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A detailed investigation of a superconducting spin-triplet valve is presented. This spin-valve
consists of a superconducting film covering a metal with an intrinsic spiral magnetic order, which
could result from competing isotropic exchanges or, if the crystal lattice breaks central symmetry,
from asymmetric Dzyaloshinskii-Moriya exchange. Depending on the anisotropy, such a metal may
change its magnetization either from a spiral to uniform order, as seen in Ho and Er, or in the
direction of the spiral itself, as in crystals of the B20-type structure (such as MnSi, (Fe,Co)Si, FeGe,
etc.). The nonuniform magnetic order controls the appearance of long-range triplet superconducting
correlations at strong exchange fields, affecting the detailed character of the proximity effect. We
show that the magnetic control of the spin-valve behavior can also be obtained from moderately
low exchange fields (typically associated to negligible long-range triplet correlations), thanks to
an orientation-dependent averaging mechanism of the magnetic inhomogeneity on the scale of the
Cooper pairs. Our numerical calculations reveal that the spin-valve effect is in fact magnified at
moderately low exchange fields, when the exchange splitting in the spiral magnet is comparable to
the superconducting gap, and the spiral period is less than or equal to the superconducting coherence
length in the magnet multiplied by 2π.

I. INTRODUCTION

Superconducting spintronics is a modern field in cryo-
genic nanoelectronics [1] that has emerged since the sec-
ond decade of this century [2]. As in traditional spin-
tronics, the aim is to utilize spin transfer for informa-
tion processing. Since a spin current is not necessarily
accompanied by a charge transfer, such devices, combin-
ing magnetic and superconducting order, promise to be
energetically efficient. This field is currently in develop-
ment, with the demonstration of device concepts [3–5].
Magnetic control of charge transfer is a key mechanism
of spintronic devices and, in particular, of the function-
ality of magnetic memory (MRAM) units. Like tradi-
tional MRAM elements based on magnetic tunnel junc-
tions and spin transfer torque elements, superconducting
spin valves (SSVs) were first proposed theoretically [6–8],
and are currently at the stage of optimization [9–11].

The magnetization reversal of a ferromagnetic (F) ele-
ment may provide for magnetic control of the Josephson
current [12–15] or may change the superconducting criti-
cal temperature Tc both in the F/S/F [16] and S/F/F [17]
configurations, where S denotes a superconducting film.
The possibility of tuning superconductivity by the mu-

tual orientation (parallel or antiparallel) of two F layers
in this type of SSV was shown in different experiments
[18–21]. The shift δTc in the critical temperature was
assumed to be due to the paramagnetic effect, i.e., the
breaking of the Cooper pairs by the spin polarizations
induced within the superconducting layer by the ferro-
magnetic layers. When the magnetizations in the F lay-
ers are antiparallel, these polarizations effectively cancel
out, while in the parallel configuration the induced polar-
izations act cooperatively to suppress superconductivity.
A shift in Tc between two different magnetic configura-
tions opens the way to realize an optimized switch from
a superconducting to a normal state. The formal value
of the magnetoresistance is then infinite, since the resis-
tance changes from zero in the superconducting state, to
a finite value in the normal state.

The triplet mechanism of the SSV effect was later
deduced in the same structures. It was shown that a
noncollinear magnetization configuration may provide an
even larger shift in δTc [9, 22–24] due to the appearance of
long range triplet superconducting correlations (LRTC)
[25–28]. The production of the LRTC, which can be
seen as one more channel for the draining of the Cooper
pairs from the superconductor, enhances the proximity
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effect, and as a result reduces Tc more efficiently. A full
Tc switch, where δTc is larger than the superconducting
transition width, has been reached in a few experiments
[29–32]. Nevertheless, the improvement and optimization
of SSVs still remain both a theoretical and experimental
challenge [33–39]. Possible ways to improve the proper-
ties of SSVs include optimization of the structures, via
the technology of their preparation, the quality of in-
terfaces, and the choice of materials, including strong,
half-metallic, or insulating ferromagnets.

Recently, layers of the spiral magnet (M) holmium
have been used as spin-mixers, improving the magneto-
resistive properties of SSVs [9, 40–45]. Taken separately
in a S/M bilayer, a spiral or conical magnetic layer also
provides a shift of Tc when an external magnetic field
is applied [45, 46]. Indeed, a parallel magnetization of
the spiral magnetic layer suppresses the LRTC, leading
to a change in Tc. However, the return to the initial he-
limagnetic state would require heating the sample above
the Curie temperature, much higher than Tc. This would
make this kind of SSV difficult to use in low-temperature
electronics.

A further important problem to consider, inherent
both for SSVs and Josephson MRAM, is the so-called
half-select problem [47]. This occurs in the convention-
ally known RAM scheme with two sets of crossing “word”
and ‘”bit” lines, for example along the “X” and “Y” di-
rections. The control signal should switch the state of
a particular element at the crossing of two lines in a
net, whereas the half-amplitude signal should not cause
a switch of any other elements along the crossing lines.
This requirement provides for an addressable switch of
any particular memory element in RAM. It means that
the two logical states of a memory element must be sep-
arated by a potential barrier. Multilayered structures
with continuous magnetization reversals do not solve this
problem. In contrast, it has been pointed out [48] that
if a spiral magnet M has a potential barrier between two
spiral directions due to cubic anisotropy, the resulting
S/M bilayer may work both as an SSV and a Joseph-
son MRAM. Recently, a way of controlling such SSVs
was developed [49], based on magnonic relaxation after
a magnetic field pulse. This method is attractive as it is
non-destructive of the superconducting state. The spi-
ral SSVs allowing such a means of control should have
parameters (record-readout speed and stability) compa-
rable with modern MRAM [49].

In this paper we explore this idea quantitatively [48]
by considering spiral magnets of the B20 family, such
as MnSi, (Fe,Co)Si, FeGe, in bulk, or etched films, to
provide the full Tc switch by a change of the spiral direc-
tion. This is possible because the cubic noncentrosym-
metric magnetic structure of the B20 crystal family [50–
52] provides an asymmetric Dzyaloshinskii-Moriya ex-
change [53]. The magnetic spiral structure, characterized
by the spiral vector Q, may be aligned in a few different,
but equivalent, directions under the control of a weak
external magnetic field. These preferred directions are

FIG. 1: A sketch of the studied SSV with the spiral
wave vector Q tilted at an angle α to the normal of the
S/M interface.

determined by the potential barriers that depend on the
compound [54]. This provides the advantage previously
mentioned for their use as MRAM switchable elements.
Such magnetic compounds and their films are now the
subject of much interest [55, 56] as a medium for mag-
netic topological defects like skyrmions. Thin films of
MnSi have a strong in-plane magnetic anisotropy and
host only magnetic spiral order with the vector Q per-
pendicular to the plane of the film [57]. The Tc in such
a superconducting bilayer may be controlled via a re-
versible uniform magnetization of the films in an exter-
nal magnetic field. Such elements may be used in biased
RAM. Here we investigate theoretically the possibilities
of using S/M bilayers as switchable elements for cryogenic
electronics application, useful for both SSVs and MRAM.
We find that the magnitude of δTc is a non-monotonic
function of the spiral wave vector that depends on the
amplitudes of the exchange field. This behavior can be
exploited for the optimization of the structures.

This paper is organized as follows: Sec. II presents the
model and the general method for deriving Tc in the S/M
bilayer, while Sec. III discusses the numerical results for
Tc we obtain. Sec. IV concludes this work. The details of
the analytical calculations are presented in the Appendix.

II. MODEL

To describe the superconducting proximity effect with
a spiral magnet, we use linearized Usadel equations in
the form [58] valid close to Tc in the dirty limit, which is
usually satisfied in hybrid structures prepared by sputter-
ing. In this limit, the superconducting coherence lengths
in the M and S layers are given by ξf,s =

√

Df,s/2πTcb,
where Df,s are the corresponding electron diffusion co-
efficients and Tcb is the critical temperature of the bulk
superconductor.

Here we have developed a method of calculation that
allows us to consider the limits of both weak and strong
exchange splitting h, as well as to examine the behav-
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ior at arbitrary values of h (provided the Usadel equa-
tions remain valid) for spirals of both long and short pe-
riods. Moreover, we take the thickness of the magnetic
layer to be finite, and inlcude related effects, such as re-
entrant superconductivity, which also depend on the spi-
ral magnetic order. The third improvement of the current
method in comparison with previous theories [48, 58, 60–
65] is the determination of Tc at arbitrary angles between
the spiral wave vector Q and the plane of the S layer.

A. Usadel equations for the magnetic spiral

inclined at an arbitrary angle α

We consider a superconducting layer (S) with a finite
thickness ds in proximity with a layer of spiral magnet
(M) of thickness df . The spiral vector Q, is taken to be
inclined with an angle α with respect to the OZ direction,
orthogonal to the plane of the layers, see Fig. 1. We
assume that Q lies in the XOZ plane, while the XOY
plane coincides with the SM interface [66].

The linearized Usadel equations have the general form
[58, 59]

(

D∇2 − 2 |ω|
)

fs = −2π∆+ 2i sgn(ω)h · ft,
(

D∇2 − 2 |ω|
)

ft = 2i sgn(ω)h fs, (1)

where the singlet fs and triplet ft = (fx, fy,fz) spin com-
ponents of the anomalous Green’s function describe the
different superconducting correlations. The singlet su-
perconducting order parameter ∆ = ∆(z) is nonzero only
in the S layer, while the exchange spin splitting h(x, z),
aligned along the local magnetization, is nonzero only
in the M layer. The spiral vector Q enters in Eq. (1)
through the exchange spin splitting, which for α = 0
reads h(r) = h(cos[Qz], sin[Qz], 0)T . By taking into ac-
count the even symmetry of the singlet components and
the odd symmetry of the triplet ones with respect to the
Matsubara frequency ω ≡ ωn = πT (2n+1) with n a pos-
itive or negative integer, we may consider in the following
only positive ω.

As a result of the presence of the S/M interface and
of the proximity effect, the superconducting correlations
naturally depend on the distance to the interface, i.e.,
they exhibit a z-dependence. For an inclined spiral vector
Q, the magnetic vector h displays an explicit spatial de-
pendence on both variables x and z, so that the problem
we consider is in general a two-dimensional one. How-
ever, as we show in the Appendix, the extra dependence
on x due to the rotating spiral when α 6= 0 can be gauged
away via a suitable transformation on the triplet vector
ft, so that the original problem is mapped to the following
effective one-dimensional one for the triplet components
f−(z) and f+(z) in the magnetic layer (see the Appendix

for details):
(

∂2

∂z2
− 2ω

Df

)

fs = i
h

Df
[f− − f+] ,

[

∂2

∂z2
∓ 2iQ cosα

∂

∂z
−Q2 − 2ω

Df

]

f± = ∓ 2i
h

Df
fs, (2)

with h and Q the amplitudes of the exchange splitting
and of the spiral wave vector, respectively. The form of
these equations reproduces the limiting cases of spirals
both orthogonal and parallel to the interface α = 0, π/2
that were considered in Refs. 48 and 58. The presence of
linear terms in the spiral vector Q reflects the chirality
of the spiral, which is related to the broken inversion
symmetry of the magnetic lattice that can be found in
compounds of the B20 family, for instance. The chirality
makes the calculations rather more complicated than for
the case where uniform magnetization can be assumed.

B. The characteristic equation

If the M layer is semi-infinite and occupies the half-
space z > 0, the solutions of the linear differential Eqs.
(2) take the simple form fj(z) = uj exp(−kiz), where
j = s,+,−. We will take the more general situation of a
M layer with a finite thickness. This means that we also
have to consider spatial solutions with −ki, describing
the waves reflected from the free M interface.
The amplitude coefficients for these solutions are de-

termined by the boundary conditions. Here the wave
vectors ±ki are the eigenvalues of the system (2) and we
represent in the following the components of these two
related eigenvectors by uj , vj . Let us also introduce the

characteristic momenta kω =
√

2ω/Df , kh =
√

h/Df .
Eqs. (2) lead to the system of algebraic equations

(

k2 − k2ω
)

fs − i k2hf− + i k2hf+ = 0,

±2i k2hfs +
(

k2 − k2ω ± 2iQk cosα−Q2
)

f± = 0. (3)

The characteristic equation of this system yielding the
eigenvalues ki is

[

(k2 − k2ω −Q2)2 + 4Q2k2 cos2 α
] (

k2 − k2ω
)

+4k4h(k
2 − k2ω −Q2) = 0. (4)

This bicubic equation displays 3 pairs of solutions ±ki
with Real ki > 0, which are the eigenvalues of the system
(2). In the limit k2h ≫ Q2, k2ω the 3 eigenvalues are similar
to those found in the orthogonal case: two short-range
components k± ≈ (1± i) kh, and one long-range compo-

nent k0 ≈
√

k2ω +Q2. Assuming a large exchange energy
of h = 100 meV (it is typically of the order of 1eV in ferro-
magnetic transition metals), one may estimate the quasi-
momenta as [48] kh = ξ−1

h ∼ 1 nm−1, kω ∼ 1/7 nm−1 =
0.14 nm−1, that yields the inequalities kh > Q > kω. The
approximation of strong exchange energy for the values
of k±,0 is thus valid for h = 100 meV with an accu-
racy of two decimal places. The approximate eigenvec-
tors (−1,−1, 1), (1,−1, 1) and (0, 1, 1) associated with
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these eigenvalues have an accuracy of only one decimal
place, however.
In the general case we have solved the characteristic

equation exactly (4), with the eigenvectors so found uj

and vj written in the Appendix. Note that, in the ap-
proximation of large exchange splitting, the eigenvalues
and eigenvectors coincide with those described previously
in the two limiting cases of the spiral parallel to the S/M
interface [58, 69] (α = π/2) and of the spiral orthogonal
to the S/M interface (α = 0) for semi-infinite [48] and
finite [60] M layers.
The solution of the Usadel equations for the finite M

layer may finally be found in the general form

fj(z) =
∑

i

Aiuj(ki) exp(−kiz)+Bivj(ki) exp(kiz). (5)

The coefficients Ai and Bi are then determined from the
boundary conditions,as discussed in the next Section.

C. Boundary conditions

Kupriyanov-Lukichev [70] boundary conditions for the
singlet and triplet components of the anomalous Green’s
function read at the free interfaces

∂

∂z
fs,t = 0, (6)

and at the SM interface located at z = 0

ξs
∂

∂z
fS
s,t = γξf

∂

∂z
fs,t, (7)

fS
s,t = fs,t − γbξf

∂

∂z
fs,t.

We have introduced here the dimensionless interface pa-
rameters γb = RbAσf/ξf and γ = (σf/σs)(ξs/ξf ). The
quantities Rb and A are the resistance and the area of the
S/M interface respectively, and σf,s is the conductivity
of the M or S metal. Inclusion of the superscript S in the
components fS

s or fS
t is used to specify that the correla-

tions are evaluated from the superconducting side, while
the absence of superscript holds for the magnetic side.
Since the Usadel equations have been rewritten in

terms of the transformed triplet components f±(z), we
need to derive the boundary conditions for these func-
tions instead. As shown in Appendix, we find the bound-
ary conditions for the free interfaces at z = df and
z = −ds for the inclined case corresponding to the lin-
earized Usadel equations (2)

∂

∂z
fs(df ) = 0,

∂

∂z
f±(df ) = ±iQ cosαf±(df ), (8)

∂

∂z
fS
s,±(−ds) = 0,

and the boundary conditions at the S/M interface at z =

0

ξs
∂

∂z
fS
s (0) = γξf

∂

∂z
fs(0),

ξs
∂

∂z
fS
±(0) = γξf

(

∂

∂z
∓ iQ cosα

)

f±(0), (9)

fS
s (0) = fs(0)− γbξf

∂

∂z
fs(0),

fS
±(0) = f±(0)− γbξf

(

∂

∂z
∓ iQ cosα

)

f±(0).

The sign ± in front of the contributions depending on Q
expresses the chirality of the magnetic spiral: clockwise
or anticlockwise. In the presence of a finite thickness of
the magnet, this chirality adds a degree of complexity
that was absent in previous work. We note though that
the superconducting critical temperature turns out to be
independent of the sign of the chirality, owing to the spin
symmetry of the superconducting wave function in S.

D. Critical temperature calculation

The singlet component fS
s (z) in the superconductor

depends on the superconducting gap ∆(z), which is cal-
culated self-consistently. The required closed boundary
value problem for the singlet component fS

s includes the
Usadel equation (2) in the superconducting layer, and
the boundary condition in the form

ξs
∂

∂z
fS
s

∣

∣

∣

∣

z=0

= − WfS
s

∣

∣

z=0
. (10)

The real-valued quantity W contains the entire informa-
tion about the proximity effect with the spiral magnet,
and may be written as

W = γ





∑

i

Sius(ki)

ξf
∑

i

Rikius(ki)
+ γb





−1

, (11)

with the coefficients Ri and Si defined in the Appendix.
Finally, we compute numerically the critical temper-

ature Tc of the superconducting layer, using the self-
consistent equation

ln
Tcb

Tc
= πTc

∞
∑

ω=−∞

(

1

|ω| −
fS
s (z)

π∆(z)

)

(12)

and the method of the fundamental solution [58, 71, 72].

E. Model parameters

For the realization of the presently studied SSV, dif-
ferent types of spiral magnets may be considered, thus
providing various possible ranges of values for the model
parameters. This variety can naturally be exploited to
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optimize the switching control and the spin-valve behav-
ior in the S/M bilayer. In this section, we will address in
some detail the possibilities currently available for real
materials and the associated variable ranges, in particu-
lar for the magnitudes of the exchange splitting h or for
the spiral wave vector Q.

Metals of the B20 family like MnSi, (Fe,Co)Si, FeGe,
etc., are arranged in a crystal lattice of cubic symmetry
with broken inversion symmetry. The latter provides an
asymmetric Dzyaloshinskii-Moriya exchange, leading to
spiral magnetic order. For Lanthanide metals like Ho or
Er, the spiral magnetic order stems from the competing
magnetic exchanges of nearest neighbor and next-nearest
neighbors. Although the microscopic natures differ, at
the level of the proximity effect these magnetic materials
exhibit similar properties when described within a mean
field approximation.

Because of the lattice symmetry in B20 materials, the
magnetic spiral characterized by the vector Q may align
in a few different directions in the ground state, in the
absence of an external magnetic field. Depending on the
compound, the preferred spiral directions may be along
the cubic axes [100], [010], [001] , as for FeCoSi and
MnGe, and along the diagonals of the cube [1± 1± 1], as
for MnSi. Depending on the magnetic history [54], the
spiral may even have an arbitrary direction at a weak cu-
bic anisotropy, as for example in FeCoSi. The direction of
Q may be controlled by a relatively weak external mag-
netic field, of the order of 100 Oe for MnSi. It is impor-
tant for the applications in SSVs to have the control field
lower than the critical magnetic field of superconducting
films, which is ∼ 30 kOe for the in-plane direction of the
Nb superconductor. Very recently, a method to control a
bilayer SSV which does not perturb its superconducting
state has been proposed and optimized [49] via numeri-
cal experiments on the MnSi/Nb bilayer SSV. Switching
between a few ground state magnetic configurations with
different directions of the magnetic spiralQ, that are sep-
arated by potential barriers, was proposed by applying a
magnetic field pulse several hundred ps in duration and
several kOe in magnitude. Such a pulse would not itself
destroy the superconducting state of the Nb layer, but
leads to the excitation of magnons in the magnetic layer,
that then trigger the reorientation process of the mag-
netic spiral [49]. The system can be switched back and
forth by magnetic fields of opposite signs along a single
direction of the plane of the layers. This allows for easy
control. The switching time is estimated [49] to be sev-
eral nanoseconds, which coincides with the scales of the
spin-transfer torque MRAM recording time, making this
method attractive for energy saving cryogenic electronics.

The absolute value of the spiral vector is defined as
Q = 2π/λ, where λ is the spiral spatial period. The
spiral antiferromagnets of the B20 family may have short
or long spiral spatial periods (from 3 nm for MnGe to up
to 90 nm for Fe(0.5)Co(0.5)Si) that reflect the relation
between the Dzyaloshinskii-Moriya interaction and the
exchange energy. In the spiral magnetic metal MnSi with

λ = 18 nm , the preferred spiral directions [1±1±1] have
the angle arccos(1/3) = 70.5◦. If two of these directions
lie in the plane of the film, the other two make the angle
α = π/2 − arccos(1/3) = 19.5◦ with the normal OZ to
the interface. In this case the structure is periodic in the
OX direction with a large period λ/ sinα = 54 nm, that
is much larger than other characteristic lengths such as
λ/2π or the superconducting coherence length ξf . The
period of the spiral in the OZ direction increases only
slightly, since λ/ cosα = 19 nm.

There has been some recent evidence that MnSi has a
relatively weak exchange splitting [73, 74]. In the com-
pound MnSi, the amplitude of the exchange field has even
been estimated [74] to take the re value h = 11 meV, low
in comparison with ferromagnetic metals. We could take
the estimated value of the exchange as an upper limit for
the exchange splitting of the superconducting electrons
in the mean field approximation. The exchange splitting
magnitude may, however, be larger for other compounds
of the B20 family. The Curie temperature may be taken
as a signature of the exchange energy magnitude, though
without direct proportionality. It varies from about 29 K
for MnSi to 279 K for FeGe. Thus, the Curie temperature
is larger than the Tc of the s-wave BCS superconducting
metals like Al or Nb usually used in cryogenic nanotech-
nology.

As a result of the asymmetric exchange interaction,
topological magnetic defects called skyrmions exist in
such compounds at high magnetic fields and at tempera-
tures close to, but below, the Curie temperature [75, 76].
These defects carry a nontrivial topological charge. Be-
cause of possible applications in spintronics [77], as well
as of the fundamental interest for physical properties dic-
tated by topology, these compounds and their films are
now under very intensive theoretical and experimental
investigations. Films of B20 compounds can be prepared
experimentally from the single crystals by etching [78–
80]. Despite their different geometry, such films have es-
sentially the same magnetic properties as bulk crystals.
In contrast, thin films of MnSi grown by molecular beam
epitaxy (MBE) or by electron beam lithography often do
not appear to host skyrmions, presumably due to their
high in-plane magnetic anisotropy. In these structures,
the magnetic spiral may align only with Q orthogonal to
the film plane. At df < λ the incomplete period of the
magnetic spiral may be continuously collapsed towards a
uniform magnetization, replacing the conical phase in a
parallel magnetic field from about few kOe up to around
1.3 T for MnSi. This effect may be also used to tune Tc in
the S/M bilayer, by gradually destroying the LRTC when
approaching the situation of a uniform magnetization.

In contrast, the spiral magnetic orders in lanthanide 4f
metals, such as Ho or Er which have been widely used
in experiments on the superconducting proximity effect,
are characterized by short spirals, of period about 4 nm
for Er and 6 nm for Ho. The order of magnitude of the
exchange splitting in these materials is unsettled [81].
Furthermore, the magnetic anisotropy of such lanthanide
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films is usually strongly in-plane.
Other model parameters. For the Tc calculations, the

superconducting layer is assumed to be made of Nb, with
the superconducting coherence length ξs = 11 nm. The
critical temperature of the bulk superconductor is taken
as Tcb = 9.2 K. The superconducting coherence length
in the M layer is chosen to be ξf = 4.2 nm. The S/M
interface transparency is taken from the realistic estima-
tions made in Ref. 82 with γB = 0.7, and the interface
parameter [48] is chosen as γ = 0.7.

III. RESULTS AND DISCUSSION

We have presented a systematic study of the super-
conducting critical temperature Tc of the S/M bilayer
with a comparison for the three configurations: a spiral
parallel to the S/M interface (cosα = 0), of a spiral in-
clined to the interface normal by the angle α = 19.5◦

(i.e., cosα ≈ 0.94), and the case of uniform magnetiza-
tion . In this last case, the superconducting properties
are independent of the angle α and Q = 0. These three
configurations allow us to compare two possible switch-
ing behaviors of the SSV, both of which may be imple-
mented experimentally. If the S film is covered by a bulk
or etched crystal of a spiral magnet of the B20 family,
the change of Tc may be achieved by the switch between
parallel and inclined (maybe perpendicular) spiral. Al-
ternatively, in the case of the proximity with a M film
characterized by a strong in-plane magnetic anisotropy
(as in Ho, Er, or thin B20 family films), for which the
spiral vector is always perpendicular to the film plane,
the Tc switch may be realized by the collapse to a uni-
form magnetization.
In Figs. 2, the dependencies of Tc on the supercon-

ductor thickness ds are first analyzed for different spiral
configurations. Fig. 2a shows that for a strong exchange
field, the critical temperature Tc for a parallel spiral is
larger than that obtained for a uniform magnetization.
This can be easily understood by the effective space av-
eraging of the exchange field at the scale of the size of
a Cooper pair. In contrast, for the inclined spiral, Tc is
(slightly) reduced in comparison to the uniform case be-
cause of the draining of the Cooper pairs from the S layer
into the open long-range triplet channel. This figure il-
lustrates that the S/M proximity effect is driven by two
competing mechanisms which affect the value of Tc: i) an
effective spatial averaging of the exchange field (mostly
governed by the wave vector Q of the spiral), and ii) the
appearance of the LRTC (controlled by the spiral angle
and the exchange amplitude), which tends to suppress
Tc.
In fact, the relative role of these two mechanisms de-

pends on the relation between all characteristic wave vec-
tors (including the exchange quasi-momentum kh defined
from the exchange energy h, and the superconductor
quasi-momenta related to the coherence lengths in the
S and M layers), so that the resulting behavior for Tc

turns out to be a problem. depending on many param-
eters. Our calculations reveal, as seen in Fig. 2b , that
the consideration of a smaller value for the exchange field
h than taken in Fig. 2a can implement an opposite order
for the Tc values, since the Tc for an inclined spiral is
now larger than in the uniform case. It can also be seen
in Fig. 2b that the spin-valve effect for the set of param-
eters related to MnSi [74] may become giant, reaching
δTc ∼ 1.6 − 1.8 K depending on the switch to the in-
clined spiral or uniform magnetization. An even larger
spin-valve effect is displayed in Fig. 2d, where both a
low exchange field and a short spiral period are consid-
ered. This case can motivate a direction in the search
for a suitable magnetic compound with the largest pos-
sible spin-valve effect. As expected, the strongest effects
resulting from the S/F interplay may be found in the
regime where all characteristic length scales (the S and
F superconducting coherence lengths, the spiral wave-
length λ, and the magnetic length ξh = k−1

h ) are of the
same order.

To understand the behavior according to the two mech-
anisms i) and ii) we have highlighted, it is important to
recall that the long-range and short-range triplet super-
conducting correlations are characterized by quite dif-
ferent dependencies on the exchange field, which are
best discriminated at strong fields: the former has a h-
independent coherence length ∼ (k2ω + Q2)−1/2, while
the latter can be associated with the length scale ∼
(k2ω + k2h)

−1/2, which is roughly inversely proportional

to
√
h. The physical reason for this discrepancy is that

the LRTC are not subjected to the depairing influence of
the exchange field, so that both electrons in the Cooper
pair can have the same spin projection to the field di-
rection. Therefore, an increasing exchange field favors
the draining of the Cooper pairs into the LRTC chan-
nel rather than into the short range triplet channel with
Sz = 0. At low fields, the LRTC appear as a correc-
tion in comparison with the predominantly generated
short-range correlations, and thus hardly affect the su-
perconducting properties of the M/S bilayer. In the low-
exchange field regime, the Tc dependence on the spiral
direction is mainly determined by the averaging mecha-
nism: when the direction of the penetration of the Cooper
pairs into the magnet is different from the direction of av-
eraging, this averaging becomes more effective, and then
Tc proved to be suppressed to a lesser extent, cf. Fig. 2b.

Interestingly, this averaging effect on Tc may be even
more pronounced in magnitude than that accompanied
by the LRTC creation. It has already been noticed [83]
that the scale of spatial modulation of superconducting
properties in the junction plane may differ from that out
of the plane. In the present study, one can also see the
similarity between the integrated energetic characteris-
tics such as Tc and the Josephson current. In the case of
Tc, the out-of-plane modulation scale is weakened due to
the competition with the proximity effect leakage mecha-
nism occurring in the same direction, so that out-of-plane
modulations play quantitatively a lesser role than the in-
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FIG. 2: Superconducting critical temperature Tc as a function of the S layer thickness ds within three different
magnetic configurations. The different panels (a), (b), (c), (d) correspond to different values of the exchange energy
and spiral period. The large and small exchange field cases are characterized by the typical values h = 100 meV and
h = 11 meV, respectively. The long and short spiral period situations correspond to λ = 18 nm and λ = 6 nm,
respectively.

plane. If one ignores the LRTC, one can understand this
effect as follows: For a perpendicular or slightly inclined
spiral, the Cooper pairs encounter, when penetrating into
the M layer, an almost uniform exchange field and feel its
modulations weakly as they propagate. In contrast, for a
magnetic spiral parallel to the interface, they experience
an exchange field averaged out over the full Cooper pair
size extension.

As already remarked, the low exchange field value in
the compound MnSi yields, a priori, an important spin-
valve effect. As is clear from the previous discussion,
another way to enhance the switching effect would be
to prefer magnetic materials with strong spatial modu-
lations, as the mean exchange averaging becomes more
effective for a short spiral period. This situation is en-
countered, for example, in Ho with its relatively short
spiral period λ = 6 nm. The corresponding Tc dependen-
cies for the different spiral configurations are respectively

displayed in Figs. 2c and 2d for relatively large (100
meV) and small (11 meV) exchange energies [81]. From
the comparison between Figs. 2a and 2c (large exchange
field case), or between 2b and 2d (small exchange field
case), it is clear that the averaging mechanism leads to
important quantitative changes in the Tc dependencies.
Moreover, this effect turns out to be magnified when the
magnetic length ξh becomes closer to the superconduct-
ing length ξf (a situation encountered in Figs. 2b and
2d).

From now on, we will consider a S/M bilayer with a
fixed S thickness (ds = 21 nm; this value is chosen as
more or less optimal to exhibit the dependencies) and
analyze the Tc variations with respect to various other
model parameters. We show in Fig. 3 that the interplay
between the averaging and the LRTC mechanisms is also
exhibited in the dependence of the superconducting crit-
ical Tc on the spiral wave vector Q = 2π/λ. For a large
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FIG. 3: Superconducting critical temperature Tc as a function of the spiral wave vector Q within three different
magnetic configurations, for (a) large and (b) small exchange energy h (i.e., h = 100 meV and h = 11 meV,
respectively). Here, we consider the layer thicknesses df = 40 nm and ds = 21 nm.

exchange field, we clearly see in Fig. 3a an extremum in
the Tc dependence of the inclined spiral. It is the result
of the competition between the Tc suppression by the
LRTC, which is more important at a long spiral, i.e., at
small Q, and the effective averaging mechanism, which
leads to the growth of Tc at a short spiral period, i.e.,
at large Q. Note that this competition does not occur
in the case of a spiral parallel to the interface, for which
the LRTC is absent: Tc displays a monotonic increase as
a function of Q due to the more efficient averaging ef-
fect when reducing the characteristic spatial modulation
of the exchange field. In contrast, at a smaller exchange
field, the LRTC creation mechanism becomes less rele-
vant, so that the extremum for the inclined configuration
shifts to much smaller values of Q as revealed in Fig. 3b.
In this situation the averaging effect dominates for most
spiral periods.
To make clear the role of the exchange energy in the

interplay of the two mechanisms governing the behavior
of Tc that we have emphasised, we present in Fig. 4a the
dependence of Tc on h for a long spiral period (case of
MnSi with λ = 18 nm). It is seen that the Tc in the dif-
ferent configurations display a similar (roughly parallel)
decreasing tendency. In the low exchange field regime,
the inclined case provides a slightly higher Tc than in
the uniform case, whereas at higher exchange values it
yields a lower Tc. In the inclined spiral configuration,
the growth of h entails an increasing role of the LRTC in
the proximity effect, which efficiently weaken the super-
conductivity of the S layer. At a smaller spiral period, as
in Ho (λ = 6 nm), the differences in the behavior of Tc(h)
between the uniform and inclined configurations is more
pronounced, see Fig. 4b. The lowest Tc is then always
obtained for the uniform case.
The finite thickness of the M layer taken into account

in our model calculations allows us to consider the phe-
nomenon of re-entrant superconductivity according to

the spiral configuration, which is studied in some detail in
Figs. 5. We point out that if one magnetic configuration
provides re-entrant behavior, i.e., Tc = 0 in some range of
thickness df , a full switch of superconductivity may then
be achieved in this range with the change of the mag-
netic configuration. With the decrease of the magnetic
exchange energy (compare Fig. 5a and Figs. 5b, 5c) the
period of the Tc oscillation becomes larger, as one could
expect. It thus creates better conditions for the exper-
imental implementation of such re-entrant behavior, by
providing wider regions of df where Tc = 0 for a given
magnetic configuration and nonzero Tc (in the Kelvin
range) for another magnetic configuration. Note that the
nature of the magnetic configuration yielding a vanishing
Tc in a given df range also depends on the magnetic ex-
change amplitude, in accordance with Figs. 4. For thin
films grown with a strong in-plane anisotropy a possi-
ble switch may be realized by commuting the magnetic
system from a spiral perpendicular to the layer to a uni-
form magnetization configuration. This may be achieved
for a thickness smaller than the spiral period under ap-
plication of a relatively small magnetic field. From this
analysis, one may conclude that the compounds of the
B20 family seem preferable for the observation of con-
trolled re-entrant superconductivity phenomenon and for
the realization of the full switch of Tc to zero.

Finally, our model calculations also allowed us to study
the Tc dependence on the angle α between the spiral vec-
tor Q and the S/M interface normal, see Figs. 6 with
two different sets of parameters, one suitable for MnSi
(Fig. 6b) and the other one for Ho (Fig. 6a). In the two
cases, the same general trend is found, namely a mono-
tonic growth of Tc with the angle α, with an initial Tc

lower than the Tc obtained in the uniform magnetization
case. This stronger suppression of superconductivity for
a spiral perpendicular to the film is due to the presence
of the LRTC, whose generation is controlled by the angle
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FIG. 4: Superconducting critical temperature Tc as a function of the exchange energy h within three different
magnetic configurations, (a) for large spiral spatial period λ = 18 nm (as in MnSi), and (b) for short spiral spatial
period λ = 6 nm (as in Ho). We have taken ds = 21 nm and a large M layer thickness df = 40 nm≫ ξf .
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FIG. 5: Superconducting critical temperature Tc as a function of the M layer thickness df within three different
magnetic configurations, (a) for large exchange energy h = 100 meV, large spiral spatial period λ = 18 nm and
ds = 21.4 nm, (b) large exchange energy h = 100 meV, short spiral spatial period λ = 6 nm and ds = 21 nm, and (c)
for small exchange energy h = 11 meV, large spiral spatial period λ = 18 nm and ds = 18.5 nm (MnSi case).

(with a maximal production for α = 0). The compari-
son between Fig. 6a and Fig. 6b shows that the LRTC
plays a role at lower exchange field and at larger spiral
period only within a small range of angles α for which we
encounter the unusual situation where an applied mag-
netic field magnetizing the film uniformly may lead to an
increase of the Tc of the bilayer.

IV. CONCLUSION

To summarize, we have studied in detail a supercon-
ducting spin valve consisting of a superconducting film
covered by a spiral magnet characterized by multiple
equilibrium configurations. We have considered spiral
magnets of different types: Ho and Er, or B20 family
compounds, both crystals and films. These SSVs may
be controlled by biased or pulsed external magnetic field,
producing magnetization reversal or magnonic relaxation

resulting in reorientation of the magnetic spiral. They
present not only a fundamental theoretical interest, but
also a technological one, as exemplified by the earlier ex-
perimental works [45, 46] on Er or Ho bilayers and recent
experimental efforts to create MnSi based SSVs [84].

In comparison with the theoretical work developed pre-
viously in Ref. 48 and 60 on the same model, we have
presented here an extended derivation including a num-
ber of significant improvements: i) an arbitrary value
of the exchange energy, suitable for MnSi for example,
is considered, whereas a large value was assumed previ-
ously [48]; ii) the magnetic spiral vector can be inclined
at an arbitrary angle with respect to the interface (for
simplicity, only parallel and perpendicular spirals were
considered in Ref. 48); iii) the finite thickness of the
magnetic layer is taken into account, in contrast to the
previous work [48] that assumed a semi-infinite M layer.

Besides providing a more realistic description of the
possible experimental conditions and justifying some sim-
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FIG. 6: Superconducting critical temperature Tc as a function of the angle α between the spiral vector Q and the S
layer normal within three different magnetic configurations, (a) for large exchange h = 100 meV and short spiral
spatial period λ = 6 nm, and (b) for small exchange h = 11 meV and long spiral spatial period λ = 18 nm (as in
MnSi). We have taken equal layers thicknesses ds = df = 21 nm. The curves in the uniform and parallel cases are
kept here as reference lines.

plifications made in the previous work, this enlargement
of the parameter space reveals quite different qualitative
behaviors for the spin valve depending on the spiral con-
figuration. In particular, we have found that the super-
conducting critical temperature may significantly vary
as a function of the spiral direction also at moderate or
low exchange energies. In this parameter regime, the su-
perconducting correlations resulting from the proximity
effect between the superconducting film and the chiral
magnet are primarily short-range, so that the sensitivity
of Tc is only due to the averaging of the exchange field
on the scale of the Cooper pairs. It turns out that this
averaging effect is much more efficient when the direc-
tion, perpendicular to the interface, of the penetration
of the Cooper pairs does not coincide with the direction
of the magnetic spatial inhomogeneity. As a result, the
parallel spiral configuration always yields the highest Tc,
as confirmed by our numerical calculations.

In contrast, for large exchange energies a different
mechanism for the sensitivity of Tc is at play: for a spi-
ral direction orthogonal to the interface the production
of long-range superconducting triplet correlations opens
one more channel for the leakage of the Cooper pairs from
the superconducting film, thus leading to an efficient de-
crease of Tc. Therefore, the behavior of the studied su-
perconducting spin valve is driven by two different an-
tagonistic mechanisms. Our quantitative analysis of the
reentrant superconductivity phenomenon in the bilayer
suggests the switching behavior of the superconducting
spin valve should be optimized at moderately low ex-
change energies, where the averaging mechanism comes
to dominate that of long-range triplet correlations.

The most interesting result, which should stimulate
further experimental investigation, optimization, and
manufacturing of such structures, is that the spin valve

effect may yield a δTc within the Kelvin range in MnSi-
Nb bilayers, i.e., may be giant. Therefore, it seems gen-
erally preferable to manufacture SSVs with MnSi crystal-
Nb bilayers. The intrinsic solution of the half-select
problem and the possibility of magnonic control, that
is non-destructive for the superconductivity, make such
spin valves appealing for applications in cryogenic nano-
electronics.
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APPENDIX

In this Appendix, we present a detailed derivation of
the key-quantity W [see Eq. (11)], which determines the
dependencies of the superconducting critical temperature
on the different model parameters.
For an inclined spiral, the magnetic structure is

nonuniform both in OZ and OX directions, so that the
different superconducting correlations components in the
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linearized Usadel Eqs. (1) are expected to be in general
functions of both x and z spatial variables, and the Lapla-

cian operator reads ∇2 = ∂2

∂x2 + ∂2

∂z2 .
In the orthogonal case (α = 0), the spiral vector Q

lies in the OZ direction, and the magnetic field direction
is described by the rotation matrix Mz around OZ axis
with the rotation phase β = Qz: h =h(cosβ, sinβ, 0)T =

Mz (h, 0, 0)
T . The linearized Usadel equations take the

form in this case:
(

D∇2 − 2 |ω|
)

fs = 2i sgn(ω)h [fx cos(Qz) + fy sin(Qz)] ,
(

D∇2 − 2 |ω|
)

fx = 2i sgn(ω)hfs cos(Qz), (13)
(

D∇2 − 2 |ω|
)

fy = 2i sgn(ω)hfs sin(Qz).

From now on, we assume that the axis of the spiral is
inclined in the XOZ plane. This inclined configuration
may be obtained from the orthogonal case with the help
of the rotation matrix around the OY axis by the angle
α (OZ axis rotates towards the OX axis by the angle α)

Mz =





cosβ − sinβ 0
sinβ cosβ 0
0 0 1



 , My =





cosα 0 − sinα
0 1 0

sinα 0 cosα





(14)
where the inclined spiral vector is given by
Q =My(0, 0, Q)T . The phase of the exchange field
vector rotation around the spiral vector is then
β = β(x, z) = Q (−x sinα+ z cosα). The ex-

change field vector reads h =MyMz (h, 0, 0)
T =

h(cosα cosβ, sinβ, sinα cosβ)T .
The unitary transformation of the triplet compo-

nents vector ft = (fx, fy, fz)
T to the vector fpm =

(f+, f−, fz)
T in the orthogonal case (α = 0) is given

by fpm = N ft with the matrix N

N =





− exp(iβ) i exp(iβ) 0
exp(−iβ) i exp(−iβ) 0

0 0 1



 . (15)

In the inclined case (α 6= 0) all components of ft are
nonzero in general. We may then introduce the vector
fpm = (f+, f−, fzz)

T given by the linear transformation
fpm = NM−1

y ft, which transforms the linearized Usadel
Eqs. (13) to their linear combination. The equation for
the third triplet component fzz separates after the trans-
formation and we may choose fzz = 0, that yields the
additional condition fz = fx tanα.
The explicit dependence on the x variable has com-

pletely disappeared in the equations obeyed by the cor-
relation functions fs,±(x, z). It can be shown that the
latter functions are in fact independent of x. For this pur-
pose, we follow the method of Ref. 58 by expanding the
correlations as Fourier series, assuming that the system
is periodic in the OX direction: fs,±(x, z) → fs,±(m, z)
where m is an integer number. Since the equations are
linear, the different Fourier components m are fully de-
coupled. The most energetically favorable solution corre-
sponds [58] to the uniform one with m = 0. The other so-

lutions with m = ±1,±2... describe the cases of a super-
conducting order parameter which is spatially inhomoge-
neous even deeply in the S region and are not realized
physically. Finally, we find that the functions fs,±(x, z)
obey the Eqs. (2) in the ferromagnet, with a form simi-
lar to the orthogonal case, but with the spiral vector Q
replaced by Q cosα in the linear term.
The eigenvectors of the system (2) may be chosen for

the eigenvalues ki = k0,± as





us(ki)
u−(ki)
u+(ki)



 =







i
k2

i
−k2

ω
+2iQki cosα−Q2

2k2

h

−k2

i
−k2

ω
+2iQki cosα−Q2

k2

i
−k2

ω
−2iQki cosα−Q2

1






. (16)

For a finite F layer we also have to take into account the
wave reflected from the free M layer interface solutions
∼ exp(kiz). The eigenvectors vj representing this re-
flected wave may be obtained with the change ki → −ki,
considering that only the relation between the eigenvec-
tor components has a meaning





vs(ki)
v−(ki)
v+(ki)



 =







i
k2

i
−k2

ω
+2iQki cosα−Q2

2k2

h

−1
k2

i
−k2

ω
+2iQki cosα−Q2

k2

i
−k2

ω
−2iQki cosα−Q2






=





us(ki)
−u+(ki)
−u−(ki)



 .

(17)
Note that for cosα = 0 (spiral parallel to the SM inter-
face) the two functions f± are identical, thus indicating
that only one type of triplet component (of short-range
nature) is in fact produced [58] in the hybrid structure
in this special configuration. In the inclined case, the
system resolution necessarily involves the two different
components f+ and f− hinting at the coexistence of two
types of triplet correlations in the structure. Owing to
the chirality, the short-range components (depending on
the exchange field h) of the eigenvectors for the incident
u and reflected v waves display a complicated symmetry
v± = −u∓, including the chirality change (”+” to ”-”,
and opposite). The reflected wave moves along the spi-
ral backward and feels the opposite direction (clockwise
or anticlockwise) of the magnetization rotation along the
movement direction. It is worth stressing that the com-
bination of chirality and finite thickness for the magnet
leads to a computational complexity related to the dou-
bling of the coefficient amplitudes needed, which was ab-
sent in previous publications [48, 58, 60–65].
The general form of the solution for the finite F layer

is written down in Eq. (5). Let us denote Ri ≡ Ai − Bi

and Si ≡ Ai + Bi. From the boundary conditions (8) at
z = df , it follows the equations

∑

i

[Ri cosh(kidf )− Si sinh(kidf )]Us,−(ki) = 0,

∑

i

[Si cosh(kidf )−Ri sinh(kidf )]U+(ki) = 0, (18)

where we have introduced Us(ki) = us(ki)ki and

U±(ki) = V±(ki)ki + iQ cosαV∓(ki). (19)

V±(ki) = u+(ki)± u−(ki),
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In the S layer the spatial non-uniformity is only pro-
vided by the nonuniform magnetization existing along
the SM interface. It thus seems to be natural to use
β = β(x, 0) inside the S region. So the transformation to
apply on the different superconducting components has
the form fSpm = N(β(x, 0))M−1

y fSt , that yields the Usadel
equations in the S region

(

∇2 − 2ω

Ds

)

fS
s = −2π

∆

Ds
,

[

∇2 ± 2iQ sinα
∂

∂x
−Q2 sin2 α− 2ω

Ds

]

fS
± = 0. (20)

As explained above, the x dependence has been dropped
out in the transformed components fs,±, so that we get
the equations in the S region

(

∂2

∂z2
− 2ω

Ds

)

fS
s = −2π

∆

Ds
,

[

∂2

∂z2
−Q2 sin2 α− 2ω

Ds

]

fS
± = 0, (21)

and fS
zz = 0, as it was also chosen in the ferromagnet. We

may search the solutions for the triplet components fS
±

satisfying the boundary condition (8) at the free interface

z = −ds in the form:

fS
± = C±

cosh[ks(z + ds)]

sinh(ksds)
, (22)

with the wave vector ks =
√

Q2 sin2 α+ 2ω/Ds. The

boundary conditions (9) at the SM interface (z = 0) read
∑

i

RiV+(ki) + SiU+(ki)ξfγc = 0,

∑

i

SiV−(ki) +RiU−(ki)ξfγc = 0, (23)

where γc = γb + γ coth(ksds)/ξsks. For the singlet com-
ponent, we finally get the two equations:

∂

∂z
fS
s (0) = −γ

ξf
ξs

∑

i

Rikius(ki),

fS
s (0) =

∑

i

Sius(ki) + γbRikius(ki)ξf . (24)

The latter equations can then be recast in the form of
the reduced boundary condition (10) with the expression
(11) for the value of the quantity W . The coefficients
Ri, Si are determined by using Eqs. (18) and (23).
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