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a b s t r a c t

This paper introduces and studies the equal split-off set for cooperative games with nontransferable
utility. We illustrate the new solution for the well-known Roth-Shafer examples and present two
axiomatic characterizations based on different consistency properties on the class of exact partition
games, i.e. the class of games where it intersects the core.
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1. Introduction

Nontransferable utility games (NTU-games) arise when play-
rs in a cooperative game face the problem of allocating joint
rofits while having nonlinear utility functions over money. Also
ituations where the underlying infinitely divisible endowment is
ot of a monetary nature are accommodated. The opportunities
f coalitions are represented by a set of attainable utility payoff
llocations and the issue is to select payoff allocations for the
rand coalition while taking these opportunities into account.
We focus on egalitarianism in the context of NTU-games. This

equires the assumption that utility is not only comparable in
n intrapersonal way, but also in an interpersonal way. In other
ords, we assume that utility is normalized in such a way that
quating utilities for different players has a meaningful inter-
retation. This was also implied by the approach of Kalai and
amet (1985), who introduced and characterized an egalitarian
olution for NTU-games which recursively assigns equal payoffs
o members of coalitions in the form of dividends. Samet (1985)
nd de Clippel et al. (2004) provided other axiomatic characteri-
ations of this solution. On the class of transferable utility games
TU-games), the Kalai and Samet (1985) solution coincides with
he Shapley (1953) value. On the class of bargaining problems
cf. Nash, 1950), it coincides with the egalitarian Kalai (1977)
olution.
We introduce and study the equal split-off set for NTU-games.

nspired by the computational algorithm underlying the egali-
arian Dutta and Ray (1989) solution, Branzei et al. (2006) in-
roduced the equal split-off set for TU-games. We generalize
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that definition to NTU-games in the following way. We start by
proposing the maximal attainable equal payoff allocation for the
grand coalition. However, the maximal attainable equal payoff
allocation for some other coalition may give higher payoffs. We
select one coalition with highest maximal attainable equal pay-
offs, assign those payoffs to the members, and let them leave
the game. Coalitions of remaining players are able to attain all
original payoff allocations in cooperation with the departed play-
ers. Again, one coalition with highest maximal attainable equal
payoffs is selected, those payoffs are assigned to the members,
and these members leave the game. The process is repeated until
all players have left the game, leading to a payoff allocation for
the grand coalition. The equal split-off set consists of all payoff
allocations generated by this procedure, where the multiplicity
arises from selecting distinct coalitions with highest maximal
attainable equal payoffs.

We illustrate the equal split-off set for NTU-games using the
well-known Roth-Shafer examples and compare it with the Kalai
and Samet (1985) solution for these games. We show that the
equal split-off set intersects the core if and only if the underlying
game is an exact partition game, i.e. there exists a core element
for which all players with highest payoffs, all players with high-
est and second highest payoffs, and so on, are able to attain
their payoffs jointly by themselves. This generalizes the class
of TU-games introduced by Llerena and Mauri (2017) and the
corresponding result of Dietzenbacher and Yanovskaya (2021).
On the class of exact partition games, we present two axiomatic
characterizations of the equal split-off set based on weak versions
of consistency properties that were employed by Peleg (1985)
and Tadenuma (1992) to characterize the core. These axiomatic
characterizations generalize the corresponding results of Diet-
al split-off set for NTU-games. Mathematical Social Sciences (2022),

zenbacher and Yanovskaya (2021) for TU-games. It turns out
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hat NTU-games induced by bargaining problems and bankruptcy
roblems are exact partition games. On the class of bargaining
roblems, the equal split-off set coincides with the Kalai (1977)
olution. On the class of NTU-bankruptcy problems, the equal
plit-off set coincides with the constrained equal awards rule (cf.
ietzenbacher, 2022), also called the constrained Kalai solution
cf. Albizuri et al., 2020).

This paper is organized in the following way. Section 2
resents preliminary notions and notations for NTU-games.
ection 3 introduces the equal split-off set as a solution for
ll NTU-games and presents some elementary results. Section 4
ntroduces the class of exact partition games, shows that this
lass consists of all games where the equal split-off set intersects
he core, and presents two axiomatic characterizations based on
ifferent consistency properties.

. Preliminaries

Let N be a nonempty and finite set. Denote 2N
= {S | S ⊆ N}.

n ordered partition of N is an ordered set {T1, . . . , Tm} ⊆ 2N
\{∅}

uch that
⋃m

k=1 Tk = N and Tk ∩ Tℓ = ∅ for all k, ℓ ∈ {1, . . . ,m}

with k ̸= ℓ. Let e ∈ RN
+

denote the vector of all ones, i.e. ei = 1
for all i ∈ N . For all x, y ∈ RN

+
, x ≤ y denotes xi ≤ yi for all i ∈ N ,

and x < y denotes xi < yi for all i ∈ N . For all x ∈ RN
+

and all
S ∈ 2N , denote xS = (xi)i∈S . For all A ⊆ RN

+
,

• the Pareto set is P(A) = {x ∈ A | ∄y ∈ A : y ≥ x, y ̸= x};
• the weak Pareto set is WP(A) = {x ∈ A | ∄y ∈ A : y > x}.

Note that P(A) ⊆ WP(A).
An NTU-game is a pair (N, V ) where N is a nonempty and finite

set of players and V assigns to each coalition S ∈ 2N
\ {∅} a set of

attainable payoff allocations V (S) ⊆ RS
+

such that

• V (S) is nonempty, closed, and bounded;
• V (S) is comprehensive, i.e. {yS ∈ RS

+
| yS ≤ xS} ⊆ V (S) for

all xS ∈ V (S);
• (N, V ) is monotonic, i.e. V (S) ⊆ {xS | xT ∈ V (T )} for all

S, T ∈ 2N
\ {∅} with S ⊆ T .

The nonnegativity condition on the attainable payoff allocations
was also assumed by e.g. Asscher (1976), Asscher (1977), Green-
berg (1985), and Lejano (2011). The nonemptiness, closedness,
boundedness, and comprehensiveness conditions are standard.
The monotonicity condition was also assumed by e.g. Otten et al.
(1998) and Hendrickx et al. (2002). Note that we do not assume
that the sets of attainable payoff allocations are convex in order
to allow for utility functions that are not necessarily of the Von
Neumann-Morgenstern type. In line with Kalai and Samet (1985),
we assume that utility is normalized in such a way that it is
interpersonally comparable.

Let Γall denote the class of all NTU-games. A solution σ on a
class of games Γ ⊆ Γall assigns to each (N, V ) ∈ Γ a nonempty
set of payoff allocations σ (N, V ) ⊆ V (N). Throughout this paper,
Γ is the generic notation for a class of games and σ is the generic
notation for a solution on Γ . The core is the solution that assigns
to each game (N, V ) where it is nonempty the set of payoff
allocations

C(N, V ) =
{
x ∈ V (N) | ∀S ∈ 2N

\ {∅}∄yS ∈ V (S) : yS > xS
}
.

3. The equal split-off set

In this section, we introduce the equal split-off set as a so-
lution for all NTU-games and present some elementary results.
The equal split-off set for TU-games was introduced by Branzei
et al. (2006). We generalize this solution to NTU-games in the

following way. Consider an arbitrary NTU-game for which we

2

face the problem of selecting payoff allocations for the grand
coalition. One of the coalitions with highest maximal attain-
able equal payoff allocation is selected and the members leave
with these payoffs. The remaining players determine the attain-
able payoff allocations for each subgroup in coalition with the
departed players. One of the subgroups with highest maximal
attainable equal payoff allocation is selected and the members
leave with these payoffs. This process continues and results in a
payoff allocation for the players. The equal split-off set consists
of all payoff allocations generated by this procedure.

Equal split-off set Let (N, V ) ∈ Γall. Define N0 = N , V0 = V , and
T0 = ∅. The equal split-off set ESOS(N, V ) consists of all payoff
allocations x ∈ RN

+
for which there exists an ordered partition

{T1, . . . , Tm} of N such that for all k ∈ {1, . . . ,m},

Tk ∈ argmax
S∈2Nk \{∅}

max {t ∈ R+ | teS ∈ Vk(S)}

and xi = max
S∈2Nk \{∅}

max {t ∈ R+ | teS ∈ Vk(S)} for all i ∈ Tk,

where (Nk, Vk) is the game defined by Nk = Nk−1 \ Tk−1 and

Vk(S) =
{
yS ∈ RS

+

⏐⏐ (yS, xTk−1 ) ∈ Vk−1(S ∪ Tk−1)
}

for all S ∈ 2Nk .

Note that the equal split-off set is well-defined due to the
assumptions on NTU-games.

Let (N, V ) be a game. For each x ∈ ESOS(N, V ) with corre-
sponding ordered partition {T1, . . . , Tm} the following holds:

• xi = xj for all i, j ∈ Tk with k ∈ {1, . . . ,m};
• x⋃k

ℓ=1 Tℓ
∈ WP(V (

⋃k
ℓ=1 Tℓ)) for all k ∈ {1, . . . ,m}.

We illustrate the new solution by means of the examples
introduced by Roth (1980) and Shafer (1980). These examples
initiated an interesting and extensive discussion on the inter-
pretation of solutions for NTU-games. For details, we refer to
Harsanyi (1980), Aumann (1985b), Hart (1985b), Roth (1986), and
Aumann (1986). Along the lines of this discussion, we compare
the equal split-off set with the egalitarian Kalai and Samet (1985)
solution.

Example 1 (cf. Roth, 1980). Let (N, Vp) ∈ Γall with N = {1, 2, 3}
and p ∈ [0, 1

2 ] be the game given by

p(S)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{xi ∈ R{i}
+ | xi ≤ 0} if S = {i} and i ∈ N;

{x{1,2} ∈ R{1,2}
+ | (x1, x2) ≤ ( 12 ,

1
2 )} if S = {1, 2};

{x{1,3} ∈ R{1,3}
+ | (x1, x3) ≤ (p, 1 − p)} if S = {1, 3};

{x{2,3} ∈ R{2,3}
+ | (x2, x3) ≤ (p, 1 − p)} if S = {2, 3};

comp(conv({( 12 ,
1
2 , 0),

(p, 0, 1 − p), (0, p, 1 − p)})) if S = N .

Here, comp denotes the comprehensive hull and conv denotes the
convex hull, i.e. the smallest containing comprehensive set and
the smallest containing convex set, respectively.

If p < 1
2 , the equal split-off set is ESOS(N, Vp) = {( 12 ,

1
2 , 0)}

orresponding to ordered partition {{1, 2}, {3}} and the Kalai and
amet (1985) solution is ( 12−

1
3p,

1
2−

1
3p,

2
3p). Note that, in contrast

to the Kalai and Samet (1985) solution, the equal split-off set
assigns the unique core element to this game. Moreover, Roth
(1980) claims that ( 12 ,

1
2 , 0) is the unique outcome of this game

consistent with the hypothesis that the players are rational utility
maximizers, because this outcome is strictly preferred by both
players 1 and 2 over all other feasible outcomes, and it can be
achieved without the cooperation of player 3.
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If p =
1
2 , the game is completely symmetric with respect

to the players and it is no longer the case that cooperation
with player 3 offers strictly less to players 1 or 2 than cooper-
ation with one another. The equal split-off set is ESOS(N, V 1

2
) =

( 12 ,
1
2 , 0), (

1
2 , 0,

1
2 ), (0,

1
2 ,

1
2 )} corresponding to ordered partitions

{{1, 2}, {3}}, {{1, 3}, {2}}, and {{2, 3}, {1}}. The Kalai and Samet
1985) solution is ( 13 ,

1
3 ,

1
3 ). Note that the equal split-off set co-

ncides with the core in this case, whereas the Kalai and Samet
1985) solution is not in the core. △

xample 2 (cf. Shafer, 1980 and Hart and Kurz, 1983). Let (N, Vε) ∈

Γall with N = {1, 2, 3} and ε ∈ [0, 1
5 ] be the game given by

ε(S)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{xi ∈ R{i}
+ | xi ≤ 0} if S = {i}

and i ∈ {1, 2};
{x3 ∈ R{3}

+ | x3 ≤ ε} if S = {3};
{x{1,2} ∈ R{1,2}

+ | x1 + x2 ≤ 1 − ε} if S = {1, 2};
{x{1,3} ∈ R{1,3}

+ | x1 ≤ ε, x1 + x3 ≤
1
2 +

1
2 ε} if S = {1, 3};

{x{2,3} ∈ R{2,3}
+ | x2 ≤ ε, x2 + x3 ≤

1
2 +

1
2 ε} if S = {2, 3};

{x ∈ RN
+

| x1 + x2 + x3 ≤ 1} if S = N .

he equal split-off set is ESOS(N, Vε) = {( 12 −
1
2ε,

1
2 −

1
2ε, ε)}

orresponding to ordered partition {{1, 2}, {3}} and the Kalai and
amet (1985) solution is ( 12−

5
6ε,

1
2−

5
6ε,

5
3ε). Note that, in contrast

o the Kalai and Samet (1985) solution, the equal split-off set
ssigns a core element to this game. △

In contrast to what is the case for TU-games, equal split-off set
llocations make players not necessarily leave with their payoffs
n nonincreasing order, i.e. for each x ∈ ESOS(N, V ) with cor-
esponding ordered partition {T1, . . . , Tm}, it does not generally
old that xi ≥ xj for all i ∈ Tk and j ∈ Tℓ with k, ℓ ∈ {1, . . . ,m}

and k ≤ ℓ. This is shown by the following example.

Example 3. Let (N, V ) ∈ Γall with N = {1, 2} be the game given
by

V (S) =

⎧⎪⎨⎪⎩
{x1 ∈ R{1}

+ | x1 ≤ 0} if S = {1};
{x2 ∈ R{2}

+ | x2 ≤ 1} if S = {2};
{x ∈ RN

+
| (x1, x2) ≤ (2, 1)} if S = N .

The equal split-off set is ESOS(N, V ) = {(2, 1), (1, 1)} correspond-
ing to ordered partitions {{2}, {1}} and {{1, 2}}. Note that both
qual split-off set allocations belong to the core of this game. For
he allocation (2, 1), the payoff to player 2 is assigned first, while
he higher payoff to player 1 is assigned last. △

Observations change significantly if we slightly restrict the
omain of NTU-games. Let Γ̃all denote the class of all NTU-games
N, V ) where for all S ∈ 2N

\ {∅},

• V (S) is nonleveled, i.e. P(V (S)) = WP(V (S)).

ote that all NTU-games in Γall can be approximated by games in
ãll. The nonlevelness condition was also assumed by e.g. Aumann
1985a), Hart (1985a), Peleg (1985), Tadenuma (1992), and Hart
nd Mas-Colell (1996).

emma 1 (cf. Yanovskaya, 2010). Let (N, V ) ∈ Γ̃all and let x ∈

SOS(N, V ) with corresponding ordered partition {T1, . . . , Tm}. Then
i ≥ xj for all i ∈ Tk and j ∈ Tk+1 with k ∈ {1, . . . ,m − 1}.

Let (N, V ) ∈ Γ̃all. For all x ∈ RN
+
, we define Rx

0 = ∅ and for all
∈ N,
x { x }

k = i ∈ N | ∀j ∈ N \ Rk−1 : xj ≤ xi

3

and axk = xi for all i ∈ Rx
k \ Rx

k−1.

ote that Rx
k−1 ⊆ Rx

k for all k ∈ N and Rx
|N|

= N . Coalition
x
1 ∈ 2N

\ {∅} consists of all players with highest payoffs in x,
oalition Rx

2 ∈ 2N
\ {∅} consists of all players with highest and

econd highest payoffs in x, and so on. Lemma 1 implies that for
ach x ∈ ESOS(N, V ) the following holds:

• xRxk ∈ WP(V (Rx
k)) for all k ∈ N.

In Example 3, the equal split-off set consists of multiple core
llocations. Another consequence of assuming nonleveled attain-
ble sets of payoff allocations is that the equal split-off set is
ingle-valued when it intersects the core, generalizing the cor-
esponding result of Dietzenbacher and Yanovskaya (2021) for
U-games.

emma 2. Let (N, V ) ∈ Γ̃all. If ESOS(N, V ) ∩ C(N, V ) ̸= ∅, then
|ESOS(N, V )| = 1.

Proof. Let x ∈ ESOS(N, V ) ∩ C(N, V ). We show that for all k ∈ N
with Rx

k−1 ̸= N ,

Rx
k \ Rx

k−1

=

⋃
argmax

S∈2
N\Rxk−1 \{∅}

max
{
t ∈ R+

⏐⏐⏐ (teS, xRxk−1

)
∈ V (S ∪ Rx

k−1)
}

.

Let k ∈ N be such that Rx
k−1 ̸= N . Note that xi ≤ axk for all

i ∈ N \ Rx
k−1. Suppose for the sake of contradiction that there

exist

T ∈ argmax
S∈2

N\Rxk−1 \{∅}

max
{
t ∈ R+

⏐⏐⏐ (teS, xRxk−1

)
∈ V (S ∪ Rx

k−1)
}

and i ∈ T

such that xi < axk. By comprehensiveness, xT∪Rxk−1
∈ V (T ∪ Rx

k−1) \

(V (T ∪Rx
k−1)). By nonlevelness, xT∪Rxk−1

∈ V (T ∪Rx
k−1)\WP(V (T ∪

Rx
k−1)). This contradicts that x ∈ C(N, V ). □

4. Exact partition games

In this section, we introduce the class of exact partition games,
we show that this class consists of all games where the equal
split-off set intersects the core, and we present two axiomatic
characterizations based on different consistency properties. Ller-
ena and Mauri (2017) introduced exact partition games in the TU
context. We generalize this definition to NTU-games. A game is an
exact partition game if there exists a core allocation for which all
players with highest payoffs, all players with highest and second
highest payoffs, and so on, are able to attain their payoffs jointly
by themselves.

Exact partition games A game (N, V ) ∈ Γ̃all is an exact partition
game if there exists x ∈ C(N, V ) such that xRxk ∈ V (Rx

k) for all
k ∈ N.

Example 4. Let (N, V ) ∈ Γ̃all with N = {1, 2, 3} be the game
given by

V (S)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{x1 ∈ R{1}
+ | x1 ≤ 6} if S = {1};

{xi ∈ R{i}
+ | xi ≤ 0} if S = {i} and i ∈ {2, 3};

{x{1,2} ∈ R{1,2}
+ | min {2x1 + x2,

x1 + 2x2} ≤ 12} if S = {1, 2};
{xS ∈ RS

+
| xS ≤ 0S} if S ∈ {{1, 3}, {2, 3}};

{x ∈ RN
+

|
∑

i∈N xi ≤ 10} if S = N .
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he equal split-off set is ESOS(N, V ) = {(6, 3, 1)} corresponding
o ordered partition {{1}, {2}, {3}}. Denote x = (6, 3, 1). Then

∈ C(N, V ). Moreover, Rx
1 = {1}, x1 ∈ V ({1}), Rx

2 = {1, 2},
{1,2} ∈ V ({1, 2}), Rx

3 = N , and x ∈ V (N). This means that (N, V ) is
an exact partition game. △

Let Γ̃ep denote the class of all exact partition games. In Exam-
ple 4, we observe that the equal split-off set of an exact partition
game intersects the core. We show that the equal split-off set of
a game intersects the core if and only if it is an exact partition
game, generalizing the corresponding result of Dietzenbacher and
Yanovskaya (2021) for TU-games. Then Lemma 2 implies that the
equal split-off set of an exact partition game is single-valued.

Lemma 3. Let (N, V ) ∈ Γ̃all. Then ESOS(N, V ) ∩ C(N, V ) ̸= ∅ if
and only if (N, V ) ∈ Γ̃ep.

Proof. Step 1: sufficiency. Assume that there exists
x ∈ ESOS(N, V ) ∩ C(N, V ). Then xRxk ∈ WP(V (Rx

k)) for all k ∈ N.
Hence, (N, V ) ∈ Γ̃ep.

Step 2: necessity. Assume that (N, V ) ∈ Γ̃ep. Let x ∈ C(N, V ) be
such that xRxk ∈ V (Rx

k) for all k ∈ N. Then xRxk ∈ WP(V (Rx
k)) for all

k ∈ N. Let k ∈ N be such that Rx
k−1 ̸= N . Then

axk = max
{
t ∈ R+

⏐⏐⏐ (teRxk\Rxk−1
, xRxk−1

)
∈ V (Rx

k)
}

.

Note that xi ≤ axk for all i ∈ N \ Rx
k−1. Suppose for the sake of

contradiction that there exists S ∈ 2N\Rxk−1 \ {∅} such that

axk < max
{
t ∈ R+

⏐⏐⏐ (teS, xRxk−1

)
∈ V (S ∪ Rx

k−1)
}

.

By comprehensiveness, xS∪Rxk−1
∈ V (S ∪ Rx

k−1) \ P(V (S ∪ Rx
k−1)).

By nonlevelness, xS∪Rxk−1
∈ V (S ∪ Rx

k−1) \ WP(V (S ∪ Rx
k−1)). This

contradicts that x ∈ C(N, V ), which implies that

Rx
k \ Rx

k−1 ∈ argmax
S∈2

N\Rxk−1 \{∅}

max
{
t ∈ R+

⏐⏐⏐ (
teS, xRxk−1

)
∈ V (S ∪ Rx

k−1)
}

.

Hence, x ∈ ESOS(N, V ). □

Example 5. Let (N, V ) ∈ Γ̃all with N = {1, 2, 3} be the game
given by

V (S)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{xi ∈ R{i}
+ | xi ≤ 0} if S = {i} and i ∈ {1, 2, 3};

{x{1,i} ∈ R{1,i}
+ | min {2x1 + xi,

x1 + 2xi} ≤ 12} if S = {1, i} and i ∈ {2, 3};
{x{2,3} ∈ R{2,3}

+ | x{2,3} ≤ 0{2,3}} if S = {2, 3};
{x ∈ RN

+
|
∑

i∈N xi ≤ 10} if S = N .

The equal split-off set is ESOS(N, V ) = {(4, 4, 2), (4, 2, 4)} corre-
sponding to ordered partitions {{1, 2}, {3}} and {{1, 3}, {2}}. Since
|ESOS(N, V )| ̸= 1, Lemmas 2 and 3 imply that (N, V ) ̸∈ Γ̃ep. △

The following punctual properties are satisfied by the equal
split-off set on the class of exact partition games.

Feasible highest payoffs for all (N, V ) ∈ Γ and all x ∈ σ (N, V ),
it holds that xRx1 ∈ V (Rx

1).

Feasible high payoffs for all (N, V ) ∈ Γ , all x ∈ σ (N, V ), and all
k ∈ N, it holds that xRxk ∈ V (Rx

k).

Equal payoff stability for all (N, V ) ∈ Γ , all x ∈ σ (N, V ), and all
∈ 2N

\ {∅}, there exists i ∈ S such that xi ≥ max{t ∈ R+ | teS ∈

V (S)}.

Core selection for all (N, V ) ∈ Γ , it holds that σ (N, V ) ⊆
C(N, V ).

4

Feasible highest payoffs requires that the players with highest
payoffs are able to attain their payoffs by themselves. Feasible
high payoffs requires that the players with highest payoffs, the
players with highest and second highest payoffs, and so on, are
able to attain their payoffs jointly by themselves. Equal payoff
stability requires that no coalition is better off by an attainable
equal payoff allocation, i.e. for all coalitions there exists a member
whose allocated payoff is at least the maximal attainable equal
payoff. Core selection requires that only core elements are as-
signed. Note that feasible high payoffs implies feasible highest
payoffs, and core selection implies equal payoff stability. Clearly,
the equal split-off set satisfies feasible high payoffs. By Lemmas 2
and 3, the equal split-off set satisfies core selection on the class
of exact partition games. In fact, an axiomatic characterization of
the equal split-off set is directly obtained.

Theorem 1. The equal split-off set is the unique solution for exact
partition games satisfying feasible high payoffs and core selection.

Proof. Step 1: sufficiency. The equal split-off set satisfies feasible
high payoffs. By Lemmas 2 and 3, the equal split-off set satisfies
core selection on Γ̃ep.

Step 2: necessity. Let σ be a solution on Γ̃ep satisfying feasible
high payoffs and core selection. Let (N, V ) ∈ Γ̃ep and let x ∈

σ (N, V ). By core selection and feasible high payoffs, x ∈ C(N, v)
and xRxk ∈ V (Rx

k) for all k ∈ N. By the proof of Lemma 3, this
implies that x ∈ ESOS(N, V ). By Lemma 2, |ESOS(N, V )| = 1.
Hence, σ (N, V ) = ESOS(N, V ). □

Theorem 1 generalizes the corresponding result of Calleja et al.
(2021) for TU-games. To show that the corresponding properties
are independent, we consider the following solutions. The core
satisfies core selection, but does not satisfy feasible high payoffs.
The equal payoff solution, which assigns to all exact partition
games the maximal attainable equal payoff allocation of the grand
coalition, satisfies feasible high payoffs, but does not satisfy core
selection.

The equal split-off set is not the unique solution for exact
partition games satisfying feasible highest payoffs and equal pay-
off stability. The solution which assigns (6, 2, 2) to the game in
Example 4, and the equal split-off set to all other exact partition
games, also satisfies these properties. However, this solution does
not apply feasible highest payoffs in a coherent way to NTU-
games with variable population. In other words, it does not satisfy
the relational property of consistency. Suppose that we apply a
certain solution to select payoff allocations for the grand coalition
and consider one such assigned payoff allocation. Some players
leave with their payoffs and the remaining players reevaluate
their payoffs on the basis of a reduced game. The solution is
consistent if it assigns the same payoffs to the remaining players
in the reduced game as in the original game.

Peleg (1985) axiomatically characterized the core for NTU-
games using the consistency property where the attainable payoff
allocations for the remaining players in the reduced game are the
attainable payoff allocations in coalition with any subgroup of de-
parted players in the original game when these departed players
are assigned their original payoffs. This generalizes the consis-
tency property for TU-games of Davis and Maschler (1965) and
we refer to it as max-consistency, following the terminology of
Thomson (2011). In order to axiomatically characterize the equal
split-off set for exact partition games, and inspired by Thomson
(1996), we use the weaker version which only requires consistent
payoff allocations when all players with highest payoffs leave.

Max-consistency for highest payoffs for all (N, V ) ∈ Γ and all
x ∈ σ (N, V ) with Rx

1 ̸= N , it holds that (N \ Rx
1, V

x
max) ∈ Γ and

x x x
xN\R1
∈ σ (N \ R1, Vmax), where
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V

s

f

x
max(S)

=

⎧⎪⎨⎪⎩
{yN\Rx1

∈ R
N\Rx1
+ | (yN\Rx1

, xRx1 ) ∈ V (N)} if S = N \ Rx
1;⋃

Q⊆Rx1

{yS ∈ RS
+

| (yS, xQ ) ∈ V (S ∪ Q )} if ∅ ⊂ S ⊂ N \ Rx
1.

Theorem 2. The equal split-off set is the unique solution for
exact partition games satisfying feasible highest payoffs, equal payoff
stability, and max-consistency for highest payoffs.

Proof. Step 1: sufficiency. The equal split-off set satisfies feasi-
ble highest payoffs. By Lemmas 2 and 3, the equal split-off set
satisfies equal payoff stability on Γ̃ep. To show that the equal
plit-off set satisfies max-consistency for highest payoffs on Γ̃ep,
let (N, V ) ∈ Γ̃ep and let x ∈ ESOS(N, V ) be such that Rx

1 ̸=

N . By Lemmas 2 and 3, x ∈ C(N, V ). Suppose for the sake of
contradiction that xN\Rx1

/∈ C(N \Rx
1, V

x
max). Then there exist S ∈ 2N

with ∅ ⊂ S ⊂ N \ Rx
1 and yS ∈ V x

max(S) such that yS > xS . This
implies that there exists Q ⊆ Rx

1 such that (yS, xQ ) ∈ V (S ∪Q ). By
comprehensiveness, xS∪Q ∈ V (S∪Q )\P(V (S∪Q )). By nonlevelness,
xS∪Q ∈ V (S ∪ Q ) \ WP(V (S ∪ Q )), which implies that there exists
zS∪Q ∈ V (S ∪ Q ) such that zS∪Q > xS∪Q . This contradicts that

x ∈ C(N, V ), so xN\Rx1
∈ C(N \Rx

1, V
x
max). Note that R

xN\Rx1
k = Rx

k+1\R
x
1

or all k ∈ N. For all k ∈ N, xRxk+1
∈ V (Rx

k+1), so (x
R
xN\Rx1
k

, xRx1 ) ∈

V (R
xN\Rx1
k ∪ Rx

1), which implies that x
R
xN\Rx1
k

∈ V x
max(R

xN\Rx1
k ). This

means that (N \ Rx
1, V

x
max) ∈ Γ̃ep and xN\Rx1

∈ ESOS(N \ Rx
1, V

x
max).

Hence, the equal split-off set satisfies max-consistency for highest
payoffs.

Step 2: necessity. Let σ be a solution on Γ̃ep satisfying feasible
highest payoffs, equal payoff stability, and max-consistency for
highest payoffs. We show by induction on the number of players
that σ (N, V ) consists of a unique payoff allocation for all (N, V ) ∈

Γ̃ep. By equal payoff stability, σ (N, V ) = {WP(V (N))} for all
(N, V ) ∈ Γ̃ep with |N| = 1. Let k ∈ N and assume that σ (N, V )
consists of a unique payoff allocation for all (N, V ) ∈ Γ̃ep with
|N| ≤ k. Let (N, V ) ∈ Γ̃ep with |N| = k+ 1 and let x ∈ σ (N, V ). By
equal payoff stability,

ax1 ≥ max
S∈2N\{∅}

max {t ∈ R+ | teS ∈ V (S)}

≥ max
{
t ∈ R+ | teRx1 ∈ V (Rx

1)
}

.

By feasible highest payoffs,

ax1 ≤ max
{
t ∈ R+ | teRx1 ∈ V (Rx

1)
}

≤ max
S∈2N\{∅}

max {t ∈ R+ | teS ∈ V (S)} .

This implies that

ax1 = max
S∈2N\{∅}

max {t ∈ R+ | teS ∈ V (S)}

and Rx
1 ∈ argmax

S∈2N\{∅}

max {t ∈ R+ | teS ∈ V (S)} .

Define UV
=

⋃
argmaxS∈2N\{∅} max{t ∈ R+ | teS ∈ V (S)}. Since

(N, V ) ∈ Γ̃ep, Lemmas 2 and 3 imply that UV
∈

argmaxS∈2N\{∅} max{t ∈ R+ | teS ∈ V (S)}. Suppose for the sake
of contradiction that Rx

1 ̸= UV . By max-consistency for highest
payoffs, xN\Rx1

∈ σ (N \ Rx
1, V

x
max).

By equal payoff stability, there exists i ∈ UV
\ Rx

1 such that

xi ≥ max
{
t ∈ R+ | teUV \Rx1

∈ V x
max(U

V
\ Rx

1)
}

≥ max
{
t ∈ R |

(
te V x , x x

)
∈ V (UV )

}

+ U \R1 R1

5

= max
{
t ∈ R+ |

(
teUV \Rx1

, ax1eRx1

)
∈ V (UV )

}
= ax1,

where the last equality follows from nonlevelness. This is a con-
tradiction, so Rx

1 = UV . If Rx
1 = UV

= N , then σ (N, V ) =

{(max{t ∈ R+ | teN ∈ V (N)})i∈N}. Suppose that Rx
1 = UV

̸= N .
By max-consistency for highest payoffs, xN\Rx1

∈ σ (N \ Rx
1, V

x
max),

where, by the induction hypothesis, σ (N \ Rx
1, V

x
max) consists of

a unique payoff allocation since |N \ Rx
1| ≤ k. Hence, σ (N, V )

consists of a unique payoff allocation. □

Theorem 2 generalizes the corresponding result of Dietzen-
bacher and Yanovskaya (2021) for TU-games. To show that the
corresponding properties are independent, we consider the fol-
lowing solutions. The solution which assigns the core to all exact
partition games with at most two players, and the equal split-off
set to all exact partition games with more players, satisfies all ax-
ioms in the theorem except for feasible highest payoffs. The equal
payoff solution, which assigns to all exact partition games the
maximal attainable equal payoff allocation of the grand coalition,
satisfies all axioms in the theorem except for equal payoff stabil-
ity. The solution which assigns (6, 2, 2) to the game in Example 4,
and the equal split-off set to all other exact partition games,
satisfies all axioms in the theorem except for max-consistency for
highest payoffs.

Tadenuma (1992) axiomatically characterized the core for
NTU-games using the alternative consistency property where the
attainable payoff allocations for the remaining players in the re-
duced game are the attainable payoff allocations in coalition with
all departed players in the original game when these departed
players are assigned their original payoffs. This is inspired by
the consistency property of Moulin (1985) and we refer to it as
complement-consistency, following the terminology of Thomson
(2011). In order to axiomatically characterize the equal split-off
set for exact partition games, and inspired by Thomson (1996),
we use the weaker version which only requires consistent payoff
allocations when all players with highest payoffs leave.

Complement-consistency for highest payoffs for all (N, V ) ∈ Γ

and all x ∈ σ (N, V ) with Rx
1 ̸= N , it holds that (N \ Rx

1, V
x
comp) ∈ Γ

and xN\Rx1
∈ σ (N \ Rx

1, V
x
comp), where for all S ∈ 2N\Rx1 \ {∅},

V x
comp(S) =

{
yS ∈ RS

+

⏐⏐ (yS, xRx1 ) ∈ V (S ∪ Rx
1)

}
.

Theorem 3. The equal split-off set is the unique solution for
exact partition games satisfying feasible highest payoffs, equal payoff
stability, and complement-consistency for highest payoffs.

Proof. Step 1: sufficiency. The equal split-off set satisfies feasi-
ble highest payoffs. By Lemmas 2 and 3, the equal split-off set
satisfies equal payoff stability on Γ̃ep. To show that the equal
split-off set satisfies complement-consistency for highest payoffs
on Γ̃ep, let (N, V ) ∈ Γ̃ep and let x ∈ ESOS(N, V ) be such that
Rx
1 ̸= N . By Lemmas 2 and 3, x ∈ C(N, V ). Suppose for the sake

of contradiction that xN\Rx1
/∈ C(N \ Rx

1, V
x
comp). Then there exist

S ∈ 2N with ∅ ⊂ S ⊂ N \ Rx
1 and yS ∈ V x

comp(S) such that yS > xS .
This implies that (yS, xRx1 ) ∈ V (S ∪ Rx

1). By comprehensiveness,
xS∪Rx1

∈ V (S∪Rx
1)\P(V (S∪Rx

1)). By nonlevelness, xS∪Rx1
∈ V (S∪Rx

1)\
WP(V (S ∪ Rx

1)), which implies that there exists zS∪Rx1
∈ V (S ∪ Rx

1)
such that zS∪Rx1

> xS∪Rx1
. This contradicts that x ∈ C(N, V ), so

xN\Rx1
∈ C(N \ Rx

1, V
x
comp). Note that R

xN\Rx1
k = Rx

k+1 \ Rx
1 for all k ∈ N.

For all k ∈ N, xRxk+1
∈ V (Rx

k+1), so (x xN\Rx1
, xRx1 ) ∈ V (R

xN\Rx1
k ∪ Rx

1),

Rk
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hich implies that x
R
xN\Rx1
k

∈ V x
comp(R

xN\Rx1
k ). This means that (N \

x
1, V

x
comp) ∈ Γ̃ep and xN\Rx1

∈ ESOS(N \ Rx
1, V

x
comp). Hence, the equal

plit-off set satisfies complement-consistency for highest payoffs.
Step 2: necessity. Let σ be a solution on Γ̃ep satisfying fea-

ible highest payoffs, equal payoff stability, and complement-
onsistency for highest payoffs. We show by induction on the
umber of players that σ (N, V ) consists of a unique payoff al-
ocation for all (N, V ) ∈ Γ̃ep. By equal payoff stability, σ (N, V ) =

{WP(V (N))} for all (N, V ) ∈ Γ̃ep with |N| = 1. Let k ∈ N and
ssume that σ (N, V ) consists of a unique payoff allocation for all

(N, V ) ∈ Γ̃ep with |N| ≤ k. Let (N, V ) ∈ Γ̃ep with |N| = k + 1 and
et x ∈ σ (N, V ). By equal payoff stability,
x
1 ≥ max

S∈2N\{∅}

max {t ∈ R+ | teS ∈ V (S)}

≥ max
{
t ∈ R+ | teRx1 ∈ V (Rx

1)
}

.

y feasible highest payoffs,

x
1 ≤ max

{
t ∈ R+ | teRx1 ∈ V (Rx

1)
}

≤ max
S∈2N\{∅}

max {t ∈ R+ | teS ∈ V (S)} .

his implies that

ax1 = max
S∈2N\{∅}

max {t ∈ R+ | teS ∈ V (S)}

and Rx
1 ∈ argmax

S∈2N\{∅}

max {t ∈ R+ | teS ∈ V (S)} .

efine UV
=

⋃
argmaxS∈2N\{∅} max{t ∈ R+ | teS ∈ V (S)}. Since

N, V ) ∈ Γ̃ep, Lemmas 2 and 3 imply that UV
∈

rgmaxS∈2N\{∅} max{t ∈ R+ | teS ∈ V (S)}.
Suppose for the sake of contradiction that Rx

1 ̸= UV . By
omplement-consistency for highest payoffs, xN\Rx1

∈ σ (N \

x
1, V

x
comp). By equal payoff stability, there exists i ∈ UV

\ Rx
1 such

hat

i ≥ max
{
t ∈ R+ | teUV \Rx1

∈ V x
comp(U

V
\ Rx

1)
}

= max
{
t ∈ R+ |

(
teUV \Rx1

, xRx1

)
∈ V (UV )

}
= max

{
t ∈ R+ |

(
teUV \Rx1

, ax1eRx1

)
∈ V (UV )

}
= ax1,

here the last equality follows from nonlevelness. This is a con-
radiction, so Rx

1 = UV . If Rx
1 = UV

= N , then σ (N, V ) =

(max{t ∈ R+ | teN ∈ V (N)})i∈N}. Suppose that Rx
1 = UV

̸= N .
y complement-consistency for highest payoffs, xN\Rx1

∈ σ (N \
x
1, V

x
comp), where, by the induction hypothesis, σ (N \ Rx

1, V
x
comp)

onsists of a unique payoff allocation since |N \ Rx
1| ≤ k. Hence,

(N, V ) consists of a unique payoff allocation. □

Theorem 3 generalizes the corresponding result of Dietzen-
acher and Yanovskaya (2021) for TU-games. To show that the
orresponding properties are independent, we consider the fol-
owing solutions. The solution which assigns the core to all exact
artition games with at most two players, and the equal split-off
et to all exact partition games with more players, satisfies all
xioms in the theorem except for feasible highest payoffs. The
qual payoff solution satisfies all axioms in the theorem except
or equal payoff stability. The solution which assigns (6, 2, 2) to
he game in Example 4, and the equal split-off set to all other
xact partition games, satisfies all axioms in the theorem except
or complement-consistency for highest payoffs.

It can be shown that both bargaining games and
TU-bankruptcy games are exact partition games. The equal
 N

6

plit-off set for bargaining games coincides with the Kalai (1977)
olution for bargaining problems (cf. Nash, 1950). The equal
plit-off set for NTU-bankruptcy games (cf. Dietzenbacher, 2018)
oincides with the constrained equal awards rule (cf. Dietzen-
acher, 2022) for NTU-bankruptcy problems (cf. Orshan et al.,
003), also called the constrained Kalai solution (cf. Albizuri
t al., 2020) for bargaining problems with claims (cf. Chun and
homson, 1992).
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