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Abstract. It is well-known that there is a close relationship between the
dynamics of diffeomorphisms satisfying the axiom A and the topology of the
ambient manifold. In the given article, this statement is considered for the class
G(M2) of A-diffeomorphisms of closed orientable connected surfaces, the non-
wandering set of each of which consists of kf ≥ 2 connected components of one-
dimensional basic sets (attractors and repellers). We prove that the ambient
surface of every diffeomorphism f ∈ G(M2) is homeomorphic to the connected
sum of kf closed orientable connected surfaces and lf two-dimensional tori
such that the genus of each surface is determined by the dynamical properties
of appropriating connected component of a basic set and lf is determined by
the number and position of bunches, belonging to all connected components of
basic sets. We also prove that every diffeomorphism from the class G(M2) is
Ω-stable but is not structurally stable.

1. Introduction and statement of results. An overview of the main concepts
related to the topic of the article can be found in the monograph [9] and in the
following surveys: [1],[2],[7], [16], [19].

Let Mn be a closed smooth connected manifold of dimension n ≥ 1, f : Mn →
Mn be a diffeomorphism, and NW (f) be a non-wandering set of f .

A closed f -invariant setH ⊂Mn is said to be hyperbolic if there exists continuous
Df -invariant decomposition of the tangent subbundle THMn into the direct sum
EsH⊕EuH such that ||Dfk(v)|| ≤ Cλk||v||, ||Df−k(w)|| ≤ Cλk||w||, ∀ v ∈ EsH ,∀w ∈
EuH ,∀ k ∈ N, for some fixed numbers C > 0 and 0 < λ < 1. According to [19]
(Theorem 7.3), for each point x ∈ H there exists a stable manifold W s

x = Jsx(Esx),
where Jsx : Esx → Mn is an injective immersion with the following properties:
W s
x = {y ∈ Mn : d(fk(x), fk(y)) → 0 for k → +∞}, where d is the metric on Mn

induced by the Riemannian metric on TMn; if x, y ∈ H, then W s
x and W s

y either
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coincide or they are disjoint; f(W s
x) = W s

f(x); the tangent space for W s
x at every

point y ∈ Λ is Esy. The unstable manifold Wu
x of x is the stable manifold of x for

the diffeomorphism f−1.
The diffeomorphism f is said to be A-diffeomorphism (diffeomorphism satis-

fying the axiom A) if its non-wandering set NW (f) is hyperbolic and the peri-
odic points are everywhere dense in NW (f). According to [19] (Theorem 6.2),
the non-wandering set of A-diffeomorphism can be uniquely expressed as the fi-
nite union of mutually disjoint subsets, called basic sets, each of which is com-
pact, invariant and topologically transitive. A basic set which is a periodic tra-
jectory is called trivial. Otherwise, a basic set is called non-trivial. The set
W s

Ω = {y ∈ Mn : fk(y) → Ω, k → +∞}, where Ω is basic set of the diffeo-
morphism f , is said to be stable manifold of the basic set Ω. The unstable manifold
Wu

Ω of Ω is the stable manifold of Ω for the diffeomorphism f−1. In compliance
with [9] (Statement 1.5.), W s

Ω =
⋃
x∈Ω

W s
x (Wu

Ω =
⋃
x∈Ω

Wu
x ) and dimW s

x = dimW s
y

(dimWu
x = dimWu

y ) for any points x, y ∈ Ω.
According to [4] (Theorem 2.7), any basic set Ω of A-diffeomorphism f : Mn →

Mn is uniquely expressed as the finite union of mutually disjoint compact subsets

Ω = Λ1 ∪ ... ∪ Λq, q ≥ 1,

called periodic components of the set Ω1, such that fq(Λj) = Λj , f(Λj) = Λj+1, j ∈
{1, ..., q} (Λq+1 = Λ1). For every point x belonging to the periodic component Λj ,
the set W s

x ∩ Λj (Wu
x ∩ Λj) is dense in Λj .

A basic set Ω is called an attractor (repeller) if it has a closed neighborhood UΩ ⊂
Mn such that f(UΩ) ⊂ int UΩ,

⋂
k∈N

fk(UΩ) = Ω (f−1(UΩ) ⊂ int UΩ,
⋂
k∈N

f−k(UΩ) =

Ω). The neighborhood UΩ in this case is said to be trapping. For an attractor
(repeller) Ω, the following equality holds: Ω = Wu

Ω (Ω = W s
Ω) ([9], Theorem 8.2.).

A non-trivial basic set Ω, which is an attractor (repeller), is called an expand-
ing attractor (contracting repeller) if dim Ω = dimWu

x (dim Ω = dimW s
x)2, where

x ∈ Ω. It follows from [14] (Theorem 2) that every expanding attractor (contract-
ing repeller) Ω has the local structure of the direct product of the r-dimensional
Euclidean space and the Cantor set, where r is the topological dimension of Ω.

Let Diff(Mn) be the space of C1 diffeomorphisms on Mn endowed with the
uniform C1 topology [11]. A diffeomorphism f : Mn →Mn is said to be structurally
stable if there is a neighborhood U of the diffeomorphism f in Diff(Mn) such that
every diffeomorphism g ∈ U is topologically conjugate to f . A diffeomorphism f :
Mn →Mn is said to be Ω-stable if there is a neighborhood U of the diffeomorphism
f in Diff(Mn) such that for any g ∈ U restrictions g|NW (g) and f |NW (f) are
topologically conjugate.

Let us introduce the relation ≺ for basic sets as follows: Ωi ≺ Ωj ⇔W s
Ωi
∩Wu

Ωj
6=

∅. A k-cycle (k ≥ 1) is a collection of mutually disjoint basic sets Ω0,Ω1, ...,Ωk
that satisfy the condition Ω0 ≺ Ω1 ≺ ... ≺ Ωk ≺ Ω0. It follows from [13], [20] that
the diffeomorphism f : Mn →Mn is Ω-stable if and only if it satisfies the axiom A
and has no cycles (for the formulation, see [9], Theorem 1.9.).

Let M2 be a closed smooth orientable connected surface, f : M2 → M2 be a
diffeomorphism satisfying the axiom A.

1R. Bowen called these components C-dense (see [4]). In this paper, following [9], we call them
periodic (by analogy with periodic points of a periodic orbit).

2Here and throughout the article, dim denotes the topological dimension.
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Let Ω be a non-trivial basic set of the diffeomorphism f . Let us note that stable
and unstable manifolds of each point x ∈ Ω are one-dimensional and that all periodic
points of the set Ω are saddle. For σ ∈ {s, u}, let us put σ = s if σ = u, and σ = u if
σ = s. A periodic point p belonging to the set Ω is called a boundary periodic point
of type σ (σ-boundary periodic point) if one of the connected components of the set
Wσ
p \p does not intersect with Ω (we will denote this connected component by µσp ),

and both connected components of the setWσ
p \p intersect with Ω. A periodic point

p belonging to the set Ω is called a boundary periodic point of type (s, u) if one of
the connected components of each of the sets W s

p \p, Wu
p \p does not intersect with

Ω. If the set Ω is zero-dimensional or one-dimensional, then the set of boundary
periodic points is non-empty and is finite ([5], Lemma 2.4. and Lemma 2.5.; see
also [15], Theorem 1.7.).

If a basic set Ω of the diffeomorphism f is one-dimensional, then by virtue of
[14] (Theorem 3) it is an attractor or a repeller. If a one-dimensional basic set is an
attractor (repeller), then it contains only s-boundary (u-boundary) periodic points.

Let x be an arbitrary point belonging to a periodic component Λ of a one-
dimensional attractor (repeller) Ω. Then the set Wu

x (W s
x) belongs to the set Λ and

is dense in this set. Due to this fact and the fact that the closure of a connected
set is connected, it follows that the periodic component Λ is connected. Thus, each
connected component of the one-dimensional attractor (repeller) Ω coincides with
one of its periodic components.

It is known ([5], Lemma 3.3.; see also [16], Theorem 2.1.) that for a one-
dimensional attractor (repeller) Ω accessible from inside boundary3 of the setM2\Ω
consists of a finite number of bunches. In compliance with [10] (Definition 3)4, a
bunch b of the one-dimensional attractor Ω is the union of the maximum number hb
of the unstable manifolds Wu

p1
, ...,Wu

phb
of the s-boundary periodic points p1, ..., phb

of the set Ω whose stable separatrices5 µsp1
, ..., µsphb

belong to the same connected
component of the set W s

Ω\Ω. The number hb is called the degree of the bunch.
Similarly, the concept of a bunch can be defined for a one-dimensional repeller.

In [3] (Theorem 1, Theorem 2), for A-diffeomorphisms of compact connected
surfaces (orientable and nonorientable), estimates of the maximum number of their
one-dimensional basic sets are given, and the estimates are precise. It follows from
[3] that the maximum number of one-dimensional basic sets of the diffeomorphisms
under consideration depends on the topological properties of the ambient surface
(the genus of the surface and the number of connected components of the boundary)
and on the geometric properties of one-dimensional basic sets (the number of thorn-
type bunches in one-dimensional basic sets, see the definition in [3]).

In [8], a class G(M2) of A-diffeomorphisms of closed orientable connected sur-
faces such that their non-wandering sets consist of one-dimensional basic sets is
introduced, and necessary and sufficient conditions for the existence of a homeomor-
phism of the entire surface conjugating the restrictions of these diffeomorphisms on

3Let A be a subset of a topological space X. A point y ∈ ∂A is called accessible from a point
x ∈ int A if there exists a path c : [0; 1] → X such that c(0) = x, c(1) = y and c(t) ∈ int A for
every t ∈ (0; 1). The union of all points accessible from the points of the set int A is called the
boundary accessible from inside of the set A.

4The definition of a bunch given in [10] is equivalent to the definition of a bunch from [16]
(Definition 2.4.).

5Stable (unstable) separatrix of a hyperbolic periodic point p is a connected component of the
set W s

p \p (Wu
p \p).
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their non-wandering sets are found. The results of [15] (Theorem 2.2. and Corollary
to Theorem 3.2.) imply that the two-dimensional sphere and the two-dimensional
torus do not admit diffeomorphisms from the class G(M2). The first example of a
diffeomorphism from the class G(M2) was constructed in [18]. Specifically, based
on the DA-diffeomorphism of the two-dimensional torus (see [12], [17], [19], [21])
and the diffeomorphism inverse to it, a diffeomorphism of closed orientable surface
of genus 2 (pretzel) such that its non-wandering set consists of a one-dimensional
attractor and a one-dimensional repeller was constructed. It is proved in [18] (Theo-
rem 1) that the constructed diffeomorphism is not finitely C2-stable (see the defini-
tion in [18]), but is Ω-stable. The primary mission of the given article is to research
the interrelation between the dynamical properties of diffeomorphisms from the
class G(M2) and the topology of the ambient surface M2, as well as to research the
stability of diffemorphisms from the class G(M2).

Let f : M2 →M2 be a diffeomorphism from the class G(M2) such that its non-
wandering set consists of kf periodic components Λ1, ...,Λkf . It follows from the
Lemma 3.1 that the non-wandering set of the diffeomorphism f contains at least
one attractor and at least one repeller, that is, kf ≥ 2. Let us denote by mΛi

the
number of bunches belonging to Λi, by hΛi the sum of the degrees of these bunches.
Let us denote by mf the number of all bunches belonging to periodic components
of the diffeomorphism f , by hf the sum of the degrees of these bunches. For the
number g ≥ 0, let us denote by M2

g a closed orientable connected surface of genus
g.

Theorem 1. Let f ∈ G(M2). Then the surface M2 is homeomorphic to the con-
nected sum:

M2
g1

#...#M2
gkf

#T2#...#T2︸ ︷︷ ︸
lf

,

where gi = 1 +
hΛi

4 −
mΛi

2 (i ∈ {1, ..., kf}), lf =
mf

2 − kf + 1.

Remark 1. It follows from the Lemma 2.1 and the proof of the Theorem 1 that
for every surface M2

gi , i ∈ {1, ..., kf}, there exists a compact orientable connected
submanifold NΛi

⊂ M2 of the genus gi = 1 +
hΛi

4 −
mΛi

2 with mΛi
boundary

components which contains the periodic component Λi. Herewith, NΛi
∩NΛj

= ∅
for i 6= j.

Corollary 1. Let f ∈ G(M2). Then the surface M2 has the genus g = 1 +
hf

4 .

Making use of the idea of constructing of the example from [18], one can con-
struct examples of diffeomorphisms from the class G(M2) on any closed orientable
connected surface of genus g ≥ 2. In the Figure 1 a), it is shown a phase portrait
of A-diffeomorphism f1 of a closed orientable connected surface such that its non-
wandering set consists of two one-dimensional attractors (each attractor has one
bunch of degree two) and a one-dimensional repeller (which has two bunches of de-
gree two). It follows from the Theorem 1 that lf1

= 0 and the ambient surface M2

of the diffeomorphism f1 is homeomorphic to the connected sum M2
g1

#M2
g2

#M2
g3
,

where g1 = g2 = g3 = 1. In the Figure 1 b), it is shown a phase portrait of
A-diffeomorphism f2 of a closed orientable connected surface such that its non-
wandering set consists of a one-dimensional attractor (which has two bunches of
degree two) and a one-dimensional repeller (which also has two bunches of degree
two). It follows from the Theorem 1 that lf2 = 1 and the ambient surfaceM2 of the
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diffeomorphism f2 is homeomorphic to the connected sum M2
g1

#M2
g2

#T2, where
g1 = g2 = 1.

a)

b)

Figure 1. Phase portrait of the diffeomorphism a) f1; b) f2.

Theorem 2. Let f ∈ G(M2). Then f is Ω-stable, but is not structurally stable.

2. Auxiliary information and results.

2.1. Surfaces with boundary. Let us recall that a compact two-dimensional man-
ifold with a non-empty boundary is called a surface with boundary. The boundary
of a compact surface is the union of finitely many mutually disjoint simple closed
curves. Let us denote by M2(Q) a compact surface with boundary, where Q is the
union of all simple closed curves belonging to the boundary of this surface. By
gluing a finite number of closed two-dimensional disks (along their boundaries) to
all the components of the boundary of the surface M2(Q), one obtains a compact
surface without boundary (a closed surface), which we denote by M2. A surface
M2(Q) is said to be orientable if the corresponding surface M2 without boundary
is orientable. If the surface M2(Q) is connected, then the genus of M2(Q) is de-
fined to be the genus of M2, and the Euler characteristic of M2(Q), by virtue of
[9] (Statement 10.40), is equal to the difference between the Euler characteristic of
M2 and the number of curves in the set Q.

2.2. Saddle singularities. Let k ∈ N and k 6= 2. The foliationWk on R2 with the
standard saddle singularity at the point O (coordinate origin) and k separatrices is
the image of the horizontal lines {Imz = c, c ∈ R} under the map w = z

k
2 in the

case of odd k and under the map w2 = zk in the case of even k. For k = 2 all the
leaves of the foliation W2 are straight lines y = c, but the axis Ox is artificially split
into three parts: the origin and two the half-axes, the latter called the separatrices.
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Let M2 be a closed connected surface, F be a foliation on the surface M2. The
foliation F is said to be a foliation with saddle singularities if the set S of the
singularities of the foliation F consists of a finite number of points and for any
point s ∈ S there is a neighborhood Us ⊂ M2, the homeomorphism ψs : Us → R2

and the number ks ∈ N such that ψs(s) = O and ψs(F ∩ Us) = Wks\O. The
point s is called the saddle singularity with ks separatrices. Index I(s) of each
saddle singularity s ∈ S can be calculated via the number of separatrices ks by the
following formula (see [9], formula (10.17)):

I(s) = 1− ks
2
. (1)

Let χ(M2) be the Euler characteristic of the surface M2. The next formula
follows from the Poincaré-Hopf theorem (see [9], Statement 10.100):

χ(M2) =
∑
s∈S

I(s). (2)

2.3. Auxiliary results. Let M2 be a closed smooth orientable connected surface,
f : M2 → M2 be an A-diffeomorphism such that its non-wandering set contains a
one-dimensional attractor (repeller). Let Λ be a periodic component of this attractor
(repeller), b1, ..., bmΛ

be the bunches belonging to Λ (mΛ bunches in total), hΛ be
the sum of the degrees of these bunches.

The proof of the following lemma uses the ideas from [1], [6], [7], as well as the
proof scheme from [9] (Theorem 9.6.).

Lemma 2.1. For the periodic component Λ of a one-dimensional attractor (re-
peller) of the diffeomorphism f : M2 → M2, there are a submanifold NΛ and a
natural number n with the following properties:

1. NΛ is a trapping neighborhood of the set Λ with respect to the diffeomorphism
fn;

2. NΛ is a compact orientable connected surface of the genus g = 1 + hΛ

4 −
mΛ

2
with mΛ boundary components.

Proof. For definiteness, we will assume that Λ is a periodic component of the
attractor of the diffeomorphism f (if Λ is a periodic component of the repeller, it
is sufficient to consider the diffeomorphism f−1).

The finiteness of the number of periodic components of a basic set and the finite-
ness of the set of boundary periodic points of a one-dimensional attractor imply
that there exists a number n ∈ N such that fn(Λ) = Λ and all boundary periodic
points of the set Λ are fixed with respect to the diffeomorphism fn.

Further for any points x, y ∈Wu
z (W s

z ), where x 6= y and z is any point from the
set Λ, we will denote by (x, y)u ((x, y)s) connected open arc on the manifold Wu

z

(W s
z ) with boundary points x, y. Let us denote by b an arbitrary bunch belonging

to the set Λ, by hb the degree of this bunch. It follows from the definition of the
bunch that b = Wu

p1
∪ ... ∪Wu

phb
, where pj , j ∈ {1, ..., hb}, is s-boundary periodic

point of the set Λ. By virtue of [5] (Lemma 3.3), there exists a sequence of points
x1, ..., x2hb

such that:
1. x2j−1, x2j belong to different connected components of the set Wu

pj\pj ;
2. x2j+1 ∈W s

x2j
(we assume x2hb+1 = x1);

3. (x2j , x2j+1)s ∩ Λ = ∅, j = 1, ..., hb.
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For each j ∈ {1, ..., hb}, let us choose a pair of points x̃2j−1, x̃2j , and a simple
curve lj with the boundary points x̃2j−1, x̃2j such that:

1. (x̃2j , x̃2j+1)s ⊂ (x2j , x2j+1)s (x2hb+1 = x1);
2. the curve lj transversally intersects with the stable manifold of any point

belonging to the arc (x2j−1, x2j)
u at exactly one point;

3. Lb =
⋃

j∈{1,...,hb}
[lj ∪ (x̃2j , x̃2j+1)s] is a simple closed piecewise smooth curve

and the set LΛ =
⋃

t∈{1,...,mΛ}
Lbt has the properties:

(a) fn(LΛ) ∩ LΛ = ∅;
(b) for every curve Lbt , t ∈ {1, ...,mΛ}, there exists a curve from the set

fn(LΛ) such that these two curves are the boundary of the two-dimensional
closed annulus Kbt ;

(c) the annuli {Kbt , t ∈ {1, ...,mΛ}} are pairwise disjoint (see Figure 2).
For an arbitrary bunch b, we will call the curve Lb the characteristic curve of the

bunch b.

Figure 2. Construction of the characteristic curve for the bunch
of degree 4.

Let us put NΛ = Λ ∪
⋃
k≥1

fkn(
⋃

t∈{1,...,mΛ}
Kbt). By construction, the annuli

{Kbt , t ∈ {1, ...,mΛ}} consist of wandering points of the diffeomorphism fn and
NΛ is a compact orientable surface with non-empty boundary (consisting of mΛ

components) such that fn(NΛ) ⊂ intNΛ and Λ =
⋂
k≥0

fkn(NΛ). Thus, NΛ is the

trapping neighborhood of the set Λ with respect to the diffeomorphism fn. Since
the set Λ is connected and NΛ is its trapping neighborhood, then NΛ is connected.

We will prove that the genus g of the surface NΛ is equal to 1 + hΛ

4 −
mΛ

2 .
Remove the set int(

⋃
t∈{1,...,mΛ}

Kbt) from the surface M2. As a result, the surface



3564 VYACHESLAV GRINES AND DMITRII MINTS

M2 decomposes into a finite number of connected components, one of which is the
set NΛ. In this case, the set

⋃
t∈{1,...,mΛ}

fn(Lbt) is the boundary of the set NΛ. To

each curve fn(Lbt) (t ∈ {1, ...,mΛ}) let us glue a closed two-dimensional disk Dbt

(along its boundary) and denote the obtained manifold by MΛ. Let us construct a
homeomorphism F : MΛ →MΛ such that F |NΛ = f |NΛ and the non-wandering set
of F |Dbt

(for all t ∈ {1, ...,mΛ}) consists of exactly one hyperbolic periodic source
point αbt . By construction, αbt belongs to the closure W s

pj for each j ∈ {1, ..., hbt}
(see Figure 3).

Let us put SΛ =
⋃

t∈{1,...,mΛ}
αbt . The surface MΛ admits a foliation

FMΛ = {W s
x , x ∈ (Λ ∪ SΛ)},

which has mΛ singularities (points αbt , t ∈ {1, ...,mΛ}), and all these singularities
are saddle. The formula (1) implies that the index I(αbt) of each saddle singularity
αbt is equal to (1− hbt

2 ). From here and from the formula (2) one gets:

χ(MΛ) =
∑

t∈{1,...,mΛ}

I(αbt) = mΛ −
hΛ

2
, (3)

where χ(MΛ) is the Euler characteristic of the surface MΛ.
Since MΛ is closed orientable connected surface, its genus g is related to the

Euler characteristic χ(MΛ) by the following formula: χ(MΛ) = 2 − 2g. This fact
and the formula (3) imply that the genus of the surface MΛ is calculated by the
formula g = 1 + hΛ

4 −
mΛ

2 .
It follows from the construction of the surface MΛ that NΛ = MΛ\(

⋃
t∈{1,...,mΛ}

intDbt). Hence, the surface NΛ has the same genus as MΛ. �

Figure 3. Construction of the surface MΛ.
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3. Proof of the main results. Throughout this section, f : M2 → M2 is a
diffeomorphism from the class G(M2). Let us denote the periodic components of
this diffeomorphism by Λi (i ∈ {1, ..., kf}). One can choose the number n ∈ N such
that fn(Λi) = Λi for all i ∈ {1, ..., kf} and all boundary periodic points of all one-
dimensional basic sets are fixed with respect to the diffeomorphism fn. Therefore,
without loss of generality, throughout this section we will assume that every basic
set has a unique periodic component and all boundary periodic points of all one-
dimensional basic sets are fixed with respect to the diffeomorphism f . We will call
each set Λi a basic set.

Lemma 3.1. Let f ∈ G(M2). Then its non-wandering set contains at least one
attractor and at least one repeller.

Proof. Assume the opposite. Let the non-wandering set of the diffeomorphism f
consist of one-dimensional attractors Λ1, ...,Λkf (if it consists of one-dimensional re-
pellers, then it is sufficient to consider the diffeomorphism f−1). According to [14]
(Theorem 2), the set Λi (i ∈ {1, ..., kf}) has the local structure of the direct product
of the interval and the Cantor set. Thus, every set Λi is nowhere dense. The proper-
ties of basic set that is an attractor imply that Λi = Wu

Λi
(i ∈ {1, ..., kf}). It follows

from [19] (Corollary 6.3) and aforesaid that M2 =
⋃

i∈{1,...,kf}
Wu

Λi
=

⋃
i∈{1,...,kf}

Λi.

That contradicts Baire category theorem which states that a non-empty com-
plete metric space cannot be represented as a countable union of nowhere dense
subsets. �

Let us denote the set M2\
⋃

i∈{1,...,kf}
Λi by V . Since every set Λi (i ∈ {1, ..., kf})

is nowhere dense, then the set V is non-empty.

Lemma 3.2. The set V consists of a finite number of mutually disjoint open con-
nected sets such that the boundary accessible from inside of each such set consists of
two bunches, one of which belongs to some attractor, and the other belongs to some
repeller of the diffeomorphism f .

Proof. Let us note that in compliance with Lemma 3.1, the non-wandering set
NW (f) of the diffeomorphism f contains at least one attractor and at least one
repeller.

Let Λa be a one-dimensional attractor of the diffeomorphism f . From the defi-
nition of a bunch and the fact that the boundary accessible from inside of the set
M2\Λa consists of a finite number of bunches (see section 1), it follows that the set
W s(Λa)\Λa consists of a finite number of mutually disjoint connected sets. More-
over, by virtue of the definition of a bunch, for each such set there exists a single
bunch of the attractor Λa, which belongs to the boundary accessible from inside of
this set.

Let us denote by Λa1 , ...,Λ
a
ma (ma ≥ 1) all one-dimensional attractors of the dif-

feomorphism f . The aforesaid and the fact that the sets W s
Λa

1
\Λa1 ,...,W s

Λa
ma
\Λama

are mutually disjoint imply that the set
⋃

j∈{1,...,ma}
W s

Λa
j
\Λaj consists of a finite num-

ber of mutually disjoint connected sets. Herewith, for each such set there exists
a single bunch of some attractor of the diffeomorphism f , which belongs to the
boundary accessible from inside of this set. According to [19] (Corollary 6.3),
M2 =

⋃
i∈{1,...,kf}

W s
Λi
. Considering this, the fact that the non-wandering set of
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the diffeomorphism f consists of one-dimensional attractors and one-dimensional
repellers, and the fact that one-dimensional repeller coincides with its stable mani-
fold, one obtains the following: V =

⋃
j∈{1,...,ma}

W s
Λa

j
\Λaj .

Let us denote by Λr1, ...,Λ
r
mr (mr ≥ 1) all one-dimensional repellers of the dif-

feomorphism f . Applying the same reasoning for these repellers, one obtains the
following: the set

⋃
j∈{1,...,mr}

Wu
Λr

j
\Λrj consists of a finite number of mutually disjoint

connected sets; for each such set there exists a single bunch of some repeller of the
diffeomorphism f , which belongs to the boundary accessible from inside of this set;
V =

⋃
j∈{1,...,mr}

Wu
Λr

j
\Λrj .

Thus, the set V consists of a finite number of mutually disjoint connected sets
such that the boundary accessible from inside of each such set consists of two
bunches, one of which belongs to some attractor, and the other belongs to some
repeller of the diffeomorphism f . Since the set V = M2\

⋃
i∈{1,...,kf}

Λi is open and

is a subset of closed manifold, then each its connected component is an open set. �

The proof of the Lemma 3.2 implies the following Corollary.

Corollary 2. The number of bunches of all attractors of the diffeomorphism f is
equal to the number of bunches of all its repellers.

Proof of Theorem 1. Let Λa be a one-dimensional attractor of the diffeomorphism
f , ba be one of its bunches, Lba be the characteristic curve of the bunch ba (see the
proof of the Lemma 2.1). Let S = {(x1, x2) ∈ R2| x2

1 + x2
2 = 1} be a unit circle,

ϕ : S × [0; 1] → M2 be an embedding6 such that ϕ(S × {0}) = Lba , ϕ(S × {1}) =
f(Lba). Let us denote by U the image of the set S × (0; 1) with respect to the map
ϕ. It follows from the proof of the Lemma 3.2 that the curve Lba belongs to some
connected component J of the set V . Hence, U ⊂ J . Remove the set U from the
surfaceM2. The boundary ofM2\U consists of two connected components, each of
which is homeomorphic to a circle. Let us glue closed two-dimensional disks B1 and
B2 (along their boundaries) to these components and denote the resulting surface
by M̃2. There are two possible cases:

1. the surface M̃2 is connected. Then the surface M2 is homeomorphic to the
connected sum M̃2#T2;

2. the surface M̃2 is disconnected and is a union of two closed orientable con-
nected surfaces P1 and P2. Then the surface M2 is homeomorphic to the
connected sum P1#P2.

It follows from the Lemma 3.2 that the boundary accessible from inside of the
set J consists of the bunch ba of the attractor Λa and a bunch br of some repeller
Λr of the diffeomorphism f . We denote by p1, ..., phba

the boundary periodic points
belonging to the bunch ba, and by q1, ..., qhbr

the boundary periodic points belonging
to the bunch br.

Let us define a homeomorphism F : M̃2 → M̃2 such that:
1. F |M̃2\(intB1∪ intB2) = f |M̃2\(intB1∪ intB2);

6The map ϕ : X → Y , where X,Y are topological spaces, is said to be an embedding if
ϕ : X → ϕ(X) ⊂ Y is a homeomorphism, where ϕ(X) carries the subspace topology inherited
from Y .
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2. the non-wandering set of F |B1 consists of exactly one hyperbolic fixed source
point α (by construction, this point belongs to the closure W s

pj for each j ∈
{1, ..., hba});

3. the non-wandering set of F |B2
consists of exactly one hyperbolic fixed sink

point ω (by construction, this point belongs to the closure Wu
qj for each j ∈

{1, ..., hbr}).
Let us consistently perform the procedure described above for all bunches be-

longing to attractors of the diffeomorphism f . As a result, one gets a disconnected
manifold, which is the union of kf closed orientable connected surfaces. Indeed, each
of these surfaces contains a single non-trivial basic set Λi (for some i ∈ {1, ..., kf})
and, in fact, is the surface MΛi

constructed in the proof of Lemma 2.1. It follows
from the proof of Lemma 2.1 that every such surface has genus gi = 1 +

hΛi

4 −
mΛi

2
(i ∈ {1, ..., kf}) (see the notation in the condition of the Theorem 1). Since the
number of all bunches belonging to attractors of the diffeomorphism f is equal to
mf

2 (see Corollary 2), then the procedure described above is performed mf

2 times.
Among them, there are kf − 1 steps, as a result of each of which the manifold splits
into two disconnected manifolds, and lf =

mf

2 − kf + 1 steps, as a result of each of
which the manifold remains connected. Thus, one obtains that the original surface
M2 is homeomorphic to the connected sum:

M2
g1

#...#M2
gkf

#T2#...#T2︸ ︷︷ ︸
lf

,

where gi = 1 +
hΛi

4 −
mΛi

2 (i ∈ {1, ..., kf}), lf =
mf

2 − kf + 1. �

Proof of Corollary 1. Since the surface M2 is homeomorphic to the connected sum
of kf closed orientable connected surfaces of the genus gi (i ∈ {1, ..., kf}) and lf two-
dimensional tori, then the genus g of the surface M2 is calculated by the following
formula:

g =
∑

i∈{1,...,kf}

(1+
hΛi

4
−mΛi

2
)+

mf

2
−kf+1 = kf+

hf
4
−mf

2
+
mf

2
−kf+1 = 1+

hf
4
.

�

Proof of Theorem 2. In [6] (Theorem 1), it is proved that if the non-wandering set of
a structurally stable diffeomorphism of a closed smooth orientable surface contains
a one-dimensional attractor (repeller), then it contains a source (sink) periodic
point. This fact and the fact that the non-wandering set of the diffeomorphism f
consists of one-dimensional attractors and one-dimensional repellers entail that the
diffeomorphism f is not structurally stable.

We will prove that the diffeomorphism f is Ω-stable. Let us note that in com-
pliance with Lemma 3.1, the non-wandering set NW (f) of the diffeomorphism f
contains at least one attractor and at least one repeller. Let Λa be an arbitrary one-
dimensional attractor of the diffeomorphism f . Unstable manifold of this attractor
coincides with it, and stable manifold of this attractor, by virtue of [19] (Corollary
6.3), intersects with the unstable manifolds of a finite number of repellers Λr1, ...,Λ

r
l .

Herewith, the stable manifold of each of the repellers Λr1, ...,Λ
r
l coincides with it.

Conducting similar reasoning for an arbitrary repeller of the diffeomorphism f , one
obtains that the diffeomorphism f has no cycles. Hence, according to [9] (Theorem
1.9.), the diffeomorphism f is Ω-stable. �
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