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a b s t r a c t

The so-called ‘‘anemone’’ solar flares are an interesting type of the space plasma phenomena, where
multiple null points of the magnetic field are connected with each other and with the magnetic sources
by the separators, thereby producing the complex branching configurations. Here, using the methods
of dynamical systems and Morse–Smale theory, we derive a few universal topological relations
between the numbers of the null points and sources of various kinds with arbitrary arrangement
in the above-mentioned structures. Such relations can be a valuable tool both for a quantification
of the already-observed anemone flares and for a prediction of the new ones in complex magnetic
configurations.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The solar flares are among the most energetic phenomena in
he Solar System, substantially affecting our space environment.
hey are commonly assumed to be produced by the so-called
agnetic reconnection, when the magnetic field lines break and

hen merge with each other in a new configuration, while the
xcessive energy is released in the form of the heated plasmas
nd accelerated particles [1,2].
From the geometric point of view, the flares are usually formed

y the sets of magnetic arcades, rooted at the solar surface (or
he so-called photosphere) and extending up to the upper layers
the solar corona). These arcs can be immediately observed in
he hard ultraviolet and X-rays, while their footpoints are usually
bservable in the visible light as two approximately parallel
ibbons [3]. In some cases, the magnetic arcades can intersect
ach other, forming more complex spatial configurations [4], but
heir topology remains quite trivial.

On the other hand, a much more sophisticated topology can
e realized in the so-called anemone microflares, occurring in
he solar chromosphere (i.e., a bit above the photosphere). The
irst hints to this phenomenon were given by observations of
inode satellite [5]. Namely, a few diverging small-scale lumi-
ous ribbons were found in the base of such flares. Then, they

∗ Corresponding author at: Lomonosov Moscow State University (MSU),
ternberg Astronomical Institute (GAISh), 13 Universitetskii Prospekt, 119234
oscow, Russia.

E-mail addresses: zhuzhoma@mail.ru (E.V. Zhuzhoma),
edvedev-1942@mail.ru (V.S. Medvedev), dumin@yahoo.com (Y.V. Dumin),
omov-boris@mail.ru (B.V. Somov).
ttps://doi.org/10.1016/j.physd.2022.133320
167-2789/© 2022 Elsevier B.V. All rights reserved.
were qualitatively interpreted as footpoints of the magnetic field
lines experiencing the bifurcations (branching) at some height
in the course of magnetic reconnection (left panel in Fig. 1). A
decade later, such bifurcations became directly observable by the
New Solar Telescope in the Big Bear Solar Observatory (California,
USA) [6]; a particular example is presented in the middle panel of
Fig. 1. At last, the right panel of this figure illustrates a remarkable
similarity of such flares with the sea anemone, which are well
known in biology.

A theoretical interpretation of the above-mentioned
phenomenon requires a consideration of bifurcations of the solar
magnetic fields, for example, in the framework of the potential
field model formed by the effective point-like charges.

1.1. The concept of the effective magnetic charges

Since both the present paper and a number of previous studies
on the topology of solar magnetic fields were substantially based
on the idea of the effective magnetic charges, it is reasonable
to explain this concept in more detail. Strictly speaking, any
magnetic field is non-divergent (divB = 0). Therefore, its field
lines are closed, and there cannot exist any magnetic charges
(sources and sinks). However, it is often convenient to introduce
the ‘‘effective’’ magnetic charges in the sense illustrated in Fig. 2.

Namely, the electric currents j in the deep layers of the Sun
(where the collisional frequencies of both electrons and ions are
much greater than their gyrofrequencies, νe,i ≫ Ωe,i) form the
tubes of the concentrated magnetic flux. The open ends of such
tubes at the surface of photosphere, z = 0, serve as the sources

and sinks of the magnetic field in the upper layers of the Sun,
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Fig. 1. The hypothesized structure of magnetic field lines in the anemone flare [5] (left panel, reprinted with permission from the American Association for the
Advancement of Science ©2007) vs. the picture taken by the New Solar Telescope in the Big Bear Solar Observatory [6] (middle panel, reprinted with permission
from the American Astronomical Society ©2016), as well as an example of the biological anemone (right panel, courteously provided by G.A. Porfir’eva).
Fig. 2. Magnetic-field sources and sinks in the solar atmosphere, caused by the open ends of the magnetic-flux tubes under the photosphere (left panel), and their
formal reduction to the magnetic charges (positive and negative, respectively) in the plane z = 0 (right panel).
hich are collisionless, νe,i ≪ Ωe,i (left panel in Fig. 2). Moreover,
n certain circumstances, this magnetic field is approximately
urrent-free, i.e., potential (rotB = 0).
Next, one can consider only the upper semispace (z ≥ 0) and

ormally perform its mirror reflection with respect to the plane
= 0 (right panel in the same figure). As a result, we get a
ymmetric pattern of the magnetic-field lines, whose sources
nd sinks (the effective ‘‘magnetic charges’’) are located exactly
n the plane z = 0. Therefore, as was pictorially outlined in pa-
per [7], ‘‘magnetic field enters the corona from the interior of
the Sun through isolated magnetic features on the solar surface.
These features correspond to the tops of submerged magnetic
flux tubes, and coronal field lines often connect one flux tube to
another, defining a pattern of inter-linkage. Using a model field,
in which flux tubes are represented as point magnetic charges, it
is possible to quantify this inter-linkage.’’

The potential field generated by the set of charges (monopoles)
is similar to the electrostatic field, and it is quite convenient for
the subsequent mathematical analysis. Of course, some care must
be taken in the interpretation of the corresponding mathematical
results. For example, if one have found some number of peculiar-
ities of the field (e.g., null points) beyond the plane z = 0, then
only one half of them will have a real physical meaning (namely,
those located in the upper semispace). On the other hand, if such
peculiarities are localized exactly in the plane z = 0, then all of
hem should be treated as physically relevant.

.2. Review of the previous studies

While the term ‘‘topology of magnetic field’’ is widely em-
loyed in the literature on solar physics, there were actually a
ery few papers devoted to the rigorous topological analysis of
he respective magnetic configurations. They were usually based

n the computer simulations supplemented by some analytical

2

results from the algebraic topology. One of the first works of this
kind was paper [8], whose authors analyzed a few particular con-
figurations of the magnetic field produced by the four magnetic
charges (two positive and two negative) with equal magnitudes. A
much more general analysis of approximately the same situation
was performed in paper [9], where four magnetic charges were
allowed to be arbitrary located in the plane of the photosphere.
Next, employing some theorems of differential geometry and
algebraic topology, the authors established the general criteria
for the existence of null points of various types (both in and
out of the plane of charges) depending on the localization of the
charges. The most interesting finding was that there are such
positions of the magnetic charges when a tiny displacement of
one of them results in the emergence of a new null point and its
fast motion over a considerable distance high above the plane of
the sources. This fact inspired a new mechanism of the magnetic
reconnection, the so-called ‘‘topological trigger’’ [10]; examples
of its practical application to the particular flares can be found,
e.g., in paper [11].

Next, bifurcations of the null points in the systems formed
by three and four unbalanced irregularly-located charges were
analyzed in paper [12]. On the other hand, paper [13] dealt with a
highly-symmetric configuration: the numerous positive magnetic
charges (sources) were localized in the nodes of a hexagonal
network (mimicking the so-called supergranule convective cells)
and a single negative charge (sink) was placed in the center
of this structure. Then, the authors sought for the null points
both in and above the plane of the charges, as well as studied
their emergence and displacement depending on the magnitude
of the central sink and its shift from the center of symmetry.
A further discussion of both symmetric and irregular magnetic-
charge configurations with special emphasis on the emergence
of the ‘‘off-plane’’ null points was given in paper [14]. Review of
application of various topological methods in the solar physics

can be found in paper [15].



E.V. Zhuzhoma, V.S. Medvedev, Y.V. Dumin et al. Physica D 436 (2022) 133320

t
o
i
f
n
i
a

2

b
o
b
g
w

g
a
p

h
s

m

f

Fig. 3. Structure of the null point (a) and the heteroclinic separator (b).
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As follows from the above discussion, the previous works
reated either configurations with rather symmetric arrangement
r very small number of the magnetic charges. On the other hand,
n view of the recent interest to the anemone (branching) solar
lares, it would be important to get criteria for the emergence of
ull points when the magnetic charges are numerous and located
rregularly. So, it is the aim of the present paper to perform such
nalysis by using the Morse–Smale theory of vector fields.1

. Summary of the main results

The magnetic charge is called positive if the field flux through
an arbitrary small sphere covering the charge is positive. The
negative charge is defined by a similar way: the field flux through
an arbitrary small sphere covering such a charge is negative.

The group of charges C is called positively unbalanced if it can
e embedded into the ball B so that the magnetic field is directed
utwards at its boundary. The above-specified ball B = B(C) will
e called a source region of the group C. The negatively unbalanced
roup of charges is defined by a similar way, and it is associated
ith a sink region of the group.
The idealized magnetic charge corresponds to a point-like sin-

ularity in the vector field; the positive charge being considered
s a source and the negative charge as a sink of the field. The
oint p0 of the magnetic field B is called the null point if B(p0) = 0.

The eigenvalues λ1, λ2 and λ3 in the null point are typically
nonzero and satisfy the equality λ1 +λ2 +λ3 = 0, because ∇·B =

0. Consequently, from the viewpoint of the theory of dynamical
systems, the null point is a conservative saddle, possessing one
1D and one 2D separatrices; see Fig. 3(a).2 If the magnetic field
line on the 1D separatrix is directed from the null point, then all
field lines on the 2D separatrix surface are directed to the null
point; and vice versa.

The following two cases are possible for a typical null point p0
(up to redefinition of the eigenvalues):

(1) λ1 > 0, λ2, λ3 < 0;
(2) λ1 < 0, λ2, λ3 > 0.
In the first case, the null point p0 is called positive, because

λ1·λ2·λ3 > 0. From the viewpoint of the theory of dynamical
systems, the positive null point represents a saddle with Morse
index equal to 1 and topological index equal to −1. Such saddle
as a 1D unstable separatrix and a 2D stable separatrix. In the
econd case, the point p0 is called negative, because λ1·λ2·λ3 < 0.
Such null point is a saddle with Morse index equal to 2 and topo-
logical index equal to +1. This saddle has a 1D stable separatrix
and 2D unstable separatrix; see Fig. 3(a).

1 Yet another application of the Morse–Smale theory to the analysis of
agnetic fields in plasmas can be found in paper [16].
2 The 1D separatrix is sometimes called the spine; and 2D separatrix, the

an [1].
3

Following the standard terminology [1], the magnetic field line
connecting two null points will be called a separator. The separa-
tor is called heteroclinic if it represents a transversal intersection
f two separatrix surfaces; see Fig. 3(b). Topological structure of
he magnetic field is determined by the number and types of the
ull points, by the location of spines and fans with respect to
ach other, and by the lines of transversal intersection of the fan
urfaces, i.e., the heteroclinic separators. Later on, for simplicity,
separator means the heteroclinic separator.

heorem 1. Let a positively unbalanced group C contain l ≥

2 positive charges (and arbitrary number of negative charges). Then
there exist at least l−1 negative null points in the source region B(C)
of this group. If the group C consists of l ≥ 2 positive charges and
there are exactly l−1 null points in B(C), then all these null points are
negative and there are no separators in B(C). Moreover, the magnetic
field in region B(C) possesses a uniquely defined, up to the topological
equivalence, structure.

The next consequences follow from this theorem.

Corollary 1. Let a negatively unbalanced group C contain k ≥

2 negative charges. Then there exist at least k − 1 positive null
oints in the sink region B(C) of this group. If the group C consists of
≥ 2 negative charges and there are exactly k−1 null points in B(C),
hen all these null points are positive and there are no separators
n B(C).

orollary 2. Let a positively unbalanced group C contain one
(dominant) positive charge and k ≥ 1 negative charges. Then there
exist at least k positive null points in the source region B(C) of this
group. If B(C) contains exactly k null points, then all these points are
positive and there are no separators in B(C). Moreover, the magnetic
field in region B(C) possesses a uniquely defined, up to the topological
equivalence, structure.

Corollary 3. Let a positively unbalanced group C contain l ≥ 2
positive and k ≥ 1 negative charges. Then there exist at least
l − 1 negative null points and at least k positive null points in the
source region B(C) of this group.

At the minimal numbers of both the positive and negative null
points (which are determined by Corollary 3), the separators can
be absent. Nevertheless, as follows from the subsequent theorem,
as soon as at least one ‘‘excessive’’ null point appears, at least
one separator is inevitably formed. The type of the excessive null
point is of no importance: it can be either positive or negative.
For the sake of definiteness, we shall consider the case when the
excessive point is negative.

Theorem 2. Let a positively unbalanced group C contain l ≥

2 positive and k ≥ 0 negative charges. If B(C) contains exactly
l negative null points, then there is at least one separator in B(C).
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The last theorem demonstrates a particular scenario of emer-
gence of a negative null point, when there is a family of separators
whose number is equal to the number of negative null points (and
it is equal also to the number of positive charges).

Theorem 3. Let a positively unbalanced group C contain l ≥ 2
positive charges and l − 1 negative null points, such that this group
is defined by the vector field F⃗0. Then, there is a continuous family of
vector fields F⃗t , 0 ≤ t ≤ 1, such that the vector field F⃗1 has l positive
harges, l separators, and one negative null point.

. Auxiliary information

Let f t be a flow induced by the vector field V on the 3D
phere S3. We shall assume that f t has no periodic trajectories.
et Fix (f t ) designate a set of equilibrium states of the flow f t .
or p ∈ Fix (f t ), let W s(p) be a set of trajectories approaching p
t infinitely increasing time.3 In particular, if p is a saddle, then
s(p) \ {p} is a stable separatrix of the saddle p. The set W s(p)

s called the stable manifold of the point p. Similarly, let W u(p)
enote a set of trajectories approaching p at infinitely decreasing
ime. In particular, if p is a saddle, then W u(p)\ {p} is an unstable
eparatrix of the saddle p. The set W u(p) is called the unstable
anifold of the point p. The flow f t is called the Morse–Smale

low if all its equilibrium states are hyperbolic, their stable and
nstable manifolds intersect each other transversally, and the
imit set for any trajectory belongs to Fix (f t ). The corresponding
ector field V is called the Morse–Smale vector field [17].
Let vsource denote the vector field in ball B3 directed outwards

t the ball boundary ∂B3
= S2 and possessing exactly one source

inside the ball. Let us assume that vsink = −vsource. Obviously, the
ector field vsink possesses exactly one sink inside the ball B3, and

vsink is directed inwards the ball B3 at the boundary S2.
Let B(C) be the source region of the group of charges C. Let

v(C) denote the magnetic field in B(C) created by the group C.
We remind that the vector field v(C) is directed outwards at the
boundary ∂B(C) of the ball B(C). If boundaries ∂B3

= S2 and ∂B(C)
of the balls B3 and B(C), respectively, are identical to each other,
then we get a 3D sphere S3. The field vsink near the boundary ∂B3

can be corrected so that the fields vsink and v(C) form a smooth
Morse–Smale vector field at S3, which will be denoted by V(C).
Obviously, a global topological structure of the field vsink can be
preserved after such transformation. Then the equilibrium states
of V(C) will represent a union of the equilibrium states for the
field v(C) and the sink field vsink. The vector field V(C) will be
called a continuation of the field v(C) by the group C to the 3D
sphere S3.

Lemma 1. Let a positively unbalanced group C contain N+ (re-
spectively, N−) positive (respectively, negative) charges and S+ (re-
spectively, S−) positive (respectively, negative) null points. Then the
following equality is satisfied:

1 + N−
− S+

+ S−
− N+

= 0. (1)

Proof. Let v(C) be the magnetic field in B(C) formed by the
group C and V(C) be a continuation of the field v(C) to the 3D
sphere S3. The charges and null points of the magnetic vector
field v(C) are the equilibrium states of the Morse–Smale vector
field V(C). We remind that V(C), as compared to v(C), has an
additional sink whose topological index is equal to unity.

3 From here on, the independent variable t will be called time, as it is
ommonly accepted in the theory of dynamical systems. However, it should
e kept in mind that from the physical point of view this is actually a variable
arametrizing the length of the magnetic field line.
 t

4

Morse index (dimensionality of the unstable manifold) of the
positive null point equals unity. Consequently, the topological in-
dex of such a point equals minus unity. Similarly, the topological
index of a negative null point equals unity, because its Morse in-
dex equals two. Morse index of a negative (respectively, positive)
charge equals zero (respectively, three). Therefore, the topological
index of a negative (respectively, positive) charge equals unity
(respectively, minus unity). As is known, Euler characteristic of
3D sphere equals zero. Using the Euler–Poincaré formula, which
states that a sum of topological indices of the equilibrium states
is equal to the Euler characteristic, we obtain the required result.
□

Corollary 4. Let the conditions of Lemma 1 be satisfied. If there are
no negative charges in the sink region (N−

= 0), then

S−
= (N+

− 1) + S+
≥ N+

− 1.

Let us introduce the partial order ≺ in the set of equilibrium
states Fix (f t ) of the flow f t . For p, q ∈ Fix (f t ), let us define
hat p ≺ q if W s(p) ∩ W u(q) ̸= ∅. It is convenient to present
he above order in the graph whose points are identified with
he equilibrium states Fix (f t ). The graph vertices corresponding
o p, q ∈ Fix (f t ) and related by the order p ≺ q are connected by
he arc directed from q to the point p. Such a directed graph Γ (f t )
s sometimes called Smale graph (or diagram).

Let us denote a union of all unstable 1D manifolds of the
addles and all sinks of the flow f t by A(f t ). It is known [18]
that A(f t ) is a connected 1D subgraph of the graph Γ (f t ), whose
ertices are identified with the respective saddles and sinks. In
his case, arcs of the subgraph correspond to the 1D unstable
eparatrices, and they are supplied with the directions from the
addles to sinks. Moreover, A(f t ) is the attracting set of the
low f t [18]. Similarly, let us denote a union of all stable 1D
eparatrices of the saddles and all sources by R(f t ). Then, R(f t ) is
connected oriented subgraph, which is a repelling set of the

low f t [18].
To describe a topological structure of the vector fields, we need

ome canonical fields. The vector field vsource will be called the
ource of type (1; 0). Let us consider the vector field vuns in the
all B3 directed outwards at the ball boundary ∂B3

= S2 and
ossessing l ≥ 2 sources α1, . . . , αl and l− 1 saddles σ1, . . . , σl−1
ith Morse index 2. Such vector field vuns will be called the source
f type (l; l–1). Structure of the vector field of type (2; 1) is shown
n Fig. 4(b). The vector field vsource can be treated as the source of
ype (1; 0), as illustrated in Fig. 4(a).

Let us assume that vsink = −vsource and vstab = −vuns. The
ector field vsink is directed inwards at the ball boundary ∂B3

=
2 and has one sink inside the ball B3. The vector field vstab is
irected inwards at the ball boundary ∂B3

= S2 and has l ≥

sinks ω1, . . . , ωl and l− 1 saddles with Morse index 1. Such
ector field vuns will be called the sink of type (l ; l –1). Without loss
f generality we can assume that the above-mentioned vector
ields are orthogonal to the boundary ∂B3

= S2 and are unitary
t this boundary.
If boundaries of two copies of the ball B3 are identified with

ach other, then we get a 3-sphere S3. If a source of the type (l ; l–
) is defined in one copy of the ball, and the field vsink is defined
n another copy of the ball, then we get a smooth vector field
n S3, which will be denoted by Vuns(l; l−1). In fact, the following
tatement follows from the works [18,19]:

roposition 1. Let the Morse–Smale vector field V be defined in
he 3D sphere S3 and its nonwandering set be composed of l ≥

sources, l − 1 saddles of Morse index 2 and one sink. Then V is

opologically equivalent to Vuns(l; l − 1).
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Fig. 4. Vector field vsource (a) and vector field vuns of type (2; 1) in the ball B3 (b).
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roof. Let f t denote the Morse–Smale flow generated by the
ector field V. Since the number of sources is greater than the
umber of saddles of Morse index 2 by unity, then the attrac-
ive set A(f t ) is a segment with sinks and saddles. Moreover,
he saddles and sinks occur alternatively, and the endpoints of
egment A(f t ) are the sources. Following Lemma 1.1 [19], the
set A(f t ) has a ball neighborhood that is the source of type (l; l−
). There is a sink beyond this neighborhood. This leads to the
equired result. □

. Proofs of the main results

roof of Theorem 1. Let v(C) be the magnetic field in B(C) formed
y the group C and V(C) be a continuation of the field v(C) to
he 3D sphere S3. Therefore, the field V(C) has an additional sink
s compared to v(C). We need to prove the inequality S−

≥

− 1, where S− is the number of negative null points of the
ector field V(C). Let us prove this inequality by the method of
athematical induction where the inductive step is done by the
umber l = N+ of the positive charges (which is equal to the
umber of sources of the field V(C)). We remind that V(C) is
he Morse–Smale vector field, which induces the Morse–Smale
low f t in S3.

Firstly, we show that there exists at least one negative null
oint for any l ≥ 2 (this will be simultaneously a proof of
he initial step at l = 2). Let A = A(f t ) be a union of all
inks and unstable (1D) separatrices of all the saddles of Morse
ndex 1. Let us assume that the above statement is false. Then the
omplement of A is a union of the nonintersecting unstable (3D)
anifolds of l ≥ 2 sources. Since a complement of the 1D graph A

s a connected set, we get a contradiction to the connectivity of
he set S3

\A.
Let us assume that the statement is proved for the number of

ources 2, . . . , l ≥ 2 and show that it will be true for l + 1 ≥ 3.
s follows from the previous discussion, there exists at least one
addle σ with Morse index 2. Two (1D) stable separatrices Seps1
nd Seps2 of the saddle σ belong to the unstable manifolds of
he sources α1 and α2, respectively. Let us consider two cases:
1) α1 ̸= α2 and (2) α1 = α2. In the first case, the set α1 ∪

eps1 ∪ σ ∪ Seps2 ∪ α2 = S is a repelling set. It follows from
1 ̸= α2 that this set S has a neighborhood homeomorphic to a
-ball, which looks like the source. Then the original flow can be
eplaced by the flow with one source instead of two sources α1,
2 and the saddle σ . The resulting flow satisfies the inductive
ssumption. Since this flow has exactly one source and one saddle
ess than before, we get the required estimate for the original
low. As follows from the above argumentation, if there exists a
addle with Morse index 2 for which case (1) is realized, then the
nequality S−

≥ l − 1 is proved.
In the second case, when α1 = α2, without loss of generality
e can believe that this case is realized for all the saddles with h

5

orse index 2. Then each such saddle is uniquely associated with
source, σ ↦→ α = α1 = α2. As a result, we get a stronger

nequality S−
≥ l.

Therefore, the inequality S−
≥ l − 1 is proved for any group

f charges containing l ≥ 2 positive charges. We note that if
here are no negative charges in the group, then N+

= l and
−

= 0, and consequently the inequality S−
≥ l − 1 follows

rom Corollary 4.
If S−

= l − 1, then formula (1) leads to S+
= 0, and

consequently all the null points are negative. Therefore, there are
no separators in B(C).

Uniqueness of the topological structure follows immediately
from Proposition 1. □

Proof of Theorem 2. Let v(C) be the vector field in B(C) formed
by the group C and V(C) be a continuation of the field v(C) to the
3D sphere S3. It is specified that N+

= l, S−
= l and N−

= 0. Then
formula (1) leads to S+

= 1. Let σ0 denote the single saddle with
topological index minus one.

Let f t be the Morse–Smale flow generated by the vector
field V(C) in the 3D sphere S3. We consider the connected 1D
graph R(f t ) composed of all 1D stable manifolds of the saddles
and all sources of the flow f t . Let us remind that R(f t ) is a
repelling set of the flow f t .

Proposition 2. The graph R(f t ) has the neighborhood U(R) pos-
sessing the following properties:

• the boundary ∂U(R) of the neighborhood U(R) is transversal
to the flow f t , and trajectories of the flow leave U(R) with
increasing time;

• the neighborhood U(R) is homeomorphic to a solid torus (con-
sequently, the boundary ∂U(R) is homeomorphic to 2D torus);

• there exists the saddle σ ∈ U(R) (the negative null point)
whose 2D unstable separatrix W u(σ ) intersects the torus ∂U(R)
along a closed curve homotopic to the null meridian of the
torus ∂U(R).

roof of Proposition 2. According to our conditions, vertices of
he graph R(f t ) are composed of l saddle and l source points; so
hat exactly two arcs enter the each saddle point, and at least
ne arc leaves the each source point. Then R(f t ) contains the
imple cycle C of type (2; 3), which is supplemented by some
probably, zero) number of segments; each of these segments
ontains the equal numbers of source and saddle points (which
qual the number of arcs in the segment). The cycle C has a
eighborhood that is homeomorphic to a solid torus; and the
rajectories leave it with increasing time, because C possesses the
ype (2; 3). Without loss of generality we can believe that there
s no sink in this neighborhood (otherwise, the neighborhood can
e decreased). Each of the attached segments has a neighborhood

omeomorphic to a ball, and the trajectories leave this ball with
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ncreasing time. Consequently, there exist the required neighbor-
ood U(R) without a sink. Since C contains at least one saddle,
ts 2D unstable separatrix must intersect ∂U(R) along a closed
urve homeomorphic to meridian of the torus. So, Proposition 2
s proved. ♦

Note that the graph A(f t ), which is an attracting set of the
low f t , represents a simple cycle composed of the sink ω0,
addle σ0 and two its 1D unstable separatrices. Consequently,
(f t ) has the neighborhood U(A) homeomorphic to a solid torus,

so that its boundary ∂U(A) is transversal to the flow f t , and the
trajectories enter U(A) with increasing time. For the sufficiently
small neighborhood U(A), a 2D stable separatrix of the saddle σ0
intersects the 2D torus ∂U(A) along a closed simple curve homo-
topic to a meridian of the torus ∂U(A). Let this curve be denoted
by µ0.

Without loss of generality we can believe that the neighbor-
hoods U(R) and U(A) do not intersect each other. Since their
union contains all equilibrium states of the flow f t , any positive
semitrajectory with the initial point at ∂U(R) must intersect the
torus ∂U(A). Consequently, the sphere S3 can be presented as two
solid tori U(R) and U(A) where their boundaries ∂U(R) and ∂U(A)
are matched to each other. Let ϑ : ∂U(A) → ∂U(R) be such
homeomorphism that S3

= U(A)
⋃

ϑU(R). As is known, a gluing
of two solid tori results in a 3-sphere only when a meridian in
one boundary torus is matched to the parallel (which may be
rotated a few times along the meridian) in another boundary
torus. Consequently, the image of curve µ0 with respect to ϑ

is a closed curve, which intersects any closed curve at ∂U(R)
homotopic to the null meridian of the torus ∂U(R). Consequently,
there exists at least one separator. □

The proof of Proposition 2 immediately leads to the following
statement, which will be used later.

Proposition 3. Let the premises of Theorem 2 be satisfied, and let
f t be the Morse–Smale flow generated by the vector field V(C) in the
3D sphere S3, which is a continuation of the magnetic field in B(C).
Let us assume that the graph A(f t ) is a simple closed curve. Then
there exit at least l separators in B(C).

Proof. In designations of Proposition 2 we get that the unstable
2D separatrix of each saddle from ∂U(R) intersects ∂U(R) along a
closed curve homotopic to null meridian of the torus ∂U(R). Since
∂U(R) contains l saddles, there exist at least l separators. ♦

Proof of Theorem 3. For the sake of simplicity, we construct the
required family for l = 2. As will be seen from our discussion,
such family can be constructed with an arbitrary number l ≥ 2
of the positive charges.

We consider the Euclidean space R3 endowed with the cylin-
drical coordinates (ϱ; ϕ; z) and Cartesian coordinates (x, y, z). Let
6

U1 be the neighborhood of the origin (0, 0, 0) defined by |x| < 0.9,
|y| < 0.9, |z| < 1, and U the neighborhood defined by |x| < 1

2 ,
y| < 1

2 , |z| < 1
2 . Outside of U1, the vector field F⃗0 is described by

he following system:

ϱ̇ = ϱ · [ϱ − 1 + 4Ψ (ϕ)] , (2)
˙ = − sin(2ϕ), (3)
ż = z, (4)

where

Ψ (ϕ) = sin2
(

ϕ −
π
2

2

)
sin2

(
ϕ − π

2

)
sin2

(
ϕ −

3π
2

2

)
.

The vector field F⃗0 can be extended in the neighborhood U so
that F⃗0 is described by the following system:{ ẋ = 1,

ẏ = −y,
ż = z.

ote that div F⃗0|U ≡ 0.
All equilibrium states of F⃗0 are in the plane z = 0, which is a

epeller for the vector field defined by this system. Since the set
f equations can be split into the first two Eqs. (2), (3) and the
hird equation (4), it is sufficient to consider a phase portrait in
he plane z = 0. The equilibrium states in this plane can be only
t the rays ϕ = 0, ϕ =

π
2 , ϕ = π , and ϕ =

3π
2 .

Then, Eq. (2) takes the form:

ϱ̇ =

{
ϱ2 at ϕ = 0, ϱ ̸= 0,
ϱ (ϱ − 1) at ϕ ∈ {

π
2 , π, 3π

2 }, ϱ ̸= 0.

onsequently, there are three equilibrium states: O2(1; π
2 ) is a

ource, O3(1; π ) is a saddle, and O4(1; 3π
2 ) is a source; see Fig. 5(a).

The saddle O3(1; π ) in space has the Morse index 2. The calcula-
ions show that div F⃗0(O3) = 0.

Now, starting with F⃗0, we shall construct the family of vector
fields F⃗t keeping F⃗t = F⃗0 outside of U1 and deforming F⃗0 near the
rigin (0, 0, 0) in Cartesian coordinates (x, y, z). First, the family

F⃗ν , 0 ≤ ν ≤ 1, described by the system

ẋ = (ν − 1)2 + ν2x2,
ẏ = −y,
ż = z(1 − 2νx)

oves F⃗0 into the vector field F⃗ν=1 defined by the system

ẋ = x2,
ẏ = −y,
ż = z(1 − 2x).

asy calculations show that div F⃗ν ≡ 0 for any 0 ≤ ν ≤ 1. So, the
addle–node O (0; 0) in the origin of coordinates is added to the
0
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revious equilibrium states O2(0; 1), O3(−1; 0), and O4(0; −1);
ee Fig. 5(b). It is convenient to denote F⃗ν=1 by F⃗0 again.
At last, let us consider the family F⃗µ, 0 ≤ µ ≤

1
3 , of vector

ields defined by the system:

ẋ = −µx + x2,
ẏ = −y,
ż = z(1 + µ − 2x).

Again, it is easy to see that div F⃗µ ≡ 0 for any 0 ≤ µ ≤
1
3 .

onsequently, the saddle–node O0(0; 0) in the plane (x; y) decays
into the sink O0(0; 0) and saddle O1( 13 ; 0); see Fig. 5(c). Therefore,
wo separators are formed. □

. Discussion and conclusions

1. Using the Morse–Smale theory, we derived a set of con-
straints on the number of the magnetic-field sources (the
effective ‘‘magnetic charges’’) and the null points of various
types (positive and negative), which should be a valuable
tool for analyzing the structure of complex magnetic fields,
particularly, in the solar anemone flares. On the one hand,
the formulas presented in Sections 2–4 are less powerful
than the ones derived in the old paper [9], because they are
based on the purely topological consideration and, there-
fore, do not specify any relations between the positions
of the magnetic charges and null points. On the other
hand, these formulas are more general than the previously-
known ones, because they are applicable to the arbitrary
number of the charges. In particular, we present configu-
rations of the charges and null points of a given type such
that no separators exist. (This does not mean that the given
type of the group forbids the existence of separators.)

2. An important prerequisite for application of the Morse–
Smale inequalities is the requirement that the group of the
magnetic charges is positively (or negatively) unbalanced,
as defined in Section 2. Of course, this narrows the scope
of applicability of the above-mentioned inequalities to the
particular configurations of solar magnetic fields. However,
as was demonstrated in the recent observational work [20],
the anemone microflares often develop in the regions with
unbalanced magnetic polarity. So, the applicability of the
Morse–Smale constraints to these cases is well justified.

3. At last, attention should be paid to the correct physical
interpretation of our mathematical constraints. Namely, as
follows from the discussion in Section 1.1, if S±

in is the
number of ‘‘physical’’ null points in the plane of magnetic
charges and S±

out is their number out of this plane, then
S±

= S±

in + 2S±

out. On the other hand, all magnetic charges
should be taken with the coefficient of unity, because in all
physically-relevant situations they must be localized in the
same plane.
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