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Abstract—The edge-coloring problem is to minimize the number of colors sufficient to color all
the edges of a given graph so that any adjacent edges receive distinct colors. The complexity
status of this problem is known for all the classes defined by the sets of forbidden subgraphs
with 7 edges each. In this paper, we consider the case of prohibitions with 8 edges. It can
readily be seen that the edge-coloring problem is NP-complete for such a class if there are no
subcubic forests among its 8-edge prohibitions. We prove that forbidding any subcubic 8-edge
forest generates a class with polynomial-time solvability of the edge-coloring problem, except
for the cases formed by the disjoint sum of one of four forests and an empty graph. For all
the remaining cases, we prove a similar result for the intersection with the set of graphs with
a maximum degree of at least four.
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INTRODUCTION

In the present paper, we consider only ordinary graphs, i.e., undirected acyclic graphs without
multiple edges. A graph class is said to be hereditary if it is closed under the removal of vertices.
Any hereditary class X (and only a hereditary class) of graphs can be defined by the set Y of its
own forbidden generated subgraphs, and one writes X = Free(Y). Strongly hereditary (or monotone)
class of graphs is a hereditary class which is also closed under the removal of edges. Any monotone
class X can be defined by the set Y of its own forbidden subgraphs, and one writes X = Frees(Y).

A k-edge coloring of a graph G = (V,E) is any mapping c : E → {1, 2, . . . , k} such that
c(e1) ̸= c(e2) for any adjacent edges e1 and e2. The minimum k for which there exists a k-edge-
coloring of the graph G is called the chromatic index of G and is denoted by χ′(G).

For a given graph G, the k-edge-coloring problem (briefly, the k-EC problem) is to recognize
whether the inequality χ′(G) ≤ k holds. For a given graph G and a number k, the edge-coloring
problem (briefly, the EC problem) is to recognize whether the inequality χ′(G) ≤ k holds. The 3-EC
and EC problems are NP-complete [1].

According to the well-known Vizing theorem in [2], the inequality ∆(G) ≤ χ′(G) ≤ ∆(G) + 1
holds for any graph G, where ∆(G) is the maximum power of the vertices of G. Thus, the EC
problem for a graph G is equivalent to recognizing whether χ′(G) = ∆(G) or not.

In [3], for any k a complete complexity dichotomy (i.e., a complete classification of complexity)
was obtained for the k-EC problem and all classes of the form Free({H}). In [4], a complete classifi-
cation of the complexity of the 3-EC problem was obtained for sets of forbidden generated subgraphs,
each with no more than 6 vertices of which no more than two subgraphs have exactly 6 vertices.
In [5], the EC problem and a family of monotone classes defined by the prohibition of subgraphs
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Fig. 1. Graph Ti,j,k.

each of which has no more than 6 edges or no more than 7 vertices were considered, and a complete
classification of the complexity of the EC problem for the classes of graphs from this family was
obtained. In [6], a complete classification of the complexity of the EC problem was obtained for
monotone classes defined by the prohibition of subgraphs each of which has at most 7 edges.

In the present paper, we consider the case of prohibitions with 8 edges. It was proved in [7]
that for any g the EC problem is NP-hard in the set of subcubic graphs of width ≥ g, and so
the EC problem will be NP-hard for any monotone class with 8-edge prohibitions if there is no
subcubic forest among these prohibitions. In the present paper, we prove that the prohibition of
any subcubic 8-edge forest generates a class with polynomial solvability of the edge coloring problem
except for the cases formed by the disjoint sum of one of the four forests and the empty graph. For
all remaining cases, a similar result is proved for the intersection with the set of graphs of maximum
degree ≥ 4.

1. NOTATION

Let G be a graph, and let x be a vertex of G. The open neighborhood of x, i.e., the set of its
neighbors, is denoted by N(x). The closed neighborhood of x, i.e., the set N(x) ∪ {x}, is denoted
by N [x]. The degree of x is denoted by deg(x), and the maximum degree of vertices of G is denoted
by ∆(G). If ∆(G) ≤ 3, then G is said to be subcubic. If the degrees of all vertices of a graph are
equal to 3, then it is said to be cubic.

Let G be a graph, and let V ′ ⊆ V (G). Then G[V ′] is the subgraph of G generated by V ′,
and G \ V ′ is obtained by removing all elements of V ′ from G.

Let G1 and G2 be graphs. We write G1
∼= G2 if G1 and G2 are isomorphic. If V (G1)∩V (G2) = ∅,

then the graph (V (G1) ∪ V (G2), E(G1) ∪ E(G2)) will be denoted by G1 +G2. For a graph G and
a number k, the notation kG means the graph G+G+ · · ·+G︸ ︷︷ ︸

k times

.

Let G,H1, H2, . . . ,Hk be graphs. Then ⟨G;H1, H2, . . . ,Hk⟩ is a shorthand for the statement
that G contains each of the graphs H1, H2, . . . ,Hk as a subgraph.

As usual, by Pn, On, and Kp,q we denote a simple path with n vertices, an empty graph with n
vertices, and a complete bipartite graph with p vertices in one part and q vertices in the other part,
respectively. By K4−e we denote the graph obtained by removing an edge from the complete graph
with 4 vertices.

By Ti,j,k, where i ≥ 0, j ≥ 0, and k ≥ 0, we denote the tree, known as a triode, which is obtained
by the simultaneous identification of the endpoints of the three simple paths

(v = x0, x1, . . . , xi),

(v = y0, y1, . . . , yj),

(v = z0, z1, . . . , zk)

by the vertex v (Fig. 1). In the subsequent proofs, the vertices of Ti,j,k will be denoted as in this
definition.

By T we denote the class of all forests each of whose connected components is a triode. Figure 2
lists all possible subcubic trees that do not belong to T and have at most 8 edges.
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Fig. 2.

The set

{B1 + 3P2, B1 + P2 + P3, B1 + P4, B1 +K1,3, B
+
1 + 2P2, B

+
1 + P3, B

+
1+ + P2,

B++
1 + P2, B

++
1+ , B+++

1 ,+B+
1 + P2,

+B+
1+,

+B++
1 , B∗

1 + P2, B
∗
1+,

+B∗
1 ,

B+∗
1 , B2 + 2P2, B2 + P3, B

+
2 + P2, B

++
2 , B+

2+,
+B+

2 , B3 + P2, B
+
3 , B4}

will be denoted by S. Note that S coincides with the set of all possible subcubic forests without
isolated vertices each of which has exactly 8 edges and does not belong to the class T .

An independent set in a graph is any subset consisting of pairwise nonadjacent vertices.

2. INCOMPRESSIBLE GRAPHS

It is well known (see [8, p. 465]) that a graph G containing a vertex x such that |{y ∈ N(x) |
deg(y) = ∆(G)}| ≤ 1 has an edge coloring of ∆(G) colors if and only if so does the graph G \ {x}.

Recall that a hinge in a graph is a vertex whose removal increases the number of connected
components of the graph. Obviously, for any graph G and a hinge x in G the relation χ′(G) = ∆(G)
holds if and only if

χ′
(
G
[
V (H) ∪ {x}

])
≤ ∆(G)

for each connected component H of the graph G \ {x}.
A connected hinge-free graph G is said to be incompressible if any vertex G has at least two neigh-

bors of degree ∆(G). The EC problem for graphs in an arbitrary monotone class is polynomially
reducible to the same problem for incompressible graphs in this monotone class.

3. CLIQUE-WIDTH OF GRAPHS AND CONSEQUENCES OF ITS BOUNDEDNESS

Clique-width is an important parameter of graphs. For a graph G it is denoted by cw(G) and is
defined as the minimum number of labels needed to construct G using the following four operations:

(1) Creating a new vertex with a given label i.
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(2) Taking the disjoint union of two labeled graphs H1 and H2 with disjoint vertex sets.
(3) Connecting each vertex with label i with each vertex with label j by an edge.
(4) Renaming the label i into j.
For any number C, many graph problems (including the EC problem) are polynomially solvable

for graphs whose clique-width does not exceed C (see, e.g., [9]). It follows from the results in [10, 11]
(see the proof of Lemma 4 in [5]) that the following statement is true.

Lemma 1. For any C > 0, the problem EC is polynomially solvable in the class {G | cw(G) ≤ C}
of graphs.

The following assertion was proved in [12].

Lemma 2. For any monotone class X not containing the entire T , there exists a number C(X )
such that cw(G) < C(X ) for any G ∈ X .

Lemma 3. Let H ′ ∈ T , and let X be a class of graphs such that X ⊆ Frees({H +H ′}) for some
graph H. Then the EC problem in the class X is polynomially reducible to the same problem in the
class X ∩ Frees({H}).

Proof. We will need the concept of the tree width of a graph. A tree decomposition of a graph
G = (V,E) is a tree T whose vertices X1, . . . , Xn are subsets of V with the following properties:

(1) The union of all sets Xi is equal to V .
(2) For any vertex v ∈ V , the vertices of the tree containing v form a subtree of the tree T .
(3) For any edge (v, u) of the graph G there exists a subset Xi containing both v and u.
The decomposition width T is the number max

i
|Xi|−1. The tree width tw(G) of a graph G is the

minimum width of all possible decompositions of G. It can readily be seen that for each graph G
and any of its vertices v one has tw(G) ≤ tw(G \ {v}) + 1; to achieve this, it suffices to include v
into all Xi of the optimal tree decomposition of the graph G \ {v}.

There is a relationship between the clique-width and the tree width of a graph. For example,
the inequality cw(G) ≤ 3 · 2tw(G)−1 holds for any graph G (see [13]), and one has tw(G) ≤ 3cw(G) ·
(t− 1)− 1 for any graph G with the property ¬⟨G;Kt,t⟩ (see [14]).

Let G = (V,E) be an arbitrary graph in X . If G contains a subgraph H = (VH , EH), then G\VH ∈
Frees({H ′}) and there exists a t∗ = t∗(H,H ′) such that ¬⟨G;Kt∗,t∗⟩, because H ′ ∈ T and X ⊆
Frees({H + H ′}). Hence it follows from Lemma 2 and the remarks in the last two paragraphs
that there exists a C∗ = C∗(H,H ′) such that for any G ∈ X one has ⟨G;H⟩ ⇒ cw(G) < C∗;
hence the EC problem is polynomially solvable in this class by Lemma 1. The proof of Lemma 3 is
complete. □

4. MONOTONE CASES OF POLYNOMIAL SOLVABILITY OF THE EC PROBLEM

Lemma 4. For any H ∈ {B++
1+ , B+++

1 ,+B+
1+,

+B++
1 }, the EC problem is polynomially solvable

for graphs of the class Frees({H}).
Proof. Let us show that for graphs in Frees({H}) the EC problem is polynomially reducible

to the same problem in the class Frees({H,T5,5.5}). Based on this and Lemma 2, it follows that
the assertion of this lemma is true. It suffices to consider incompressible graphs in Frees({H})
containing the subgraph T5,5,5. Let G = (V,E) be such a graph.

If N(x1) \ V (T5,5,5) ̸= ∅, then ⟨G;B++
1+ , B+++

1 ,+B+
1+,

+B++
1 ⟩. The same is true if (N(x1) ∩

V (T5,5,5)) \ {v, x2, y1, z1} ≠ ∅ or if N(x1) = {v, x2, y1, z1}. The same reasoning can also be carried
out with respect to the vertices y1 and z1, and so we can assume that these cases are not realized.
Thus, for any vertex u ∈ {x1, y1, z1} either deg(u) = 2 or deg(u) = 3, and in {x1, y1, z1} \ {u} there
exists a neighbor of the vertex u. The same reasoning shows that the vertex v is not adjacent to
the vertices in T5,5,5 other than x1, y1, z1, x5, y5, z5. Moreover, if v is adjacent, say, to x5, then x5 is
similar to x1 (these vertices are interchangeable) and deg(x5) = deg(x1) = 2.
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Assume that ∆(G) ≥ 4. Since G is incompressible, it follows that N(v) contains at least two
vertices of degree ∆(G). Let u be such a vertex of arbitrary choice. It is clear that u ̸∈ V (T5,5,5) and u
is not adjacent to any of the vertices x1, y1, and z1. Since the graph G is incompressible, we see that
there exist distinct vertices u1, u2 ∈ N(u)\{v} such that deg(u1) = ∆(G). It is easily seen that if at
least one of the vertices u1 and u2 belongs to V (T5,5,5), then ⟨G;B++

1+ , B+++
1 ,+B+

1+,
+B++

1 ⟩. We can
assume that u1, u2 ̸∈ V (T5,5,5). Then ⟨G;B++

1+ , B+++
1 ⟩. Since deg(u1) = ∆(G) ≥ 4, it follows that

there exists a neighbor u′ of u1 that is different from each of v, u, and u2. Then ⟨G;+B+
1+,

+B++
1 ⟩.

Assume that ∆(G) = 3. In view of the incompressibility of G and symmetry, we can assume
that x1y1 ∈ E. Let deg(z1) = 2; otherwise, ⟨G;B++

1+ , B+++
1 , +B+

1+,
+B++

1 ⟩. Let us shrink the
triangle (v, x1, y1) to the vertex v∗ to obtain the graph G∗. It is clear that χ′(G) = 3 ⇔ χ′(G∗) = 3.
If there exists at most one vertex of degree 3 among x2 and y2, then

χ′(G∗) ≤ 3 ⇔ χ′(G∗ \ {v∗}
)
≤ 3, with G∗ \ {v∗} ∼= G \ {v, x1, y1}.

Hence deg(x2) = deg(y2) = 3 and ⟨G;B++
1+ , B+++

1 ,+B+
1+,

+B++
1 ⟩. The proof of Lemma 4 is com-

plete. □

Lemma 5. For any H ∈ {B++
2 , B+

2+,
+B+

2 }, the EC problem is polynomially solvable for the
graphs in the class Frees({H}).

Proof. Let us show that the EC problem for the graphs in Frees({H}) is polynomially reducible
to the same problem in the class Frees({H,T7,7.7}). Hence it will follow from this and Lemma 2 that
the desired assertion is true. It suffices to consider incompressible graphs in Frees({H}) containing
the subgraph T7,7,7. Let G = (V,E) be such a graph.

Suppose that among x2, y2, and z2 there are at least two vertices of degree ≥ 3, say, x2 and y2.
If it is not true that

(x2v ∈ E ∨ x2y1 ∈ E ∨ x2z1 ∈ E) ∧ (y2v ∈ E ∨ y2x1 ∈ E ∨ y2z1 ∈ E),

then ⟨G;B++
2 , B+

2+,
+B+

2 ⟩. If this condition is satisfied, then only six cases are generated due to
symmetry,

x2z1 ∈ E, y2z1 ∈ E; x2v ∈ E, y2x1 ∈ E; x2v ∈ E, y2z1 ∈ E;

x2y1 ∈ E, y2z1 ∈ E; x2v ∈ E, y2v ∈ E; x2y1 ∈ E, y2x1 ∈ E.

In the first four cases, ⟨G;B++
2 , B+

2+,
+B+

2 ⟩.
In the fifth case, ⟨G;B++

2 ,+B+
2 ⟩. We can assume that deg(x2) = deg(y2) = 3. Since G is

incompressible, we have (deg(x1) = ∆(G)) ∨ (deg(x3) = ∆(G)), where ∆(G) ≥ 5. If deg(x1) ≥ 5,
then there exists a neighbor x1 not belonging to {v, x2, x3, y1}, and ⟨G;B+

2+⟩. If deg(x3) ≥ 5, then
there exists a neighbor x3 not belonging to {v, x1, x2, x4}, and ⟨G;B+

2+⟩.
In the sixth case, we can assume that deg(x2) = deg(y2) = 3. Then either deg(x3) ≥ 3

ordeg(x4)≥3 owing to the incompressibility ofG; in each of these cases, we have ⟨G;B++
2 , B+

2+,
+B+

2 ⟩.
Assume that among x2, y2 and z2 there exists at most one vertex of degree ≥ 3. Then, owing to
the incompressibility of G, we can assume that deg(x2) = deg(y2) = 2 and

deg(x1) = deg(y1) = deg(x3) = deg(y3) = ∆(G).

We can assume that none of the vertices x1 and y1 is adjacent to any of the vertices V (T7,7,7) \
{v, x1, y1, z1, z2, x3, y3, z3, x7, y7, z7}; otherwise, ⟨G;B++

2 and B+
2+,

+B+
2 ⟩ . If x1x3 ∈ E or y1y3 ∈ E,

then ⟨G;B++
2 , B+

2+,
+B+

2 ⟩. If x1y3 ∈ E or x1z3 ∈ E, then ⟨G;B++
2 ,+B+

2 ⟩. At the same time, ⟨G;B+
2+⟩

in these cases; to prove this, it suffices to recall that deg(x3) ≥ 3. Thus, we can assume that none
of the vertices x1, y1 is adjacent to any of the vertices x3, y3, z3.

If x1y1 ∈ E or x1z1 ∈ E, then ⟨G;B++
2 , B+

2+,
+B+

2 ⟩, and if vx3 ∈ E, then deg(x3) ≥ 4. Further,
we assume that x1y1 ̸∈ E and x1z1 ̸∈ E. In a similar way, using the vertex y3, one can show
that y1z1 ̸∈ E. In view of the incompressibility of G, we have

∃x′
1 ∈ N(x1) \ {v, x2} ∃ y′

1 ∈ N(y1) \ {v, y2} : deg(x′
1) = deg(y′

1) = ∆(G).
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Additionally, assume that x′
1 ̸= y′

1. Then ⟨G;B++
2 ,+B+

2 ⟩. If x′
1z1 ∈ E or y′

1z1 ∈ E, then ⟨G;B+
2+⟩.

Moreover, let none of the vertices x′
1 and y′

1 be adjacent to z1. If x′
1z2 ∈ E, then ⟨G;B+

2+⟩. The case
of x′

1y2 ∈ E is impossible, because y2 is adjacent only to y1 and y3, which cannot coincide with x′
1.

If x′
1z2 ̸∈ E, then ⟨G;B+

2+⟩; to prove this, it suffices to use N [x′
1] ∪ {v, y1, y2, z1, z2} and also note

that ∆(G) ≥ 4 if x′
1v ∈ E.

Additionally, assume that x′
1 = y′

1. Recall that deg(x3) = ∆(G) ≥ 3. Then ⟨G;B++
2 , B+

2+,
+B+

2 ⟩,
a fact that can readily be verified by separately considering three cases in which x3 is adjacent to
at least one of the vertices v and x′

1 and in which it is not adjacent to any of them. The proof of
Lemma 5 is complete. □

Lemma 6. The EC problem is polynomially solvable for graphs in the class Frees({B+
3 }).

Proof. Let us show that the EC problem for graphs in Frees({B+
3 }) is polynomially reducible

to the same problem in the class Frees({B+
3 , T7,7,7}). It follows from this and Lemma 2 that the

desired assertion holds. It suffices to consider incompressible graphs in Frees({B+
3 }) containing the

subgraph T7,7,7. Let G = (V,E) be such a graph.
Assume that among x3, y3, z3 there are at least two vertices of degree ≥ 3, say, x3 and y3. If it

is not true that

(x3v ∈ E ∨ x3x1 ∈ E ∨ x3y1 ∈ E ∨ x3z1 ∈ E) ∧ (y3v ∈ E ∨ y3y1 ∈ E ∨ y3x1 ∈ E ∨ y3z1 ∈ E),

then ⟨G;B+
3 ⟩. If this condition is true, then exactly 10 pairwise nonequivalent cases are generated

owing to symmetry. It is easily seen that one has ⟨G;B+
3 ⟩ in all of these cases except for x3v ∈ E,

y3v ∈ E; x3x1 ∈ E, y3x1 ∈ E; and x3z1 ∈ E, y3z1 ∈ E.
Consider the case in which x3v ∈ E and y3v ∈ E. We can assume that deg(x3) = deg(y3) = 3;

otherwise, ⟨G;B+
3 ⟩. Since G is incompressible, we have deg(x2) = ∆(G) ∨ deg(x4) = ∆(G), where

∆(G) ≥ 5. If deg(x2) ≥ 5, then there exists a neighbor of x2 not belonging to {v, x1, x3, y2, y4},
and ⟨G;B+

3 ⟩. If deg(x4) ≥ 5, then there exists a neighbor of x4 not belonging to {v, x3, x5, y2, y4},
and ⟨G;B+

3 ⟩.
Consider the case in which x3x1 ∈ E and y3x1 ∈ E. It is clear that

y2v ̸∈ E, y2y4 ̸∈ E, y4x2 ̸∈ E, y4x4 ̸∈ E;

otherwise, ⟨G;B+
3 ⟩. We can assume that deg(x3) = deg(y3) = 3; otherwise, ⟨G;B+

3 ⟩. Since G is
incompressible, we have (deg(y2) = ∆(G))∨(deg(y4) = ∆(G)), where ∆(G) ≥ 4. If deg(y2) = ∆(G),
then there exists a neighbor of y2 not belonging to {y1, y3, x1, x2}, x4y2 ̸∈ E, and ⟨G;B+

3 ⟩. If
deg(y4) = ∆(G), then there exists a neighbor of y4 not belonging to {y3, y5, x1}, and ⟨G;B+

3 ⟩.
Consider the case in which x3z1 ∈ E and y3z1 ∈ E. It is clear that

y2v ̸∈ E, y2xi ̸∈ E, i = 1, . . . , 5, y2y4 ̸∈ E, y2y5 ̸∈ E,

y2zj, j = 2, . . . , 5, y4xi ̸∈ E, i = 1, . . . , 5, y4y1 ̸∈ E, y4zj, j = 2, . . . , 5;

otherwise, ⟨G;B+
3 ⟩. Since G is incompressible, we have (deg(y2) = ∆(G)) ∨ (deg(y4) = ∆(G)),

where ∆(G) ≥ 4. If deg(y2) = ∆(G), then there exists a neighbor of y2 not belonging to V (T5,5,5),
and ⟨G;B+

3 ⟩. If deg(y4) = ∆(G), then there exists a neighbor of y4 not belonging to V (T5,5,5),
and ⟨G;B+

3 ⟩.
Assume that among x3, y3, and z3 there is at most one vertex of degree ≥ 3. Then, owing to the

incompressibility of G, we can assume that deg(x3) = deg(y3) = 2, deg(x′
2) = deg(y′

2) = ∆(G), and

deg(x2) = deg(y2) = deg(x4) = deg(y4) = ∆(G),

N(x2) ⊇ {x′
2, x1, x3}, N(y2) ⊇ {y′

2, y1, y3}.

It is clear that none of the vertices x2, y2, and z2 is adjacent to any vertex in

{x4, x5, x6, y4, y5, y6, z3, z4, z5, z6};

otherwise, ⟨G;B+
3 ⟩. The same argument shows that x4z3 ̸∈ E and y4z3 ̸∈ E.
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Additionally, assume that x2y2 ∈ E. Then x4y1 ∈ E, y4x1 ∈ E, and ∆(G) = 3; other-
wise, ⟨G;B+

3 ⟩, but then ⟨G;B+
3 ⟩.

Additionally, assume that x2y1 ∈ E. Then x4y1 ∈ E, x4v ∈ E, and ∆(G) = 4; other-
wise, ⟨G;B+

3 ⟩. The vertex x2 has a neighbor distinct from each of the vertices y1, v, x1, x3, x4, x5, x6;
i.e., ⟨G;B+

3 ⟩.
In addition, assume that x2v ∈ E. It is clear that x4x1 ̸∈ E; otherwise, ⟨G;B+

3 ⟩. Then
x4y1 ∈ E, x4z1 ∈ E; otherwise, ⟨G;B+

3 ⟩. Thus, ⟨G;B+
3 ⟩.

Thus, x2 is not adjacent to any of the vertices in V (T7,7,7)\{x1, x3, x7, y7, z1, z2, z7}. By symmetry,
we can assume that y2 is not adjacent to any of the vertices in V (T7,7,7)\{y1, y3, x7, y7, z1, z2, z7}. It
is easily seen that each of the sets N(x′

2)\{v, x2} and N(y′
2)\{v, y2} contains at least two elements.

Additionally, assume that x′
2 ̸= y′

2. Consider the edges issuing from x′
2. In each of the

cases x′
2x1 ∈ E, x′

2y1 ∈ E, and x′
2z1 ∈ E, it readily turns out that ⟨G;B+

3 ⟩. The same is true
in the case where there are none of the specified edges in G. In this case, we use only the relation
deg(x′

2) = ∆(G), but we do not use the relation deg(y′
2) = ∆(G).

Additionally, assume that x′
2 = y′

2. Then ∆(G) = 3, because for ∆(G) ≥ 4 one can take x′
2

and y′
2 so that x′

2 ̸= y′
2 and deg(x′

2) = ∆(G). Since the graph G is incompressible, it follows that
deg(x1) = deg(y1) = 3. We can assume that x1x

′
2 ̸∈ E. Then x1y1 ∈ E; otherwise, ⟨G;B+

3 ⟩. Since
deg(x4) = 3, we have ⟨G;B+

3 ⟩. The proof of Lemma 6 is complete. □

Lemma 7. The EC problem is polynomially solvable for graphs in the class Frees({B4}).
Proof. Let us show that the EC problem for graphs in Frees({B4}) is polynomially reducible

to the same problem in the class Frees({B4, T7,7.7}). It follows from this and Lemma 2 that the
assertion of the present lemma is true. It suffices to consider incompressible graphs in Frees({B4})
containing the subgraph T7,7,7. Let G = (V,E) be such a graph.

Assume that among x4, y4, and z4 there exist at least two vertices of degree ≥ 3, say, x4 and y4.
Then ⟨G;B4⟩ unless

(x4v ∈ E ∨ x4x1 ∈ E ∨ x4x2 ∈ E ∨ x4y1 ∈ E ∨ x4z1 ∈ E)

∧ (y4v ∈ E ∨ y4y1 ∈ E ∨ y4y2 ∈ E ∨ y4x1 ∈ E ∨ y4z1 ∈ E).

If the last condition holds, then exactly 15 pairwise nonequivalent cases are generated, and in all of
them except for

y4v ∈ E, x4v ∈ E; y4y1 ∈ E, x4v ∈ E; y4x1 ∈ E, x4x1 ∈ E;

y4x1 ∈ E, x4x2 ∈ E; x4z1 ∈ E, y4z1 ∈ E,

one has ⟨G;B4⟩.
Assume additionally that y4v ∈ E and x4v ∈ E. Then either deg(x4) = 3 or deg(x4) = 4

and x4x1 ∈ E, otherwise ⟨G;B4⟩. If deg(x4) = 4 and x4x1 ∈ E, then deg(x1) < ∆(G). Indeed, we
have ∆(G) ≥ 5, and if deg(x1) = ∆(G), then ⟨G;B4⟩, so that (deg(x3) = ∆(G))∨(deg(x5) = ∆(G))
owing to the incompressibility of G, regardless of the degree of the vertex x4. Owing to symmetry,
we have (deg(y3) = ∆(G)) ∨ (deg(y5) = ∆(G)).

Assume additionally that x4z1 ∈ E and y4z1 ∈ E. This case can be treated in exactly the same
way as the preceding one.

Assume additionally that y4y1 ∈ E and x4v ∈ E. Then either deg(y4) = 3 or deg(y4) = 4
and y4v ∈ E; otherwise, ⟨G;B4⟩. By analogy with the reasoning in the first case, we can show that
(deg(y3) = ∆(G))∨(deg(y5) = ∆(G)). Since ⟨G;B4⟩ does not hold, it follows that either deg(x4) = 3
or deg(x4) = 4 and x4y1 ∈ E. If deg(x4) = 3, then (deg(x3) = ∆(G)) ∨ (deg(x5) = ∆(G)). If
deg(x4) = 4 and x4y1 ∈ E, then deg(y4) = 3, otherwise, ⟨G;B4⟩. Then deg(y3) = ∆(G) ≥ 4 owing
to the incompressibility of G; therefore, ⟨G;B4⟩.

Assume additionally that y4x1 ∈ E and x4x1 ∈ E. Then either deg(y4) = 3 or deg(y4) = 4
and y4v ∈ E; otherwise, ⟨G;B4⟩. If deg(y4) = 4 and y4v ∈ E, then this variant has been analyzed
in the third case. If deg(y4) = 3, then (deg(y3) = ∆(G)) ∨ (deg(y5) = ∆(G)) owing to the
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incompressibility of G. Since ⟨G;B4⟩ is not satisfied, we have either deg(x4) = 3 or deg(x4) = 4
and x4x2 ∈ E. If deg(x4) = 4 and x4x2 ∈ E, then ⟨G;B4⟩, because deg(y3) = ∆(G). If deg(x4) = 3,
then (deg(x3) = ∆(G)) ∨ (deg(x5) = ∆(G)) owing to the incompressibility of G.

Assume additionally that y4x1 ∈ E and x4x2 ∈ E. Then either deg(x4) = 3 or deg(x4) = 4
and x4x1 ∈ E; otherwise, ⟨G;B4⟩. The case of deg(x4) = 4 and x4x1 ∈ E has been analyzed
in the previous case. If deg(x4) = 3, then (deg(x3) = ∆(G)) ∨ (deg(x5) = ∆(G)) owing to the
incompressibility of G. Since ⟨G;B4⟩ is not satisfied, we have deg(y4) = 3. Since the graph G is
incompressible, we have (deg(y3) = ∆(G)) ∨ (deg(y5) = ∆(G)).

Thus, we obtain(
deg(x3) = ∆(G) ∨ deg(x5) = ∆(G)

)
∧
(
deg(y3) = ∆(G) ∨ deg(y5) = ∆(G)

)
.

Then it is easily seen that the subgraph B4 arises in each of the four possible cases.
Suppose that among x4, y4, and z4 there is at most one vertex of degree ≥ 3. Then, by the

incompressibility of G, we can assume that deg(x4) = deg(y4) = 2, deg(x′
3) = deg(y′

3) = ∆(G), and

deg(x3) = deg(y3) = deg(x5) = deg(y5) = ∆(G),

N(x3) ⊇ {x′
3, x2, x4}, N(y3) ⊇ {y′

3, y2, y4}.

It is clear that x3 is not adjacent to any of the vertices in the set

V (T7,7,7) \ {v, x1, y1, z1, x2, y2, z2, x4, x7, y7, z7};

otherwise, ⟨G;B4⟩. In a similar way, the vertex y3 is not adjacent to any of the vertices in the
set V (T7,7,7) \ {v, x1, y1, z1, x2, y2, z2, y4, x7, y7, z7}.

Additionally, assume that x3y2 ∈ E. Then either x2y5 ∈ E and ∆(G) = 3 or y5x2 ∈ E, y5y2 ∈ E,
and ∆(G) = 4; otherwise, ⟨G;B4⟩. In the first case, x5y6 ∈ E is obligatory; otherwise, ⟨G;B4⟩.
Then ⟨G;B4⟩. In the second case, x5x2 ∈ E and x5y6 ∈ E, and so ⟨G;B4⟩. Thus x3y2 ̸∈ E. In
a similar way, we can prove that y3x2 ̸∈ E.

Additionally, assume that x3y1 ∈ E. Then y5v ̸∈ E; otherwise, ⟨G;B4⟩. By the same argu-
ment, y5y2 ∈ E and ∆(G) = 3 or y5y2 ∈ E, y5y1 ∈ E, and ∆(G) = 4. In both cases, x5x1 ∈ E
or x5z1 ∈ E; otherwise, ⟨G;B4⟩, but then ⟨G;B4⟩. In a similar way, one can prove that y3x1 ̸∈ E.

Additionally, assume that x3v ∈ E. There exists a neighbor of y3 that is distinct from y1 and v
at the same time. Then ⟨G;B4⟩. In what follows, we assume everywhere that x3v ̸∈ E and y3v ̸∈ E.

Additionally, assume that x′
3 = y′

3. It is clear that x′
3 ̸= z1. Then x3x1 ̸∈ E and y3y1 ̸∈ E;

otherwise, ⟨G;B4⟩. Each element of the set N(x′
3) \ {x3, y3} must belong to the set {v, x1, y1, z1};

otherwise, ⟨G;B4⟩. It is true that ∆(G) = 3; otherwise, deg(x3) = deg(y3) ≥ 4 and ⟨G;B4⟩.
Thus, N(x′

3) = {x3, y3, t}, where t ∈ {x1, y1, z1} and ⟨G;B4⟩; this can be verified by using one of
the sets N [x5] or N [y5].

Additionally, assume that x′
3 ̸= y′

3. It is easy to see that each of the sets N(x′
3) \ {v, x3}

and N(y′
3) \ {v, y3} contains at least two elements. If it is not true that

(x′
3x1 ∈ E ∨ x′

3x2 ∈ E ∨ x′
3y1 ∈ E ∨ x′

3z1 ∈ E) ∧ (y′
3y1 ∈ E ∨ y′

3y2 ∈ E ∨ y′
3x1 ∈ E ∨ y′

3z1 ∈ E),

then ⟨G;B4⟩. If this condition is true, then exactly 9 nonequivalent cases are generated with ⟨G;B4⟩
in all of them. The proof of Lemma 7 is complete. □

5. POLYNOMIAL SOLVABILITY OF THE EC PROBLEM FOR SOME CLASSES
OF GRAPHS OF MAXIMUM DEGREE NOT LESS THAN 4

Lemma 8. For any H ∈ {B∗
1+P2,

+B∗
1 , B

+∗
1 }, the EC problem is polynomially solvable on the set{

G | G ∈ Frees
(
{H}

)
, ∆(G) ≥ 4

}
of graphs.
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Proof.
I. Let H = B∗

1 + P2. Lemma 8 in [6] proves that the EC problem is polynomially solvable
on the set {

G | G ∈ Frees
(
{B∗

1}
)
, ∆(G) ≥ 4

}
.

This, together with Lemma 3, implies the desired assertion for H = B∗
1 + P2.

II. Let H = +B∗
1 . It suffices to consider incompressible graphs in{

G | G ∈ Frees
(
{H}

)
, ∆(G) ≥ 4

}
containing the subgraph B∗

1 . Let G be a graph in which there exists a subgraph B∗
1 , where x, y, z

are vertices of degree 3 of this subgraph B∗
1 , xy, yz ∈ E(B∗

1), and x′, x′′, y′, z′, z′′ are the leaves
of B∗

1 adjacent to x, y, z, respectively. Since ¬⟨G;+B∗
1⟩, it follows that each neighbor of the ver-

tices x′, x′′, z′, z′′ belongs to V (B∗
1). The same argument shows that N(u) ⊆ V (B∗

1), and so there are
no paths (y, y1, y2) and (y, y′

1, y
′
2) in which {y1, y2}∩{y′

1, y
′
2} = ∅ and y1, y2, y

′
1, y

′
2 ̸∈ V (+B∗

1)\{y, y′};
otherwise y would be a hinge of the graph G.

Let us show that the graph G \ V (B∗
1) is empty. Assume it contains an edge e. Since y is not a

hinge of G, in G there exists a simple path(
v1 ∈ {x, z}, v2, . . . , vk, vk+1

)
, vkvk+1 = e,

not passing through y. Up to renaming, we can assume that any such path passes through y′;
otherwise, ⟨G;+B∗

1⟩. If vi = y′, i ̸= 2, then vi−1, vi, vi+1, vi+2, together with x, x′, x′′, y, z, generate
a supergraph of the graph +B∗

1 , and so v2 = y′. Then N(y) = {v2, x, z} or N(y) = {v2, v3, x, z};
otherwise, ⟨G;+B∗

1⟩. Thus, either v2 or v3 is a hinge of G.
We see that G \ V (B∗

1) is empty. Obviously, the clique-width of any empty graph is equal to 1
and the clique-width of any graph does not exceed the number of its vertices. Then

cw(G) ≤ cw
(
G \ V (B∗

1)
)
+ |B∗

1 |+ 1 ≤ 10.

This and Lemma 1 imply that the desired assertion holds for H = +B∗
1 .

III. Let H = B+∗
1 . By Lemma 7, it suffices to consider incompressible graphs in{

G | G ∈ Frees
(
{H}

)
, ∆(G) ≥ 4

}
containing the subgraph B4. Let G = (V,E) be a graph that contains a subgraph B4,
where (x, y1, y2, y3, z) is the central 4-path of this subgraph B4 and x1, x2 and z1, z2 are the leaves
of B4 adjacent to x and z, respectively. It is clear that

y1y3 ̸∈ E, y1z1 ̸∈ E, y1z2 ̸∈ E,

y3x1 ̸∈ E, y3x2 ̸∈ E, y2x ̸∈ E, y2z ̸∈ E;

otherwise, ⟨G;B+∗
1 ⟩. In view of the incompressibility of the graph G, either y2 has a neighbor y′

2 of
degree ∆(G) distinct from y1 and y3 or deg(y1) = deg(y3) = ∆(G).

Consider the first case. The situation with y′
2 ̸∈ {x1, x2, z1, z2} is impossible, otherwise ⟨G;B+∗

1 ⟩,
which can be verified by considering all possible values for |N(y′

2) ∩ {y1, y3}| ∈ {0, 1, 2}.
If y′

2 ∈ {x1, x2, z1, z2}, then, owing to symmetry, we can assume that y′
2 = x1. Then x1x2 ̸∈ E,

x1z1 ̸∈ E, and x1z2 ̸∈ E; otherwise, ⟨G;B+∗
1 ⟩. By the same reasoning, x1 has no neighbor out-

side V (B4), and so x1y1 ∈ E, x1z ∈ E, and ∆(G) = 4. It is obvious that deg(y3) = 2; oth-
erwise, ⟨G;B+∗

1 ⟩, but then deg(y2) = 4, because G is incompressible. Since ¬⟨G;B+∗
1 ⟩, we see

that y2 is adjacent to at least one of the vertices z1 and z2, say, to z1. By the same reasoning
and since ∆(G) = 4, we have deg(y1) = 3. Then deg(z1) = 4 owing to the incompressibility of G.
Since ¬⟨G;B+∗

1 ⟩, we have z1z2 ̸∈ E and z1x2 ̸∈ E; i.e., z1 has a neighbor outside V (B4), but
then ⟨G;B+∗

1 ⟩.
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Consider the second case. Assume that there exists a vertex y′
1 ̸∈ V (B4) adjacent to y1.

Then y2x1 ̸∈ E, y2x2 ̸∈ E, and y3x ̸∈ E; otherwise, ⟨G;B+∗
1 ⟩. Since deg(y3) ≥ 4, it follows

that ⟨G;B+∗
1 ⟩. Thus, N(y1)\V (B4) = N(y3)\V (B4) = ∅. Therefore, we can assume that y1x1 ∈ E

and y3z1 ∈ E. Then y1z ̸∈ E and y3x ̸∈ E; otherwise, ⟨G;B+∗
1 ⟩. Thus, y1x2 ∈ E, y3z2 ∈ E,

and ∆(G) = 4. Since ¬⟨G;B+∗
1 ⟩, we have deg(y2) = 2. By the same reasoning, none of the ver-

tices x, x1, x2, z, z1, z2 has a neighbor outside V (B4). Thus, V = V (B4). The proof of the lemma is
complete. □

Lemma 9. The EC problem is polynomially solvable on the set of graphs{
G | G ∈ Frees

(
{B∗

1+}
)
, ∆(G) ≥ 4

}
.

Proof. Let us show that the EC problem for the indicated class of graphs is polynomially
reducible to the same problem in the class Frees({B∗

1+, T7,7,7}). It follows from this and Lemma 2
that the desired assertion is true. It suffices to consider incompressible graphs in{

G | G ∈ Frees
(
{B∗

1+}
)
, ∆(G) ≥ 4

}
containing the subgraph T7,7,7. Let G = (V,E) be such a graph. The vertex x1 is adjacent to none
of the vertices y3–y6 and z3–z6, the vertex y1 is adjacent to none of the vertices x3–x6 and z3–z6,
and the vertex z1 is adjacent to none of the vertices x3–x6 and y3–y6; otherwise, ⟨G;B∗

1+⟩. In what
follows, two important cases, which we denote by I and II, will be considered. The set {x1, y1, z1}
will be denoted by V1, the set {x2, y2, z2}, by V2, and the set V (T7,7,7) \ {x7, y7, z7}, by Ṽ .

I. Assume that(
(x1y2 ∈ E ∨ x1z2 ∈ E) ∧ deg(x1) ≥ 4

)
∨
(
(y1x2 ∈ E ∨ y1z2 ∈ E) ∧ deg(y1) ≥ 4

)
∨
(
(z1x2 ∈ E ∨ z1y2 ∈ E) ∧ deg(z1) ≥ 4

)
.

Without loss of generality, we can assume that x1y2 ∈ E and deg(x1) ≥ 4. Then

x1xi ̸∈ E, i = 3, . . . , 6, x1z1 ̸∈ E, x1z2 ̸∈ E;

otherwise, ⟨G;B∗
1+⟩. By the same reasoning, either deg(v) = 3, or vy2 ∈ E and

deg(v) = deg(x1) = deg(y2) = 4,

or x1y1 ∈ E, vx2 ∈ E, and

deg(v) = deg(x1) = 4, deg(y2) = 3.

I.a. Additionally, assume that deg(v) = 3. Since ⟨G;B∗
1+⟩ is not satisfied, we have deg(y2) = 3 or

x1y1 ∈ E, x2y2 ∈ E, deg(x1) = deg(y2) = 4.

I.a.1. Let deg(y2) = 3. Since the graph G is incompressible, it follows that deg(y1) ≥ 4.
Since ¬⟨G;B∗

1+⟩, we have x1y1 ∈ E. By the same reasoning (due to the incompressibility of G
and the fact that ¬⟨G;B∗

1+⟩), we conclude that deg(x1) = deg(y1) = 4 = ∆(G). Thus, N(y1) =
{v, x1, y2, y

′
1}, deg(y′

1) = 4 owing to the incompressibility of G. Since ¬⟨G;B∗
1+⟩, we have y′

1x2 ̸∈ E,
and so y′

1 = x2; otherwise, N(y′
1) \ {x2, y1, y3} contains at least two elements and ⟨G;B∗

1+⟩. Since G
is incompressible, deg(x2) = 4, which implies that ⟨G;B∗

1+⟩.
I.a.2. Now let x1y1 ∈ E, x2y2 ∈ E, and deg(x1) = deg(y2) = 4. Since ¬⟨G;B∗

1+⟩, we conclude
that either x2y1 ∈ E, deg(x2) = deg(y1) = 4, or deg(x2) = 3. In the first case, by the same reasoning
and in view of the incompressibility of G, we have deg(x3) = deg(y3) = 2, ∆(G) = 4. An arbitrary
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edge 4-coloring c of the graph G \ {v, x1, x2, y1, y2} extends to an edge 4-coloring of G. To this end,
regardless of the colors of the edges x3x4 and y3y4 and the edges incident to z1, we can set, up to
a permutation of colors,

c(vx1) = c(x2x3) = 1,

c(vy1) = c(y2y3) = 2.

Let
c(x1x2) = 2, c(y1y2) = 1,

c(x1y1) = c(x2y2) = 3, c(x1y2) = c(x2y1) = 4.

Then we obtain an edge 4-coloring of G, and so

χ′(G) = 4 ⇔ χ′(G \ {v, x1, x2, y1, y2}
)
≤ 4.

In the second case, owing to the incompressibility of G and the fact that ⟨G;B∗
1+⟩, we have

deg(y1) = 4, y1y3 ∈ E, and ∆(G) = 4. Since ⟨G;B∗
1+⟩, we conclude that

deg(y3) = 3, deg(x3) = deg(y4) = 2.

An arbitrary edge 4-coloring c of the graph G \ {v, x1, x2, y1, y2, y3} extends to an edge 4-coloring
of G. To this end, regardless of the colors of the edges x3x4 and y4y5 and the edges incident to z1,
we can set, up to a permutation of colors,

c(vx1) = 1, c(x2x3) = c(vy1) = c(y3y4) = 2.

Let
c(x2y2) = c(y1y3) = 1, c(x1y2) = 2,

c(x1x2) = c(y1y2) = 3, c(x1y1) = c(y2y3) = 4.

Then we obtain an edge 4-coloring of G; therefore,

χ′(G) = 4 ⇔ χ′(G \ {v, x1, x2, y1, y2, y3}
)
≤ 4.

I.b. In addition, assume that

vy2 ∈ E, deg(v) = deg(x1) = deg(y2) = 4.

Since ¬⟨G;B∗
1+⟩, we have x1y1 ∈ E. By the same reasoning, for each vertex u ∈ {x2, y3, z1} either

deg(u) = 2 or uy1 ∈ E and deg(y1) ≤ 4. If y1 is adjacent to the vertex u ̸∈ V (T7,7,7), then deg(u) = 2
owing to the incompressibility of G and the fact that ⟨G;B∗

1+⟩. It can readily be seen that

χ′(G) = 4 ⇔ χ′(G \ {v, x1, y1, y2}
)
≤ 4.

I.c. Additionally, assume that

x1y1 ∈ E, vx2 ∈ E, deg(v) = deg(x1) = 4, deg(y2) = 3.

Since G is incompressible and ¬⟨G;B∗
1+⟩, we have(

y1x2 ∈ E, ∆(G) = 4
)
∨
(
y1z1 ∈ E, deg(y1) = 4, deg(z1) = deg(x2) = 3, ∆(G) = 4

)
.

In the first case, we have deg(x3) = deg(y3) = deg(z2) = 2, because ¬⟨G;B∗
1+⟩. It can readily be

seen that
χ′(G) = 4 ⇔ χ′(G \ {v, x1, x2, y1, y2}

)
≤ 4.

In the second case, we have deg(x3) = deg(y3) = deg(z3) = 2, because ¬⟨G;B∗
1+⟩. It can readily be

seen that
χ′(G) = 4 ⇔ χ′(G \ {v, x1, x2, y1, y2, z1}

)
≤ 4.

The analysis of case I is complete.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 16 No. 2 2022



SOME CASES OF POLYNOMIAL SOLVABILITY 287

II. Assume that(
(x1y1 ∈ E ∨ x1z1 ∈ E) ∧ deg(x1) ≥ 4

)
∨
(
(y1x1 ∈ E ∨ y1z1 ∈ E) ∧ deg(y1) ≥ 4

)
∨
(
(z1x1 ∈ E ∨ z1y1 ∈ E) ∧ deg(z1) ≥ 4

)
.

Without loss of generality, we can assume that x1y1 ∈ E, deg(x1) ≥ 4, and case I does not occur.
Since ¬⟨G;B∗

1+⟩, it follows that the vertex v is not adjacent to any of the vertices in Ṽ \ (V1 ∪ V2).
If z1y1 ∈ E, then x1z1 ∈ E, because ¬⟨G;B∗

1+⟩. If z1x1 ∈ E, then, owing to the incompressibility
of G, at least one of the vertices v, y1, z1 has degree at least 4. If deg(y1) ≥ 4 or deg(z1) ≥ 4,
then y1z1 ∈ E, because ¬⟨G;B∗

1+⟩. If deg(y1) = deg(z1) = 3, then vu ∈ E and deg(u) = ∆(G).
If u ̸∈ Ṽ , then u is adjacent to at most one element in V2, and if ux1 ∈ E, then ∆(G) ≥ 5.
Then N(u) \ {v} contains two elements not simultaneously belonging to Ṽ , and ⟨G;B∗

1+⟩. This is
true if u ∈ V2, because deg(u) ≥ 4.

Assume that z1x1 ∈ E and z1y1 ∈ E. Since ¬⟨G;B∗
1+⟩, we have ∆(G) = 4. Since ¬⟨G;B∗

1+⟩, for
each vertex u ∈ {x2, y2, z2} we have either deg(u) = 2 or uv ∈ E and deg(u) = 3. If uv ∈ E, u ̸∈ Ṽ ,
then deg(u) = 2, because G is incompressible and ¬⟨G;B∗

1+⟩. It is easily seen that

χ′(G) = 4 ⇔ χ′(G \ (V1 ∪ {v})
)
≤ 4.

Further, assume that z1x1 ̸∈ E and z1y1 ̸∈ E. Since ¬⟨G;B∗
1+⟩, this yields vy2 ̸∈ E and vz2 ̸∈ E.

By N we denote the set of vertices that do not belong to V1 ∪ V2 ∪ {v} and are adjacent to at
least one of the vertices v, y1, and z1. Since ¬⟨G;B∗

1+⟩, each element of N is adjacent to x1. By
the same reasoning, N contains at most one element.

In view of the incompressibility of the graph G and the fact that ¬⟨G;B∗
1+⟩, the equality N = ∅

is possible only if(
deg(y1) = deg(z1) = 3, deg(v) = deg(x1) = 4, vx2 ∈ E, z1x2 ∈ E, x1x3 ∈ E

)
∨
(
deg(y1) = 3, deg(z1) = 2, deg(v) = deg(x1) = deg(x2) = 4, vx2 ∈ E, x2y2 ∈ E, x1x3 ∈ E

)
.

In the first case, since ¬⟨G;B∗
1+⟩ and deg(x3) = 3, we have deg(x4) = 2, and so G is not incom-

pressible. In the second case, since ¬⟨G;B∗
1+⟩, we have deg(y3) = 3 and deg(y4) = 2, and so G is

not incompressible.
Assume additionally that N = {u′}. Since ¬⟨G;B∗

1+⟩, we have

deg(z1) ≤ 3,

deg(y1) ≤ 4.

Since v contains at least two vertices of degree ∆(G) (because G is incompressible), by the same
reasoning we have(

deg(v) = deg(x1) = 5, vx2 ∈ E, ∃u′′ ̸∈ Ṽ : u′′v ∈ E, u′′x1 ∈ E
)

∨
(
deg(v) ≤ 4, deg(x1) = 4 = ∆(G), vx2 ̸∈ E

)
.

The first case is impossible. Indeed, deg(x1) = 4, because ¬⟨G;B∗
1+⟩, and so deg(x2) = 5 owing

to the incompressibility of G. Then ⟨G;B∗
1+⟩.

Assume that deg(v) ≤ 4, deg(x1) = 4 = ∆(G), and vx2 ̸∈ E. Since G is incompressible, it follows
that each of the vertices v, y1, y2, z1 is adjacent to at least two vertices of degree 4, and so vu′ ∈ E,
y1u

′ ∈ E, and x1u
′ ∈ E, because ¬⟨G;B∗

1+⟩. By the same reasoning, for each vertex u ∈ {x2, y2, z1}
either deg(u) = 2 or uu′ ∈ E and deg(u) = 3, and if u is adjacent to w ̸∈ V1 ∪ {v, x2, y2},
then deg(w) ≤ 1. It is easily seen that

χ′(G) = 4 ⇔ χ′
(
G \

(
V1 ∪ {v, u′}

))
≤ 4.
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Consider the case in which vu′ ∈ E and y1u
′ ̸∈ E. Then deg(y1) = 3, because ¬⟨G;B∗

1+⟩.
Since G is incompressible, we have deg(u′) = 4. Then ⟨G;B∗

1+⟩ in all cases except for u′z1 ∈ E
and u′x2 ∈ E. If u′z1 ∈ E and u′x2 ∈ E, then deg(x2) = 3 and deg(x3) = 2, because ¬⟨G;B∗

1+⟩,
and so G is not incompressible.

Consider the case in which vu′ ̸∈ E and y1u
′ ∈ E. Then deg(v) = 3. Since G is incompressible,

we have deg(u′) = 4. Then ⟨G;B∗
1+⟩ in all cases except for u′x2 ∈ E and u′y2 ∈ E. Since ¬⟨G;B∗

1+⟩,
we have deg(x2) = 3 and deg(x3) = 2, and therefore, G is not incompressible.

The analysis of case II is complete.

In what follows, we assume that options I and II are not realized. Since the graph G is incom-
pressible, it follows that the set N(v) contains at least two vertices v1 and v2 of degree ∆(G). It is
clear that |{v1, v2} ∩ V1| ≤ 1; otherwise, ⟨G;B∗

1+⟩.
Assume that there exists a vertex vi ̸∈ Ṽ , say, v1, adjacent to at least one of the vertices of the

set V1, say, x1. Then v2 ̸∈ {y1, z1}; otherwise, ⟨G;B∗
1+⟩.

First, consider the case in which v1x2 ∈ E and v1x3 ∈ E. It is easily seen that ⟨G;B∗
1+⟩

if (v2 ̸= x1) ∨ (∆(G) ≥ 5). If v2 = x1 and ∆(G) = 4, then x1x3 ∈ E and either deg(x2) = 3
or x2x4 ∈ E. In the first case,

χ′(G) = 4 ⇔ χ′(G \ {v1, x1, x2}
)
≤ 4.

In the second case, since ¬⟨G;B∗
1+⟩, we have either deg(y1) = deg(z1) = 2 or deg(y1) = deg(z1) = 3

and x1y1 ∈ E. The second case is impossible, because then deg(y2) = 4 owing to the incompress-
ibility of G, and so ⟨G;B∗

1+⟩. Using the incompressibility of G and the fact that ¬⟨G;B∗
1+⟩, one can

readily verify that
χ′(G) = 4 ⇔ χ′(G \ {v1, x1, x2, x3}

)
≤ 4

except for the case in which there is a copy of the subgraph G[{v, v1, x1, x2, x3, x4}] intersecting
with it at the vertex x4. Let us shrink these two subgraphs to a vertex and denote the resulting
graph by G∗. It is easily seen that G∗ ∈ Frees({B∗

1+}) and χ′(G) = 4 ⇔ χ′(G∗) = 4.
Assume that at least one of the edges vx2 and vx3 does not belong to E. Since ¬⟨G;B∗

1+⟩,
if ∆(G) ≥ 5, then v1 is adjacent to every vertex in V1, and v2 ̸∈ Ṽ . Then v2 has no neighbor in V1;
otherwise, ⟨G;B∗

1+⟩. Recalling that deg(v2) ≥ 5, we conclude that ⟨G;B∗
1+⟩.

Additionally, assume that ∆(G) = 4. Since ¬⟨G;B∗
1+⟩, we conclude that v1y1 ̸∈ E, v1z1 ̸∈ E,

and v1 has a neighbor in {x2, x3}, so v2 = x1. Using the incompressibility of G and the fact
that ⟨G;B∗

1+⟩, one can readily see that(
v1x2 ∈ E, ∃ v′, v′′ ̸∈ Ṽ : v1v

′ ∈ E, v2v
′′ ∈ E

)
∨
(
v1x2 ∈ E, ∃ v′ ̸∈ Ṽ : v1v

′ ∈ E, v2v
′ ∈ E

)
.

In the first case, by virtue of ¬⟨G;B∗
1+⟩ we have

deg(y1) = deg(z1) = 2, deg(x2) = 3, max
(
deg(v′),deg(v′′)

)
≤ 1;

therefore,
χ′(G) = 4 ⇔ χ′(G \ {v1, x1, x2}

)
≤ 4.

Consider the second case. Since ¬⟨G;B∗
1+⟩, we have N(v′) ⊆ {v1, v2, x2, x3}. By the same reasoning,(

deg(v′) = 2 ⇒ deg(x2) = 3
)
∧
(
v′x2 ∈ E, v′x3 ̸∈ E ⇒ deg(v′) = 3

)
∧
(
v′x2 ̸∈ E, v′x3 ∈ E ⇒ deg(x2) = deg(v′) = 3

)
.

In view of the incompressibility of G and the fact that ⟨G;B∗
1+⟩, we obtain deg(y1) = deg(z1) = 2.

One can readily verify that

χ′(G) = 4 ⇔ χ′(G \ {v1, v2, v′′, x2}
)
≤ 4,
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where v′′ = v′ or v′′ = x3. Thus, we can assume that if vi ̸∈ Ṽ , then vi is not adjacent to any of the
elements in V1.

Since ¬⟨G;B∗
1+⟩, we have |N(vi) ∩ V2| ≤ 1 if vi ̸∈ Ṽ , and if vi ∈ Ṽ , then vi is not adjacent to

any vertex of branches T7,7,7 other than leaf ones. Therefore, among (x1, x2), (y1, y2), (z1, z2) there
exists a pair such that none of its elements is adjacent to v1 or v2. If (N(v1) ∪N(v2)) \ {v, v1, v2}
contains at least four vertices, then there exist two elements v′1, v

′
2 ∈ N(v1) \ {v, v2} such that

|N(v2) \ {v, v1, v′1, v′2}| ≥ 2. Hence ⟨G;B∗
1+⟩ holds for ∆(G) ≥ 5 except for the case in which

∆(G) = 5, v1v2 ∈ E, N(v1) \ {v2} = N(v2) \ {v1}.

In this case, since ⟨G;B∗
1+⟩, no vertex in N(v1) \ {v, v2} has a neighbor outside N(v1). Then v is

a hinge of the graph G.
Assume that ∆(G) = 4. Then either exactly one of the vertices v1, v2 does not belong to Ṽ and

the other one belongs to V1, or they both belong to Ṽ . In the first case, we can assume that v1 ̸∈ Ṽ ,
v2 = x1, v1x1 ̸∈ E, and N(v1) \ {v} = N(v2) \ {v}. Then N(v2)∩ Ṽ = {v, x2}; otherwise, ⟨G;B∗

1+⟩.
By the same reasoning, the set N(v2) \ {v} is independent. Since G is incompressible, it follows
that either deg(x2) = 4 or the degree of at least one of the vertices in N(v2) \ Ṽ is equal to 4, but
then ⟨G;B∗

1+⟩.
Consider the second case. Since ¬⟨G;B∗

1+⟩, it follows that the vertices v1, v2 simultaneously
belong to exactly one of the sets {xi}6i=1, {yi}6i=1, and {zi}6i=1, say, the first of them. Then we can
assume that v1 = x1, because ∆(G) = 4. Let us show that deg(y1) = deg(z1) = 2. Consider only
the vertex y1. Since ¬⟨G;B∗

1+⟩, we have deg(y1) ≤ 3, y1z2 ̸∈ E, and y1x2 ̸∈ E, and so deg(y1) = 3
only if y1z1 ∈ E. Then deg(z1) = 3. Consequently, deg(y2) = 4 owing to the incompressibility of G.
Then ⟨G;B∗

1+⟩.
Since ¬⟨G;B∗

1+⟩, we have x1x5 ̸∈ E and x1x6 ̸∈ E. By the same reasoning, if v1v2 ̸∈ E,
then N(v1)\{v} = N(v2)\{v}. Then v2 ̸∈ {x4, x5, x6}, and so v2 = x3, ∃ v′ ̸∈ Ṽ : v′x1 ∈ E, v′x3 ∈ E.
Since ¬⟨G;B∗

1+⟩, we have(
deg(v′) = 3, v′x5 ∈ E, x1x4 ∈ E, deg(x4) = 3

)
∨
(
deg(v′) = 2, deg(x4) = 3

)
.

Since G is incompressible, it follows that deg(x2) = 4, but then ⟨G;B∗
1+⟩.

In addition, assume that v1v2 ∈ E. Then v2 = xi, where i ∈ {2, 3, 4}, and v1 and v2 have
a common neighbor besides v. Since ¬⟨G;B∗

1+⟩, we have i ̸= 4, and x1x4 ∈ E for i = 3. If i = 3,
then

N(x2) ⊆ {x1, x3, x4, x5},
N(x4) ⊆ {x1, x2, x3, x5},
x2x5 ∈ E ⇒ deg(x5) = 3,

because ¬⟨G;B∗
1+⟩. It can readily be seen that

χ′(G) = 4 ⇔ χ′(G \ {v, x1, x2, x3, x4}
)
≤ 4 if x2x5 ̸∈ E,

χ′(G) = 4 ⇔ χ′(G \ {v, x1, x2, x3, x4, x5}
)
≤ 4 otherwise.

Let i = 2, and let v′ be an arbitrary common neighbor of the vertices v1 and v2 distinct from v.
It is clear that v′ ̸∈ Ṽ \ {x3, x4}. If v′ ̸∈ Ṽ , then either x1x3 ∈ E or N(x1) = {v, v′, v∗, x2},
where v∗ ̸∈ Ṽ . In the first case,

N(v′) ⊆ {x1, x2, x3, x4},
N(x3) ⊆ {x1, x2, v

′, x4},

because ¬⟨G;B∗
1+⟩. If at least one of the edges v′x3 and v′x4 does not belong to E, then

χ′(G) = 4 ⇔ χ′(G \ {v, v′, x1, x2, x3}
)
≤ 4.
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If v′x3 ∈ E and v′x4 ∈ E, then, owing to the incompressibility of G and the fact that ¬⟨G;B∗
1+⟩,

one can readily verify that

χ′(G) = 4 ⇔ χ′(G \ {v′, x1, x2, x3}
)
≤ 4

except for the case in which there exists a copy of the subgraph G[{v, v′, x1, x2, x3, x4}] meeting
it at the vertex x4. Let us shrink these two subgraphs to a vertex and denote the resulting graph
by G∗∗. It is easily seen that G∗∗ ∈ Frees({B∗

1+}) and

χ′(G) = 4 ⇔ χ′(G∗∗) = 4.

In the second case, we have ⟨G;B∗
1+⟩. Further, we assume that no common neighbor of v1 and v2

belongs to Ṽ .
If v′=x4, then x1x3∈E; otherwise, ⟨G;B∗

1+⟩. By the same reasoning, we have either deg(x3)=3
or x3x5 ∈ E. It is easily seen that in the first case we have

χ′(G) = 4 ⇔ χ′(G \ {v, x1, x2, x3, x4}
)
≤ 4.

In the second case, owing to the incompressibility of G and the fact that ¬⟨G;B∗
1+⟩, one can readily

verify that
χ′(G) = 4 ⇔ χ′(G \ {x1, x2, x3, x4}

)
≤ 4

except for the case in which there exists a copy of the subgraph G[{v, x1, x2, x3, x4, x5}] meeting
it at the vertex x5. Let us shrink these two subgraphs to a vertex and denote the resulting graph
by G∗∗∗. One can readily see that G∗∗∗ ∈ Frees({B∗

1+}) and

χ′(G) = 4 ⇔ χ′(G∗∗∗) = 4.

If v′ = x3, then either x1x4 ∈ E or there exists a vertex v′1 ̸∈ Ṽ adjacent to v1. In the first
case, v2x4 ∈ E is obligatory, as otherwise ⟨G;B∗

1+⟩ and we pass to the previous case v′ = x4 and
obtain the same two subcases as earlier. In the second case, N(v′1) ⊆ {x1, x4} is satisfied owing to
the incompressibility of G and the fact that ¬⟨G;B∗

1+⟩. Then ⟨G;B∗
1+⟩, which is easy to verify by

recalling that deg(x2) = 4. The proof of Lemma 9 is complete. □

6. THE MAIN RESULT

The following assertion is the main result of the present paper.

Theorem 1. Let F be an arbitrary 8-edge forest not belonging to the set{
B∗

1 + P2 +On | n ≥ 0
}
∪
{
+B∗

1 +On | n ≥ 0
}
∪
{
B+∗

1 +On | n ≥ 0
}
∪
{
B∗

1+ +On | n ≥ 0
}
.

Then the EC problem is polynomially solvable in the class Frees({F}). If the forest F belongs to
this set, then the EC problem is polynomially solvable in the class {G ∈ Frees({F}) | ∆(G) ≥ 4}.

Proof. If F ∈ T , then the EC problem is polynomially solvable in the class Frees({F}) by
Lemmas 1 and 2. If F ̸∈ T , then F = F ′ + On for some F ′ ∈ S and n, where the set S has been
defined in Sec. 1. Then the assertion of the theorem follows from Lemmas 3–9. □
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