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Abstract. In the paper, a method of experimental estimation of epitaxial growth rate has been 

suggested. A corner stone of this method is obtaining image of initial shape of solid state surface 

by means of atomic force microscopy before the start of the process of epitaxial growth. These 

experimental data should be completed by measurements of special bistatic cross-section of 

visible light scattering on the sample surface both before the beginning of technological process 

and after its end. Mathematical model of epitaxial growth is based on simplification of the 

Kardar-Parisi-Zhang equation. The method of characteristics has been applied to solve this 

equation. 

1.  Introduction 

Since the pioneer work [1] of Donald Eigler and Erhard Schweizer, words ‘nanotechnology’ and 

‘nanoengineering’ were synonyms. But after appearance of paper [2], another sense of term 

‘nanoengineering’ has taken place too; namely, one may understand nanoengineering as the problem of 

optimal control by distributed parameter system. 

Let us describe epitaxial growth of solid state surface on the basis of the Kardar-Parisi-Zhang (KPZ) 

model [3]: 

   ),(
2

22
txQHDH

v
v

t

H 





, (1) 

where ),( txH


 is the height of solid state surface, ),( 21 xxx 


 is two-dimensional vector of transversal 

coordinates,   is two-dimensional gradient, v  is the rate of growth of the surface along the local normal 

to it, D  is the diffusion coefficient of sputtering matter and ),( txQ


 is additional source of external 

particles near the surface. 

The KPZ-equation (1) proves to be highly adequate to the physical experiment during the simulation 

of manufacturing process of multilayer mirrors and gratings employed in X-ray optics [4]; therefore, 

verification procedure for model (1) of surface growth with support of this one by means of atomic force 

microscopy (AFM) is not required. 

On the domain 
2R  equation (1) ought to be equipped by initial condition: 

 )()0,( 0 xHxH


 , (2) 

corresponding to initial shape of the surface under investigation. 
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If the source 0),( txQ


 on the cylinder ],0[  t , then one can consider this function as a control 

[2]. At last, let one impose on the solution of equation (1) with initial condition (2) the requirement that 

at the moment of time  tt  function ),( txH


 must provide the best mean square approximation of 

fixed shape )(xH


 : 

 min)](),([ 22 


 xdxHtxH


. (3) 

It is obvious that equation (1) and restrictions (2)-(3) form the problem of optimal control by 

distributed parameter system [2, 5]. But to construct the numerical solution of this problem, one has to 

find parameters v  and D  in input equation (1). 

If diam
 tD , then there is a way to estimate these values; namely, in the absence of 

additional source ),( txQ


 of sputtering particles the approximate solution of the Cauchy problem  

(1)-(2) is equal to [3]: 
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. (4) 

Further height of the surface ),( txH


 on domain   must be measured by means of AFM both before 

the beginning of the technological process and after the finish of it. This information is enough to apply 

method of solution of inverse coefficient problem for determination of parameters v  and D  developed 

in paper [6]. The application of this method meets with difficulties in practice as it belongs to the 

advanced chapters of modern functional analysis [7]. Thus, more straightforward approaches for 

estimation of these parameters based on physical arguments are to be considered. 

This paper deals with estimation for the rate v  of epitaxial growth of crystal surface in the situation 

when DHv  , where H  is typical value of height of crystal surface roughness. In this case, one 

can neglect in input equation (1) by term with Laplasian. And after putting 0),( txQ


 in equation (1), 

this one is reduced to the so-called equation simplified Kardar-Parisi-Zhang (sKPZ) equation: 

  2
2

H
v

v
t

H





. (5) 

This equation differs sharply from the primordial KPZ one (1); moreover, equation (5) can be solved 

implicitly by means of the method of characteristics [8]:  

 
2

00 ))((
2

)( yH
tv

yHtvH





 ,          )(0 yHtvyx


 , (6) 

where ),( 21 yyy 


 are Lagrange variables. To derive explicit dependence for height of the surface 

),( txH


, one must find from the second equation of system (6) vector-function ),( txyy


  and 

substitute it into the first equation of system (6). Generally speaking, it is impossible to obtain analytical 

formula connecting the initial shape of the surface (2) with the rate v . Nevertheless, absence of terms 

describing the surface diffusion of sputtering substance and the external source of sputtering particles 

in equation (5) gives one a possibility to determine the rate of growth of the surface. 

In practice, initial condition (2) for equation (5) is often equal to superposition of smooth large scale 

function )(0 xh


 and small perturbation )(0 xu


 : 

 )()()( 000 xuxhxH


  , (7) 

where   is small parameter: 10   . As a rule, large scale function )(0 xh


 is a result of preliminary 

technological processing of the surface before the start of epitaxial process and small perturbation is 

some technologically unremovable fluctuations. An example of such surface is shown in Figure 1. 
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Figure 1. Initial condition as smooth large scale function (on the left) and as superposition of 

smooth large scale function and its small perturbation (on the right). 

For further considerations, it is important that due to representation (7) of initial shape, specific 

bistatic cross-section of electromagnetic waves on this surface proves to be calculated. 

The rest of the article is organized as follows: in Section 2 peculiarities of construction of asymptotic 

solution for the sKPZ-equation (5) for the special choice of function )(0 xh


 are demonstrated. Section 

3 deals with the estimation of specific bistatic cross-section of electromagnetic waves on this surface. 

Final Section is devoted to the discussion of results elaborated and perspectives of further investigations. 

2.  Derivation of asymptotic solution for the simplified KPZ-equation 

Decomposition (7) for initial condition means that in order to construct solution of equation (5) one has 

to use perturbation theory: 

 


 ),(),(),( txutxhtxH  . (8) 

Substitution of expansion (8) into the sKPZ-equation (5) gives rise to a chain of the Cauchy problems; 

namely, for zero order approximation on   in asymptotic series (8) the Cauchy problem is: 

 
2)(

2
h

v
v

t

h





,         )()0,( 0 xhxh


 , (9) 

and for the first order approximation on 
 
in asymptotic series (8) the Cauchy problem is: 

 0),( 



utxhv

t

u 
,       )()0,( 0 xuxu


 . (10) 

In order to do the next step in solution of the system of equations (9)-(10) one has to render concrete 

function )(0 xh


. 

If one chooses regular shape )(0 xh


 in initial condition (7) as follows: 

 






L

x
hxh

2
)(

2

0




, (11) 

where h  and L  are constant positive values, then in the framework of the method of characteristics 

for the first-order partial differential equation [9] it is easy to check that in this case exact solution of the 

Cauchy problem (8) is equal to: 

 
)(2

),(
2

tvL

x
tvhtxh











. (12) 

Substituting this function into equation (10) one can find that it is reduced to the next equation: 
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This equation is linear partial differential equation with variable coefficients and one can derive exact 

solution of the Cauchy problem for equation (13) with initial condition )(0 xu


 by the same method of 

characteristics [9]: 

 
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0),( . (14) 

Thus asymptotic solution of the sKPZ-equation (5) with regular part (11) of initial condition (7) is 

equal to: 

 )(
)(2

),( 2
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 O
tvL

xL
u

tvL

x
tvhtxH 


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
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










. (15) 

Schematic graphs of section of function (15) under the assumption 1 Lh  at initial moment of 

time (below) and at arbitrary moment of time 0t  (higher) are presented in Figure 2. Temporal 

evolution of function (12) is presented on this figure by blue lines. From Figure 2 one can see that under 

growth of time roughness of surface shape becomes smaller in comparison with roughness of initial 

shape. 

Such behaviour is determined by two circumstances. First of all, from formula (14) it is clear that 

spatial scale )(tl  of perturbation ),( txu


 grows as )1()( 0  Ltvltl , where 
0l  is spatial scale of 

initial perturbation )(0 xu


. On the other hand, from formula (12) it is obvious that with increasing time 

function ),( txh  becomes closer to plane tvhz   . These planes are shown in Figure 2 by dashed 

lines. It means that if for some positive value   the following inequalities are true:  

 

Figure 2. Temporal evolution of the section of the height by plane 02 x . 
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   |)(| 0 xu


,         1|)(| 0  xu


 , (16) 

then with increasing time inequalities: 

   |),(| txu


,         1|),(|  txu


 , (17) 

are true too. 

If one interprets value   as wavelength of monochromatic visible light: 780380   nm, then 

under 10|~)(|max 0 xu
x




 nm inequalities (16) are valid. Therefore, inequalities (17) are valid too. Hence, 

one can describe scattering of monochromatic visible light on the surface (15) in the framework of a 

model of small-scale surface [10]. 

3.  Specific bistatic cross-section of electromagnetic waves on the shape evolving in accordance 

with the simplified KPZ-equation 

The simplest formulation for a model of small-scale surface can be done under the conjecture that 

perturbation of smooth surface )(0 xu


 is stationary stochastic two-dimensional field with zero average: 

0)(0  xu


. 

In this case, it is obvious from formula (14) that 0),(  txu


. Therefore, from formula (15) one 

can easily find that ),(),( txhtxH


 . It means that covariance function of total height ),( txH


 of 

solid state surface can be calculated directly: 

  )),(),(()),(),((),( txHtxHtxHtxHtB 


, (18) 

the two-dimensional Fourier-transform from function (18): 

  2)exp(),(),( dqitBtqS  


 (19) 

being its spectral density. 

Further, let one consider scattering on the surface (15) of monochromatic visible light with horizontal 

(H) and vertical (V) polarizations: 

 ),()0,1,0( 1

)( zxAE i

H 


,          ),()sin,1,(cos 1

)( zxAE ii

i

V  


, (20) 

where )sincosexp(),( 101 zkixkiEzxA ii    is complex amplitude of monochromatic  

wave,  2k  is wavevector corresponding to wavelength   and 
i  is input angle. 

At last, because of validity of inequalities (17) specific bistatic cross-sections with polarizations 

VHba ,,   of waves (20) on the surface under investigation are equal to [10]:  

 ),(),,(
4

),(
4

0 tqSf
k

tq ssiabab
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


 


 , (21) 

where 
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22222
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ssiss

sissi
ssiabf




  (22) 

is matrix of polarization coefficients, s  and s  are scattering angles in spherical system of coordinate 

and arguments in spectral density in (21) are equal to: 

 iss kkq  sincossin1  ,     sskq  sinsin2  . (23) 

Using formula (14), it is easy to find that 
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where 

  )()()( 000 


xuxuK  (25) 

is autocorrelated function of stochastic field )(0 xu


. 

Thus, spectral density for covariance function (24) is equal to: 
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, (26) 

where  2

00 )exp()()( dqiKqS  


 is spectral density corresponding to autocorrelated 

function (25). 

In particular, at 0t  formula (26) is reduced to: 

 )()()0,( 2

0

2  oqSqS 


. (27) 

Due to validity of inequalities (16) at 0t  specific bistatic cross-sections also can be calculated in 

accordance with formulae (21)-(23). 

Combining under 0q


 formulae (26) and (27) with formula (21) one can derive that: 

 )(1
)0,0(

),0(
2

0

0





O

L

tvt

ab

ab 



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

 




. (28) 

Due to requirement 0q


, formulae (23) give one position of receiver of monochromatic light with 

respect to transmitter: 

 iss   ,0 . (29) 

Substituting values (29) into formulae (22) one can obtain that 000  HVVH   and 
00

VVHH   . 

4.  Conclusion 

In the article, algorithm of determination of epitaxial growth rate v  in the framework of the sKPZ-

equation has been presented. In order to find this parameter, one has to do the following operations: 

- to prepare initial shape )(0 xh


 of the surface under investigation with regular part (10) under condition 

1 Lh ; 

- to measure specific bistatic cross-section 
0

HH
 
(or 

0

VV ) of visible light before the start of technological 

process; 

- to measure by means of AFM the real height )(0 xH


 of the sample before the start of technological 

process; 

- to perform for real initial shape )(0 xH


 denoising procedure with the help of thresholding [11]; 

- to find the parameter L  of smoothed shape (11) in the vicinity of point )0,0(  by means of mean-

square fitting; 

- to fix the duration t  of technological process; 

- to measure specific bistatic cross-section 
0

HH
 
(or 

0

VV ) of visible light after the end of technological 

process; 

- to calculate epitaxial growth rate v  in accordance with formula (28). 

Thresholding is known to be a kind of denoising procedure in the framework of wavelet analysis 

[11]. To adjust this procedure to real AFM data, one has to do a number of computational experiments 

in order to find optimal type of wavelet and optimal level of wavelet decomposition. 
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In conclusion, it is necessary to underline that formulae (12) and (14) are rigorously valid only under 

suggestion that process of epitaxial growth develops only in small neighbourhood of point )0,0( . More 

careful mathematical treatment with boundary conditions for equation (5) is required in order to estimate 

its influence on exactness of formula (28). 

Acknowledgements 

The author prepared this article during work on the project № 18-08-01356-а of Russian Foundation for 

Basic Research. 

References 

[1] Eigler D M and Schweizer E K 1990 Nature 344 524 

[2] Rassadin A E, Sazanova T S, Stepanov A V and Fomin L A 2018 IOP Conf. Ser.: Mater. Sci. 

Eng. 443 012027 

[3] Kardar M, Parisi G and Zhang Y C 1986 Phys. Rev. Lett. 56 889-92 

[4] Goray L I and Lubov M N 2014 J. Surf. Invest. 8 444-55 

[5] Butkovsky A G 1965 Theory of optimal control by distributed parameter systems (Nauka) (in 

Russian) 

[6] Boikov I V and Ryazantsev V A 2019 Middle Volga Math. Soc. J. 21 149 (in Russian) 

[7] Boikov I V 2012 Differential equations 48 1308 (in Russian) 

[8] Gurbatov S N, Rudenko O V and Saichev A I 2011 Waves and Structures in Nonlinear 

Nondispersive Media. General Theory and Applications to Nonlinear Acoustics (Springer 

and Higher Education Press) 

[9] Polyanin A D, Zaitsev V F and Moussiaux A 2002 Handbook of First Order Partial Differential 

Equations (Taylor & Francis) 

[10] Ishimaru A 1978 Wave Propagation and Scattering in Random Media. Vol. 2 (Academic Press) 

[11] Smolentsev N K 2008 Foundations of Wavelet Theory. Wavelets in MATLAB (DMC Press) (in 

Russian) 


