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Abstract
Let f t be a flow satisfying Smale’s Axiom A (in short, A-flow) on a closed
orientable three-manifold M3, and Ω a two-dimensional basic set of f t. First,
we prove that Ω is either an expanding attractor or contracting repeller. Next,
one considers an A-flow f t with a two-dimensional non-mixing attractor Λa.
We construct a casing M(Λa) of Λa that is a special compactification of the
basin of Λa by a collection of circles L(Λa) = {l1, . . . , lk} such that M(Λa)
is a closed three-manifold and L(Λa) is a fibre link in M(Λa). In addition, f t

is extended on M(Λa) to a nonsingular structurally stable flow with the non-
wandering set consisting of the attractor Λa and the repelling periodic trajecto-
ries l1, . . . , lk. We show that if a closed orientable three-manifold M3 has a fibred
link L = {l1, . . . , lk} then M3 admits an A-flow f t with the non-wandering set
containing a two-dimensional non-mixing attractor and the repelling isolated
periodic trajectories l1, . . . , lk. This allows us to prove that any closed ori-
entable n-manifold, n � 3, admits an A-flow with a two-dimensional attractor.
We prove that the pair (M(Λa); L(Λa)) consisting of the casing M(Λa) and the
corresponding fibre link L(Λa) is an invariant of conjugacy of the restriction
f t|Ws(Λa) of the flow f t on the basin of the attractor Λa.
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Introduction

Dynamical systems satisfying Axiom A (in short, A-systems) were introduced by Smale
[43]. By definition, the non-wandering set of A-system is the topological closure of periodic
orbits and is endowed with a hyperbolic structure (see basic notation of dynamical systems
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in the books [4, 24, 39] and surveys [16, 43]). According Robinson [38] and Mañé [25],
the set of A-systems contains all structurally stable systems including Anosov systems and
Morse–Smale systems. Later on, we consider A-flows that are A-systems with continuous
time.

Due to Smale’s spectral decomposition theorem, the non-wandering set of any A-system is a
disjoint union of closed, invariant, and topologically transitive sets called basic sets [37, 39, 43].
A basic set is called trivial if it is either an isolated singularity or an isolated periodic trajec-
tory. Otherwise, a basic set is nontrivial. Any nontrivial basic set of A-flow has the topological
dimension no less than one, and a supporting manifold admitting a nontrivial basic set has
the dimension no less than three. Zeeman [47] proved that any n-manifold, n � 3, supporting
nonsingular flows supports an A-flow with a one-dimensional nontrivial basic set. Bowen [7]
gave a complete characterization of nontrivial one-dimensional basic sets showing that up to
homeomorphism they are suspensions of basic subshifts of finite type. Pugh and Shub [36] con-
sidered the problem of realization for subshifts of finite type as a one-dimensional basic set in a
three-sphere. Franks [11] proved that suspended subshifts of finite type can be realized as a one-
dimensional basic set of a structurally stable nonsingular flow on some three-manifold. Note
that a nontrivial one-dimensional basic set is of saddle type while one-dimensional attractors
and repellers on a three-manifold are always trivial.

It is natural to consider the existence and properties of two-dimensional (automatically
non-trivial) basic sets beginning with closed three-manifolds M3. First, we prove that a two-
dimensional basic set on M3 is either an attractor or repeller, see lemma 1. Moreover, two-
dimensional attractors and repellers are exactly expanding attractors and contracting repellers
respectively introduced by Williams [46], see lemma 2. The first example of A-flow that is a
nontransitive Anosov flow was constructed by Franks and Williams [12]. This nontransitive
Anosov flow has the spectral decomposition consisting of one two-dimensional expanding
attractor and one two-dimensional contracting repeller. The both basic sets are non-mixing.
Recall that a flow gt on a topological manifold M is called mixing if given any open subsets U,
V ⊂ M there is t0 ∈ R such that U ∩ gt(V) �= ∅ for all t � t0 where gt(V) is the t-time shift of
V along the trajectories of the flow gt. Following Bowen [8], we say that a basic set Ω of an
A-flow f t is mixing if the restriction f t|Ω is a mixing flow.

The simplest example of non-mixing two-dimensional attractor on a closed three-manifold
can be constructed as follows. Let A : T2 → T2 be an Anosov diffeomorphism of two-torus
T2, and f : T2 → T2 a DA-diffeomorphism constructed by Smale’s surgery of the diffeo-
morphism A [39, 43]. We know that the non-wandering set of f consists of an orientable
one-dimensional expanding attractor Λ1 and isolated source. Then the dynamical suspension
sust( f ) over f is the A-flow such that the non-wandering set of sust( f ) consists of the two-
dimensional orientable non-mixing expanding attractor arising from Λ1 and isolated repelling
periodic trajectory arising from the source.

For definiteness, we will consider two-dimensional basic sets that are attractors. Our main
attention concerns to an embedding of two-dimensional non-mixing attractors and its basins
(stable manifolds) in supporting manifolds M3. We prove that A-flows with two-dimensional
attractors exist on every closed orientable n-manifold, n � 3. We also study the conjugacy
problem of restrictions on basins for two-dimensional non-mixing attractors. Let us formulate
the main results.

Let f t be an A-flow on a closed orientable three-manifold M3 and Λa a two-dimensional
non-mixing attractor of f t. The stable manifold (in short, basin) Ws(Λa) of Λa is an open
subset of M3 consisting of the trajectories whose ω-limit sets belong to Λa. First, we construct
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a casing of Λa that is a special compactification of Ws(Λa) by a collection of circles that form
a fibred link (see section 1 for a precise definition).

Theorem 1. Let f t be an A-flow on an orientable closed three-manifold M3 such that the
non-wandering set NW(f t) contains a two-dimensional non-mixing attractor Λa. Then there
is a compactification M(Λa) of the basin Ws(Λa) by the family of circles l1, . . . , lk such that

• M(Λa) is a closed orientable three-manifold;
• The restriction f t|Ws(Λa) is extended continuously to the structurally stable nonsingular

flow f̃ t on M(Λa) with the non-wandering set NW( f̃ t) = Λa∪k
i=1li where l1, . . . , lk are the

repelling isolated periodic trajectories of f̃ t;
• The family L = {l1, . . . , lk} ⊂ M(Λa) is a fibred link in M(Λa).

We see that the flow f̃ t on M(Λa) is a structurally stable nonsingular flow of attrac-
tor–repeller type with the nontrivial attractor Λa and the trivial global repeller ∪k

i=1li.

Remark. It follows from the proof of theorem 1 that there is a compactification W(Λa) which
is a fibred (closed) three-manifold.

Let us illustrate this result. Consider a DA-diffeomorphism f : T2 → T2 obtained from the

Anosov diffeomorphism

(
2 1
1 1

)
mod 1 : T2 → T2 by Smale’s surgery near the fixed point

(0; 0). The suspension sus( f ) is the A-flow on the mapping torus M f = T
2 × [0; 1]/(x; 1)

∼ ( f (x); 0). The non-wandering set of sus( f ) consists of a periodic trajectory l0 and two-
dimensional attractor Λa. Note that M f = l0 ∪ Ws(Λa), and l0 is not a fibred knot in M f .
But there is a compactification M(Λa) = l ∪ Ws(Λa) of Ws(Λa) by a closed curve l such that
M(Λa) = S3 and l is the figure eight-knot [10].

The manifold M(Λa) satisfying theorem 1 is called a casing of the attractor Λa. We denote
the corresponding fibred link L = {l1, . . . , lk} by L(Λa). The second result of the paper, in a
sense, is reversal to the first one.

Theorem 2. Let {l1, . . . , lk} ⊂ M3 be a fibred link in a closed orientable three-manifold
M3. Then there is a nonsingular A-flow f t on M3 such that the non-wandering set NW(f t) con-
tains a two-dimensional non-mixing attractor and the repelling isolated periodic trajectories
l1, . . . , lk.

Applying Alexander’s statement on fibred links [1], one gets the following result.

Corollary 1. Given any closed orientable three-manifold M3, there is a nonsingular A-flow
f t on M3 such that the non-wandering set NW(f t) contains a two-dimensional attractor.

This corollary was proved by another method in [27]. This assertion for the dimension n = 3
implies the following statement for n � 4.

Theorem 3. Given any closed orientable n-manifold Mn, n � 4, there is an A-flow f t on Mn

such that the non-wandering set NW(f t) contains a two-dimensional attractor.

Note that a casing of two-dimensional attractor is not unique. Denote by F(Λa) the set of
casings of Λa satisfying the conditions of theorem 1.

Theorem 4. LetΛa be a two-dimensional non-mixing attractor of an A-flow f t on orientable
closed three-manifold M3 and M(Λa) = Ws(Λa)∪k

i=1li ∈ F(Λa) a casing of Λa with the fibred
link L = {l1, . . . , lk}. Then any other casing from F(Λa) can be obtained by a surgery along
the link L = {l1, . . . , lk}.
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Note that there are infinitely many casings M(Λa) with M(Λa)\L(Λa) endowed with a
hyperbolic structure [44].

Fibred links and casings of attractors allow to consider classification problems. Solving clas-
sification problems for flows, one considers mainly two relations, a conjugacy and a topological
equivalence. Recall that two flows f t

1, f t
2 on a manifold M are conjugate provided there exists a

homeomorphismψ : M → M such that the mappings f t
1, f t

2 are conjugate for any t ∈ R. Here,
f t

i means the t-time shift along the trajectories of the flow f t
i, i = 1, 2. One says that flows f t

1,
f t

2 are (topologically) equivalent provided there exists a homeomorphism ψ : M → M taking
the trajectories of one flow to the trajectories of the other flow. A non-mixing property depends
on speeds along the trajectories of a flow, and this property can be changed by a deformation
of speeds. Therefore, it is natural to consider the conjugacy studying the classification problem
in the frame of the class of non-mixing attractors.

Let (M(Λa); L(Λa)) be a pair consisting of the casing M(Λa) of the attractor Λa and the
corresponding fibred link L(Λa). We will say that the pairs (M(Λ1); L(Λ1)), (M(Λ2); L(Λ2)) are
homeomorphic if there is a homeomorphism M(Λ1) → M(Λ2) taking the fibred link L(Λ1) to
the fibred link L(Λ2). The following result says that a pair is the invariant of conjugacy for the
restriction of A-flow on the basin of two-dimensional non-mixing attractor.

Theorem 5. Let f t
i be an A-flow on an orientable closed three-manifold M3

i such that
the non-wandering set NW( f t

i) contains a two-dimensional non-mixing attractor Λi, i = 1, 2.
If the restrictions f t

1|Ws(Λ1), f t
2|Ws(Λ2) are conjugate, then there are homeomorphic pairs

(M(Λ1); L(Λ1)), (M(Λ2); L(Λ2)).

Let us mention some results concerning the subject. Christly [10] constructed a so-called
tidy swaddled graph for a two-dimensional hyperbolic attractor. In [10], using tidy swaddled
graphs, it was obtained the classification under the equivalence relation of restrictions f t|Λa of
A-flows f t on attractors Λa. Note that the classification of restrictions on attractors does not
imply the classification of restrictions on basins of attractors. Robinson and Williams [40]
constructed two diffeomorphisms f and g with attractors Λf and Λg respectively such that
f : Λf → Λf is conjugate to g : Λg → Λg but there is not even a homeomorphism from a neigh-
bourhood of Λf to a neighbourhood of Λg taking Λf to Λg. Passing to dynamical suspensions,
one can get a similar example for flows. Another examples see in [48]. Morales [28] studied a
transitivity of A-flows with a transverse torus on three-manifolds. In [5], one got the classifi-
cation of codimension one non-mixing orientable attractors on closed n-manifolds for n � 4.
Béguin et al [6] constructed nontransitive Anosov flows with two-dimensional attractors with
prescribed entrance foliation (in particular, with some incoherent attractors). Recall that Mar-
gulis [26] proved that the fundamental group π1(M3) of a supporting manifold M3 for Anosov
flows has an exponential growth. Due to corollary 1, we see that the realm of A-flows is much
richer than the realm of Anosov flows with two-dimensional attractors.

1. Basic definitions

Hyperbolic invariant sets. Let f t be a smooth flow on a closed n-manifold Mn, n � 3. A subset
Λ ⊂ Mn = M is invariant providedΛ consists of trajectories of f t. An invariant nonsingular set
Λ ⊂ M is called hyperbolic if the sub-bundle TΛM of the tangent bundle TM can be represented
as a Dft-invariant continuous splitting Ess

Λ ⊕ Et
Λ ⊕ Euu

Λ such that

(a) dim Ess
Λ + dim Et

Λ + dim Euu
Λ = n;

(b) Et
Λ is the line bundle tangent to the trajectories of the flow f t;

(c) There are Cs > 0, Cu > 0, 0 < λ < 1 such that
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‖d f t(v)‖ � Csλ
t‖v‖, v ∈ Ess

Λ; ‖d f −t(v)‖ � Cuλ
t‖v‖, v ∈ Euu

Λ , t > 0.

A singular point x is hyperbolic if x is an isolated hyperbolic equilibrium state. The
topological structure of flow near x is described by Grobman–Hartman theorem, see for
example [39]. In this case Et

x = 0 and dim Ess
Λ + dim Euu

Λ = n.

If Λ does not contain fixed points, then the bundles

Euu
Λ ⊕ Et

Λ = Eu
Λ, Ess

Λ ⊕ Et
Λ = Es

Λ, Euu
Λ , Ess

Λ,

are uniquely integrable [22, 43]. The corresponding leaves Wu(x), Ws(x), Wuu(x), Wss(x)
through a point x ∈ Λ are called unstable, stable, strongly unstable, and strongly stable
manifolds respectively.

A-flows. Given a set U ⊂ Mn, denote by f t0 (U) the shift of U along the trajectories of f t

on the time t0. Recall that a point x is non-wandering if given any neighbourhood U of x and
a number T0 > 0, there is t0 � T0 such that U ∩ f t0 (U) �= ∅. The non-wandering set NW( f t)
of f t is the union of all non-wandering points.

Denote by Fix( f t) the set of fixed points of f t. Following Smale [43], we will call f t an
A-flow provided its non-wandering set NW( f t) is hyperbolic and the periodic trajectories are
dense in NW( f t)\Fix( f t). According to Smale’s spectral decomposition theorem [37, 43],
the non-wandering set of A-flow is a disjoint union of closed, and invariant, and transitive sets
called basic sets.

Expanding attractors. Following Williams [46], we will call a basic set Ω an expanding
attractor provided Ω is an attractor and its topological dimension equals the dimension of
unstable manifold Wu(x) for every point x ∈ Ω. A basic set Λ is called orientable provided the
both fibre bundles Ess

Λ and Euu
Λ are orientable. Note that if Ess

Λ and Euu
Λ are one-dimensional,

then the orientability of Λ means that the both Ess
Λ and Euu

Λ can be embedded in vector
fields on Mn.

For expanding attractors of A-diffeomorphisms, there is a deep theory developed in the
papers [13, 15, 18, 35], see also the book [19]. This theory is based on the paper [29]. Similar
theory based on the paper [45] holds for A-flows. We shortly recall some results of this theory.

Let Λa be an expanding attractor of A-flow on a closed three-manifold M3. For a point
x ∈ Λa, let us denote by W+ss(x) and W−ss(x) the components of Wss\{x}. A point p ∈ Λa

is called boundary if W+ss(p) ∩ Λa = ∅ or W−ss(p) ∩ Λa = ∅. Due to a hyperbolicity, if p is
a boundary point then the trajectory O(p) consists of boundary points, and O(p) is said to be
a boundary trajectory. An unstable manifold Wu(·) ⊂ Λa is called boundary if Wu(·) contains
a boundary trajectory. If p is a boundary point, then there is a unique component of Wss(p)\{p}
denoted by Wss

∅ (p) such that Wss
∅ (p) ∩ Λa = ∅. Set Ws

∅(O(p)) = ∪x∈O(p)Wss
∅ (x).

Denote by (x, y)ss (respectively, [x, y]ss) the open (respectively, closed) arc of Wss(z) with
the endpoints x, y ∈ Wss(z) where z ∈ Λa. The following results hold:

• Expanding attractor Λa contains finitely many boundary trajectories;
• Any boundary trajectory is periodic;
• Given any boundary trajectory O(p) ⊂ Λa and a point x ∈ Wu(p)\O(p), there is a unique

arc (x, y)ss def
= (x, y)ss

∅ such that (x, y)ss ∩ Λa = ∅ where y ∈ Λa, y
def
= opp(x);

• opp(x) belongs to Wu(q)\O(q) where O(q) is a some boundary trajectory (maybe, p = q).

The set B(Λa) of the boundary unstable manifolds splits into disjoint bunches such that all
unstable manifolds of a bunch can be consequently connected by arcs [x, y]ss

∅ called connecting
arcs.
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A∗-homeomorphisms. Let f : X → X be a homeomorphism of a compact metric space X
endowed with a metric d. The homeomorphism f is an A∗-homeomorphism if the following
conditions hold:

(a1) The periodic points of f are dense in X;
(a2) Given any δ > 0, there is ε(δ) = ε > 0 such that Ws

δ(x) ∩ Wu
δ (z) �= ∅ whenever

d(x, z) � ε;
(a3) There are γ > 0, 0 < λ < 1 and c � 1 such that for all n � 0 one holds

d ( f n(x), f n(y)) � cλnd(x, y) if y ∈ Ws
γ (x) and d

(
f −n(x), f −n(y)

)
� cλnd(x, y) if

y ∈ Wu
γ (x).

Here, Ws
α(x) = {y ∈ X : d ( f n(x), f n(y)) � α for all n � 0} and Wu

α(x) = {y ∈
X : d ( f n(x), f n(y)) � α for all n � 0}.

Fibred links. Recall that a link in a three-manifold M3 is a collection of disjoint embedded
circles L = {l1, . . . , lk} ⊂ M3. The link L = {l1, . . . , lk} is fibred if M3\

(
∪k

i=1li
)

is the total
space of fibre bundle p :

(
M3\L

)
→ S1 and the boundary of the fibres p−1(·) is L. In addition,

the fibres p−1(·) meet L nicely. To be precise, consider the solid torus P0 = S
1 × D

2 called a
canonical solid torus. Here, S1 is a circle endowed with the cyclic coordinate ϑ, and D2 an unit
disk D2 = {z ∈ C | |z| � 1}. Set S1 = ∂D2. The mapping p0(ϑ, z) = z

|z| , ϑ ∈ S1, z ∈ D2\{0},
is the fibre bundle

p0 : S1 ×
(
D

2\{0}
)
→ S1,

over S1 with the fibre an annulus denoted by A0. There is a tubular neighbourhood T(li) of li
homeomorphic to P0 (so, we can assume T(li) = P0) such that T(li)\{li} = P0\

(
S1 × {0}

)
.

By definition, p|T(li)\{li} is isomorphic to p0, i = 1, . . . , k.
Rational foliations on two-torus. Let F be a foliation without singularities on two-torus T2.

The foliationF is called rational if every leaf of F is an embedded circle. Obviously, all leaves
define the same nontrivial element of the fundamental group π1(T2). Now, suppose that T2 is
the boundary of the canonical solid torus P0. In this case, any leaf of F is called a meridian
provided the leaf is a homotopy trivial curve in P0. Clearly, a meridian is the boundary of some
embedded two-disk in P0. A simple closed curve l ⊂ T2 is called a parallel if l transversally
intersects some meridian at a unique point. Obviously, a parallel defines a nontrivial element
of π1(T2).

Note that the fibres p−1
0 (·) of the fibre bundle p0 form a foliation denoted by F . The leaves

of F are annuluses that are transversal to boundary T2 = ∂P0. The intersections of this leaves
with T2 produce the rational foliation denoted by F0. Thus, F0 is a foliation generated by
parallels on the torus T2.

2. Previous results

For a codimension one basic set Ω of A-diffeomorphism, it was was proved independently by
Plykin [34] and Williams [46] that Ω is either attractor or repeller. This result holds even for
endomorphisms [17]. For A-flows, the proof is similar. So, we give only the scheme of the
proof in the particular case when the dimension of basic set equals two.

Lemma 1. Let Λ be a two-dimensional basic set of A-flow f t on a closed three-manifold.
Then Λ is either attractor or repeller. Moreover, Λ is an attractor if and only if Wu(x) ⊂ Λ for
all points x ∈ Λ. Similarly, Λ is a repeller if and only if Ws(x) ⊂ Λ for all points x ∈ Λ.
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Scheme of the proof. Take x ∈ Λ and put by definition,

Ŵuu(x) = Wuu(x) ∩ Λ, Ŵuu
ε (x) = Wuu

ε (x) ∩ Λ, Ŵss(x)

= Wss(x) ∩ Λ, Ŵss
ε (x) = Wss

ε (x) ∩ Λ.

A relative neighbourhood V̂ of x ∈ Λ in Λ is homeomorphic to the product Ŵuu
ε (x) ×

Ŵss
ε (x) × R. Since dimΛ = 2, dim Ŵuu(x) + dim Ŵss(x) = 1. It follows from the existence

of hyperbolic structure that dim (Wuu(x) × Wss(x) × R) = 3. Hence,

2 = dim Wuu(x) + dim Wss(x) � dim Ŵuu(x) + dim Ŵss(x) = 1.

Therefore, either dim Wuu(x) = dim Ŵuu(x) or dim Wss(x) = dim Ŵss(x). Suppose for defi-
niteness, dim Wuu(x) = dim Ŵuu(x). Note that dim Wuu(x) = dim Ŵuu(x) = 1, otherwise Λ
is a trivial basic set. Due to [23], the equality dim Ŵuu(x) = 1 implies the existence of an inte-
rior point, say y0, in Ŵuu(x). Hence, there is δ > 0 such that Wuu

δ (y0) ⊂ Λ. As a consequence,
Wuu(y0) ⊂ Λ and Wu(y0) ⊂ Λ. Due to a local product structure on a basic set, Wu(x) ⊂ Λ for
all points x ∈ Λ. Hence, Λ is an attractor. Similarly, if dim Wss(x) = dim Ŵss(x) then Λ is a
repeller. �

Lemma 2. Let Λa be a nontrivial attractor of A-flow f t on a closed three-manifold. Then
Λa is expanding if and only if Λa is two-dimensional.

Proof. Suppose Λa is a two-dimensional attractor. By lemma 1, Wu(x) ⊂ Λa for any x ∈ Λa.
Since Λa is nontrivial, dim Wuu(x) � 1. It follows that dim Wu(x) = 2 for any x ∈ Λa. Hence,
Λa is expanding.

Now suppose that Λa is an expanding attractor. Then dimΛa = dim Wu(x) for any x ∈ Λa.
If we assume that dim Wu(x) = 1 then dim Wuu(x) = 0. This implies that Λa is trivial since
dim Ws(x) = 3. Hence, dim Wu(x) = 2. This follows that Λa is two-dimensional. �

For references, we formulate the key statement proved by Bowen [8]. The topological
closure of set N will be denoted by clos(N ).

Proposition 1. Let f t be an A-flow and Ω a nontrivial basic set of f t. ThenΩ is non-mixing if
and only if the restriction f t|Ω is a dynamical τ -time suspension over some A∗-homeomorphism
ϕ∗

x : clos(Wuu(x)) → clos(Wuu(x)) for some τ > 0 and any x ∈ Ω. Moreover, if clos(Wuu(x)) ∩
clos(Wuu(y)) �= ∅ for x, y ∈ Ω then clos(Wuu(x)) = clos(Wuu(y)).

Note that the property of Anosov flow to be mixing is closely related with the notion of
C-density introduced by Anosov [3] and Bowen [8]. Anosov [2] (with some assumptions on
measure) and Plante [32] (without assuming on measure) proved that a transitive Anosov flow
is C-dense if and only if the flow is mixing. Thus, a transitive Anosov flow is not C-dense if
and only if the flow is non-mixing.

The crucial technical statement for the proof of theorem 1 is the following assertion.

Lemma 3. Let f t be an A-flow on an orientable closed three-manifold M3 such that the non-
wandering set NW(f t) contains a two-dimensional non-mixing attractor Λa. Then there is a
neighbourhood U(Λa) of Λa such that

• U(Λa) ⊂ Ws(Λa) is an attracting domain of Λa;
• The boundary ∂U(Λa) is transversal to f t and consists of finitely many components T2

1 ,
. . . , T2

k where each T2
i is homeomorphic to the two-torus T2;

• The flow f t in U(Λa) has a global section.
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Proof. Recall that due to Bowen’s brilliant result [8] (see proposition 1), the restriction f t|Λa

of f t on Λa is a dynamical τ -time suspension over some A∗-homeomorphism ϕ∗ : Π0 →Π0

where Π0 is the topological closure of Wuu(x0), x0 ∈ Λa. Thus, ϕ∗ = fτ |Π0 is the τ -time shift
along the trajectories of the flow f t, and f m

τ (Π0) = ϕm
∗ (Π0) = Π0 for any m ∈ Z. Moreover,

Λa = ∪0�t<τ ft(Π0) and f t1(Π0) ∩ f t2(Π0) = ∅ provided t1 �= t2, t1, t2 ∈ [0; τ ). In addition, the
t-time shift f t|Π0 : Π0 → f t(Π0) is a homeomorphism for any t ∈ [0; τ ). Taking a circle S1 as
[0; τ ]/0 
 τ one gets the fibre bundle

pa : Λa → S1 = [0; τ ]/0 
 τ where pa(x) = t provided x ∈ f t(Π0), (1)

with the fibre Π0. Hence, there is a minimal period for periodic trajectories of Λa.
Choose the point x0 ∈ Λa belonging to a periodic trajectory l(x0) with the minimal period
τ 0 = kτ > 0, k ∈ N.

Let us show that Wss(x0) ∩ Λa ⊂ Π0. Suppose the contrary. Then there is a point y0 ∈
Wss(x0) ∩ Λa such that y0 /∈ Π0. First, we consider the case y0 ∈ Wu(x0). We see that Wu(x0) =
∪z∈l(x0)Wuu(z) � y0. Then there exists a unique point y1 ∈ l(x0) ∩ Wuu(y0). It follows from
y1 ∈ l(x0) that fτ0 (y1) = y1. Denote by Π1 the topological closure of Wuu(y1). According to
proposition 1, f m

τ0
(Π1) = Π1, m ∈ Z. We have to prove that Π1 = Π0. Since y0 ∈ Wss(x0),

f m
τ0

(y0) → f m
τ0

(x0) = x0 as m →∞. At the same time, f m
τ0

(y0) ∈ f m
τ0

(Π1) = Π1 because of
Wuu(y0) = Wuu(y1). Therefore, Π0 is intersected with Π1. According to proposition 1, Π1 =
Π0. Hence, y0 ∈ Π0. This contradiction concludes the proof in the case y0 ∈ Wu(x0). Now, con-
sider the case y0 /∈ Wu(x0). Since Λa = ∪t�0 ft(Π0), there is t0 � 0 such that f−t0(y0) ∈ Π0.
It follows from Π0 = clos(Wuu(x0)) that the point f−t0(y0) is approximated by the point
of Wuu(x0). The continuous dependence of unstable manifolds implies the existence of the
sequence yk ∈ Wu(x0) such that yk → y0 as k →∞. The first case above implies that yk ∈ Π0.
Since the set Π0 is closed, y0 ∈ Π0.

Thus, Wss(x0) ∩ Λa ⊂ Π0. The continuous dependence of strongly stable manifolds implies
that Wss(x) ∩ Λa ⊂ Π0 for every point x ∈ Wuu(x0), and hence, for any x ∈ Π0. By construc-
tion, Wuu(x0) is dense in Π0. It follows from lemma 1 that Wuu(x0) ⊂ Π0 ⊂ Λa. Again, the
continuous dependence of strongly stable and unstable manifolds implies that for all x, y ∈ Π0

one holds Wuu(x) ∩ Wss(y) ⊂ Π0.
Set S0 =

⋃
x∈Π0

Wss(x). Note that Π0 endowed with the hyperbolic structure induced from
Λa. It follows from the continuous dependence of strongly stable manifolds that S0 is a topo-
logical (noncompact) surface. It follows from proposition 1 that S0 is a global section for the
flow f t|Ws(Λa). Moreover, since fτ (Π0) = Π0 and strongly (unstable and stable) manifolds are
invariant under t-time shifts, fτ (S0) = S0. This means that ϕ = fτ |S0 : S0 → S0 is a dynam-
ical suspension which is a continuation of ϕ∗. Due to [21], Ws(Λa) = ∪x∈ΛaWss(x). Since
Λa = ∪0�t<τ ft(Π0) and f t1 (Π0) ∩ f t2 (Π0) = ∅ provided t1 �= t2, t1, t2 ∈ [0; τ ), we see that
Ws(Λa) = ∪0�t<τ ft(S0) and f t1(S0) ∩ f t2 (S0) = ∅ provided t1 �= t2, t1, t2 ∈ [0; τ ). It follows
from (1) that there is the fibre bundle

PW : Ws(Λa) → S1 = [0; τ ]/0 
 τ where PW(x) = t provided x ∈ f t(S0), (2)

with the fibre S0. The fibres of the bundle (2) form the foliation denoted by FW .
Since Λa is a two-dimensional basic set of f t and Λa = ∪0�t�τ ft(Π0), Λa ∩ S0 = Π0 and

Π0 is a one-dimensional closed transitive invariant set of ϕ = fτ |S0 : S0 → S0. Since Λa is
an expanding attractor, Π0 is an attracting set consisting of unstable manifolds of points
x ∈ Π0 under ϕ. The local product structure on Λa induces the local product structure on
Π0 under ϕ. This allows us to construct the special bunches of Π0 similarly bunches of one-
dimensional expanding attractors of surface A-diffeomorphisms. To be precise, let B be a
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bunch of Λa consisting of the boundary unstable manifolds Wu(p1), . . . , Wu(pr) where O(pi)
is a boundary periodic trajectory, i = 1, . . . , r. Let [x1, y1]ss, . . . , [xr+1, yr+1]ss be the con-
necting arcs of B. Here, we suppose that xr+1 = x1, yr+1 = y1 provided r = 1. Due to the
above construction, one can assume that the union [x1, y1]ss ∪ [y1, x2]uu ∪ . . . ∪ [yr, xr+1]uu

∪ [xr+1, yr+1]ss is a closed simple curve denoted by c(B) belongs to S0 where pi+1 ∈
[yi, xi+1]uu, i = 0, . . . , r − 1.

We cover c(B) by segments of strongly stable manifolds through [y1, x2]uu ∪ . . .
∪ [yr, xr+1]uu to get an annulus A with the middle circle c(B). Since c(B) ⊂ S0, A ⊂ S0. Note
that according proposition 1, the trajectories O(pi), i = 1, . . . , r, have the same period denoted
by T(B) > 0. The set CB =

⋃
0�t�T(B) f t (c(B)) is a cylinder which intersects A through finitely

many circles (simple closed curves). Since c(B) belongs to S0, CB\{c(B)} intersects the leaves
of FW through the circles each isotopic to c(B) on the cylinder CB . Therefore, these circles
form the rational foliation consisting of nontrivial loops.

Let us move c(B) to a closed simple curve c̃ ⊂ A such that c̃ has no intersection with Λa

and c̃ cuts transversally Wss
∅ (pi), i = 1, . . . , r, in the annulus A. In addition, one can assume

that c̃ ⊂ S0. Slightly deforming c̃ ⊂ A, one gets the cylinder C̃ =
⋃

0�t�T(B) f t (c̃) ) such that C̃

is transversal to f t and the intersection A ∩ C̃ consists of finitely many disjoint simple curves.
A standard procedure allows to construct a closed surface T2(B) for the bunch B (this pro-
cedure is similar to the construction of closed transversal for a flow starting with a closed
curve that consists of an arc of trajectory and a transversal segment [4]). Moreover, it is pos-
sible to make the deformation of C̃ along the fibre of the bundle (2) so that the intersections
T2(B) ∩ P−1

W (x), x ∈ S1 = [0; τ ]/0 
 τ , produce the rational foliation denoted by F̃W . Due
to the Euler–Poincaré formula (see for example [33], ch 3), the Euler characteristic of T2(B)
equals zero. Hence, T2(B) is either a torus or Klein bottle. But the possibility to get a Klein
bottle instead of the torus T2(B) fails because of orientability of M3. Continuing by similar way
for every bunch of Λa, one gets the desired components T2

1 , . . . , T2
k of the boundary ∂U(Λa)

where each T2
i homeomorphic to the two-torus T2. �

In the case when an A-flow is Anosov flow, lemma 3 agrees with the results by Brunella [9]
who proved that the basic sets of nontransitive Anosov flow are separated by torii.

3. Proofs of main results

Proof of theorem 1. According to lemma 3, there is a neighbourhood U(Λa) ⊂ Ws(Λa) of
Λa such that U(Λa) is an attracting domain of Λa, and the boundary ∂U(Λa) is transversal to
f t and consists of finitely many components T2

1 , . . . , T2
k where each T2

i homeomorphic to the
two-torus T2. The transversality of each T2

i to the trajectories of f t and the inclusion U(Λa) ⊂
Ws(Λa) imply that every positive semi-trajectory starting at a point of T2

i belongs to U(Λa) and
never intersects again ∪ j=1T2

j . This follows that the union Ta = ∪ j=1T2
j divides Ws(Λa) into

two domains U(Λa) and Uout = Ws(Λa)\U(Λa). Clearly, every negative semi-trajectory starting
at a point of Ta belongs to Uout and never intersects Ta again. Taking in mind the continuous
dependence of trajectories on initial conditions, one gets that Uout is homeomorphic (in the
interior topology) to

(
∪k

i=1T2
i

)
× (−∞; 0) that is the disjoint union ∪k

i=1

(
T2

i × (−∞; 0)
)
=

Uout. To construct a compactification of Ws(Λa) it is enough to get a compactification for every
T2

i × (−∞; 0) by a circle.
Take the canonical solid torus P0 = D

2 × S
1. There is a vector field �v on P0 such that

�v is directed transversally on the boundary ∂P0 outside of P0 and �v has a unique peri-
odic trajectory l0 = {0} × S1 that is a repeller of �v. Take a homeomorphism ϑi : ∂P0 → T2

i ,
i = 1, . . . , k. Using ϑi and the negative semi-trajectories of �v starting at ∂P0, one can construct
a homeomorphism ϑ̃i between P0\{l0} and T2

i × (−∞; 0) = T3
i for every i = 1, . . . , k.
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Let us introduce a topology on the union T3
i ∪ li where li = l0. We assume that the set

T3
i is endowed with the initial topology. Take a point x ∈ li = l0, and let U(x) be a neigh-

bourhood of x ∈ l0 ⊂ P0 in the solid torus P0. Then U(x)\{l0} is an open set in P0. Hence,
ϑ̃i

(
U(x)\{l0}

)
= Ũ(x) is an open set in T3

i . Put the union Ũ(x) ∪ (U(x) ∩ l0) to be a neigh-
bourhood of x in T3

i ∪ li. It is easy to see that such neighbourhoods introduce the topology on
T3

i ∪ li. This gives the compactification of T3
i by the closed curve li for every i = 1, . . . , k. As

a consequence, one gets the compactification Ws(Λa)∪k
i=1li denoted by M(Λa)ϑ1,...,ϑk . Below,

we describe the homeomorphisms ϑ1, . . . , ϑk in details to get the final compactification
M(Λa). It is easy to check that M(Λa)ϑ1,...,ϑk is a closed topological manifold. Since any topo-
logical three-manifold admits a unique structure of smooth manifold, M(Λa,ϑ1, . . . ,ϑk) is
endowed with the structure of smooth manifold which is the extension of the smooth structure
on Ws(Λa).

Let P3
i be a copy of P0, and �vi = �v the vector field with closed curve li = l0 in P3

i , i =
1, . . . , k. By construction, M(Λa,ϑ1, . . . ,ϑk) = U(Λa)∪ϑ1P3

1 ∪ . . .∪ϑk P3
k . Slightly deforming

the vector fields �vi, i = 1, . . . , k, one can assume that this fields and the restriction f t|U(Λa)

form the smooth flow f̃ t that is the extension of f t to M(Λa,ϑ1, . . . ,ϑk). Clearly, NW( f̃ t) =
Λa∪k

i=1li. Since li are repelling periodic trajectories of �vi, i = 1, . . . , k, the trajectories l1, . . . ,
lk are repelling isolated periodic trajectories of f̃ t.

We keep the notation of the proof of lemma 3. Take the foliation FW generated by the
fibres of the bundle PW , see (2). By construction, given any T2

i , the intersections of the
leaves with T2

i form a rational foliation F(T2
i ) such that each leaf of F(T2

i ) belongs to a leaf
of FW . Therefore, PW induces the fibre bundle PW |U(Λa) : U(Λa) → S1 = [0; τ ]/0 
 τ such
that the restriction FW |U(Λa) of FW on U(Λa) is a foliation whose leaves are the fibres of the
bundle PW |U(Λa).

Recall that P0 = S1 × D2 is the canonical solid torus, and p0 : S1 ×
(
D2\{0}

)
→ S1 is the

fibre bundle where p0(ϑ, z) = z
|z| , ϑ ∈ S

1 = ∂D2, z ∈ D
2\{0}, D2 = {z ∈ C | |z| � 1}. The

fibres p−1
0 (·) form a foliation denoted by F . The leaves of F are annuluses transversal to

boundary T2 = ∂P0. The intersections of this leaves with T2 produce the rational foliation
F0 generated by parallels on the torus T2 = ∂P0. We know that rational foliations are topolog-
ically equivalent [4, 30]. Hence there are the mapping ϑi : ∂P0 → T2

i taking the leaves of the
foliation F0 to the leaves of F(T2

i ). This gives the continuation of the fibre bundle PW |U(Λa) to
T3

i , i = 1, . . . , k. It follows that the collection {l1, . . . , lk} is a fibred link in M(Λa).
At last, the unstable manifolds of the repelling periodic trajectories l1, . . . , lk are

three-dimensional open submanifolds of M3. Clearly, they intersect transversally the two-
dimensional stable manifolds of the points of Λa. Since the non-wandering set NW( f̃ t) =
Λa∪k

i=1li has a hyperbolic structure, f̃ t is an A-flow satisfying a strong transversality condition.
It follows from [20] that f̃ t is a structurally stable flow. By construction, f̃ t is a nonsingular
flow. �

Proof of theorem 2. Since L = {l1, . . . , lk} ⊂ M3 is a fibred link, the manifold M3\L can be
considered as a mapping torus manifold M3\L =

(
int M2 × [0; 1]

)
/(x, 1) ∼ (g(x), 0) where g :

int M2 → int M2 is a diffeomorphism of the interior of some compact surface M2 with boundary
components C1, . . . , Ck corresponding to the knots l1, . . . , lk. By definition, every leaf p−1(·)
of the fibre bundle p : M3\L → S1 is homeomorphic to int M2. In addition, the topological
closure of all leaves p−1(x), x ∈ S1, are compact surfaces (each homeomorphic to M2) with
the boundary components l1, . . . , lk. Hence, we can extend g to the diffeomorphism M2 → M2

denoted again by g such that g|∪k
i=1Ci

= id.

Let us show that slightly deforming g near ∂M2, one can assume that every Ci is a repelling
set of g. Let ai be an annulus having the boundary component Ci. Then Ci is diffeomorphic
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to Ci × [0; 1] that admits a flow φt along the second factor such that the curves Ci × {0},
Ci × {0} form the fixed point set of φt. Denote by φt the t-shift along the trajectories of φt.
Since g is a diffeomorphism, Dg > 0. Hence, g ◦ φt is a diffeomorphism with repelling set Ci

for sufficiently large t. Thus, one can assume that g ◦ φt has the repelling set ∪k
i=1Ci. Clearly,

g ◦ φt is diffeotopic to g.
It follows from [41], theorem 2 (see also [31]) that g ◦ φt can be approximated by an A-

diffeomorphism g0 homotopic to g ◦ φt with the repelling set ∪k
i=1Ci. Let us take a point x∗

near ∪k
i=1Ci such that x∗ and g0(x∗) belong to attracting region of g−1

0 . Then there is a path
p∗ connecting the points x∗, g0(x∗) such that p∗ belongs to the wandering set of g0. Slightly
deforming g0 in a small neighbourhood of p∗ one can get an A-diffeomorphism denoted again
by g0 such that x∗ becomes an attracting fixed point of g0.

Take an attracting neighbourhood U of x∗ homeomorphic to a disk. We know that there
is an attracting neighbourhood UP of the classical Plykin attractor ΛP of diffeomorphism
gP : S2 → S2 such that UP is also homeomorphic to a disk [39]. One can change g0 inside
U replacing g0|U by the mapping gP|UP with the Plykin attractor ΛP so that the diffeomor-
phism g∗ obtained is an A-diffeomorphism. By construction, g∗ is homotopic to g0, and g∗ is
an A-diffeomorphism with the attractor ΛP.

Since g∗ is homotopic to g, the mapping torus
(
int M2 × [0; 1]

)
/(x, 1) ∼ (g∗(x), 0) is home-

omorphic to M3\L. Therefore, the dynamical suspension sust(g∗) of g∗ is an A-flow on the
manifold M3\L. Since g∗ coincide with g ◦ φt outside of U, sust(g∗) can be extended to an
A-flow f t on M3 with the repelling periodic trajectories l1, . . . , lk. By construction, the non-
wandering set NW( f t) contains the non-mixing two-dimensional attractor Λa corresponding
the Plykin attractor ΛP. This completes the proof. �

Proof of theorem 3. First, we construct an A-flow with two-dimensional attractor on an n-
sphere Sn for any n � 4. Due to corollary 1, there is an A-flow f t on S3 with a two-dimensional
expanding attractor Λ. Take S3 to be smoothly embedded in S4 such that S4\S3 is the disjoint
union of four-balls B4

1, B4
2. One can continue f t to S4 to get an A-flow, say f t

4, such that f t
4 has

a unique source at each B4
i , i = 1, 2, and S3 is an attracting set for f t

4. Indeed, let (x1, x2, x3)
be local coordinates in a neighbourhood of a point of S3. Suppose the flow f t is defined
by the system ẋ1 = p1(x1, x2, x3), ẋ2 = p2(x1, x2, x3), ẋ3 = p3(x1, x2, x3). One can introduce
a coordinate x4 such that the unequally x4 > 0 corresponds points in B4

1. Then the system
ẋ1 = p1, ẋ2 = p2, ẋ3 = p3, ẋ4 = −x4 defines locally a flow which can be extended to desired
flow f t

4 on B4
1. Similarly, one can get f t

4 on B4
2. Since Λ ⊂ S3 is an attractor and S3 is an attract-

ing set, Λ is the two-dimensional attractor of f t
4. Continuing by similar way, on can construct

an A-flow, say f t
n, on Sn with the two-dimensional expanding attractor Λ for any n � 5.

Now, let Mn be an arbitrary closed n-manifold, n � 4. Due to Smale [42], there is a gradient-
like Morse–Smale flow gt on Mn such that gt has a sink s0. By construction, f t

n has an isolated
source, say rn. Take out neighbourhoods U(s0), U(rn) of s0, rn such that the boundaries ∂U (s0,
∂U(rn) are transversal to gt and f t

n respectively. One can glue Mn\U(s0) with Sn\U(rn) under a
diffeomorphism ∂U(s0) → ∂U(rn) to get a connected sum Mn�Sn homeomorphic to Mn. Then
the flows gt and f t

n define the A flow desired on Mn. This completes the proof. �

Proof of theorem 4. Let M′(Λa) be a casing with a fibred link L′ = {l′1, . . . , l′k}, and f̃ t a
nonsingular A-flow on M′(Λa) whose non-wandering set consists of attractor Λa and repelling
isolated periodic trajectories l′1, . . . , l′k. Due to lemma 3, there is a neighbourhood U(Λa) of Λa

is an attracting domain of Λa such that the boundary ∂U(Λa) is transversal to f̃ t and consists of
torii T2

1 , . . . , T2
k . Since every l j, j = 1, . . . , k, is an isolated repelling periodic trajectory, there

is a neighbourhood U(l j) of l j homeomorphic to a solid torus such that U(l j) belongs to the
basin of l j and the torus ∂U(l j) is transversal to f̃ t. Without loss of generality one can assume
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that all U(l j), j = 1, . . . , k, do not intersect U(Λa). Since f̃ t is a flow of attractor–repeller type
with no non-wandering points except Λa ∪ {l′1, . . . , l′k}, any positive semi-trajectory starting
from ∂U(l j) intersects some torus, say T2

j1
, at a unique point, and after that the semi-trajectory

never leaves U(Λa). A simply connectedness of ∂U(l j) implies that there is a homeomorphism
θ j : ∂U(l j) → T2

j1
that is a forward Poincare mapping. Such homeomorphisms exist for every

j = 1, . . . , k. Hence, M′(Λa) can be obtained up to homeomorphism by the procedure described
in the proof of theorem 1.

Now, we keep the notation of the proof of theorem 1. We see that one remains a freedom to
choose the mapping ϑi : ∂P0 → T2

i , i = 1, . . . , k to get the casing M(Λa). Any casing M′(Λa)
∈ F(Λa) is obtained by some mapping ϑ′

i : ∂P0 → T2
i , i = 1, . . . , k. Then the mapping ϑ′

i ◦
ϑ−1

i : ∂P0 → T2
i , i = 1, . . . , k, induce a surgery of the link L = {l1, . . . , lk} to get M′(Λa) from

M(Λa). This completes the proof. �

Remark. One can show that there are infinitely many casings M(Λa) with M(Λa)\L(Λa)
endowed with a hyperbolic structure. Indeed, let us fix some M(Λa) ∈ F(Λa). Denote by
Mint(Λa) the set M(Λa)\(∪k

i=1P3
i ). Slightly modifying the restriction f t|Mint(Λa), one can get

a flow f t
1 with the global section S0 ∩ Mint(Λa) such that the set of the circles c̃ becomes an

invariant set under the τ -time shift f t
1,τ . Since the circles c̃ have no intersections with Λa ∩ S0,

one can assume that the support of the modification has no intersection with Λa. Therefore,
one can assume that the Poincare forward mapping f t

1,τ : S0 ∩ Mint(Λa) → S0 ∩ Mint(Λa) is an
A∗-homeomorphism with the non-wandering set consisting of c̃ and one-dimensional basic
set Λa ∩ S0. It follows from [14] that f t

1,τ semi-conjugates to a pseudo-Anosov homeomor-
phism. Due to [44], Mint(Λa) = M(Λa)\(∪k

i=1P3
i ) is endowed with the structure of hyperbolic

manifold.

Proof of theorem 5. Let ϕ : Ws(Λ1) → Ws(Λ2) be the homeomorphism taking the trajec-
tories of the flow f t

1|Ws(Λ1) to the trajectories of the flow f t
1|Ws(Λ2). Take a point x1 ∈ Λ1.

Due to proposition 1, the restriction f t
1|Ws(Λ1) is the dynamical τ 1-time suspension over

some A∗-homeomorphism ψ1 : clos(Wuu(x1)) → clos(Wuu(x1)) with some τ 1 > 0. Similarly,
the restriction f t

2|Ws(Λ2) is the dynamical τ 2-time suspension over some A∗-homeomorphism
ψ2 : clos(Wuu(x2)) → clos(Wuu(x2)) with some τ 2 > 0 where x2 = ϕ(x1). Since ϕ is a conju-
gacy for any t ∈ R, ϕ takes the strong unstable manifolds of f t

1 to the strong unstable mani-
folds of f t

2. Thenϕ [Wuu(x1)] = Wuu(ϕ(x1)) = Wuu(x2). As a consequence,ϕ [clos Wuu(x1)] =
clos Wuu(x2). Due to proposition 1, τ 1 = τ 2. It follows that ϕ conjugates ψ1 and ψ2. Hence, ϕ
takes the foliation F(T2

i,1) to the foliation F(T2
i,2) for every i = 1, . . . , k.

We keep the notation of the proof of theorem 1. Let M(Λ j)ϑ( j)
1 ,...,ϑ( j)

k
be the casing of Λ j

obtained by using homeomorphisms ϑ( j)
i : ∂P0 → T2

i, j, i = 1, . . . , k, j = 1, 2 where P0 is the
canonical solid torus. To continue ϕ to a homeomorphism M(Λ1)

ϑ
(1)
1 ,...,ϑ(1)

k
→ M(Λ2)

ϑ
(2)
1 ,...,ϑ(2)

k

one needs to continue ϕ on P0. To do this, we need to change the homeomorphisms ϑ(2)
i

for every i = 1, . . . , k. Denote by μ a meridian of P0. By construction, the curve ϑ( j)
i (μ) is a

closed simple curve on T2
i, j transversally intersecting the leaves of the foliation F(T2

i, j), j = 1, 2.

Moreover, since μ intersects each parallel at a unique point, ϑ( j)
i (μ) intersects each leaf of

the foliation F(T2
i, j) at a unique point also. Since ϕ takes the foliation F(T2

i,1) to the folia-

tion F(T2
i,2), ϕ ◦ ϑ(1)

i (μ) is a closed simple curve on T2
i,2 transversally intersecting each leaf

of the foliation F(T2
i,2) at a unique point, i = 1, . . . , k. This follows that there is a Dehn twist

D : T2
i,2 → T2

i,2 taking ϑ(2)
i (μ) to ϕ ◦ ϑ(1)

i (μ) such that every leaf of F(T2
i,2) is invariant under D.

Set ϑ̂(2)
i = D ◦ ϑ(2)

i : ∂P3
0 → T2

i . Since D keeps the foliation F(T2
i,2), M(Λ2)

̂ϑ(2)
1 ,...,̂ϑ(2)

k
is a casing
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of Λ2. By construction, ϕ takes ϑ(1)
i (μ) to a curve homotopy ϑ̂(2)

2 (μ). It is well-known, that a
homeomorphism of the boundary of solid torus can be extended to the whole solid torus pro-
vided the boundary homeomorphism keeps meridians. Moreover, one can get the extension
keeping the central axis of the solid torus. Hence, ϕ can be extended to the homeomorphism
M(Λ1) → M(Λ2)

̂ϑ(2)
1 ,...,̂ϑ(2)

k
taking the fibred link L(Λ1) to L(Λ2). �
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