τ > 0 on W, whenever ω is small enough, since cos τ > 0 on W. Therefore, the vec-
tors of the field (5.7)2 are directed to the left from the vectors of the field (5.7)1 on W, that is,
the orientation statement of the proposition holds. For every ω small enough one has

f α1 (θ, τ ;ω) − f α2(θ, τ ;ω) > bω, b :=
cos h0

2
(α2 − α1), if τ ∈ [h0, h2],

(5.8)

by the above asymptotics, and also

ω

4
< f α1 (θ, τ ;ω) < 2ω on the

ω

8
− neighbourhoodof Fα1,+. (5.9)

Indeed, the flow lines of the field (5.7)1 in Fα1,+ C1-converge to the line τ = θ − π (propo-
sitions 5.8 and 5.9), hence f α1(θ, τ ;ω) � ω on Fα1,+. This together with (5.6), (5.7) and the
obvious inequality |cos′ x| = |sin x| � 1 implies (5.9). The angle lower bound statement of
proposition 5.12 follows from (5.8) and (5.9). Its last statement on image of the flowbox Fα1,+

under the unit time flow map of the field (5.7)2 follows from the above angle bound and the
fact that the vectors of the field (5.7)2 have length no less than ω, while the width of the flow-
box Fα1,+ is exponentially small (the last statement of proposition 5.9). Proposition 5.12 is
proved. �
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Proof of the comparison lemma. Claim. For everyω > 0 small enough for every p ∈ W
the positive flow line of the field (5.7)2 through p in W lies on the left from the corresponding
flow line of the field (5.7)1.

The claim follows from the orientation statement of proposition 5.12.
Fix an intermediate number h′

1 ∈ (h0, h1). Consider the flowbox F′
α1,+ constructed as in

proposition 5.9 with Π replaced by Π′ := {h′
1 � τ � h2}. One obviously has Π ∩ F′

α1,+ =
Fα1,+. The lengths of horizontal sections of the flowbox F′

α1,+ are uniformly bounded by a
quantity exp(− d

ω
), with d > 0 independent on ω (proposition 5.9). Take the lower horizontal

base of the flowbox F′
α1,+, which is a segment in the line {τ = h′

1} with length bounded by the
above exponent. Let q1 := (χ1, h′

1) denote its right boundary point, which lies in the (5.7)1-orbit
of the end (3π, h0) of the segment I+.

Consider the analogous flowbox F′
α2,+ and point q2 := (χ2, h′

1) for the field (5.7)2. One has
χ2 < χ1, by the claim. First suppose that q2 /∈ F′

α1,+. Then the lower base of the flowbox F′
α2,+

is disjoint from the flowbox F′
α1,+ and lies on its left. This together with the above claim implies

that the flowboxes are disjoint. In the case, when q2 ∈ F′
α1,+, the image q′

2 of the point q2 under
the time 1 flow map of the field (5.7)2 would lie strictly to the left from the flowbox F′

α1,+, by
proposition 5.12. Therefore, the positive orbit of the point q′

2 also lies on its left, by the claim.
Note that

τ (q′
2) = τ (q2) + ω = h′

1 + ω < h1,

wheneverω is small enough. Therefore, the above positive orbit intersects the strip Π = {h1 �
τ � h2} by an arc of curve going from its lower base to its upper base and lying on the left
from the flowbox Fα1,+. The latter curve bounds Fα2,+ from the right, by construction. Hence,
Fα2,+ is disjoint from Fα1,+ and lies on its left. The comparison lemma is proved. �

5.4. The monotonicity lemma

Consider two families of vector fields (5.7) j, j = 1, 2 (treated as fields lifted to R
2), as in the

comparison lemma, corresponding to α1 > 0 and α2 > α1. We study their Poincaré maps
Pτ1,τ2

j : the time τ2−τ1
ω flow maps from the line {τ = τ 1} to the line {τ = τ 2} considered as

functions of the coordinate θ. For simplicity, we denote

P j(θ) :=P0,2π
j (θ).

Lemma 5.13 (monotonicity lemma). For every ω > 0 small enough

P2(θ) < P1(θ) for every θ ∈ R. (5.10)

Lemma 5.13 is proved below. In its proof we use the following proposition.

Proposition 5.14. Let C0, C1, C2, h−
k , Fα j,− be the same, as in remark 5.10. The intersection

of the positive orbit of the segment [C1, C2] under the flow of the field (5.7) j with the strip
Π = {h1 � τ � h2} lies in the flowbox Fα j,+. The intersection of the negative orbit of the
segment [C0, C1] with the strip Π− := {h−

2 � τ � h−
1 } lies in Fα j,−. See figure 7.

Proof. It suffices to prove the first statement of the proposition, due to symmetry
(remark 5.10). The segment I+ defining the flowbox Fα j,+ is horizontal and is obtained from
the segment [C1, C2] by vertical shift up. The shift length is fixed and equal to h0 − π > 0.
Let Jl and Jr denote respectively the segment connecting C1(C2) to the left (respectively, right)
endpoint of the segment I+. One has f α j > 0 on Jl and f α j < 0 on Jr, which follows from
remark 5.6 and proposition 5.8. Thus, on the segment Jl (Jr) the vectors of the field (5.7) j are

5468



Nonlinearity 35 (2022) 5427 Y Bibilo and A A Glutsyuk

Figure 8. Orbits of segments [C0, C1], [C1, C2] and points aj±, bj±.

directed to the right (respectively, left). This implies that the time h0−π
ω flow map of the field

sends the segment [C1, C2] strictly inside the segment I+. This together with the definition of
the flowbox Fα j,ω implies the first statement of the proposition. �

Proof of the monotonicity lemma. Set h+
j := h j. One has

P j = P
h+1 ,2π
j ◦ P̃ j ◦ P

0,h−1
j , P̃ j :=P

h−1 ,h+1
j . (5.11)

Claim 1. Whenever ω is small enough, one has P
0,h−1
2 (θ) < P

0,h−1
1 (θ), P

h+1 ,2π
2 (θ) < P

h+1 ,2π
1 (θ)

for every θ ∈ R.

Proof. Vector fields (5.7)2 and (5.7)1 have the same τ -components. On the set {τ ∈ [0, h−
1 ] ∪

[h+
1 , 2π]} the θ-component of the former vector field is less than that of the latter, since cos τ >

0 on this set. This implies the inequalities of the claim. �
Taking into account claim 1 and (5.11), for the proof of the monotonicity lemma it suffices

to prove the above inequality for the middle Poincaré maps in (5.11) for all ω small enough:

P̃2(θ) < P̃1(θ) for every θ ∈ R. (5.12)

Consider the horizontal lines L± := {τ = h±
1 }, which are the cross-sections for the Poincaré

maps in question. We identify each their point with its θ-coordinate. For every j = 1, 2 let
bj± denote the point of intersection of the line L± with the orbit of vector field (5.7) j through
the point C1 = (2π, π). Let aj± denote the analogous intersection points with the orbit through
the point C0 = (π, π). See figure 8.

Claim 2. One has

a1− < b1− < a2− < b2− < a1− + 2π,

a2+ < a1+ < b2+ < a2+ + 2π < b1+ < a1+ + 2π. (5.13)

Proof. The points a j− and b j− are the images of the points C0 and C1 respectively under

the Poincaré map P
π,h−1
j , and θ(C0) < θ(C1), by definition. Hence, aj− < bj−. The segment

[aj−, bj−] lies in the flowbox Fα j,−, by proposition 5.14. The flowbox Fα1,− is disjoint from
the flowbox Fα2,− and lies on the left from it, by the comparison lemma. Therefore, the same
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is true for the corresponding segments [a1−, b1−] and [a2−, b2−]. The four endpoints of the
latter segments are O(ω)-close to each other. Indeed the flowboxes in question are O(ω)-close
to the right arcs of the corresponding intersections γ0

α j
∩ {h−

2 � τ � h−
1 } (proposition 5.9).

The latter arcs are ω-close, which follows from the implicit function theorem for the equations
defining the curves γ0

α j
. This together with the above discussion proves O(ω)-closeness of the

four points a j− and bj−, j = 1, 2. This proves the first part of inequality (5.13). The proof of
its second part is analogous. �

Proof of inequality (5.12). It suffices to prove it on the segment K := [a1−, a1− + 2π]
⊂ L−, by periodicity. The segment K is split into four subsegments by points a j−, bj−. We
check inequality (5.12) on each splitting subsegment.

(a) Let us start with the segment [b2−, a1− + 2π]. One has

P̃1([b2−, a1− + 2π]) ⊂ P̃1([b1−, a1− + 2π]) = [b1+, a1+ + 2π],

P̃2([b2−, a1− + 2π]) ⊂ P̃2([b2−, a2− + 2π]) = [b2+, a2+ + 2π],

by (5.13). The latter segment-image in the right-hand side is disjoint from the former
one and lies on the left from it, by (5.13). This proves inequality (5.12) on the segment
[b2−, a1− + 2π].

(b) Now we consider the segment [a2−, b2−]. One has

P̃1([a2−, b2−]) ⊂ P̃1([b1−, a1− + 2π]) = [b1+, a1+ + 2π],

P̃2([a2−, b2−]) = [a2+, b2+], b2+ < b1+,

by (5.13). This proves inequality (5.12) on [a2−, b2−].
(c) The segment [b1−, a2−]. One has

P̃1([b1−, a2−]) ⊂ P̃1([b1−, a1− + 2π]) = [b1+, a1+ + 2π],

P̃2([b1−, a2−]) lies on the left from the point a2+ = P̃2(a2−) < b1+,

by (5.13). This proves inequality (5.12) on [b1−, a2−].
(d) The segment [a1−, b1−]. One has

P̃1([a1−, b1−]) = [a1+, b1+],

P̃2([a1−, b1−]) lies on the left from the point a2+ = P̃2(a2−) < a1+,

since b1− < a2−, see (5.13). This proves inequality (5.12) on [a1−, b1−]. Inequality (5.12)
is proved on all of the segment K, and hence, on the whole horizontal line L−. �

The statement of the monotonicity lemma follows from (5.11), claim 1 and inequality
(5.12). �
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5.5. Absence of constrictions with small ordinates

Here we prove the following theorem and then theorem 1.13.

Theorem 5.15. For every � ∈ N, β > 0 and every ω > 0 small enough dependently on �
and β there are no constrictions (B, A) with B = �ω and A ∈ [1 − �ω, 1 + (�− β)ω].

Remark 5.16. Absence of constrictions with B − 1 < A < B + 1, B = �ω, for small ω was
numerically observed in [43, figures 2 and 3]. Theorem 5.15 confirms a part of this experimental
result theoretically.

Proof of theorem 5.15. It suffices to prove the statement of the theorem for arbitrarily small
β, e.g., β < 1

2 . Set B = �ω. For every α > 0 set Aα = Aα(ω) = 1 + (�− α)ω. The family of
systems (5.7) defined by this ordinate family Aα will be denoted by (5.7)α.

Suppose the contrary: there exists a sequence ωk → 0 such that there exists a sequence of
constrictions (Bk, Aαk) with

Bk = �ωk, Aαk = 1 + (�− αk)ωk, β � lim inf αk � lim sup αk � 2�.

Passing to a subsequence, without loss of generality we can and will consider that αk converge
to someα∗ � β. Thus, the sequence of dynamical systems corresponding to the above (Bk, Aαk)
can be embedded into a continuous family of systems (5.7) with α replaced by α∗. The latter
new family of systems (5.7) will be denoted by (5.7)α∗.

Fix an arbitrary α ∈ (0, β). Let P and P∗ denote respectively the Poincaré maps P0,2π of
the line {τ = 0} to the line {τ = 2π} defined by vector fields (5.7)α and (5.7)α∗. For every
ω small enough the point (�ω, 1 + (�− α)ω) lies in the phase-lock area L�, by lemma 5.1 and
since α < β < 1

2 . Therefore, the corresponding system (5.7)α has a periodic orbit with rotation
number �. This means that there exists a point a in the θ-axis with P(a) = a + 2π�. On the other
hand,

P∗ < P, P∗(a) < P(a) = a + 2π�, wheneverω is small enough,

by the monotonicity lemma and since α∗ � β > α. Therefore, the rotation number of system
(5.7)α∗ is no greater than � and a cannot be its periodic point with rotation number at least � for
small ω. In particular, the latter statements holds for the systems corresponding to the above
constrictions (Bk, Aαk ) ∈ Λ�. On the other hand, the dynamical system (1.4) corresponding
to a constriction lying in Λ� should have rotation number at least � and all its orbits should
be periodic with rotation number at least �, see [28, theorem 1.2 and proposition 2.2]. The
contradiction thus obtained proves theorem 5.15. �

Proof of theorem 1.13. Fix an � ∈ N. For every ω > 0 small enough all the constrictions
lying in Λ� with ordinates A � A 1

2
= 1 + (�− 1

2 )ω are not ghost (lemma 5.1). There are no
constrictions in Λ� with smaller positive ordinates (theorem 5.15 and statement (5.1)). Theorem
1.13 is proved. �

5.6. Proof of theorem 1.10

Let, to the contrary, there exist a ghost constriction (B, A; ω). Then � = B
ω
∈ Z \ {0}, and with-

out loss of generality we can and will consider that � � 1 (see the beginning of section 5).
Let C denote the connected component of the submanifold Constr� ⊂ (R2

+)μ,η containing the
corresponding point ( A

2ω ,ω−1). The restriction to C of the function ω = η−1 is unbounded
from below, while all the constrictions in C are ghost (theorem 1.12). Thus, there exist ghost
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constrictions with given � and arbitrarily small ω. This yields a contradiction to theorem 1.13
and proves absence of ghost constrictions. The proof of theorem 1.10, and hence, theorems 1.4
and 1.7 is complete.

6. Some applications and open problems

6.1. Geometry of phase-lock areas

For every � ∈ Z�=0 let P� = (�ω, A(P�)) ⊂ R2
B,A denote the higher generalized simple intersec-

tion lying in Λ� := {B = �ω}, see subsection 5.1. Recall that

S� :=Λ� ∩ {A � A(P�)} ⊂ L+
� := L� ∩ {A > 0}, P� ∈ ∂L+

� .

The connectivity conjecture, see [29, conjecture 1.14], states that the intersection L+
� ∩ Λ�

coincides with the ray S�, and thus, is connected.
Theorem 1.7 implies the following corollary

Corollary 6.1. Let, to the contrary to the above conjecture, the intersection LΛ� :=L+
� ∩

Λ� ∩ {0 < A < A(P�)} be non-empty. Then its lowest point (i.e., its point with minimal ordi-
nate A) is a generalized simple intersection.

Proof. The lowest point P ∈ LΛ� is well-defined, has positive ordinate and lies in ∂L�,
since the growth point in L�, i.e., its intersection point with the abscissa axis, has abscissa√
�2ω2 + 1 > �ω. Hence, it is either a constriction, or a generalized simple intersection, by

definition. If P were a constriction, it would be negative, since its lower adjacent interval
Λ� ∩ {0 < A < A(P)} lies outside the phase-lock area L�. But there are no negative constric-
tions, by theorem 1.7. Therefore, P is a generalized simple intersection. �

Remark 6.2. It is known that the generalized simple intersections (�ω, A) correspond
to the parameters (λ, μ), μ = A

2ω , λ = 1
4ω2 − μ2, of those special double confluent Heun

equations (1.9) that have polynomial solutions. The set of the latter parameters (λ, μ) is a
remarkable algebraic curve: the so-called spectral curve Γ� ⊂ R2

(λ,μ) introduced in [19] and
studied in [19, 30]. It is the zero locus of the polynomial from [19, formula (21)], which is the
determinant of a three-diagonal matrix formed by diagonal terms of type λ+ const and linear
functions in μ at off-diagonal places. See also [30, formula (1.4)]. (The complexification of the
spectral curve is known to be irreducible, see [30, theorem 1.3].) For every given ω > 0 the
curve Γ� contains at most � points (λ, μ) corresponding to the given ω with μ > 0; the point
with the biggest μ corresponds to the higher generalized simple intersection P�. This follows
from Bézout theorem and the fact that the spectral curve Γ� is the zero locus of a polynomial
of degree � in (λ, μ2), see [19, p 937].

Corollary 6.1 and the above remark reduce the connectivity conjecture to the following
equivalent, algebro-geometric conjecture.

Conjecture 6.3. For every ω > 0 the above real spectral curve Γ� contains a unique point
(λ, μ) with λ = 1

4ω2 − μ2 (up to change of sign at μ) for which the corresponding rotation
number ρ = ρ(�ω, 2μω) equals �. (The point (B, A) = (�ω, 2μω) coincides with P�, see the
above remark.)

Theorem 6.4. For every � ∈ Z�=0 and every positive ω < 1
|�| the connectivity conjecture

holds.
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Proof. Let, say, � > 0, and let 0 < ω < 1
� . Then for every r ∈ N, 0 < r < �, the boundary

∂Lr intersects Λ+
� :=Λ� ∩ {A > 0} in at least two points. Indeed, the abscissa

√
r2ω2 + 1 of

the growth point of the phase-lock area Lr is greater than �ω < 1. On the other hand, each
boundary curve of the area Lr contains constrictions, which lie in the axis Λr, and hence, on
the left from the axis Λ�. Hence, each boundary curve intersects Λ+

� in at least one point (this
statement is given by [30, theorem 1.18] for all ω small enough). It cannot be a common inter-
section point for both boundary curves, i.e., it cannot be a constriction, since r = ρ < � and by
theorem 1.4. Therefore, the intersection ∂Lr ∩ Λ+

� contains at least two distinct points. Anal-
ogously, ∂L0 intersects Λ+

� in at least one point, since the point (1, 0) ∈ ∂L0 lies on the right
from the point (�ω, 0) ∈ Λ�. If 0 � r < � and r ≡ �(mod 2), then each point of intersection
∂Lr ∩ Λ+

� is a generalized simple intersection. Taking these intersections for all latter r yields
�− 1 distinct generalized simple intersections lying inΛ+

� . But the total number of generalized
simple intersections in Λ+

� is no greater than �, see the above remark. Therefore, at most one of
them may correspond to the rotation number �, and hence, is reduced to the known generalized
simple intersection P� with ρ = �. In particular, there are no generalized simple intersections
in Λ� ∩ L� with 0 < A < A(P�). This together with corollary 6.1 implies that L+

� ∩ Λ� = S�
and proves the connectivity conjecture for 0 < ω < 1

|�| . �

Problem 6.5 [13, subsection 5.8] . What is the asymptotic behaviour of the phase-lock area
portrait in family (1.4), as ω → 0?

This problem is known and motivated by physics applications. Buchstaber, Tertychnyi
and later by Filimonov, Kleptsyn, Schurov performed numerical experiences studying limit
behaviour of the phase-lock area portrait after appropriate rescaling of the variables (B, A).
Their experiences have shown that the interiors of the phase-lock areas tend to open subsets
(the so-called limit rescaled phase-lock areas) whose connected components form a partition
of the plane. In some planar region, the latter partition looks like a chess table turned by π

4 .
It would be interesting to prove this mathematically and to find the boundaries of the limit
phase-lock areas.

Some results on smallness of gaps between rescaled phase-lock areas for small ω were
obtained in [43].

To our opinion, methods elaborated in [43] and in the present paper could be applied to
study problem 6.5.

6.2. The dynamical isomonodromic foliation

Let us consider family (1.4) modelling overdamped Josephson junction as a three-dimensional
family, with variable frequencyω. Its three-dimensional phase-lock areas in R

3
B,A,ω are defined

in the same way, as in definition 1.1. Each three-dimensional phase-lock area is fibred by two-
dimensional phase-lock areas in R2

B,A corresponding to different fixed values of ω.
Linear systems (1.7) corresponding to (1.4) form a transversal hypersurface to the isomon-

odromic foliation of the four-dimensional manifold JN(R+) (lemma 3.17). It appears that
there is another four-dimensional manifold with the latter property that has the following
advantage: it consists of linear systems on C coming from a family of dynamical systems
on two-torus. Namely, consider the following four-dimensional family of dynamical systems
on T2 containing (1.4):

dθ
dτ

= ν + a cos θ + s cos τ + ψ cos(θ − τ ); ν, a,ψ ∈ R, s > 0, (a,ψ) �= (0, 0).

(6.1)
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The variable changes Φ = eiθ, z = eiτ transform (6.1) to the Riccati equation

dΦ
dz

=
1
z2

(
s
2
Φ+

ψ

2
Φ2

)
+

1
z

(
νΦ +

a
2

(Φ2 + 1)
)
+

(
s
2
Φ +

ψ

2

)
.

A function Φ(z) is a solution of the latter Riccati equation, if and only if Φ(z) = Y2(z)
Y1(z) , where

Y = (Y1, Y2)(z) is a solution of the linear system

Y ′ =

(
−s

K
z2

+
R
z
+ sN

)
Y, (6.2)

K =

(1
2

χ

0 0

)
, R =

⎛⎝−b −a
2a

2
χa

⎞⎠, N =

(
−1

2
0

χ 0

)
;

χ =
ψ

2s
, b = ν − ψ

2s
a = ν − χa.

The residue matrix of the formal normal forms of system (6.2) at 0 and at ∞ is the same and
equal to

diag(−�, 0), � := b − χa = ν − 2χa = ν − ψa
s
. (6.3)

Theorem 6.6. The four-dimensional family of linear systems (6.2) is analytically foliated
by one-dimensional isomonodromic families defined by the following non-autonomous system
of differential equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

χ′
s =

a − 2χ(�+ 2χa)
2s

a′
s = −2sχ+

a
s

(�+ 2χa)

�′s = 0

. (6.4)

For every � ∈ R the function

w(s) :=
a(s)

2sχ(s)
=

a(s)
ψ(s)

(6.5)

satisfies Painlevé 3 equation (3.14) along solutions of (6.4).

Proof. The composition of variable rescalings z = s−1ζ and gauge transformations

Y =

(
1 0

−2χ 1

)
Ỹ (6.6)

sends family (6.2) to the following family of linear systems:

Y ′
ζ =

(
− t
ζ2

K +
R
ζ
+ diag

(
−1

2
, 0

))
Y, (6.7)

t = s2, K =

( 1
2
− 2χ2 χ

χ(1 − 4χ2) 2χ2

)
, R =

⎛⎝ −� −a
2

−2χ(�+ χa) +
a
2

0

⎞⎠.
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Let J denote the space of special Jimbo type systems, see (3.9), (3.10), with real matrices.
Systems (6.7) lie in J , since the formal normal forms of a system (6.2) at 0, ∞ have common
residue matrix diag(−�, 0). Every system L0 of type (6.7) with χ �= 0 has a neighbourhood
W = W(L) ⊂ J where family (6.7) forms a hypersurface X = {K22 = 2K2

12} ∩ W so
that each system L ∈ W can be projected to a system L∗ ∈ X by a diagonal gauge
transformation (Y1, Y2) �→ (Y1,λY2), λ = λ(L). Projecting to X a Jimbo isomonodromic
family given by (3.11) yields an isomonodromic family of systems (6.7). The dif-
ferential equation satisfies by the projected isomonodromic families is found analo-
gously to the proof of equation (3.17). To do this, fix a t0 > 0 and matrices K(t0),
R(t0) as in (6.7). Let K̃(t), R̃(t) be solutions of (3.11) with initial conditions K(t0)
and R(t0) at t0, and let (Y1, Y2) �→ (Y1,λ(t)Y2) be the family of the above normal-
izing gauge transformations: the matrices K(t) = diag(1,λ(t))K̃(t)diag(1,λ−1(t)), R(t) =
diag(1,λ(t))R̃(t)diag(1,λ−1(t)) are the same, as in (6.7), that is K22(t) = 2K2

12(t); λ(t0) = 1.
Set ξ = λ′(t0).

The equation on the matrix function K̃(t) given by (3.11) yields

K′
12(t0) = −ξK12(t0) +

1
t0

[R(t0), K(t0)]12, K′
22(t0) =

1
t0

[R(t0), K(t0)]22.

(6.8)

Substituting K22 = 2χ2, K12 = χ to the second equation in (6.8) and changing the time param-
eter t to s =

√
t yields formula for the derivative χ′

t = (K12)′t and the first equation in (6.4).
Substituting thus found derivative K′

12 to the first formula in (6.8) yields a linear equation on
ξ, whose solution is ξ = − �+2χa

2t0
. The differential equation on the matrix R̃(t) in (3.11) yields

the differential equation on R12 analogous to the first equation in (6.8), which also includes
the above already found value ξ. Substituting R12 = − a

2 there yields the second equation in
(6.4). Painlevé 3 equation (3.14) on w(s) along isomonodromic families thus constructed fol-
lows from theorem 3.9, since diagonal gauge transformations do not change the ratio R12

K12
.

Equation (3.14) can be also deduced directly from (6.4). �

The foliation from theorem 6.6 given by (6.4) induces a one-dimensional foliation in the
four-dimensional space of dynamical systems (6.1) given by the following non-autonomous
system of equations obtained from (6.4) by change of the variable χ to ψ = 2sχ:⎧⎪⎪⎨⎪⎪⎩

ψ′
s = a + (1 − �)

ψ

s
− aψ2

s2

a′
s = −ψ + �

a
s
+

ψa2

s2
.

(6.9)

The latter foliation of family (6.1) given by (6.9) will be denoted by G and called the dynamical
isomonodromic foliation.

Lemma 6.7. The conjugacy class of flow (6.1) under diffeomorphisms T2 → T2 isotopic
to identity, its rotation number and �, see (6.3), are constant on leaves of the dynamical
isomonodromic foliation G. The hypersurface of systems (1.4) modelling Josephson junction is
transversal to G. The function w(s) = a(s)

ψ(s) , see (6.5), satisfies Painlevé 3 equation (3.14) along
its leaves. A point (s,ψ, a, �) corresponds to a system (1.4), if and only if ψ = 0; this holds if
and only if the function w has pole of order 1 at s with residue 1.
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Proof. The projectivized monodromy of linear system (6.2) is the complexification of the
Poincaré map of the corresponding dynamical system (6.1). Therefore, constance of its conju-
gacy class along leaves implies constance of conjugacy class of the Poincaré map and hence,
of the flow and of its rotation number; � = const, by theorem 6.6. Family of systems (1.4)
coincides with the hypersurface {ψ = 0} ∩ {a > 0} in the parameter space. It is transversal to
the vector field (6.9), since ψ′ = a > 0 at all its points. The characterization of systems (1.4)
in terms of poles follows from construction and lemma 3.16 and, on the other hand, imme-
diately from (6.9): if ψ(s0) = 0, then ψ(s) � a(s0)(s − s0), w(s) = a(s)

ψ(s) �
1

s−s0
, as s → s0, and

vice versa. �
Recall that the growth point of a two-dimensional phase-lock area Lr has abscissa

sign(r)
√

r2ω2 + 1. For a given r ∈ Z�=0 the latter growth points form a curve bijectively
parametrized by ω > 0 in the three-dimensional parameter space, which will be called the
rth growth curve. We already know that the family of constrictions in R2

B,A × (R+)ω is a one-
dimensional submanifold, by theorem 1.12. Thus, it is a disjoint union of connected curves,
which will be called the constriction curves.

In what follows the three-dimensional phase-lock area in R2
B,A × (R+)ω with a rotation

number r ∈ Z will be denoted by L̂r.

Conjecture 6.8. Each constriction curve is bijectively projected onto (R+)ω. Each three-
dimensional phase-lock area of family (1.4) is a countable garland of domains, where any two
adjacent domains are separated either by the corresponding growth curve, or by a constriction
curve.

Remark 6.9. Conjecture 6.8 does not follow from known results on two-dimensional phase-
lock area. A priori, a constriction curve may be not bijectively projected to the ω-axis, and
the projection may have some critical value ω0 that is a local maximum (minimum). In this
case the corresponding two-dimensional phase-lock area with ω less (greater) than ω0 has
two constrictions that collide for ω = ω0 and disappear, when ω crosses the critical value ω0.
Numerical experiences made by Tertychnyi, Filimonov, Kleptsyn, Schurov show that such a
scenario does not arise. This can be viewed as a numerical confirmation of conjecture 6.8.

Remark 6.10. In each two-dimensional phase-lock area Lr the constrictions lying in the
half-plane {A > 0} are ordered by natural numbers k corresponding to their heights: the lowest
constriction is ordered by 1, the second one by two, etc. If conjecture 6.8 is true, then along
each constriction curve C lying in the upper quarter-space {A > 0} the above height number is
constant. In this case each constriction curve C = C�,k ⊂ {A > 0} is numerated by two integer
numbers

� = ρ =
B
ω

, k := the above height number.

Studying of the following two problems, which are of independent interest, would have
important applications to conjecture 6.8 and related problems.

Problem 6.11. Study the Poincaré map of the dynamical isomonodromic foliation G, see
(6.9), acting on the transversal hypersurface given by family of systems (1.4). The Poincaré map
sends the intersection of its definition domain with each three-dimensional phase-lock area in
family (1.4) to the same phase-lock area, by constance of the rotation number along leaves.
Study the action of the Poincaré map of the foliation G given by (6.9) on the three-dimensional
phase-lock area portrait of family (1.4).

Problem 6.12. Is it true that the above Poincaré map is well-defined on each constriction
curve C�,k and sends its diffeomorphically onto C�,k+1?
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If conjecture 6.8 is true, then for every � ∈ Z and k ∈ N there is a unique connected com-
ponent O�,k of the interior of the three-dimensional phase-lock area L̂� that is adjacent to the
constriction curves C�,k and C�,k+1.

Problem 6.13. Is it true that the Poincaré map of the foliation G is well-defined on each
component O�,k and sends it diffeomorphically onto O�,k+1? Is it a well-defined diffeomor-
phism on a neighbourhood of the closureO�,k? What is the intersection of its definition domain
with the component of the phase-lock area L̂� adjacent toO�,1 and to the corresponding growth
curve? How does it act there?

Remark 6.14. The Poincaré map of the foliation G (where it is defined) can be viewed as the
suspension over the map sending a given simple pole s0 > 0 with residue 1 of solution w(s) of
Painlevé 3 equation (3.14) to its next pole s1 > s0 of the same type (if any). Many solutions of
(3.14) have an infinite lattice of simple poles with residue 1 converging to +∞. Our Painlevé
3 equations (3.14) admit a one-dimensional family of Bessel type solutions, see [24], whose
poles are zeros of solutions of Bessel equation and are known to form an infinite lattice. Victor
Novokshenov’s recent numerical experience has shown that their small deformations also have
an infinite lattice of poles. Few solutions, e.g., the tronquée solutions [50], are bounded on some
semi-interval [C,+∞), and hence, do not have poles there.

Problem 6.15. Describe those parameter values of family (1.4) for which the corresponding
solution w(s) of (3.14) is tronquée. Is it true that this holds for some special points of bound-
aries of the three-dimensional phase-lock areas? Does this hold for the higher generalized
simple intersections P� discussed in subsection 6.1?

Problem 6.16. Study geometry of phase-lock areas10 in four-dimensional family (6.1) of
dynamical systems on T2. Study special points of boundaries of the phase-lock areas: ana-
logues of growth points, constrictions and generalized simple intersections.

Let Σ denote the subfamily in (6.1) consisting of dynamical systems with trivial Poincaré
map. The value � = ν − ψa

s corresponding to a system in Σ should be integer, as in proposition
4.6, and its rotation number ρ is also integer. For every �, ρ ∈ Z let Σ�,ρ ⊂ Σ denote the subset
consisting of systems with given � and ρ. Those systems (1.4) with given � that correspond to
constrictions are contained in Σ�,�, by theorem 1.4.

Problem 6.17. Is it true that systems (1.4) with given � corresponding to constrictions lie in
one connected component of the set Σ�,�?

Remark 6.18. One can show that a positive solution of conjecture 6.8 would imply positive
answer to problem 6.17.

To our opinion, a progress in studying the above problems would have applications to prob-
lems on geometry of phase-lock areas, for example, to problems discussed in the previous
subsection.

Studying conjectures 6.3, 6.8 and problems 6.11, 6.16, 6.17 is a work in progress.

10 Recently it was observed by Buchstaber and the second author (Glutsyuk) that the rotation number quantization
effect holds in family (6.1): phase-lock areas exist only for integer values of the rotation number. The proof is the
same, as in [17].
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RIMS, Kyoto Univ. 18 1137–61
[39] Jimbo M, Miwa T and Ueno K 1981 Monodromy preserving deformation of linear ordinary differ-

ential equations with rational coefficients Physica D 2 306–52
[40] Jimbo M, Miwa T and Ueno K 1981 Monodromy perserving deformation of linear ordinary differ-

ential equations with rational coefficients: II Physica D 2 407–48
[41] Josephson B D 1962 Possible new effects in superconductive tunnelling Phys. Lett. 1 251–3
[42] Jurkat W B, Lutz D A and Peyerimhoff A 1976 Birkhoff invariants and effective calculations for

meromorphic linear differential equations J. Math. Anal. Appl. 53 438–70
[43] Kleptsyn V A, Romaskevich O L and Schurov I V 2013 Josephson effect and slow–fast systems

Nanostructures. Math. Phys. Modelling 8 31–46
[44] Klimenko A and Romaskevich O 2014 Asymptotic properties of Arnold tongues and Josephson

effect Mosc. Math. J. 14 367–84
[45] Levinson Y 2003 Quantum noise in a current-biased Josephson junction Phys. Rev. B 67 184504
[46] Likharev K K 1986 Dynamics of Josephson Junctions and Circuits (London: Gordon and Breach)
[47] Likharev K K 1985 Introduction to the Dynamics of Josephson Junctions (Moscow: Nauka)
[48] Likharev K K and Semenov V K 1971 Electrodynamical properties of superconducting point con-

tacts Radiotekh. Elektron. 11 2167
[49] Likharev K K and Ulrikh B T 1978 Systems with Josephson Junctions: Basic Theory (Moscow:

Izdat. MGU)
[50] Lin Y, Dai D and Tibboel P 2014 Existence and uniqueness of tronquée solutions of the third and
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