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Abstract: Chronic hepatitis B virus infection is the dominant cause of hepatocellular carcinoma, the
main cause of cancer death. HBx protein, a multifunctional protein, is essential for pathogenesis
development; however, the underlying mechanisms are not fully understood. The complexity
of the system itself, and the intricate interplay of many factors make it difficult to advance in
understanding the mechanisms underlying these processes. The most obvious solution is to use
simpler systems by reducing the number of interacting factors. Yeast cells are particularly suitable
for studying the relationships between oxidative stress, mitochondrial dynamics (mitochondrial
fusion and fragmentation), and mitochondrial dysfunction involved in HBx-mediated pathogenesis.
For the first time, genetically modified yeast, Y. lipolytica, was created, expressing the hepatitis
B virus core protein HBx, as well as a variant fused with eGFP at the C-end. It was found that
cells expressing HBx experienced stronger oxidative stress than the control cells. Oxidative stress
was alleviated by preincubation with the mitochondria-targeted antioxidant SkQThy. Consistent
with these data, in contrast to the control cells (pZ-0) containing numerous mitochondrial forming
a mitochondrial reticulum, in cells expressing HBx protein, mitochondria were fragmented, and
preincubation with SkQThy partially restored the mitochondrial reticulum. Expression of HBx had
a significant influence on the bioenergetic function of mitochondria, making them loosely coupled
with decreased respiratory rate and reduced ATP formation. In sum, the first highly promising yeast
model for studying the impact of HBx on bioenergy, redox-state, and dynamics of mitochondria in
the cell and cross-talk between these parameters was offered. This fairly simple model can be used as
a platform for rapid screening of potential therapeutic agents, mitigating the harmful effects of HBx.

Keywords: hepatocellular carcinoma; hepatitis B virus; HBx; heterologous expression; yeast; Yarrowia
lipolytica; oxidative stress; mitochondrial dysfunction; mitochondria-targeted antioxidants

1. Introduction

Liver cancer is a prevalent cancer with a rapidly increasing incidence and a major
contributor to cancer-related death with poor survival for sufferers [1]. Hepatocellular
carcinoma (HCC), an aggressive human malignancy, is the most common form of liver can-
cer [2–4]. According to the latest epidemiological data from the Globocan 2020 report,
HCC accounts for 4.7% of all cancers, with more than 900,000 new cases and about
830,000 deaths associated with HCC each year [3]. It is the fifth most prevalent cancer
worldwide, and the third major cause of cancer mortality globally [5–9].
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The prevalence of the high mortality rate is due to the lack of sensitive and specific
biomarkers for early detection [10], limited treatment options for late-stage HCC [10], drug
resistance, invasiveness, and metastasis [6,11]. Remarkable differences were found in HCC
incidence and mortality in gender, race/ethnicity, age groups, and geographical regions.
The highest rates of HCC are typical for East and Southeast Asia and Central and South
Africa [12–14], but recently there has been a trend towards an increase in the number of
cases also in the United States and Western Europe [15].

The precise molecular mechanisms that mediate HCC development are still unclear,
but chronic hepatitis B virus (HBV) infection is considered to be the major risk factor for
HCC initiation, and most patients suffered from HCC as a consequence of persistent HBV
infection [5,16,17]. Despite the development of vaccines and therapeutic approaches against
HBV, 2 billion people have been infected with HBV [1]. The propagation of HBV infection
depends on environmental factors, lifestyle, earning levels, and education, which determine
differences in the geographical distribution of HBV incidence, being about 1% in developed
countries and 8% or even more in the rest. HBV can be transmitted sexually and perinatally
or by direct exposure to contaminated blood or other body fluids, and it attacks the liver
to induce acute and chronic diseases [18]. Differences in HBV genotype and mutations,
germ line genetic variation predisposition to the host, acquisition of tumor-specific somatic
mutations, and environmental factors contribute to the observed individual variability in
the development of HCC [19]. Chronic infection with the HBV, despite the availability of a
vaccine, remains quite common [2].

HBV is a member of the Hepadnaviridae family and the Orthohepadnavirus genus.
The HBV genome, which is highly compact (only 3.2 kilobases in length), is a relaxed
circular, partially double-stranded DNA molecule that contains four overlapping open
reading frames encoding envelope protein (pre-S1/pre-S2), core protein (pre-C/C), viral
polymerase, and X protein (HBx) [20]. Among the proteins produced by HBV, HBx protein
is strongly associated with HCC development. Replication of the hepatitis B virus is a
complex multistep process. Initially, nucleocapsids enter the hepatocyte nucleus through
the NTCP receptor, where the RC DNA is converted into a covalently closed circular DNA
(cccDNA). For the initiation and maintenance of virus replication, the presence of the
HBx protein, which has transcriptional activation activity, is necessary. Then, a 3.5 kb
pregenomic RNA is transcribed from cccDNA and transported to the cytoplasm, where
mature capsids are secreted outward, or transferred back to the nucleus, forming a cccDNA
pool. Due to this mechanism, some HBV genes can be integrated into the chromosomal
DNA of infected hepatocytes [2,17,21,22]. Until now, not all molecular mechanisms of HBV-
mediated carcinogenesis have been identified. It is assumed that the immune response is
basically associated with chronic inflammation and integration of the viral genome into the
hepatocyte genome, and the key role in carcinogenesis is played by the viral regulatory
protein HBx [5,23].

The 17 kDa non-structural protein HBx, encoded by the X region, is a multifunctional
nonspecific transactivator. HBx modulates cytoplasmic signal transduction and directly
interacts with nuclear transcription factors, which makes it possible to regulate not only
viral but also cellular promoters. The HBx structure is still unknown, but a number of
in silico models of HBx have been recently proposed [24,25]. The C-terminal fragment of
HBx, being a significant element of a spatial protein structure, starts at the 120 position
(tryptophan residue) and is exposed to the cytoplasm. The 113–135 residues, known as
BH3-like peptide, are involved in the regulation of HBV replication [25]. The C-terminal
fragment plays a crucial role in carcinogenesis [26] and is required for ROS production by
hepatocyte mitochondria [27]. Integration of the viral genome is accompanied by truncation
of the C-terminal fragment of the HBx protein (ct-HBx), which further accelerates carcino-
genesis [28] by sustaining proliferative signaling [29], evading growth suppressors [30],
evading immune destruction [31,32], facilitating replicative immortality [33], aiding in
tumor-promoting inflammation [34], triggering invasion and metastasis [35,36], prompting
angiogenesis [37], and inducing genome instability [38]. The role of HBx in the induction of
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apoptosis in HCC is contradictory and depends to a large extent on the cellular conditions,
components interacting with HBx, and intracellular localization of wild-type HBx (wtHBx)
and truncated forms of HBx (trHBx) [39].

Although it is widely known that HBx is a multifunctional regulator and an attractive
therapeutic target for the treatment of chronic hepatitis B and HCC, the specific molecular
mechanisms of HBV-associated HCC, as well as the role of the HBx protein in carcinogenesis,
are not well understood and require further research [40,41]. Findings of HBx effects on
cell energy metabolism are scarce and contradictory [42].

The complexity of the system itself and the intricate interplay of many factors make
it difficult to advance the understanding of the mechanisms underlying these processes.
The most obvious solution is to use simpler systems and reduce the number of
interacting factors.

Indeed, the use of relevant cell lines has provided valuable new information and has
shed light on the underlying molecular mechanism and novel therapy targets for HBx,
HBV, and HCC. We quote only a few of the most striking works. A detailed review of the
works deserves a separate publication.

A novel monoclonal antibody was developed that enables a spatiotemporal analysis of
HBx in a natural infection system in HBV-infected primary human hepatocytes. Confocal
imaging studies with this antibody demonstrated that HBx is expressed shortly after
infection and has a short half-life and that it is predominantly located in the nucleus [43,44];
in contrast to the general belief that HBx is mostly cytoplasmic, with a small fraction in the
nucleus, the mitochondrion is a major target for HBx in the cytoplasm [43].

Down-regulation of miR-30c may result in the progression of chronic HBV via the
promotion of HBV replication and cell proliferation [45]. The ability of the full-length HBx
protein and its truncated forms to act on the cell cycle of regulatory proteins is one of the
main elements of pathogenesis in the development of HCC [46].

HBx promotes the proliferation, epithelial–mesenchymal transition, invasion, and mi-
gration of HCC cells by targeting HMGA2, a potential therapeutic target for HBV-associated
HCC [47]; regulates diverse aspects of LONP1 and Parkin, enhancing mitophagy in starva-
tion [48]; promotes HCC metastasis by remodeling the extracellular matrix modification
through the HIF-1α/LOX pathway [49]; and alters the expression of long non-coding RNAs
to promote the progression of HCC [7].

HBx-induced S100A9 plays a pivotal role in the metastasis of HCC [50]; SHP2 induced
by the HBx-NF-κB pathway contributes to fibrosis during human early HCC develop-
ment [51], and the interaction between centrosomal P4.1-associated protein (CPAP) and
HBx provides a microenvironment to facilitate HCC development by enhancing NF-κB
activation, inflammatory cytokine production, and cancer malignancies [52].

The dual roles of cellular FLICE inhibitory protein (c-FLIP) in the regulation of HBV
replication was found; c-FLIP interacts with HBx and enhances its stability and regulates
the expression or stability of hepatocyte nuclear factors, which are essential for transcription
of the HBV genome [40].

Thioredoxin-interacting protein (TXNIP), a key mediator of intracellular ROS, may be
involved in HBx-mediated metastasis of HBV-associated HCC [53]. The autophagy-related
protein 16-1 (ATG16L1) binds to the ATG12-ATG5 conjugate and forms a large protein
autophagosome complex involved in HBV-associated HCC [54].

While applying relevant cell lines has greatly contributed to better understanding
of some HCC-related processes, they remain complex with a number of drawbacks, in-
cluding low cell growth rates, dense cell association, and possible impacts of the rich
cultivation medium. Yeast models are devoid of these flaws. Yeast cells, the simplest eu-
karyotic organisms, sharing well-preserved universal molecular and cellular mechanisms
regulating signaling pathways [55,56], proteostasis, autophagy, oxidative stress, secretory
pathways [57,58], and cell death [58], are particularly suitable for studying the relationships
between oxidative stress, mitochondrial dynamics (mitochondrial fusion and fragmenta-
tion), and mitochondrial dysfunction. Moreover, due to their ability to grow rapidly on



Microorganisms 2022, 10, 1817 4 of 19

simple accessible growth media of certain compositions, their advanced developed genetic
toolbox, and their expanded applications of synthetic biology and metabolic engineering,
yeasts have become a valuable eukaryotic model organism for unraveling the complex
intracellular mechanisms underlying human biology and pathology [59–61]. In addition,
yeast cells are naturally devoid of HBx protein, which allows researchers to determine
morphological and bioenergy changes in cells under the influence of viral protein HBx
separately from other factors (chronic inflammation, immune and cytokine response, etc.)
causing oxidative stress as a secondary process.

The non-pathogenic, non-toxic (generally regarded as safe), obligate aerobic ascomyce-
tous yeast Y. lipolytica cells, having respiratory metabolism closely resembling that of
mammalian cells [62–65], a versatile substrate utilization profile, rapid growth rate, de-
veloped advanced genome editing technologies, and unique physicochemical proper-
ties and secretory machinery, contributing to the extraordinary capacity for production
and secretion of heterologous proteins (see [66]), is especially appropriate for this kind
of research.

The main goal of this study is to investigate the cross-talk between redox and energy
status and dynamics of mitochondria in Yarrowia lipolytica yeast cells expressing HBx and
its variants.

2. Materials and Methods
2.1. Chemical Reagents

Bacto agar, Bacto peptone, Bacto yeast extract, Dithiothreitol (DTT), and Tris (ultra-
pure) were purchased from Becton, Dickinson and Company (Franklin Lakes, New Jer-
sey, USA); ADP, ampicillin, Anti-Rabbit IgG Peroxidase antibody, antimycin A, ATP, 3-
amino-1,2,4-triazole, carbonyl cyanide m-chlorophenylhydrazon(CCCP), P5-di(adenosine-
5)pentaphosphate (Ap5A), EDTA, EGTA, fatty acid-free BSA, glucose, glucose-6-phosphate
dehydrogenase, LiAc, mannitol, MgCl2, NaCl, NADP, (NH4)2SO4, oligomycin, Phenol Red,
phosphoenolpyruvate, pyruvate kinase, rotenone, succinic acid, and tert-butyl hydroper-
oxide were from Sigma-Aldrich (St. Louis, MO, USA); Coomassie G-250 and zymolyase
were from MP Biomedicals (Santa Ana, California, USA); CaCl2, K2HPO4, KCl, KH2PO4,
NaCl, and safranin O were from Merck (Darmstadt, Germany); 10× DNA Loading Dye,
10x G+ buffer, 10x O+ buffer, 10x R+ buffer, BSA, Dihydroetidium, Sytox Green Dead Cell
Stain, DMSO, Gene Jet Gel Extraction Kit, Gene Jet Plasmid Miniprep Kit, Gene Ruler
100 bp+, Gene Ruler 1 kb, Glycogen, Mitotracker Red CmxRos, NotI restriction endonu-
clease, PageRuler™ Prestained Protein Ladder, Phusion High-Fidelity PCR Kit, PvuII
restriction endonuclease, Rapid DNA Ligation Kit, RNAse-A, SuperSignal™ West Dura
Extended Duration Substrate, and XhoI restriction endonuclease were from Thermo Fisher
Scientific (Waltham, MA, USA); agar, agarose LE2, ethidium bromide, glycerol (ultra-pure)
were from Helicon (Moscow, Russian Federation); LB BROTH Miller (Luria–Bertani) and
NaOAc were from Amresco (Dallas, Texas, USA); BbsI (BpiI) restriction endonuclease
was from New England Biolabs (Ipswich, Massachusetts, USA); sorbitol was from Dia-
M (Moscow, Russian Federation); oligonucleotides were from DNA-Synthesis (Moscow,
Russian Federation); Anti-GFP antibody was from Evrogen (Moscow, Russian Federation).
SkQThy was kindly provided by Dr. Esipov D.S. from A. N. Belozersky Research Institute
of Physico-Chemical Biology MSU, Moscow, Russian Federation.

2.2. Cell Cultures

Escherichia coli strain XL1-Blue (Evrogen, Russian Federation) was used for plasmid
propagation. Cells were grown on Petri dishes with sterile LB medium (1% Bacto peptone,
0.5% yeast extract, 1% NaCl) containing 2% Bacto agar and supplemented with 100 µg/mL
ampicillin as a selectivity factor overnight at 37 ◦C.

The Y. lipolytica yeast, strain Po1f, was obtained from National Bioresource
Center—All-Russian Collection of Industrial Microorganisms (Moscow, Russian Federa-
tion). All the strains used in this study are listed in Table 1. Y. lipolytica cells were grown in
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500 mL Erlenmeyer flasks at 28 ◦C on a rotary shaker ES-20/60 (Biosan, Rı̄ga, Latvia) at
220 rpm on a semi-synthetic medium [67] containing 1.3% succinate as a carbon and energy
source and harvested in the early exponential growth phase (OD = 1).

Table 1. List of strains.

Strain Description

Po1f MatA, leu2-270, ura3-302, xpr2-322, axp-2

pZ-0 Po1f + pZ URA3, xpr2∆

pZ-eGFP Po1f + pZ-eGFP URA3 xpr2∆

pZ-HBx Po1f + pZ-HBx URA3 xpr2∆

pZ-HBx-eGFP Po1f + pZ-HBx-eGFP URA3 xpr2∆

2.3. Plasmid and Yeast Strain Construction

Primer design was based on the nucleotide sequences of the genes encoding HBx and
eGFP so that the sequences of the PCR products consisted, respectively, of the full-length
HBx nucleotide sequence and the full-length eGFP nucleotide sequence.

The HBx open reading frame was amplified from the pCMV-Sport6-HBx plasmid [68]
by using pairs of primers, namely, HBx-BbsI-Fw1/HBx-BbsI-Rev1, for pZ-HBx construction,
and HBx-BbsI-Fw1/HBx-BbsI-rev2 for pZ-HBx-eGFP.

The eGFP open reading frame was amplified from pUC:FCP:ShBle:FCP:EGFP (Ad-
dgene, Watertown, MA, USA) by using pairs of primers, namely, eGFP-BbsI-Fw1/eGFP-BbsI-
Rev1 for pZ-eGFP, and eGFP-BbsI-Fw2/eGFP-BbsI-Rev1 for pZ-HBx-eGFP constructions.

Primer sequences used in this study are listed in Table 2. The absence of BbsI restriction
sites in the target gene sequences was determined, and the lack of autocomplementarity of
the ends of the PCR products was estimated using SnapGene software (GSL Biotech LLC,
San Diego, CA, USA).

Table 2. List of primers.

Primer Sequence

HBx-BbsI-Fw1 TAGAAGACGCAATGGCTGCTAGGCTGTGC

HBx-BbsI-Rev1 TAGAAGACGCGCGCTTAGGCAGAGGTGAAAAAGTTGC

HBx-BbsI-rev2 TAGAAGACGCGGCAGAGGTGAAAAAGTTGC

eGFP-BbsI-Fw1 TAGAAGACTAAATGGTGAGCAAGGGCGAGGAG

eGFP-BbsI-Rev1 TAGAAGACGCGCGCTTACTTGTACAGCTCGTCCATG

eGFP-BbsI-Fw2 TAGAAGACATTGCCATGGTGAGCAAGGGCGAG

Polymerase chain reactions were carried out using Phusion Hot Start II high-fidelity
DNA polymerase. PCR mixtures contained Phusion HF buffer, 200 µM dNTPs, the corre-
sponding primers (final concentration, 0.5 µM), and 10 ng of matrix DNA. PCR fragments
were purified from agarose gels using a Gene Jet Gel Extraction Kit.

To create target genetic constructs, the pZ-express++ plasmid with a hybrid hp4d
promoter dependent on the growth phase and a ZETA transposon sequence with multiple
homology in the Y. lipolytica genome was chosen, which ensures a high copy number
of the plasmid during recombination and, as a result, a high level of expression of the
target protein. The plasmid also has an ampicillin-resistance gene and a prototrophic
factor for uracil URA3 from the Y. lipolytica genome. Insertion of the PCR products into
the pZ-express++ vector was performed by the Golden Gate Cloning method using BbsI
type II restriction enzyme and T4 ligase in T4 ligase buffer. The sequences of HBx and
HBx-eGFP were inserted into the vector. All plasmid constructs were verified by restriction
enzyme mapping and DNA sequencing of inserted fragments. The pZ-express++ plasmid
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was kindly provided by Dr. Laptev I.A. from Federal Institution “State Research Institute
of Genetics and Selection of Industrial Microorganisms of the National Research Center”
Kurchatov Institute”, Moscow, Russian Federation.

The transformation of E. coli XL1-Blue cells with genetic constructs was carried out
by electroporation at 1720 V using a MicroPulser Electroporator (Bio-Rad, USA). The cells
carrying plasmids with target genes were allowed to grow on Petri dishes with sterile LB
medium containing 2% Bacto agar and supplemented with 100 µg/mL ampicillin overnight
at 37 ◦C. Positive clones carrying correct plasmids were isolated and cultivated in liquid
sterile LB medium supplemented with 100 µg/mL ampicillin overnight at 37 ◦C.

Plasmids were isolated using a GeneJet Plasmid Miniprep Kit, and the DNA concentra-
tions were determined spectrophotometrically with a NanoDrop 1000 Spectrophotometer
(Thermo Fisher Scientific, USA) at a wavelength of 260 nm. Plasmids were linearized with
NotI endonuclease and used for transfection of Y. lipolytica Po1f cells by electroporation at
1500 V using a MicroPulser Electroporator (Bio-Rad, Hercules, CA, USA). Competent cells
were obtained by incubation with 0.1 M TE-LiAc for 45 min at 30 ◦C in the dark and then
after adding 2.5 mM Dithiothreitol (DTT) over the next 15 min. Cells were washed with
0.1 M sorbitol.

Cells after electroporation were allowed to grow on Petri dishes with YNB (Merck,
Germany) supplemented with Dropout Medium Supplement without uracil (Merck, Ger-
many) and 6 mg/mL chloramphenicol, to which Y. lipolytica is resistant, at 30 ◦C in the
dark for 60–72 h.

2.4. Western Blotting

For protein isolation, pZ-0, pZ-eGFP, and pZ-HBx-eGFP mutant cells harvested at the
exponential growth phase (OD = 0.6) were incubated for 30 min at 29 ◦C with 10 U/mL
zymolyase, pelleted (5600 g, for 5 min), resuspended in TNE lysis buffer (50 mM Tris-HCl,
150 mM NaCl, 5 mM EDTA, pH 7.5) supplemented with 0.1 M Na3VO4 (an inhibitor of
protases), frozen in liquid nitrogen, and disrupted with 0.4 mm glass beads. Then the
undisrupted cells and debris were pelleted (500 g, for 5 min). The supernatant (200 µL)
containing the isolated proteins was diluted with 200 µL of 2× SDS-gel loading buffer
(50 mM Tris-HCl, 10 mM dithiothreitol, 2% SDS, 10% glycerol, 0.1% Coomassie G-250,
pH 6.8) and boiled for 5 min.

Western blotting was performed as follows: proteins were run in 15% SDS–
polyacrylamide gel with PageRuler™ Prestained Protein Ladder (each well contained
5 µg of total protein); the proteins were transferred to the PVDF membrane. The detection
of eGFP and eGFP-fusions were conducted with primary rabbit polyclonal Anti-GFP anti-
body and secondary Anti-Rabbit IgG Peroxidase antibody. The immunoblot was developed
with SuperSignal™ West Dura Extended Duration Substrate in a ChemiDoc Touch Imaging
system (BioRad, Hercules, CA, USA).

2.5. Mitochondria Visualization in Cells by SIM Microscopy

For mitochondria staining, Y. lipolytica cells were loaded with 500 nM MitoTracker Red
CmxRos for 30 min. Stained cells were fixed with 2.5% PFA for 10 min, then washed with
50 mM PBS, pH 5.5, and embedded in mounting medium containing 24% glycerol, 9.6%
Mowiol, and 2.5% DABCO in 0.1 M Tris, pH 8.5. Imaging was performed using an inverted
motorized microscope Eclipse N-SIM with a PerfectFocus autofocusing system (Nikon).
The microscopy system was equipped with a 100× Apo TIRF Oil objective (NA1.49),
488 and 561 nm diode laser, and cooled EM-CCD camera iXonDU-897E (Andor, Belfast,
Northern Ireland, UK) under the control of NIS-Elements v. 5.11 (Nikon, Tokyo, Japan)
software. Image acquisition, SIM image reconstruction, and data alignment were performed
using NIS-Elements (Nikon). Then 3D reconstruction of x, y, and z SIM datasets (z-stacks)
was performed using ICY software v.2.5 (Biological Image Analysis Unit, Institut Pasteur,
Paris, France).
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2.6. Oxidative Stress and Cell Death of Y. lipolytica Cells

Production of intracellular reactive oxygen was determined with Dihydroethidium.
Yeast cell viability was detected with Sytox Green Dead Cell Stain [69]. To mitigate
oxidative stress induced by HBx expression, the cells were preincubated for 1 h with
250 nM SkQThy, a mitochondria-targeted (transported primarily, if not exclusively, in mito-
chondria) very efficient antioxidant, consisting of lipophilic cation triphenylphosphonium
bonded by a C 10 aliphatic chain with an antioxidant thymoquinone (Thy) having versatile
healing abilities [62]. Stained cells were analyzed by flow cytometry with a CytoFlex S
flow cytometer (Beckman Coulter, Brea, CA, USA). The data obtained for 20,000 cells
were stored and analyzed on a logarithmic scale using CytExpert software v2.4 (Beckman
Coulter, USA).

2.7. Isolation of Y. lipolytica Mitochondria

Mitochondria were isolated by the method developed in our laboratory [64]. The
quality of isolated mitochondrial preparations was judged by respiratory control ratios
(RC), ratios of respiratory rate of mitochondria in state 3 respiration induced by the addition
of ADP to respiratory rate in state 4 respiration after phosphorylation of the ADP added, as
recommended in [70].

2.8. Monitoring of Oxygen Consumption by Yeast Cells and Mitochondria

Oxygen consumption by yeast cells and mitochondria was monitored amperometri-
cally using a closed Clark-type oxygen electrode in a continuously stirred, thermostatically
controlled 1 mL cell. The incubation medium for cells contained 50 mM Tris-phosphate
buffer supplemented with 1.3% succinate, pH 5.5. The basic incubation medium for mi-
tochondria contained 0.6 M mannitol, 2 mM Tris-phosphate buffer, pH 7.2, 1 mM EDTA,
20 mM Tris-pyruvate + 5 mM Tris-malate (P + M) or 20 mM succinate. Respiratory rates
were expressed as ng-atoms O/min/mg protein. For calculating respiratory rates of cells
or mitochondria, it is necessary to know the amount of dissolved oxygen in the cell (cell
volume and table data on oxygen solubility at experiment temperature) and the amount of
added cells (using flow cytometry) or mitochondria (the volume of mitochondria multi-
plied by their concentration). Respiratory rates of cells and mitochondria were expressed
as ng-atoms O/min/cell number or ng-atoms O/min/mg protein, respectively.

2.9. Assessment of the Mitochondrial Membrane Potential

The potential generated at the inner mitochondrial membrane was assessed with
safranine O as a potential-sensitive probe with a DU-650 spectrophotometer (Beckman
Coulter, USA) using a two-wavelength mode (511–533 nm) [71]. The basic incubation
medium was supplemented with 20 µM safranin O and mitochondria (0.5 mg protein/mL).

2.10. Monitoring of Mitochondrial Swelling

Mitochondrial swelling was monitored spectrophotometrically with a Cary 300 Bio
spectrophotometer (Varian, Palo Alto, CA, USA) by recording changes in apparent ab-
sorbance at 540 nm. The basic incubation media were supplemented with 40 mM KCl and
mitochondria (0.5 mg protein/mL).

2.11. Assay of ATP Synthesis by Mitochondria

ATP synthesis by mitochondria was recorded by two independent methods, the first
one based on a small pH shift during ADP conversion to ATP. ATP synthesis was assayed
spectrophotometrically with a DU-650 spectrophotometer (Beckman Coulter, USA) at
557/618 nm using Phenol Red (a pH-dependent dye), as described in [72] with minor
modifications [67]. All incubation media and addition solutions were carefully adjusted to
pH 7.1. The basic incubation medium was supplemented with 6 µM Ap5A (an inhibitor of
adenylate kinase), 5 µM Phenol Red, and mitochondria (0.2 mg protein/mL). The second
method was based on the coupling of ATP synthesis with NADP reduction in enzymatic
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reactions containing NADP, hexokinase, and glucose-6-phosphate dehydrogenase. The
basic incubation medium was supplemented with 6 µM Ap5A, 1 mM glucose, 1 mM NADP,
hexokinase (10 U/mL), glucose-6-phosphate dehydrogenase (3 U/mL), and mitochondria
(0.2 mg protein/mL). ATP synthesis initiated by the addition of ADP was monitored
spectrophotometrically with a Cary 300 Bio spectrophotometer (Varian, USA) at 340 nm.

2.12. Assessment of Hydrogen Peroxide Production by Mitochondria

The production of hydrogen peroxide by mitochondria was determined fluorometri-
cally by measuring the oxidation of Amplex Red to resorufin coupled with the enzymatic
reduction of hydrogen peroxide by horseradish peroxidase. The fluorescence of resorufin
was measured at room temperature using a RF 5301 PC spectrofluorophotometer (Shi-
madzu, Kyoto, Japan) at 563/587 nm excitation and emission wavelengths, respectively.
Signals were calibrated with 0–5 µM H2O2 (determined by absorbance at 240 nm) [67]. The
basic incubation medium was supplemented with 0.5 mM EGTA, 20 mM Tris-succinate,
5 µM Amplex Red, horseradish peroxidase (9 U/mL), 6 mM aminotriazole (an inhibitor of
catalase), and mitochondria (0.2 mg protein/mL).

2.13. Mitochondrial Protein Assay

Mitochondrial protein was determined using the Bradford method [73] with BSA as
the standard.

2.14. Statistical Analysis

Unless otherwise specified, all experiments with yeast mitochondria were performed
at least three times with consistent results. For analysis of mitochondrial morphology, at
least fifty cells were examined in each trial. Statistical analyses were performed using
the one-way ANOVA test with the post hoc Tukey HSD test. Data were presented as
mean ± S.E. from at least three independent replicates.

3. Results
3.1. Creation and Primary Characterization of Yeast HBx-Expressing Cells

One of the main scientific tasks of the research was to create a simple and adequate
model of HCC based on Y. lipolytica yeast to study bioenergetic aspects of the pathogenesis
of this disease. The yeast Y. lipolytica is well suited for this kind of research (see Introduction).
In addition, the Po1f strain used in the work, while retaining all the advantages of the yeast
Y. lipolytica, in contrast to the wild strain, is auxotrophic for uracil and leucine, and has a
deletion of the Xpr2 gene encoding an extracellular protease, thus making it possible to use
as a selective growth media.

The genetically modified yeast Y. lipolytica expressing HBx and HBx-eGFP was created
for the first time (see Materials and Methods). The control Y. lipolytica Po1f pZ-0 strain, not
having the target proteins but carrying the pZexpress++ integrative plasmid containing the
URA3 gene as a prototrophic factor, was also constructed.

Analysis of an electrophoregram showed the presence in the constructed Polf pZ-HBx-
eGFP mutant of the target protein fused with eGFP with a molecular mass of 44 kDa, which
corresponded to its calculated molecular weight (Figure 1).

As a first step, we examined what changes took place in cells expressing heterologous
proteins and focused primarily on respiration rates, induction of oxidative stress, and cell
death, and the morphology and dynamics of mitochondria within cells. Expression of
heterologous proteins did not affect the growth rate of yeast cells (not shown).
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molecular weights of the markers are shown. 
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Cells of the control strain (pZ-0) contained numerous mitochondria forming the mito-
chondrial reticulum (Figure 2, left panel).  

The eGFP expression did not change the mitochondrial morphology (Figure 2, left 
panel), and eGFP was diffusely distributed in the cytosol. In contrast, in pZ-HBx-eGFP 
cells, the mitochondrial reticulum was disturbed, and mitochondria were fragmented 
(Figure 2, left panel), strictly indicating the influence of HBx on the mitochondrial struc-
ture. In cells expressing HBx, incubation with 250 nM SkQThy partially restored the mi-
tochondrial reticulum (Figure 2, right panel). 

 
Figure 2. Mitochondrial morphology of Y. lipolytica mutants. Effect of SkQThy. eGFP fluorescence 
shown in green. Bars are 10 μm. Cells were preincubated without SkQThy (left panel) or with 250 
nM SkQThy (right panel) for 1 h, then washed with 50 mM PBS, pH 5.5, and stained with 500 nM 
MitoTracker Red CmxRos (shown in red) for 30 min. 

An important conclusion can be drawn from this part. To our knowledge, an ade-
quate yeast model (Po1f pZ-HBx) was developed for the first time to trace HBx-mediated 
changes in the morphology and structure of mitochondria within the cell.  

Figure 1. Western blot analysis of eGFP fusion proteins from pZ-0, pZ-eGFP, and pZ-HBx-eGFP
strains of Y. lipolytica. The eGFP and HBx-eGFP signals are indicated by arrows. On the right, the
molecular weights of the markers are shown.

3.2. Morphology of Mitochondria in Yeast Cells

Y. lipolytica cells are quite small (5–10 µm long); therefore, for mitochondria visual-
ization in cells, we applied structured illumination microscopy with improved resolution.
Cells of the control strain (pZ-0) contained numerous mitochondria forming the mitochon-
drial reticulum (Figure 2, left panel).
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Figure 2. Mitochondrial morphology of Y. lipolytica mutants. Effect of SkQThy. eGFP fluorescence
shown in green. Bars are 10 µm. Cells were preincubated without SkQThy (left panel) or with
250 nM SkQThy (right panel) for 1 h, then washed with 50 mM PBS, pH 5.5, and stained with 500 nM
MitoTracker Red CmxRos (shown in red) for 30 min.

The eGFP expression did not change the mitochondrial morphology (Figure 2, left
panel), and eGFP was diffusely distributed in the cytosol. In contrast, in pZ-HBx-eGFP cells,
the mitochondrial reticulum was disturbed, and mitochondria were fragmented (Figure 2,
left panel), strictly indicating the influence of HBx on the mitochondrial structure. In cells
expressing HBx, incubation with 250 nM SkQThy partially restored the mitochondrial
reticulum (Figure 2, right panel).

An important conclusion can be drawn from this part. To our knowledge, an adequate
yeast model (Po1f pZ-HBx) was developed for the first time to trace HBx-mediated changes
in the morphology and structure of mitochondria within the cell.
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3.3. Oxidative Stress and Cell Death in Yeast Cells

ROS generation and cell death in Y. lipolytica mutants were determined by using flow
cytometry in double stained cells with dihydroethidium (DHE), a marker for oxidative
stress in the cell, and Sytox Green, a dye that stains only dead cells. Three cell populations
were identified according to the level of dye fluorescence (Figure 3A). The cell population
with a low level of fluorescence of both dyes was taken as normal for living cells not
subjected to oxidative stress (Figure 3A,B, marked by green). The cell population with
high DHE fluorescence and low Sytox Green fluorescence corresponded to living cells
experiencing oxidative stress (Figure 3A,B, marked by red). The population with a high
level of fluorescence of both dyes corresponded to dead cells (Figure 3A,B, marked by blue).
The ratio of the number of cells in a given population to the total number of analyzed cells
allowed us to judge the prevailing redox status and viability of cells (Figure 3). In Figure 3,
Panel B, the same data are presented in the form of histograms.
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ment; Panel (B)—the same results are presented in the form of histograms summarizing results from
three independent experiments.

It was found that cells expressing HBx experienced slightly stronger oxidative stress
than the control strain (Figure 3).

To mitigate oxidative stress induced by HBx expression, we used the mitochondria-
targeted antioxidant SkQThy [62]. Preincubation of pZ-HBx cells with 250 nM SkQThy for
1 h marginally reduced the number of cells with oxidative stress in the total cell population,
thereby demonstrating that oxidative stress was caused, at least partially, by mitochondrial
reactive oxygen species (mitochondrial ROS, mROS).

3.4. Energy Parameters of Mitochondria Isolated from Yeast Cells

Because there was a mismatch between a slight increase in oxidative stress and clear
mitochondrial fragmentation seen in HBx-expressed cells, our next step was to examine
the bioenergetics of these cells at the mitochondrial level. Previously we have shown that
mitochondrial fragmentation is induced not only by oxidative stress, but also in the presence
of a uncoupler [67]. Mitochondria were isolated by differential centrifugation according to
the method developed in our laboratory [64]. Since the isolation of mitochondria from yeast
is a time-consuming process requiring a lot of material, we compared mitochondria isolated
from the Po1f and HBx-expressing cells. The mitochondria isolated from the control Po1f
strain fully met the criteria for physiological integrity, they were tightly coupled, and did
not differ from mitochondrial preparations usually obtained for this type of yeast [64]
(Figure 4A). In contrast, the mitochondria from pZ-HBx cells were partially uncoupled,
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with the respiratory control ratios two times lower compared to the mitochondria from the
control cells (Figure 4B).
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Figure 5. Oxygen consumption rates by Y. lipolytica mitochondria in states 3 and 4, and uncoupled 
states. When indicated, 2 μM CCCP was added. The statistical analyses were carried out by the one-
way ANOVA test. ***: p < 0.001; *: 0.01 < p < 0.05. 

Figure 4. Amperometric recording of oxygen consumption by Y. lipolytica mitochondria. (A) Y.
lipolytica Po1f; (B) Y. lipolytica Po1f pZ-HBx. The basic incubation medium contained 0.6 M mannitol,
2 mM Tris-phosphate, pH 7.2, 1 mM EDTA, 20 mM Tris-pyruvate + 5 mM Tris-malate and mitochon-
dria (0.5 mg protein/mL). Respiratory control ratios upon successive ADP additives were: (A) 4.3,
5.2; (B) 2.3, 2.2.

Mitochondria from the two strains respiring on NAD-dependent substrates had al-
most similar respiratory rates in state 4 respiration, while they significantly differed in
state 3 respiration and the uncoupling state (in the presence of the classical uncoupler
carbonylcyanide m-chlorophenylhydrazone CCCP), being much lower in mitochondrial
preparations from pZ-HBx cells (Figure 5). These data were in good agreement with the
lower respiratory control values in mitochondria from HBx-expressing cells as compared
to the control variant. Although mitochondria from HBx-expressing cells were loosely
coupled and had a reduced respiratory rate, they retained unchanged the structure of the
respiratory chain, as inferred from the almost complete block of mitochondrial respiration
by low concentrations of rotenone (Figure 6A) or antimycin A (Figure 6B) specific inhibitors
of complex I and III, respectively.
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Figure 5. Oxygen consumption rates by Y. lipolytica mitochondria in states 3 and 4, and uncoupled
states. When indicated, 2 µM CCCP was added. The statistical analyses were carried out by the
one-way ANOVA test. ***: p < 0.001; *: 0.01 < p < 0.05.
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Figure 6. Amperometric recording of oxygen consumption by Y. lipolytica mitochondria in state
3 respiration as affected by respiratory inhibitors: rotenone (A) and antimycin (B). Incubation medium
was supplemented with 1 mM ADP and mitochondria (0.5 mg protein/mL).

In good agreement with the above data, mitochondria from the HBx-expressing
mutant were much more sensitive to the action of a depolarizing agent (palmitate) than
mitochondria of the control variant (Figure 7).
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Figure 7. Membrane depolarization of Y. lipolytica mitochondria by palmitate. The basic incubation
medium was supplemented with 20 mM safranine O and mitochondria (0.5 mg protein/mL).

Swelling of mitochondria is an energy-dependent process. Amplitude of swelling (nor-
malized on protein content) of mitochondria from HBx-expressing cells was approximately
two times lower compared to those from the control variant (Figure 8). The poroformer
alamethicin, forming pores of 1 nm in diameter in the membrane and causing maximal
swelling of mitochondria [74], was taken as a negative control.
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The rate of ATP synthesis was measured by two independent methods (see Methods),
with similar results. The rate of ATP synthesis in mitochondria isolated from the pZ-HBx
mutant was significantly lower than in the control strain (Figure 9A,B).
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Figure 10. H2O2 generation by Y. lipolytica mitochondria. The statistical analyses were carried out 
by the one-way ANOVA test. *: 0.01 < p < 0.05. 

Thus, the comprehensive study of energy parameters of mitochondria isolated from 
HBx-expressing yeast showed that HBx induced mitochondrial dysfunction, primarily a 

Figure 9. ATP production by Y. lipolytica mitochondria. (A) The basic incubation medium was sup-
plemented with 5 µM Phenol Red, 6 µM Ap5A (an inhibitor of adenylate kinase), and mitochondria
(0.2 mg protein/mL); (B) The basic incubation medium was supplemented with 6 µM Ap5A, 1 mM
glucose, 1 mM NADP, hexokinase (10 U/mL), glucose-6-phosphate dehydrogenase (3 U/mL), and
mitochondria (0.2 mg protein/mL). The statistical analyses were carried out by the one-way ANOVA
test. ***: p < 0.001.

Finally, the rate of production of hydrogen peroxide by isolated mitochondria of the
control and HBx-expressing yeasts was measured. Hydrogen peroxide production was
measured fluorimetrically by changing the fluorescence level of resorufin (see Materials
and Methods). Mitochondrial catalase activity was inhibited by adding aminotriazole.
Although the main type of ROS generated by mitochondria is superoxide anion-radical,
it is rather quickly converted to hydrogen peroxide. Only an insignificant increase in
the production of hydrogen peroxide by the mitochondria of HBx-expressing cells was
observed compared to the control cells (Figure 10). These seemingly unexpected results can
be easily explained by partial uncoupling of these mitochondria, as inferred from the results
presented in Figure 4, Figure 5, and Figure 9. It is known that a decrease of the membrane
potential by only 10% reduces ROS (reactive oxygen species) production by 90% [75]. t-BHP,
a well-known model prooxidant forming ROS as a result of an enhanced lipid peroxidation
reaction [76], multiplied the production of hydrogen peroxide by mitochondria, with
mitochondria from HBx-expressing cells being more susceptible to oxidative stress than
control mitochondria.
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by only 10% reduces ROS (reactive oxygen species) production by 90% [75]. t-BHP, a well-
known model prooxidant forming ROS as a result of an enhanced lipid peroxidation re-
action [76], multiplied the production of hydrogen peroxide by mitochondria, with mito-
chondria from HBx-expressing cells being more susceptible to oxidative stress than con-
trol mitochondria. 
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Figure 10. H2O2 generation by Y. lipolytica mitochondria. The statistical analyses were carried out by
the one-way ANOVA test. *: 0.01 < p < 0.05.

Thus, the comprehensive study of energy parameters of mitochondria isolated from
HBx-expressing yeast showed that HBx induced mitochondrial dysfunction, primarily a
lower degree of coupling of respiration to phosphorylation and a reduced rate of respiration
and ATP production, and higher sensitivity to depolarizing agents and oxidative stress.
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4. Discussion

Collectively, data from Western blotting (Figure 1) and SIM fluorescent microscopy
(Figure 2) show that to the best of our knowledge, for the first time, genetically modified
Y. lipolytica yeast expressing HBx and HBx-eGFP proteins was created. Therefore, we
fulfilled the main task that we set. Moreover, the resulting constructs have turned out to
be useful for deciphering the effects of HBx expression on the morphology and functions
of mitochondria.

The control experiments showed that expression of eGFP did not affect the morphology
of mitochondria, it was diffusely distributed in the cytoplasm, and it did not contribute
to the formation of protein aggregates. In contrast, in pZ-HBx-eGFP-expressing yeast,
protein aggregates were clearly seen. Moreover, they were localized at the cell periphery,
where mitochondria are predominantly located, and mitochondria were largely fragmented
(Figure 2). Importantly, incubation with 250 nM mitochondria-targeted antioxidant SkQThy
partially restored the mitochondrial reticulum and prevented the formation of protein
aggregates (Figure 2).

In eukaryotic cells, high energy demand requires mitochondria to constantly fuse, di-
vide, and move along the cytoskeleton. These processes are mainly provided by dynamine-
like proteins regulated by various protein–protein interactions and post-translational modi-
fications [77]. Mitochondrial dynamics (fusion and fragmentation) are thought to play an
important role in the maintenance of mitochondrial health and are part of the mitochondrial
quality and quantity control mechanism [78–80].

Three main conclusions can be drawn from these results. Firstly, expression of HBx
protein had prominent effects on mitochondria morphology. Secondly, these adverse effects
could be mitigated by mitochondria-addressed antioxidants, which means that to some
extent these effects could be induced by the mitochondrial ROS (mROS). Thirdly, as we
obtained data coinciding with the literature data from other models (see Introduction), we
really believe that we have managed to obtain an adequate yeast model for the study of
many biological processes related to the influence of HBx.

Cells expressing HBx experienced slightly stronger oxidative stress than the control
strain (Figure 3), and preincubation with SkQThy reduced the number of cells with oxida-
tive stress and dead cells in the total cell population, thereby reinforcing the notion that
at least partially, oxidative stress was caused by mitochondrial reactive oxygen species
(mitochondrial ROS, mROS) [76]. There is a consensus that mROS, primarily superox-
ide anion radical, is the starting form of ROS to propagate (see [81,82]). Previously we
showed that SkQThy alleviated and even prevented oxidative stress induced by prooxi-
dants [62]. Basically, lipophilic mitochondria-addressed antioxidants have advantages over
conventional water-soluble antioxidants; their concentrations in mitochondria are increased
several orders of magnitude in comparison with the initial low nontoxic concentrations [83].
In addition, having in their composition a natural component of the electron-transporting
chain, they can be effectively recharged.

Recently, using time-lapse microscopy and fluorescent dyes, electively visualizing
different cell compartments, we found that the t-BHP-induced oxidative stress initially
developed only in mitochondria, starting almost immediately after contact with the prooxi-
dant and then was progressively increased. ROS production in mitochondria far preceded
the appearance of the generalized oxidative stress detected in the cytoplasm in the volume
of the entire cell. Once started, the generalized oxidative stress was increased, but only after
a prolonged lag-period. A significant decrease in the production of mitochondrial ROS was
observed during preincubation of yeast cells with a mitochondria-targeted antioxidant. Im-
portantly, mitochondrial fragmentation preceded the development of generalized oxidative
stress and could be induced by much lower concentrations of prooxidant as compared to
generalized oxidative stress and cell death [76]. Mitochondrial dysfunction contributes to
cell death at the early stages of the development of various diseases, and mitochondrial
fragmentation is one of the earliest symptoms [84–87].
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Analysis of isolated mitochondria showed that HBx expression had a significant in-
fluence on the bioenergetics functions of mitochondria, as inferred from the decreased
respiratory rate (Figure 4), while maintaining the overall structure of the respiratory chain
(Figure 6), higher sensitivity to the depolarizing agent (Figure 5), and reduced ATP forma-
tion (Figure 9) and respiratory control values (characterizing coupling degree of respiration
and phosphorylation), as compared to the control mitochondria (Figure 4). We believe
that mitochondrial dysfunction in the HBx-expressing cells was the main cause of their
fragmentation. We showed this possibility earlier [67].

In sum, we offered the first highly promising yeast model for studying the impact of
HBx on the bioenergetics, redox-state, and dynamics of mitochondria in the cell, and the
cross-talk between these parameters. This fairly simple model can be used as a platform for
the rapid screening of compounds, which can mitigate the harmful effects of HBx. Based
on the data obtained in the work, we could recommend a family of mitochondrial-directed
mitochondrial lipophilic antioxidants that bind to active oxygen forms in mitochondria
(at the places of their formation) and prevent mitochondrial fragmentation, the earliest
manifestation of many pathologies. It would be wise to take these compounds purposefully
to prevent these pathologies.
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