Two-dimensional attractors of A-flows and fibred links on three-manifolds

V Medvedev and E Zhuzhoma*
National Research University Higher School of Economics, 25/12 Bolshaya
Pecherskaya, 603005, Nizhnii Novgorod, Russia
E-mail: medvedev-1942@mail.ru and zhuzhoma@mail.ru

Received 21 September 2021, revised 18 February 2022
Accepted for publication 3 March 2022
Published 20 April 2022

Abstract

Let f^{t} be a flow satisfying Smale's Axiom A (in short, A-flow) on a closed orientable three-manifold M^{3}, and Ω a two-dimensional basic set of f^{t}. First, we prove that Ω is either an expanding attractor or contracting repeller. Next, one considers an A-flow f^{t} with a two-dimensional non-mixing attractor Λ_{a}. We construct a casing $M\left(\Lambda_{a}\right)$ of Λ_{a} that is a special compactification of the basin of Λ_{a} by a collection of circles $L\left(\Lambda_{a}\right)=\left\{l_{1}, \ldots, l_{k}\right\}$ such that $M\left(\Lambda_{a}\right)$ is a closed three-manifold and $L\left(\Lambda_{a}\right)$ is a fibre link in $M\left(\Lambda_{a}\right)$. In addition, f^{t} is extended on $M\left(\Lambda_{a}\right)$ to a nonsingular structurally stable flow with the nonwandering set consisting of the attractor Λ_{a} and the repelling periodic trajectories l_{1}, \ldots, l_{k}. We show that if a closed orientable three-manifold M^{3} has a fibred link $L=\left\{l_{1}, \ldots, l_{k}\right\}$ then M^{3} admits an A-flow f^{t} with the non-wandering set containing a two-dimensional non-mixing attractor and the repelling isolated periodic trajectories l_{1}, \ldots, l_{k}. This allows us to prove that any closed orientable n-manifold, $n \geqslant 3$, admits an A-flow with a two-dimensional attractor. We prove that the pair $\left(M\left(\Lambda_{a}\right) ; L\left(\Lambda_{a}\right)\right)$ consisting of the casing $M\left(\Lambda_{a}\right)$ and the corresponding fibre link $L\left(\Lambda_{a}\right)$ is an invariant of conjugacy of the restriction $\left.f^{t}\right|_{W^{s}\left(\Lambda_{a}\right)}$ of the flow f^{t} on the basin of the attractor Λ_{a}.

Keywords: attractor, A-flow, fibred link
Mathematics Subject Classification numbers: 37D20, 37C70, 37C15, 58C30.

Introduction

Dynamical systems satisfying Axiom A (in short, A-systems) were introduced by Smale [43]. By definition, the non-wandering set of A-system is the topological closure of periodic orbits and is endowed with a hyperbolic structure (see basic notation of dynamical systems

[^0]Recommended by Dr Lorenzo J Diaz.
in the books [4, 24, 39] and surveys [16, 43]). According Robinson [38] and Mañé [25], the set of A-systems contains all structurally stable systems including Anosov systems and Morse-Smale systems. Later on, we consider A-flows that are A-systems with continuous time.

Due to Smale's spectral decomposition theorem, the non-wandering set of any A-system is a disjoint union of closed, invariant, and topologically transitive sets called basic sets [37, 39, 43]. A basic set is called trivial if it is either an isolated singularity or an isolated periodic trajectory. Otherwise, a basic set is nontrivial. Any nontrivial basic set of A-flow has the topological dimension no less than one, and a supporting manifold admitting a nontrivial basic set has the dimension no less than three. Zeeman [47] proved that any n-manifold, $n \geqslant 3$, supporting nonsingular flows supports an A-flow with a one-dimensional nontrivial basic set. Bowen [7] gave a complete characterization of nontrivial one-dimensional basic sets showing that up to homeomorphism they are suspensions of basic subshifts of finite type. Pugh and Shub [36] considered the problem of realization for subshifts of finite type as a one-dimensional basic set in a three-sphere. Franks [11] proved that suspended subshifts of finite type can be realized as a onedimensional basic set of a structurally stable nonsingular flow on some three-manifold. Note that a nontrivial one-dimensional basic set is of saddle type while one-dimensional attractors and repellers on a three-manifold are always trivial.

It is natural to consider the existence and properties of two-dimensional (automatically non-trivial) basic sets beginning with closed three-manifolds M^{3}. First, we prove that a twodimensional basic set on M^{3} is either an attractor or repeller, see lemma 1. Moreover, twodimensional attractors and repellers are exactly expanding attractors and contracting repellers respectively introduced by Williams [46], see lemma 2. The first example of A-flow that is a nontransitive Anosov flow was constructed by Franks and Williams [12]. This nontransitive Anosov flow has the spectral decomposition consisting of one two-dimensional expanding attractor and one two-dimensional contracting repeller. The both basic sets are non-mixing. Recall that a flow g^{t} on a topological manifold M is called mixing if given any open subsets U, $V \subset M$ there is $t_{0} \in \mathbb{R}$ such that $U \cap g_{t}(V) \neq \emptyset$ for all $t \geqslant t_{0}$ where $g_{t}(V)$ is the t-time shift of V along the trajectories of the flow g^{t}. Following Bowen [8], we say that a basic set Ω of an A-flow f^{t} is mixing if the restriction $\left.f^{t}\right|_{\Omega}$ is a mixing flow.

The simplest example of non-mixing two-dimensional attractor on a closed three-manifold can be constructed as follows. Let $A: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be an Anosov diffeomorphism of two-torus \mathbb{T}^{2}, and $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ a DA-diffeomorphism constructed by Smale's surgery of the diffeomorphism $A[39,43]$. We know that the non-wandering set of f consists of an orientable one-dimensional expanding attractor Λ_{1} and isolated source. Then the dynamical suspension $\operatorname{sus}^{t}(f)$ over f is the A-flow such that the non-wandering set of $\operatorname{sus}^{t}(f)$ consists of the twodimensional orientable non-mixing expanding attractor arising from Λ_{1} and isolated repelling periodic trajectory arising from the source.

For definiteness, we will consider two-dimensional basic sets that are attractors. Our main attention concerns to an embedding of two-dimensional non-mixing attractors and its basins (stable manifolds) in supporting manifolds M^{3}. We prove that A-flows with two-dimensional attractors exist on every closed orientable n-manifold, $n \geqslant 3$. We also study the conjugacy problem of restrictions on basins for two-dimensional non-mixing attractors. Let us formulate the main results.

Let f^{t} be an A-flow on a closed orientable three-manifold M^{3} and Λ_{a} a two-dimensional non-mixing attractor of f^{t}. The stable manifold (in short, basin) $W^{s}\left(\Lambda_{a}\right)$ of Λ_{a} is an open subset of M^{3} consisting of the trajectories whose ω-limit sets belong to Λ_{a}. First, we construct
a casing of Λ_{a} that is a special compactification of $W^{s}\left(\Lambda_{a}\right)$ by a collection of circles that form a fibred link (see section 1 for a precise definition).

Theorem 1. Let f^{t} be an A-flow on an orientable closed three-manifold M^{3} such that the non-wandering set $\mathrm{NW}\left(f^{t}\right)$ contains a two-dimensional non-mixing attractor Λ_{a}. Then there is a compactification $M\left(\Lambda_{a}\right)$ of the basin $W^{s}\left(\Lambda_{a}\right)$ by the family of circles l_{1}, \ldots, l_{k} such that

- $M\left(\Lambda_{a}\right)$ is a closed orientable three-manifold;
- The restriction $\left.f^{t}\right|_{W^{s}\left(\Lambda_{a}\right)}$ is extended continuously to the structurally stable nonsingular flow \tilde{f}^{t} on $M\left(\Lambda_{a}\right)$ with the non-wandering set $N W\left(\tilde{f}^{t}\right)=\Lambda_{a} \cup_{i=1}^{k} l_{i}$ where l_{1}, \ldots, l_{k} are the repelling isolated periodic trajectories of \tilde{f}^{t};
- The family $L=\left\{l_{1}, \ldots, l_{k}\right\} \subset M\left(\Lambda_{a}\right)$ is a fibred link in $M\left(\Lambda_{a}\right)$.

We see that the flow \tilde{f}^{t} on $M\left(\Lambda_{a}\right)$ is a structurally stable nonsingular flow of attrac-tor-repeller type with the nontrivial attractor Λ_{a} and the trivial global repeller $\cup_{i=1}^{k} l_{i}$.
Remark. It follows from the proof of theorem 1 that there is a compactification $W\left(\Lambda_{a}\right)$ which is a fibred (closed) three-manifold.

Let us illustrate this result. Consider a DA-diffeomorphism $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ obtained from the Anosov diffeomorphism $\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right) \bmod 1: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ by Smale's surgery near the fixed point $(0 ; 0)$. The suspension $\operatorname{sus}(f)$ is the A-flow on the mapping torus $M_{f}=\mathbb{T}^{2} \times[0 ; 1] /(x ; 1)$ $\sim(f(x) ; 0)$. The non-wandering set of $\operatorname{sus}(f)$ consists of a periodic trajectory l_{0} and twodimensional attractor Λ_{a}. Note that $M_{f}=l_{0} \cup W^{s}\left(\Lambda_{a}\right)$, and l_{0} is not a fibred knot in M_{f}. But there is a compactification $M\left(\Lambda_{a}\right)=l \cup W^{s}\left(\Lambda_{a}\right)$ of $W^{s}\left(\Lambda_{a}\right)$ by a closed curve l such that $M\left(\Lambda_{a}\right)=\mathbb{S}^{3}$ and l is the figure eight-knot [10].

The manifold $M\left(\Lambda_{a}\right)$ satisfying theorem 1 is called a casing of the attractor Λ_{a}. We denote the corresponding fibred link $L=\left\{l_{1}, \ldots, l_{k}\right\}$ by $L\left(\Lambda_{a}\right)$. The second result of the paper, in a sense, is reversal to the first one.

Theorem 2. Let $\left\{l_{1}, \ldots, l_{k}\right\} \subset M^{3}$ be a fibred link in a closed orientable three-manifold M^{3}. Then there is a nonsingular A-flow f^{t} on M^{3} such that the non-wandering set $\mathrm{NW}\left(f^{t}\right)$ contains a two-dimensional non-mixing attractor and the repelling isolated periodic trajectories l_{1}, \ldots, l_{k}.

Applying Alexander's statement on fibred links [1], one gets the following result.
Corollary 1. Given any closed orientable three-manifold M^{3}, there is a nonsingular A-flow f^{t} on M^{3} such that the non-wandering set $\mathrm{NW}\left(f^{t}\right)$ contains a two-dimensional attractor.

This corollary was proved by another method in [27]. This assertion for the dimension $n=3$ implies the following statement for $n \geqslant 4$.
Theorem 3. Given any closed orientable n-manifold $M^{n}, n \geqslant 4$, there is an A-flow f^{t} on M^{n} such that the non-wandering set $\mathrm{NW}\left(f^{t}\right)$ contains a two-dimensional attractor.

Note that a casing of two-dimensional attractor is not unique. Denote by $\mathbb{F}\left(\Lambda_{a}\right)$ the set of casings of Λ_{a} satisfying the conditions of theorem 1.

Theorem 4. Let Λ_{a} be a two-dimensional non-mixing attractor of an A-flow f^{t} on orientable closed three-manifold M^{3} and $M\left(\Lambda_{a}\right)=W^{s}\left(\Lambda_{a}\right) \cup_{i=1}^{k} l_{i} \in \mathbb{F}\left(\Lambda_{a}\right)$ a casing of Λ_{a} with the fibred link $L=\left\{l_{1}, \ldots, l_{k}\right\}$. Then any other casing from $\mathbb{F}\left(\Lambda_{a}\right)$ can be obtained by a surgery along the link $L=\left\{l_{1}, \ldots, l_{k}\right\}$.

Note that there are infinitely many casings $M\left(\Lambda_{a}\right)$ with $M\left(\Lambda_{a}\right) \backslash L\left(\Lambda_{a}\right)$ endowed with a hyperbolic structure [44].

Fibred links and casings of attractors allow to consider classification problems. Solving classification problems for flows, one considers mainly two relations, a conjugacy and a topological equivalence. Recall that two flows f_{1}^{t}, f_{2}^{t} on a manifold M are conjugate provided there exists a homeomorphism $\psi: M \rightarrow M$ such that the mappings f_{1}^{t}, f_{2}^{t} are conjugate for any $t \in \mathbb{R}$. Here, f_{i}^{t} means the t-time shift along the trajectories of the flow $f_{i}^{t}, i=1,2$. One says that flows f_{1}^{t}, f_{2}^{t} are (topologically) equivalent provided there exists a homeomorphism $\psi: M \rightarrow M$ taking the trajectories of one flow to the trajectories of the other flow. A non-mixing property depends on speeds along the trajectories of a flow, and this property can be changed by a deformation of speeds. Therefore, it is natural to consider the conjugacy studying the classification problem in the frame of the class of non-mixing attractors.

Let $\left(M\left(\Lambda_{a}\right) ; L\left(\Lambda_{a}\right)\right)$ be a pair consisting of the casing $M\left(\Lambda_{a}\right)$ of the attractor Λ_{a} and the corresponding fibred link $L\left(\Lambda_{a}\right)$. We will say that the pairs $\left(M\left(\Lambda_{1}\right) ; L\left(\Lambda_{1}\right)\right),\left(M\left(\Lambda_{2}\right) ; L\left(\Lambda_{2}\right)\right)$ are homeomorphic if there is a homeomorphism $M\left(\Lambda_{1}\right) \rightarrow M\left(\Lambda_{2}\right)$ taking the fibred link $L\left(\Lambda_{1}\right)$ to the fibred link $L\left(\Lambda_{2}\right)$. The following result says that a pair is the invariant of conjugacy for the restriction of A-flow on the basin of two-dimensional non-mixing attractor.

Theorem 5. Let f_{i}^{t} be an A-flow on an orientable closed three-manifold M_{i}^{3} such that the non-wandering set $N W\left(f_{i}^{t}\right)$ contains a two-dimensional non-mixing attractor $\Lambda_{i}, i=1,2$. If the restrictions $\left.f_{1}^{t}\right|_{W^{s}\left(\Lambda_{1}\right)},\left.f_{2}^{t}\right|_{W^{s}\left(\Lambda_{2}\right)}$ are conjugate, then there are homeomorphic pairs $\left(M\left(\Lambda_{1}\right) ; L\left(\Lambda_{1}\right)\right),\left(M\left(\Lambda_{2}\right) ; L\left(\Lambda_{2}\right)\right)$.

Let us mention some results concerning the subject. Christly [10] constructed a so-called tidy swaddled graph for a two-dimensional hyperbolic attractor. In [10], using tidy swaddled graphs, it was obtained the classification under the equivalence relation of restrictions $\left.f^{t}\right|_{\Lambda_{a}}$ of A-flows f^{t} on attractors Λ_{a}. Note that the classification of restrictions on attractors does not imply the classification of restrictions on basins of attractors. Robinson and Williams [40] constructed two diffeomorphisms f and g with attractors Λ_{f} and Λ_{g} respectively such that $f: \Lambda_{f} \rightarrow \Lambda_{f}$ is conjugate to $g: \Lambda_{g} \rightarrow \Lambda_{g}$ but there is not even a homeomorphism from a neighbourhood of Λ_{f} to a neighbourhood of Λ_{g} taking Λ_{f} to Λ_{g}. Passing to dynamical suspensions, one can get a similar example for flows. Another examples see in [48]. Morales [28] studied a transitivity of A-flows with a transverse torus on three-manifolds. In [5], one got the classification of codimension one non-mixing orientable attractors on closed n-manifolds for $n \geqslant 4$. Béguin et al [6] constructed nontransitive Anosov flows with two-dimensional attractors with prescribed entrance foliation (in particular, with some incoherent attractors). Recall that Margulis [26] proved that the fundamental group $\pi_{1}\left(M^{3}\right)$ of a supporting manifold M^{3} for Anosov flows has an exponential growth. Due to corollary 1, we see that the realm of A-flows is much richer than the realm of Anosov flows with two-dimensional attractors.

1. Basic definitions

Hyperbolic invariant sets. Let f^{t} be a smooth flow on a closed n-manifold $M^{n}, n \geqslant 3$. A subset $\Lambda \subset M^{n}=M$ is invariant provided Λ consists of trajectories of f^{t}. An invariant nonsingular set $\Lambda \subset M$ is called hyperbolic if the sub-bundle $T_{\Lambda} M$ of the tangent bundle $T M$ can be represented as a $D f^{\prime}$-invariant continuous splitting $E_{\Lambda}^{s s} \oplus E_{\Lambda}^{t} \oplus E_{\Lambda}^{u u}$ such that
(a) $\operatorname{dim} E_{\Lambda}^{s s}+\operatorname{dim} E_{\Lambda}^{t}+\operatorname{dim} E_{\Lambda}^{u u}=n$;
(b) E_{Λ}^{t} is the line bundle tangent to the trajectories of the flow f^{t};
(c) There are $C_{s}>0, C_{u}>0,0<\lambda<1$ such that

$$
\left\|d f^{t}(v)\right\| \leqslant C_{s} \lambda^{t}\|v\|, \quad v \in E_{\Lambda}^{s s} ; \quad\left\|d f^{-t}(v)\right\| \leqslant C_{u} \lambda^{t}\|v\|, v \in E_{\Lambda}^{u u}, \quad t>0
$$

A singular point x is hyperbolic if x is an isolated hyperbolic equilibrium state. The topological structure of flow near x is described by Grobman-Hartman theorem, see for example [39]. In this case $E_{x}^{t}=0$ and $\operatorname{dim} E_{\Lambda}^{s s}+\operatorname{dim} E_{\Lambda}^{u u}=n$.
If Λ does not contain fixed points, then the bundles

$$
E_{\Lambda}^{u u} \oplus E_{\Lambda}^{t}=E_{\Lambda}^{u}, \quad E_{\Lambda}^{s s} \oplus E_{\Lambda}^{t}=E_{\Lambda}^{s}, \quad E_{\Lambda}^{u u}, \quad E_{\Lambda}^{s s}
$$

are uniquely integrable [22, 43]. The corresponding leaves $W^{u}(x), W^{s}(x), W^{u u}(x), W^{s s}(x)$ through a point $x \in \Lambda$ are called unstable, stable, strongly unstable, and strongly stable manifolds respectively.
A-flows. Given a set $U \subset M^{n}$, denote by $f_{t_{0}}(U)$ the shift of U along the trajectories of f^{t} on the time t_{0}. Recall that a point x is non-wandering if given any neighbourhood U of x and a number $T_{0}>0$, there is $t_{0} \geqslant T_{0}$ such that $U \cap f_{t_{0}}(U) \neq \emptyset$. The non-wandering set $\mathrm{NW}\left(f^{t}\right)$ of f^{t} is the union of all non-wandering points.

Denote by $\operatorname{Fix}\left(f^{t}\right)$ the set of fixed points of f^{t}. Following Smale [43], we will call f^{t} an A-flow provided its non-wandering set $\mathrm{NW}\left(f^{t}\right)$ is hyperbolic and the periodic trajectories are dense in $\operatorname{NW}\left(f^{t}\right) \backslash \operatorname{Fix}\left(f^{t}\right)$. According to Smale's spectral decomposition theorem [37, 43], the non-wandering set of A-flow is a disjoint union of closed, and invariant, and transitive sets called basic sets.

Expanding attractors. Following Williams [46], we will call a basic set Ω an expanding attractor provided Ω is an attractor and its topological dimension equals the dimension of unstable manifold $W^{u}(x)$ for every point $x \in \Omega$. A basic set Λ is called orientable provided the both fibre bundles $E_{\Lambda}^{s s}$ and $E_{\Lambda}^{u u}$ are orientable. Note that if $E_{\Lambda}^{s s}$ and $E_{\Lambda}^{u u}$ are one-dimensional, then the orientability of Λ means that the both $E_{\Lambda}^{s s}$ and $E_{\Lambda}^{u u}$ can be embedded in vector fields on M^{n}.

For expanding attractors of A-diffeomorphisms, there is a deep theory developed in the papers [13, 15, 18, 35], see also the book [19]. This theory is based on the paper [29]. Similar theory based on the paper [45] holds for A-flows. We shortly recall some results of this theory.

Let Λ_{a} be an expanding attractor of A-flow on a closed three-manifold M^{3}. For a point $x \in \Lambda_{a}$, let us denote by $W^{+s s}(x)$ and $W^{-s s}(x)$ the components of $W^{s s} \backslash\{x\}$. A point $p \in \Lambda_{a}$ is called boundary if $W^{+s s}(p) \cap \Lambda_{a}=\emptyset$ or $W^{-s s}(p) \cap \Lambda_{a}=\emptyset$. Due to a hyperbolicity, if p is a boundary point then the trajectory $O(p)$ consists of boundary points, and $O(p)$ is said to be a boundary trajectory. An unstable manifold $W^{u}(\cdot) \subset \Lambda_{a}$ is called boundary if $W^{u}(\cdot)$ contains a boundary trajectory. If p is a boundary point, then there is a unique component of $W^{s s}(p) \backslash\{p\}$ denoted by $W_{\emptyset}^{s s}(p)$ such that $W_{\emptyset}^{s s}(p) \cap \Lambda_{a}=\emptyset$. Set $W_{\emptyset}^{s}(O(p))=\cup_{x \in O(p)} W_{\emptyset}^{s s}(x)$.

Denote by $(x, y)^{s s}$ (respectively, $\left.[x, y]^{s s}\right)$ the open (respectively, closed) arc of $W^{s s}(z)$ with the endpoints $x, y \in W^{s s}(z)$ where $z \in \Lambda_{a}$. The following results hold:

- Expanding attractor Λ_{a} contains finitely many boundary trajectories;
- Any boundary trajectory is periodic;
- Given any boundary trajectory $O(p) \subset \Lambda_{a}$ and a point $x \in W^{u}(p) \backslash O(p)$, there is a unique $\operatorname{arc}(x, y)^{s s} \stackrel{\text { def }}{=}(x, y)_{\emptyset}^{s s}$ such that $(x, y)^{s s} \cap \Lambda_{a}=\emptyset$ where $y \in \Lambda_{a}, y \stackrel{\text { def }}{=} \operatorname{opp}(x)$;
- $\operatorname{opp}(x)$ belongs to $W^{u}(q) \backslash O(q)$ where $O(q)$ is a some boundary trajectory (maybe, $p=q$).

The set $B\left(\Lambda_{a}\right)$ of the boundary unstable manifolds splits into disjoint bunches such that all unstable manifolds of a bunch can be consequently connected by arcs $[x, y]_{\emptyset}^{s s}$ called connecting arcs.
A^{*}-homeomorphisms. Let $f: X \rightarrow X$ be a homeomorphism of a compact metric space X endowed with a metric d. The homeomorphism f is an A^{*}-homeomorphism if the following conditions hold:
(a1) The periodic points of f are dense in X;
(a2) Given any $\delta>0$, there is $\varepsilon(\delta)=\varepsilon>0$ such that $W_{\delta}^{s}(x) \cap W_{\delta}^{u}(z) \neq \emptyset$ whenever $d(x, z) \leqslant \varepsilon ;$
(a3) There are $\gamma>0,0<\lambda<1$ and $c \geqslant 1$ such that for all $n \geqslant 0$ one holds $d\left(f^{n}(x), f^{n}(y)\right) \leqslant c \lambda^{n} d(x, y)$ if $y \in W_{\gamma}^{s}(x)$ and $d\left(f^{-n}(x), f^{-n}(y)\right) \leqslant c \lambda^{n} d(x, y)$ if $y \in W_{\gamma}^{u}(x)$.
Here, $\quad W_{\alpha}^{s}(x)=\left\{y \in X: d\left(f^{n}(x), f^{n}(y)\right) \leqslant \alpha\right.$ for all $\left.n \geqslant 0\right\} \quad$ and $\quad W_{\alpha}^{u}(x)=\{y \in$ $X: d\left(f^{n}(x), f^{n}(y)\right) \leqslant \alpha$ for all $\left.n \leqslant 0\right\}$.

Fibred links. Recall that a link in a three-manifold M^{3} is a collection of disjoint embedded circles $L=\left\{l_{1}, \ldots, l_{k}\right\} \subset M^{3}$. The link $L=\left\{l_{1}, \ldots, l_{k}\right\}$ is fibred if $M^{3} \backslash\left(\cup_{i=1}^{k} l_{i}\right)$ is the total space of fibre bundle $p:\left(M^{3} \backslash L\right) \rightarrow S^{1}$ and the boundary of the fibres $p^{-1}(\cdot)$ is L. In addition, the fibres $p^{-1}(\cdot)$ meet L nicely. To be precise, consider the solid torus $\mathbb{P}_{0}=\mathbb{S}^{1} \times \mathbb{D}^{2}$ called a canonical solid torus. Here, \mathbb{S}^{1} is a circle endowed with the cyclic coordinate ϑ, and \mathbb{D}^{2} an unit disk $\mathbb{D}^{2}=\{z \in \mathbb{C}| | z \mid \leqslant 1\}$. Set $S^{1}=\partial \mathbb{D}^{2}$. The mapping $p_{0}(\vartheta, z)=\frac{z}{\mid z}, \vartheta \in \mathbb{S}^{1}, z \in \mathbb{D}^{2} \backslash\{0\}$, is the fibre bundle

$$
p_{0}: \mathbb{S}^{1} \times\left(\mathbb{D}^{2} \backslash\{0\}\right) \rightarrow S^{1}
$$

over S^{1} with the fibre an annulus denoted by A_{0}. There is a tubular neighbourhood $T\left(l_{i}\right)$ of l_{i} homeomorphic to \mathbb{P}_{0} (so, we can assume $\left.T\left(l_{i}\right)=\mathbb{P}_{0}\right)$ such that $T\left(l_{i}\right) \backslash\left\{l_{i}\right\}=\mathbb{P}_{0} \backslash\left(\mathbb{S}^{1} \times\{0\}\right)$. By definition, $\left.p\right|_{T\left(l_{i}\right) \backslash\left\{l_{i}\right\}}$ is isomorphic to $p_{0}, i=1, \ldots, k$.

Rational foliations on two-torus. Let \mathcal{F} be a foliation without singularities on two-torus \mathbb{T}^{2}. The foliation \mathcal{F} is called rational if every leaf of \mathcal{F} is an embedded circle. Obviously, all leaves define the same nontrivial element of the fundamental group $\pi_{1}\left(\mathbb{T}^{2}\right)$. Now, suppose that \mathbb{T}^{2} is the boundary of the canonical solid torus \mathbb{P}_{0}. In this case, any leaf of \mathcal{F} is called a meridian provided the leaf is a homotopy trivial curve in \mathbb{P}_{0}. Clearly, a meridian is the boundary of some embedded two-disk in \mathbb{P}_{0}. A simple closed curve $l \subset \mathbb{T}^{2}$ is called a parallel if l transversally intersects some meridian at a unique point. Obviously, a parallel defines a nontrivial element of $\pi_{1}\left(\mathbb{T}^{2}\right)$.

Note that the fibres $p_{0}^{-1}(\cdot)$ of the fibre bundle p_{0} form a foliation denoted by \mathcal{F}. The leaves of \mathcal{F} are annuluses that are transversal to boundary $\mathbb{T}^{2}=\partial \mathbb{P}_{0}$. The intersections of this leaves with \mathbb{T}^{2} produce the rational foliation denoted by F_{0}. Thus, F_{0} is a foliation generated by parallels on the torus \mathbb{T}^{2}.

2. Previous results

For a codimension one basic set Ω of A-diffeomorphism, it was was proved independently by Plykin [34] and Williams [46] that Ω is either attractor or repeller. This result holds even for endomorphisms [17]. For A-flows, the proof is similar. So, we give only the scheme of the proof in the particular case when the dimension of basic set equals two.

Lemma 1. Let Λ be a two-dimensional basic set of A-flow f^{t} on a closed three-manifold. Then Λ is either attractor or repeller. Moreover, Λ is an attractor if and only if $W^{u}(x) \subset \Lambda$ for all points $x \in \Lambda$. Similarly, Λ is a repeller if and only if $W^{s}(x) \subset \Lambda$ for all points $x \in \Lambda$.

Scheme of the proof. Take $x \in \Lambda$ and put by definition,

$$
\begin{aligned}
\widehat{W}^{u u}(x) & =W^{u u}(x) \cap \Lambda, \widehat{W}_{\epsilon}^{u u}(x)=W_{\epsilon}^{u u}(x) \cap \Lambda, \widehat{W}^{s s}(x) \\
& =W^{s s}(x) \cap \Lambda, \widehat{W}_{\epsilon}^{s s}(x)=W_{\epsilon}^{s s}(x) \cap \Lambda .
\end{aligned}
$$

A relative neighbourhood \widehat{V} of $x \in \Lambda$ in Λ is homeomorphic to the product $\widehat{W}_{\epsilon}^{u u}(x) \times$ $\widehat{W}_{\epsilon}^{s s}(x) \times \mathbb{R}$. Since $\operatorname{dim} \Lambda=2, \operatorname{dim} \widehat{W}^{u u}(x)+\operatorname{dim} \widehat{W}^{s s}(x)=1$. It follows from the existence of hyperbolic structure that $\operatorname{dim}\left(W^{u u}(x) \times W^{s s}(x) \times \mathbb{R}\right)=3$. Hence,

$$
2=\operatorname{dim} W^{u u}(x)+\operatorname{dim} W^{s s}(x) \geqslant \operatorname{dim} \widehat{W}^{u u}(x)+\operatorname{dim} \widehat{W}^{s s}(x)=1
$$

Therefore, either $\operatorname{dim} W^{u u}(x)=\operatorname{dim} \widehat{W}^{u u}(x)$ or $\operatorname{dim} W^{s s}(x)=\operatorname{dim} \widehat{W}^{s s}(x)$. Suppose for definiteness, $\operatorname{dim} W^{u u}(x)=\operatorname{dim} \widehat{W}^{u u}(x)$. Note that $\operatorname{dim} W^{u u}(x)=\operatorname{dim} \widehat{W}^{u u}(x)=1$, otherwise Λ is a trivial basic set. Due to [23], the equality $\operatorname{dim} \widehat{W}^{u u}(x)=1$ implies the existence of an interior point, say y_{0}, in $\widehat{W}^{u u}(x)$. Hence, there is $\delta>0$ such that $W_{\delta}^{u u}\left(y_{0}\right) \subset \Lambda$. As a consequence, $W^{u u}\left(y_{0}\right) \subset \Lambda$ and $W^{u}\left(y_{0}\right) \subset \Lambda$. Due to a local product structure on a basic set, $W^{u}(x) \subset \Lambda$ for all points $x \in \Lambda$. Hence, Λ is an attractor. Similarly, if $\operatorname{dim} W^{s s}(x)=\operatorname{dim} \widehat{W}^{s s}(x)$ then Λ is a repeller.

Lemma 2. Let Λ_{a} be a nontrivial attractor of A-flow f^{t} on a closed three-manifold. Then Λ_{a} is expanding if and only if Λ_{a} is two-dimensional.

Proof. Suppose Λ_{a} is a two-dimensional attractor. By lemma $1, W^{u}(x) \subset \Lambda_{a}$ for any $x \in \Lambda_{a}$. Since Λ_{a} is nontrivial, $\operatorname{dim} W^{u u}(x) \geqslant 1$. It follows that $\operatorname{dim} W^{u}(x)=2$ for any $x \in \Lambda_{a}$. Hence, Λ_{a} is expanding.

Now suppose that Λ_{a} is an expanding attractor. Then $\operatorname{dim} \Lambda_{a}=\operatorname{dim} W^{u}(x)$ for any $x \in \Lambda_{a}$. If we assume that $\operatorname{dim} W^{u}(x)=1$ then $\operatorname{dim} W^{u u}(x)=0$. This implies that Λ_{a} is trivial since $\operatorname{dim} W^{s}(x)=3$. Hence, $\operatorname{dim} W^{u}(x)=2$. This follows that Λ_{a} is two-dimensional.

For references, we formulate the key statement proved by Bowen [8]. The topological closure of set N will be denoted by $\operatorname{clos}(N)$.

Proposition 1. Letf ${ }^{t}$ be an A-flow and Ω a nontrivial basic set off ${ }^{t}$. Then Ω is non-mixing if and only if the restrictionf $\left.\right|_{\Omega}$ is a dynamical τ-time suspension over some A^{*}-homeomorphism $\varphi_{x}^{*}: \operatorname{clos}\left(W^{u u}(x)\right) \rightarrow \operatorname{clos}\left(W^{u u}(x)\right)$ for some $\tau>0$ and any $x \in \Omega$. Moreover, if $\operatorname{clos}\left(W^{u u}(x)\right) \cap$ $\operatorname{clos}\left(W^{u u}(y)\right) \neq \emptyset$ for $x, y \in \Omega$ then $\operatorname{clos}\left(W^{u u}(x)\right)=\operatorname{clos}\left(W^{u u}(y)\right)$.

Note that the property of Anosov flow to be mixing is closely related with the notion of C-density introduced by Anosov [3] and Bowen [8]. Anosov [2] (with some assumptions on measure) and Plante [32] (without assuming on measure) proved that a transitive Anosov flow is C-dense if and only if the flow is mixing. Thus, a transitive Anosov flow is not C-dense if and only if the flow is non-mixing.

The crucial technical statement for the proof of theorem 1 is the following assertion.
Lemma 3. Let f^{t} be an A-flow on an orientable closed three-manifold M^{3} such that the nonwandering set $\mathrm{NW}\left(f^{t}\right)$ contains a two-dimensional non-mixing attractor Λ_{a}. Then there is a neighbourhood $U\left(\Lambda_{a}\right)$ of Λ_{a} such that

- $U\left(\Lambda_{a}\right) \subset W^{s}\left(\Lambda_{a}\right)$ is an attracting domain of Λ_{a};
- The boundary $\partial U\left(\Lambda_{a}\right)$ is transversal to f^{t} and consists of finitely many components T_{1}^{2}, \ldots, T_{k}^{2} where each T_{i}^{2} is homeomorphic to the two-torus \mathbb{T}^{2};
- The flow f^{t} in $U\left(\Lambda_{a}\right)$ has a global section.

Proof. Recall that due to Bowen's brilliant result [8] (see proposition 1), the restriction $\left.f^{t}\right|_{\Lambda_{a}}$ of f^{t} on Λ_{a} is a dynamical τ-time suspension over some A^{*}-homeomorphism $\varphi_{*}: \Pi_{0} \rightarrow \Pi_{0}$ where Π_{0} is the topological closure of $W^{u u}\left(x_{0}\right), x_{0} \in \Lambda_{a}$. Thus, $\varphi_{*}=\left.f_{\tau}\right|_{\Pi_{0}}$ is the τ-time shift along the trajectories of the flow f^{t}, and $f_{\tau}^{m}\left(\Pi_{0}\right)=\varphi_{*}^{m}\left(\Pi_{0}\right)=\Pi_{0}$ for any $m \in \mathbb{Z}$. Moreover, $\Lambda_{a}=\cup_{0 \leqslant t<\tau} f_{t}\left(\Pi_{0}\right)$ and $f_{t_{1}}\left(\Pi_{0}\right) \cap f_{t_{2}}\left(\Pi_{0}\right)=\emptyset$ provided $t_{1} \neq t_{2}, t_{1}, t_{2} \in[0 ; \tau)$. In addition, the t-time shift $\left.f_{t}\right|_{\Pi_{0}}: \Pi_{0} \rightarrow f_{t}\left(\Pi_{0}\right)$ is a homeomorphism for any $t \in[0 ; \tau)$. Taking a circle S^{1} as $[0 ; \tau] / 0 \simeq \tau$ one gets the fibre bundle

$$
\begin{equation*}
p_{a}: \Lambda_{a} \rightarrow S^{1}=[0 ; \tau] / 0 \simeq \tau \text { where } p_{a}(x)=t \text { provided } x \in f_{t}\left(\Pi_{0}\right) \tag{1}
\end{equation*}
$$

with the fibre Π_{0}. Hence, there is a minimal period for periodic trajectories of Λ_{a}. Choose the point $x_{0} \in \Lambda_{a}$ belonging to a periodic trajectory $l\left(x_{0}\right)$ with the minimal period $\tau_{0}=k \tau>0, k \in \mathbb{N}$.

Let us show that $W^{s s}\left(x_{0}\right) \cap \Lambda_{a} \subset \Pi_{0}$. Suppose the contrary. Then there is a point $y_{0} \in$ $W^{s s}\left(x_{0}\right) \cap \Lambda_{a}$ such that $y_{0} \notin \Pi_{0}$. First, we consider the case $y_{0} \in W^{u}\left(x_{0}\right)$. We see that $W^{u}\left(x_{0}\right)=$ $\cup_{z \in l\left(x_{0}\right)} W^{u u}(z) \ni y_{0}$. Then there exists a unique point $y_{1} \in l\left(x_{0}\right) \cap W^{u u}\left(y_{0}\right)$. It follows from $y_{1} \in l\left(x_{0}\right)$ that $f_{\tau_{0}}\left(y_{1}\right)=y_{1}$. Denote by Π_{1} the topological closure of $W^{u u}\left(y_{1}\right)$. According to proposition $1, f_{\tau_{0}}^{m}\left(\Pi_{1}\right)=\Pi_{1}, m \in \mathbb{Z}$. We have to prove that $\Pi_{1}=\Pi_{0}$. Since $y_{0} \in W^{s s}\left(x_{0}\right)$, $f_{\tau_{0}}^{m}\left(y_{0}\right) \rightarrow f_{\tau_{0}}^{m}\left(x_{0}\right)=x_{0}$ as $m \rightarrow \infty$. At the same time, $f_{\tau_{0}}^{m}\left(y_{0}\right) \in f_{\tau_{0}}^{m}\left(\Pi_{1}\right)=\Pi_{1}$ because of $W^{u u}\left(y_{0}\right)=W^{u u}\left(y_{1}\right)$. Therefore, Π_{0} is intersected with Π_{1}. According to proposition $1, \Pi_{1}=$ Π_{0}. Hence, $y_{0} \in \Pi_{0}$. This contradiction concludes the proof in the case $y_{0} \in W^{u}\left(x_{0}\right)$. Now, consider the case $y_{0} \notin W^{u}\left(x_{0}\right)$. Since $\Lambda_{a}=\cup_{t \geqslant 0} f_{t}\left(\Pi_{0}\right)$, there is $t_{0} \geqslant 0$ such that $f_{-t_{0}}\left(y_{0}\right) \in \Pi_{0}$. It follows from $\Pi_{0}=\operatorname{clos}\left(W^{u u}\left(x_{0}\right)\right)$ that the point $f_{-t_{0}}\left(y_{0}\right)$ is approximated by the point of $W^{u u}\left(x_{0}\right)$. The continuous dependence of unstable manifolds implies the existence of the sequence $y_{k} \in W^{u}\left(x_{0}\right)$ such that $y_{k} \rightarrow y_{0}$ as $k \rightarrow \infty$. The first case above implies that $y_{k} \in \Pi_{0}$. Since the set Π_{0} is closed, $y_{0} \in \Pi_{0}$.

Thus, $W^{s s}\left(x_{0}\right) \cap \Lambda_{a} \subset \Pi_{0}$. The continuous dependence of strongly stable manifolds implies that $W^{s s}(x) \cap \Lambda_{a} \subset \Pi_{0}$ for every point $x \in W^{u u}\left(x_{0}\right)$, and hence, for any $x \in \Pi_{0}$. By construction, $W^{u u}\left(x_{0}\right)$ is dense in Π_{0}. It follows from lemma 1 that $W^{u u}\left(x_{0}\right) \subset \Pi_{0} \subset \Lambda_{a}$. Again, the continuous dependence of strongly stable and unstable manifolds implies that for all $x, y \in \Pi_{0}$ one holds $W^{u u}(x) \cap W^{s s}(y) \subset \Pi_{0}$.

Set $S_{0}=\bigcup_{x \in \Pi_{0}} W^{s s}(x)$. Note that Π_{0} endowed with the hyperbolic structure induced from Λ_{a}. It follows from the continuous dependence of strongly stable manifolds that S_{0} is a topological (noncompact) surface. It follows from proposition 1 that S_{0} is a global section for the flow $\left.f^{t}\right|_{W^{s}\left(\Lambda_{a}\right)}$. Moreover, since $f_{\tau}\left(\Pi_{0}\right)=\Pi_{0}$ and strongly (unstable and stable) manifolds are invariant under t-time shifts, $f_{\tau}\left(S_{0}\right)=S_{0}$. This means that $\varphi=f_{\tau} \mid S_{0}: S_{0} \rightarrow S_{0}$ is a dynamical suspension which is a continuation of φ_{*}. Due to [21], $W^{s}\left(\Lambda_{a}\right)=\cup_{x \in \Lambda_{a}} W^{s s}(x)$. Since $\Lambda_{a}=\cup_{0 \leqslant t<\tau} f_{t}\left(\Pi_{0}\right)$ and $f_{t_{1}}\left(\Pi_{0}\right) \cap f_{t_{2}}\left(\Pi_{0}\right)=\emptyset$ provided $t_{1} \neq t_{2}, t_{1}, t_{2} \in[0 ; \tau)$, we see that $W^{s}\left(\Lambda_{a}\right)=\cup_{0 \leqslant t<\tau} f_{t}\left(S_{0}\right)$ and $f_{t_{1}}\left(S_{0}\right) \cap f_{t_{2}}\left(S_{0}\right)=\emptyset$ provided $t_{1} \neq t_{2}, t_{1}, t_{2} \in[0 ; \tau)$. It follows from (1) that there is the fibre bundle

$$
\begin{equation*}
P_{W}: W^{s}\left(\Lambda_{a}\right) \rightarrow S^{1}=[0 ; \tau] / 0 \simeq \tau \text { where } P_{W}(x)=t \text { provided } x \in f_{t}\left(S_{0}\right) \tag{2}
\end{equation*}
$$

with the fibre S_{0}. The fibres of the bundle (2) form the foliation denoted by F_{W}.
Since Λ_{a} is a two-dimensional basic set of f^{t} and $\Lambda_{a}=\cup_{0 \leqslant t \leqslant \tau} f_{t}\left(\Pi_{0}\right), \Lambda_{a} \cap S_{0}=\Pi_{0}$ and Π_{0} is a one-dimensional closed transitive invariant set of $\varphi=f_{\tau} \mid S_{0}: S_{0} \rightarrow S_{0}$. Since Λ_{a} is an expanding attractor, Π_{0} is an attracting set consisting of unstable manifolds of points $x \in \Pi_{0}$ under φ. The local product structure on Λ_{a} induces the local product structure on Π_{0} under φ. This allows us to construct the special bunches of Π_{0} similarly bunches of onedimensional expanding attractors of surface A-diffeomorphisms. To be precise, let \mathcal{B} be a
bunch of Λ_{a} consisting of the boundary unstable manifolds $W^{u}\left(p_{1}\right), \ldots, W^{u}\left(p_{r}\right)$ where $O\left(p_{i}\right)$ is a boundary periodic trajectory, $i=1, \ldots, r$. Let $\left[x_{1}, y_{1}\right]^{s s}, \ldots,\left[x_{r+1}, y_{r+1}\right]^{s s}$ be the connecting arcs of \mathcal{B}. Here, we suppose that $x_{r+1}=x_{1}, y_{r+1}=y_{1}$ provided $r=1$. Due to the above construction, one can assume that the union $\left[x_{1}, y_{1}\right]^{s s} \cup\left[y_{1}, x_{2}\right]^{u u} \cup \ldots \cup\left[y_{r}, x_{r+1}\right]^{u u}$ $\cup\left[x_{r+1}, y_{r+1}\right]^{s s}$ is a closed simple curve denoted by $c(\mathcal{B})$ belongs to S_{0} where $p_{i+1} \in$ $\left[y_{i}, x_{i+1}\right]^{u u}, i=0, \ldots, r-1$.

We cover $c(\mathcal{B})$ by segments of strongly stable manifolds through $\left[y_{1}, x_{2}\right]^{u u} \cup \ldots$ $\cup\left[y_{r}, x_{r+1}\right]^{u u}$ to get an annulus A with the middle circle $c(\mathcal{B})$. Since $c(\mathcal{B}) \subset S_{0}, A \subset S_{0}$. Note that according proposition 1 , the trajectories $O\left(p_{i}\right), i=1, \ldots, r$, have the same period denoted by $T(\mathcal{B})>0$. The set $C_{\mathcal{B}}=\bigcup_{0 \leqslant t \leqslant T(\mathcal{B})} f_{t}(c(\mathcal{B}))$ is a cylinder which intersects A through finitely many circles (simple closed curves). Since $c(\mathcal{B})$ belongs to $S_{0}, C_{\mathcal{B}} \backslash\{c(\mathcal{B})\}$ intersects the leaves of F_{W} through the circles each isotopic to $c(\mathcal{B})$ on the cylinder $C_{\mathcal{B}}$. Therefore, these circles form the rational foliation consisting of nontrivial loops.

Let us move $c(\mathcal{B})$ to a closed simple curve $\tilde{c} \subset A$ such that \tilde{c} has no intersection with Λ_{a} and \tilde{c} cuts transversally $W_{\emptyset}^{s s}\left(p_{i}\right), i=1, \ldots, r$, in the annulus A. In addition, one can assume that $\tilde{c} \subset S_{0}$. Slightly deforming $\tilde{c} \subset A$, one gets the cylinder $\left.\tilde{C}=\bigcup_{0 \leqslant t \leqslant T(\mathcal{B})} f_{t}(\tilde{c})\right)$ such that \tilde{C} is transversal to f^{t} and the intersection $A \cap \tilde{C}$ consists of finitely many disjoint simple curves. A standard procedure allows to construct a closed surface $T^{2}(\mathcal{B})$ for the bunch \mathcal{B} (this procedure is similar to the construction of closed transversal for a flow starting with a closed curve that consists of an arc of trajectory and a transversal segment [4]). Moreover, it is possible to make the deformation of C along the fibre of the bundle (2) so that the intersections $T^{2}(\mathcal{B}) \cap P_{W}^{-1}(x), x \in S^{1}=[0 ; \tau] / 0 \simeq \tau$, produce the rational foliation denoted by \widetilde{F}_{W}. Due to the Euler-Poincaré formula (see for example [33], ch 3), the Euler characteristic of $T^{2}(\mathcal{B})$ equals zero. Hence, $T^{2}(\mathcal{B})$ is either a torus or Klein bottle. But the possibility to get a Klein bottle instead of the torus $T^{2}(\mathcal{B})$ fails because of orientability of M^{3}. Continuing by similar way for every bunch of Λ_{a}, one gets the desired components $T_{1}^{2}, \ldots, T_{k}^{2}$ of the boundary $\partial U\left(\Lambda_{a}\right)$ where each T_{i}^{2} homeomorphic to the two-torus \mathbb{T}^{2}.

In the case when an A-flow is Anosov flow, lemma 3 agrees with the results by Brunella [9] who proved that the basic sets of nontransitive Anosov flow are separated by torii.

3. Proofs of main results

Proof of theorem 1. According to lemma 3, there is a neighbourhood $U\left(\Lambda_{a}\right) \subset W^{s}\left(\Lambda_{a}\right)$ of Λ_{a} such that $U\left(\Lambda_{a}\right)$ is an attracting domain of Λ_{a}, and the boundary $\partial U\left(\Lambda_{a}\right)$ is transversal to f^{t} and consists of finitely many components $T_{1}^{2}, \ldots, T_{k}^{2}$ where each T_{i}^{2} homeomorphic to the two-torus \mathbb{T}^{2}. The transversality of each T_{i}^{2} to the trajectories of f^{t} and the inclusion $U\left(\Lambda_{a}\right) \subset$ $W^{s}\left(\Lambda_{a}\right)$ imply that every positive semi-trajectory starting at a point of T_{i}^{2} belongs to $U\left(\Lambda_{a}\right)$ and never intersects again $\cup_{j=1} T_{j}^{2}$. This follows that the union $T_{a}=\cup_{j=1} T_{j}^{2}$ divides $W^{s}\left(\Lambda_{a}\right)$ into two domains $U\left(\Lambda_{a}\right)$ and $U_{\text {out }}=W^{s}\left(\Lambda_{a}\right) \backslash U\left(\Lambda_{a}\right)$. Clearly, every negative semi-trajectory starting at a point of T_{a} belongs to $U_{\text {out }}$ and never intersects T_{a} again. Taking in mind the continuous dependence of trajectories on initial conditions, one gets that $U_{\text {out }}$ is homeomorphic (in the interior topology) to $\left(\cup_{i=1}^{k} T_{i}^{2}\right) \times(-\infty ; 0)$ that is the disjoint union $\cup_{i=1}^{k}\left(T_{i}^{2} \times(-\infty ; 0)\right)=$ $U_{\text {out }}$. To construct a compactification of $W^{s}\left(\Lambda_{a}\right)$ it is enough to get a compactification for every $T_{i}^{2} \times(-\infty ; 0)$ by a circle .

Take the canonical solid torus $\mathbb{P}_{0}=\mathbb{D}^{2} \times \mathbb{S}^{1}$. There is a vector field \vec{v} on \mathbb{P}_{0} such that \vec{v} is directed transversally on the boundary $\partial \mathbb{P}_{0}$ outside of \mathbb{P}_{0} and \vec{v} has a unique periodic trajectory $l_{0}=\{0\} \times \mathbb{S}^{1}$ that is a repeller of \vec{v}. Take a homeomorphism $\vartheta_{i}: \partial \mathbb{P}_{0} \rightarrow T_{i}^{2}$, $i=1, \ldots, k$. Using ϑ_{i} and the negative semi-trajectories of \vec{v} starting at $\partial \mathbb{P}_{0}$, one can construct a homeomorphism $\widetilde{\vartheta}_{i}$ between $\mathbb{P}_{0} \backslash\left\{l_{0}\right\}$ and $T_{i}^{2} \times(-\infty ; 0)=T_{i}^{3}$ for every $i=1, \ldots, k$.

Let us introduce a topology on the union $T_{i}^{3} \cup l_{i}$ where $l_{i}=l_{0}$. We assume that the set T_{i}^{3} is endowed with the initial topology. Take a point $x \in l_{i}=l_{0}$, and let $U(x)$ be a neighbourhood of $x \in l_{0} \subset \mathbb{P}_{0}$ in the solid torus \mathbb{P}_{0}. Then $U(x) \backslash\left\{l_{0}\right\}$ is an open set in \mathbb{P}_{0}. Hence, $\widetilde{\vartheta}_{i}\left(U(x) \backslash\left\{l_{0}\right\}\right)=\widetilde{U}(x)$ is an open set in T_{i}^{3}. Put the union $\widetilde{U}(x) \cup\left(U(x) \cap l_{0}\right)$ to be neighbourhood of x in $T_{i}^{3} \cup l_{i}$. It is easy to see that such neighbourhoods introduce the topology on $T_{i}^{3} \cup l_{i}$. This gives the compactification of T_{i}^{3} by the closed curve l_{i} for every $i=1, \ldots, k$. As a consequence, one gets the compactification $W^{s}\left(\Lambda_{a}\right) \cup_{i=1}^{k} l_{i}$ denoted by $M\left(\Lambda_{a}\right)_{\vartheta_{1}, \ldots, \vartheta_{k}}$. Below, we describe the homeomorphisms $\vartheta_{1}, \ldots, \vartheta_{k}$ in details to get the final compactification $M\left(\Lambda_{a}\right)$. It is easy to check that $M\left(\Lambda_{a}\right)_{\vartheta_{1}, \ldots, \vartheta_{k}}$ is a closed topological manifold. Since any topological three-manifold admits a unique structure of smooth manifold, $M\left(\Lambda_{a}, \vartheta_{1}, \ldots, \vartheta_{k}\right)$ is endowed with the structure of smooth manifold which is the extension of the smooth structure on $W^{s}\left(\Lambda_{a}\right)$.

Let P_{i}^{3} be a copy of \mathbb{P}_{0}, and $\vec{v}_{i}=\vec{v}$ the vector field with closed curve $l_{i}=l_{0}$ in $P_{i}^{3}, i=$ $1, \ldots, k$. By construction, $M\left(\Lambda_{a}, \vartheta_{1}, \ldots, \vartheta_{k}\right)=U\left(\Lambda_{a}\right) \cup_{\vartheta_{1}} P_{1}^{3} \cup \ldots \cup_{\vartheta_{k}} P_{k}^{3}$. Slightly deforming the vector fields $\vec{v}_{i}, i=1, \ldots, k$, one can assume that this fields and the restriction $\left.f^{t}\right|_{U\left(\Lambda_{a}\right)}$ form the smooth flow \tilde{f}^{t} that is the extension of f^{t} to $M\left(\Lambda_{a}, \vartheta_{1}, \ldots, \vartheta_{k}\right)$. Clearly, $N W\left(\tilde{f}^{t}\right)=$ $\Lambda_{a} \cup_{i=1}^{k} l_{i}$. Since l_{i} are repelling periodic trajectories of $\vec{v}_{i}, i=1, \ldots, k$, the trajectories l_{1}, \ldots, l_{k} are repelling isolated periodic trajectories of \tilde{f}^{t}.

We keep the notation of the proof of lemma 3. Take the foliation F_{W} generated by the fibres of the bundle P_{W}, see (2). By construction, given any T_{i}^{2}, the intersections of the leaves with T_{i}^{2} form a rational foliation $F\left(T_{i}^{2}\right)$ such that each leaf of $F\left(T_{i}^{2}\right)$ belongs to a leaf of F_{W}. Therefore, P_{W} induces the fibre bundle $\left.P_{W}\right|_{U\left(\Lambda_{a}\right)}: U\left(\Lambda_{a}\right) \rightarrow S^{1}=[0 ; \tau] / 0 \simeq \tau$ such that the restriction $\left.F_{W}\right|_{U\left(\Lambda_{a}\right)}$ of F_{W} on $U\left(\Lambda_{a}\right)$ is a foliation whose leaves are the fibres of the bundle $\left.P_{W}\right|_{U\left(\Lambda_{a}\right)}$.

Recall that $\mathbb{P}_{0}=\mathbb{S}^{1} \times \mathbb{D}^{2}$ is the canonical solid torus, and $p_{0}: \mathbb{S}^{1} \times\left(\mathbb{D}^{2} \backslash\{0\}\right) \rightarrow S^{1}$ is the fibre bundle where $p_{0}(\vartheta, z)=\frac{z}{|z|}, \vartheta \in \mathbb{S}^{1}=\partial \mathbb{D}^{2}, z \in \mathbb{D}^{2} \backslash\{0\}, \mathbb{D}^{2}=\{z \in \mathbb{C}| | z \mid \leqslant 1\}$. The fibres $p_{0}^{-1}(\cdot)$ form a foliation denoted by \mathcal{F}. The leaves of \mathcal{F} are annuluses transversal to boundary $\mathbb{T}^{2}=\partial \mathbb{P}_{0}$. The intersections of this leaves with \mathbb{T}^{2} produce the rational foliation F_{0} generated by parallels on the torus $\mathbb{T}^{2}=\partial \mathbb{P}_{0}$. We know that rational foliations are topologically equivalent $[4,30]$. Hence there are the mapping $\vartheta_{i}: \partial \mathbb{P}_{0} \rightarrow T_{i}^{2}$ taking the leaves of the foliation F_{0} to the leaves of $F\left(T_{i}^{2}\right)$. This gives the continuation of the fibre bundle $\left.P_{W}\right|_{U\left(\Lambda_{a}\right)}$ to $T_{i}^{3}, i=1, \ldots, k$. It follows that the collection $\left\{l_{1}, \ldots, l_{k}\right\}$ is a fibred link in $M\left(\Lambda_{a}\right)$.

At last, the unstable manifolds of the repelling periodic trajectories l_{1}, \ldots, l_{k} are three-dimensional open submanifolds of M^{3}. Clearly, they intersect transversally the twodimensional stable manifolds of the points of Λ_{a}. Since the non-wandering set $\operatorname{NW}\left(\tilde{f}^{t}\right)=$ $\Lambda_{a} \cup_{i=1}^{k} l_{i}$ has a hyperbolic structure, $\tilde{f} t$ is an A-flow satisfying a strong transversality condition. It follows from [20] that \tilde{f}^{t} is a structurally stable flow. By construction, \tilde{f}^{t} is a nonsingular flow.
Proof of theorem 2. Since $L=\left\{l_{1}, \ldots, l_{k}\right\} \subset M^{3}$ is a fibred link, the manifold $M^{3} \backslash L$ can be considered as a mapping torus manifold $M^{3} \backslash L=\left(\operatorname{int} M^{2} \times[0 ; 1]\right) /(x, 1) \sim(g(x), 0)$ where g : $\operatorname{int} M^{2} \rightarrow \operatorname{int} M^{2}$ is a diffeomorphism of the interior of some compact surface M^{2} with boundary components C_{1}, \ldots, C_{k} corresponding to the knots l_{1}, \ldots, l_{k}. By definition, every leaf $p^{-1}(\cdot)$ of the fibre bundle $p: M^{3} \backslash L \rightarrow S^{1}$ is homeomorphic to int M^{2}. In addition, the topological closure of all leaves $p^{-1}(x), x \in S^{1}$, are compact surfaces (each homeomorphic to M^{2}) with the boundary components l_{1}, \ldots, l_{k}. Hence, we can extend g to the diffeomorphism $M^{2} \rightarrow M^{2}$ denoted again by g such that $\left.g\right|_{\cup_{i=1}^{k} C_{i}}=i d$.

Let us show that slightly deforming g near ∂M^{2}, one can assume that every C_{i} is a repelling set of g. Let a_{i} be an annulus having the boundary component C_{i}. Then C_{i} is diffeomorphic
to $C_{i} \times[0 ; 1]$ that admits a flow ϕ^{t} along the second factor such that the curves $C_{i} \times\{0\}$, $C_{i} \times\{0\}$ form the fixed point set of ϕ^{t}. Denote by ϕ_{t} the t-shift along the trajectories of ϕ^{t}. Since g is a diffeomorphism, $D g>0$. Hence, $g \circ \phi_{t}$ is a diffeomorphism with repelling set C_{i} for sufficiently large t. Thus, one can assume that $g \circ \phi_{t}$ has the repelling set $\cup_{i=1}^{k} C_{i}$. Clearly, $g \circ \phi_{t}$ is diffeotopic to g.

It follows from [41], theorem 2 (see also [31]) that $g \circ \phi_{t}$ can be approximated by an Adiffeomorphism g_{0} homotopic to $g \circ \phi_{t}$ with the repelling set $\cup_{i=1}^{k} C_{i}$. Let us take a point x_{*} near $\cup_{i=1}^{k} C_{i}$ such that x_{*} and $g_{0}\left(x_{*}\right)$ belong to attracting region of g_{0}^{-1}. Then there is a path p_{*} connecting the points $x_{*}, g_{0}\left(x_{*}\right)$ such that p_{*} belongs to the wandering set of g_{0}. Slightly deforming g_{0} in a small neighbourhood of p_{*} one can get an A-diffeomorphism denoted again by g_{0} such that x_{*} becomes an attracting fixed point of g_{0}.

Take an attracting neighbourhood U of x_{*} homeomorphic to a disk. We know that there is an attracting neighbourhood U_{P} of the classical Plykin attractor Λ_{P} of diffeomorphism $g_{P}: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ such that U_{P} is also homeomorphic to a disk [39]. One can change g_{0} inside U replacing $\left.g_{0}\right|_{U}$ by the mapping $\left.g_{P}\right|_{U_{P}}$ with the Plykin attractor Λ_{P} so that the diffeomorphism g_{*} obtained is an A-diffeomorphism. By construction, g_{*} is homotopic to g_{0}, and g_{*} is an A-diffeomorphism with the attractor Λ_{P}.

Since g_{*} is homotopic to g, the mapping torus $\left(\operatorname{int} M^{2} \times[0 ; 1]\right) /(x, 1) \sim\left(g_{*}(x), 0\right)$ is homeomorphic to $M^{3} \backslash L$. Therefore, the dynamical suspension $\operatorname{sus}^{t}\left(g_{*}\right)$ of g_{*} is an A-flow on the manifold $M^{3} \backslash L$. Since g_{*} coincide with $g \circ \phi_{t}$ outside of U, $\operatorname{sus}^{t}\left(g_{*}\right)$ can be extended to an A-flow f^{t} on M^{3} with the repelling periodic trajectories l_{1}, \ldots, l_{k}. By construction, the nonwandering set $\mathrm{NW}\left(f^{t}\right)$ contains the non-mixing two-dimensional attractor Λ_{a} corresponding the Plykin attractor Λ_{P}. This completes the proof.

Proof of theorem 3. First, we construct an A-flow with two-dimensional attractor on an n sphere S^{n} for any $n \geqslant 4$. Due to corollary 1, there is an A-flow f^{t} on S^{3} with a two-dimensional expanding attractor Λ. Take S^{3} to be smoothly embedded in S^{4} such that $S^{4} \backslash S^{3}$ is the disjoint union of four-balls B_{1}^{4}, B_{2}^{4}. One can continue f^{t} to S^{4} to get an A-flow, say f_{4}^{t}, such that f_{4}^{t} has a unique source at each $B_{i}^{4}, i=1,2$, and S^{3} is an attracting set for f_{4}^{t}. Indeed, let (x_{1}, x_{2}, x_{3}) be local coordinates in a neighbourhood of a point of S^{3}. Suppose the flow f^{t} is defined by the system $\dot{x}_{1}=p_{1}\left(x_{1}, x_{2}, x_{3}\right), \dot{x}_{2}=p_{2}\left(x_{1}, x_{2}, x_{3}\right), \dot{x}_{3}=p_{3}\left(x_{1}, x_{2}, x_{3}\right)$. One can introduce a coordinate x_{4} such that the unequally $x_{4}>0$ corresponds points in B_{1}^{4}. Then the system $\dot{x}_{1}=p_{1}, \dot{x}_{2}=p_{2}, \dot{x}_{3}=p_{3}, \dot{x}_{4}=-x_{4}$ defines locally a flow which can be extended to desired flow f_{4}^{t} on B_{1}^{4}. Similarly, one can get f_{4}^{t} on B_{2}^{4}. Since $\Lambda \subset S^{3}$ is an attractor and S^{3} is an attracting set, Λ is the two-dimensional attractor of f_{4}^{t}. Continuing by similar way, on can construct an A-flow, say f_{n}^{t}, on S^{n} with the two-dimensional expanding attractor Λ for any $n \geqslant 5$.

Now, let M^{n} be an arbitrary closed n-manifold, $n \geqslant 4$. Due to Smale [42], there is a gradientlike Morse-Smale flow g^{t} on M^{n} such that g^{t} has a sink s_{0}. By construction, f_{n}^{t} has an isolated source, say r_{n}. Take out neighbourhoods $U\left(s_{0}\right), U\left(r_{n}\right)$ of s_{0}, r_{n} such that the boundaries $\partial U\left(s_{0}\right.$, $\partial U\left(r_{n}\right)$ are transversal to g^{t} and f_{n}^{t} respectively. One can glue $M^{n} \backslash U\left(s_{0}\right)$ with $S^{n} \backslash U\left(r_{n}\right)$ under a diffeomorphism $\partial U\left(s_{0}\right) \rightarrow \partial U\left(r_{n}\right)$ to get a connected sum $M^{n} \sharp S^{n}$ homeomorphic to M^{n}. Then the flows g^{t} and f_{n}^{t} define the A flow desired on M^{n}. This completes the proof.
Proof of theorem 4. Let $M^{\prime}\left(\Lambda_{a}\right)$ be a casing with a fibred link $L^{\prime}=\left\{l_{1}^{\prime}, \ldots, l_{k}^{\prime}\right\}$, and \tilde{f}^{t} a nonsingular A-flow on $M^{\prime}\left(\Lambda_{a}\right)$ whose non-wandering set consists of attractor Λ_{a} and repelling isolated periodic trajectories $l_{1}^{\prime}, \ldots, l_{k}^{\prime}$. Due to lemma 3, there is a neighbourhood $U\left(\Lambda_{a}\right)$ of Λ_{a} is an attracting domain of Λ_{a} such that the boundary $\partial U\left(\Lambda_{a}\right)$ is transversal to \tilde{f}^{t} and consists of torii $T_{1}^{2}, \ldots, T_{k}^{2}$. Since every $l_{j}, j=1, \ldots, k$, is an isolated repelling periodic trajectory, there is a neighbourhood $U\left(l_{j}\right)$ of l_{j} homeomorphic to a solid torus such that $U\left(l_{j}\right)$ belongs to the basin of l_{j} and the torus $\partial U\left(l_{j}\right)$ is transversal to \tilde{f}^{t}. Without loss of generality one can assume
that all $U\left(l_{j}\right), j=1, \ldots, k$, do not intersect $U\left(\Lambda_{a}\right)$. Since \tilde{f}^{t} is a flow of attractor-repeller type with no non-wandering points except $\Lambda_{a} \cup\left\{l_{1}^{\prime}, \ldots, l_{k}^{\prime}\right\}$, any positive semi-trajectory starting from $\partial U\left(l_{j}\right)$ intersects some torus, say $T_{j_{1}}^{2}$, at a unique point, and after that the semi-trajectory never leaves $U\left(\Lambda_{a}\right)$. A simply connectedness of $\partial U\left(l_{j}\right)$ implies that there is a homeomorphism $\theta_{j}: \partial U\left(l_{j}\right) \rightarrow T_{j_{1}}^{2}$ that is a forward Poincare mapping. Such homeomorphisms exist for every $j=1, \ldots, k$. Hence, $M^{\prime}\left(\Lambda_{a}\right)$ can be obtained up to homeomorphism by the procedure described in the proof of theorem 1.

Now, we keep the notation of the proof of theorem 1 . We see that one remains a freedom to choose the mapping $\vartheta_{i}: \partial \mathbb{P}_{0} \rightarrow T_{i}^{2}, i=1, \ldots, k$ to get the casing $M\left(\Lambda_{a}\right)$. Any casing $M^{\prime}\left(\Lambda_{a}\right)$ $\in \mathbb{F}\left(\Lambda_{a}\right)$ is obtained by some mapping $\vartheta_{i}^{\prime}: \partial \mathbb{P}_{0} \rightarrow T_{i}^{2}, i=1, \ldots, k$. Then the mapping $\vartheta_{i}^{\prime} \circ$ $\vartheta_{i}^{-1}: \partial \mathbb{P}_{0} \rightarrow T_{i}^{2}, i=1, \ldots, k$, induce a surgery of the link $L=\left\{l_{1}, \ldots, l_{k}\right\}$ to get $M^{\prime}\left(\Lambda_{a}\right)$ from $M\left(\Lambda_{a}\right)$. This completes the proof.

Remark. One can show that there are infinitely many casings $M\left(\Lambda_{a}\right)$ with $M\left(\Lambda_{a}\right) \backslash L\left(\Lambda_{a}\right)$ endowed with a hyperbolic structure. Indeed, let us fix some $M\left(\Lambda_{a}\right) \in \mathbb{F}\left(\Lambda_{a}\right)$. Denote by $M^{\text {int }}\left(\Lambda_{a}\right)$ the set $M\left(\Lambda_{a}\right) \backslash\left(\cup_{i=1}^{k} P_{i}^{3}\right)$. Slightly modifying the restriction $\left.f^{t}\right|_{M^{\text {int }}\left(\Lambda_{a}\right)}$, one can get a flow f_{1}^{t} with the global section $S_{0} \cap M^{\text {int }}\left(\Lambda_{a}\right)$ such that the set of the circles \tilde{c} becomes an invariant set under the τ-time shift $f_{1, \tau}^{t}$. Since the circles \tilde{c} have no intersections with $\Lambda_{a} \cap S_{0}$, one can assume that the support of the modification has no intersection with Λ_{a}. Therefore, one can assume that the Poincare forward mapping $f_{1, \tau}^{t}: S_{0} \cap M^{\text {int }}\left(\Lambda_{a}\right) \rightarrow S_{0} \cap M^{\text {int }}\left(\Lambda_{a}\right)$ is an A^{*}-homeomorphism with the non-wandering set consisting of \tilde{c} and one-dimensional basic set $\Lambda_{a} \cap S_{0}$. It follows from [14] that $f_{1, \tau}^{t}$ semi-conjugates to a pseudo-Anosov homeomorphism. Due to [44], $M^{\mathrm{int}}\left(\Lambda_{a}\right)=M\left(\Lambda_{a}\right) \backslash\left(\cup_{i=1}^{k} P_{i}^{3}\right)$ is endowed with the structure of hyperbolic manifold.

Proof of theorem 5. Let $\varphi: W^{s}\left(\Lambda_{1}\right) \rightarrow W^{s}\left(\Lambda_{2}\right)$ be the homeomorphism taking the trajectories of the flow $\left.f_{1}^{t}\right|_{W^{s}\left(\Lambda_{1}\right)}$ to the trajectories of the flow $\left.f_{1}^{t}\right|_{W^{s}\left(\Lambda_{2}\right)}$. Take a point $x_{1} \in \Lambda_{1}$. Due to proposition 1, the restriction $\left.f_{1}^{t}\right|_{W^{s}\left(\Lambda_{1}\right)}$ is the dynamical τ_{1}-time suspension over some A^{*}-homeomorphism $\psi_{1}: \operatorname{clos}\left(W^{u u}\left(x_{1}\right)\right) \rightarrow \operatorname{clos}\left(W^{u u}\left(x_{1}\right)\right)$ with some $\tau_{1}>0$. Similarly, the restriction $\left.f_{2}^{t}\right|_{W^{s}\left(\Lambda_{2}\right)}$ is the dynamical τ_{2}-time suspension over some A^{*}-homeomorphism $\psi_{2}: \operatorname{clos}\left(W^{u u}\left(x_{2}\right)\right) \rightarrow \operatorname{clos}\left(W^{u u}\left(x_{2}\right)\right)$ with some $\tau_{2}>0$ where $x_{2}=\varphi\left(x_{1}\right)$. Since φ is a conjugacy for any $t \in \mathbb{R}, \varphi$ takes the strong unstable manifolds of f_{1}^{t} to the strong unstable manifolds of f_{2}^{t}. Then $\varphi\left[W^{u u}\left(x_{1}\right)\right]=W^{u u}\left(\varphi\left(x_{1}\right)\right)=W^{u u}\left(x_{2}\right)$. As a consequence, $\varphi\left[\cos W^{u u}\left(x_{1}\right)\right]=$ $\operatorname{clos} W^{u u}\left(x_{2}\right)$. Due to proposition 1, $\tau_{1}=\tau_{2}$. It follows that φ conjugates ψ_{1} and ψ_{2}. Hence, φ takes the foliation $F\left(T_{i, 1}^{2}\right)$ to the foliation $F\left(T_{i, 2}^{2}\right)$ for every $i=1, \ldots, k$.

We keep the notation of the proof of theorem 1. Let $M\left(\Lambda_{j}\right)_{\vartheta_{1}^{(j)} \ldots, \vartheta_{k}^{(j)}}$ be the casing of Λ_{j} obtained by using homeomorphisms $\vartheta_{i}^{(j)}: \partial \mathbb{P}_{0} \rightarrow T_{i, j}^{2}, i=1, \ldots, k, j=1,2$ where \mathbb{P}_{0} is the canonical solid torus. To continue φ to a homeomorphism $M\left(\Lambda_{1}\right)_{\vartheta_{1}^{(1)}, \ldots, \vartheta_{k}^{(1)}} \rightarrow M\left(\Lambda_{2}\right)_{\vartheta_{1}^{(2)}, \ldots, \vartheta_{k}^{(2)}}$ one needs to continue φ on \mathbb{P}_{0}. To do this, we need to change the homeomorphisms $\vartheta_{i}^{(2)}$ for every $i=1, \ldots, k$. Denote by μ a meridian of \mathbb{P}_{0}. By construction, the curve $\vartheta_{i}^{(j)}(\mu)$ is a closed simple curve on $T_{i, j}^{2}$ transversally intersecting the leaves of the foliation $F\left(T_{i, j}^{2}\right), j=1,2$. Moreover, since μ intersects each parallel at a unique point, $\vartheta_{i}^{(j)}(\mu)$ intersects each leaf of the foliation $F\left(T_{i, j}^{2}\right)$ at a unique point also. Since φ takes the foliation $F\left(T_{i, 1}^{2}\right)$ to the foliation $F\left(T_{i, 2}^{2}\right), \varphi \circ \vartheta_{i}^{(1)}(\mu)$ is a closed simple curve on $T_{i, 2}^{2}$ transversally intersecting each leaf of the foliation $F\left(T_{i, 2}^{2}\right)$ at a unique point, $i=1, \ldots, k$. This follows that there is a Dehn twist $D: T_{i, 2}^{2} \rightarrow T_{i, 2}^{2}$ taking $\vartheta_{i}^{(2)}(\mu)$ to $\varphi \circ \vartheta_{i}^{(1)}(\mu)$ such that every leaf of $F\left(T_{i, 2}^{2}\right)$ is invariant under D. Set $\widehat{\vartheta}_{i}^{(2)}=D \circ \vartheta_{i}^{(2)}: \partial P_{0}^{3} \rightarrow T_{i}^{2}$. Since D keeps the foliation $F\left(T_{i, 2}^{2}\right), M\left(\Lambda_{2}\right)_{\widehat{\vartheta}_{1}^{(2)}, \ldots, \vartheta_{k}^{(2)}}$ is a casing
of Λ_{2}. By construction, φ takes $\vartheta_{i}^{(1)}(\mu)$ to a curve homotopy $\widehat{\vartheta}_{2}^{(2)}(\mu)$. It is well-known, that a homeomorphism of the boundary of solid torus can be extended to the whole solid torus provided the boundary homeomorphism keeps meridians. Moreover, one can get the extension keeping the central axis of the solid torus. Hence, φ can be extended to the homeomorphism $M\left(\Lambda_{1}\right) \rightarrow M\left(\Lambda_{2}\right)_{\widehat{\vartheta}_{1}^{(2)}, \ldots, \widehat{\vartheta}_{k}^{(2)}}$ taking the fibred link $L\left(\Lambda_{1}\right)$ to $L\left(\Lambda_{2}\right)$.

Acknowledgments

This work is supported by Laboratory of Dynamical Systems and Applications of National Research University Higher School of Economics, of the Ministry of science and higher education of the RF, Grant Agreement No. 075-15-2019-1931. We thank the unknown Reviewers for very useful remarks which improved the text.

References

[1] Alexander J W 1923 A lemma on systems of knotted curves Proc. Natl Acad. Sci. 9 93-5
[2] Anosov D V 1967 Geodesic flows on closed Riemannian manifolds of negative curvature Trudy Mat. Inst. Steklov. 90 (in Russian)
Anosov D V 1969 Proc. Steklov Inst. Math. 90 MR 36:7157 (Engl. transl.)
[3] Anosov D V 1970 On a class of invariants sets of smooth dynamical systems Proc. 5th Int. Conf. Nonlinear Oscillations vol 2 (Kiev: Izdanie Inst. Mat. Akad Nauk Ukrain. SSR) pp 39-45 (in Russian) MR 47:8969
[4] Aranson S, Belitsky G and Zhuzhoma E 1996 Introduction to Qualitative Theory of Dynamical Systems on Closed Surfaces (Translations of Math. Monographs vol 153) (Providence, RI: American Mathematical Society)
[5] Aranson S and Zhuzhoma E 1992 On the classification of codimension one attractors without mixing Sel. Math. Sov. 11 327-32
[6] Béguin F, Bonatti C and Yu B 2017 Building Anosov flows on three-manifolds Geom. Topol. 21 1837-930
[7] Bowen R 1972 One-dimensional hyperbolic sets for flows J. Differ. Equ. 12 173-9
[8] Bowen R 1972 Periodic orbits for hyperbolic flows Am. J. Math. 94 1-30
[9] Brunella M 1993 Separating the basic sets of a nontransitive Anosov flow Bull. London Math. Soc. 25 487-90
[10] Christy J 1993 Branched surfaces and attractors: I. Dynamic branched surfaces Trans. Am. Math. Soc. 336 759-84
[11] Franks J 1983 Symbolic dynamics in flows on three-manifolds Trans. Am. Math. Soc. 279231
[12] Franks J and Williams B 1980 Anomalous Anosov flows Glabal Theory of Dynamical Systems (Lect. Notes in Math. vol 819) (Berlin: Springer) pp 158-74 (Proc. Int. Conf., Northwestern Univ., Evanston, 1979)
[13] Grines V 1975 On topological conjugacy of diffeomorphisms of two a dimensional manifold onto one-dimensional orientable basic sets I, II Trans. Moscow Math. Soc. 32 31-56
Grines V 1977 Trans. Moscow Math. Soc. 34 237-45
[14] Grines V Z 1997 A representation of one-dimensional attractors of A-diffeomorphisms by hyperbolic homeomorphisms Math. Notes 62 64-73
[15] Grines V Z 1997 On the topological classification of structurally stable diffeomorphisms of surfaces with one-dimensional attractors and repellers Sb. Math. 188 537-69
[16] Grines V Z, Gurevich E Y, Zhuzhoma E V and Pochinka O V 2019 Classification of Morse-Smale systems and topological structure of the underlying manifolds Russ. Math. Surv. 74 37-110
[17] Grines V and Kurenkov E 2017 On hyperbolic attractors and repellers of endomorphisms Nonlinear Dyn. 13 557-71
[18] Grines V and Zhuzhoma E 2005 On structurally stable diffeomorphisms with codimension one expanding attractors Trans. Am. Math. Soc. 357 617-67
[19] Grines V and Zhuzhoma E 2021 Surface Laminaions and Chaotic Dynamical Systems (Berlin): Springer)
[20] Hayashi S 1997 Connecting invariant manifolds and the solution of the C^{1} stability and Ω-stability conjectures for flows Ann. Math. 145 81-137
Hayashi S 1999 Ann. Math. 150 353-6
[21] Hirch M, Palis J, Pugh C and Shub M 1970 Neighbourhoods of hyperbolic sets Invent. Math. 9 121-34
[22] Hirch M, Pugh C and Shub M 1977 Invariant Manifolds (Lect. Notes in Math. vol 583) (Berlin: Springer)
[23] Hurewicz W and Wallman H 1941 Dimension Theory (Princeton, NJ: Princeton University Press)
[24] Katok A and Hasselblatt B 1994 Introduction to the Modern Theory of Dynamical Systems (Encyclopedia of Math. and its Appl.) (Cambridge: Cambridge University Press)
[25] Mañé R 1988 A proof of C^{1} stability conjecture Publ. Math. IHES 66 161-210
[26] Margulis G 1967 U-flows on three-dimensional manifolds appendix of Anosov D V, Sinai Y G some smooth ergodic systems Russ. Math. Surv. 22 103-68
[27] Medvedev V and Zhuzhoma E 2020 On two-dimensional expanding attractors of A-flows Math. Notes 107 854-7
[28] Morales C 2002 Axiom A flows with a transverse torus Trans. Am. Math. Soc. 355 735-45
[29] Newhouse S E 1970 On codimension one Anosov diffeomorphisms Am. J. Math. 92 761-70
[30] Nikolaev I and Zhuzhoma E 1999 Flows on Two-Dimensional Manifolds (Lect. Notes in Math. vol 1705) (Berlin: Springer)
[31] Newhouse S, Ruelle D and Takens F 1978 Occurrence of strange Axiom A attractors near quasi periodic flows on $\mathbb{T}^{m}, m \geqslant 3$ Commun. Math. Phys. 64 35-40
[32] Plante J F 1972 Anosov flows Am. J. Math. 94 729-54
[33] Perko L 1996 Differential Equations and Dynamical Systems (Texts in Appl. Math.) 2nd edn (Berlin: Springer)
[34] Plykin R V 1971 The topology of basis sets for Smale diffeomorphisms Math. USSR Sb. 13 297-307
[35] Plykin R V 1984 On the geometry of hyperbolic attractors of smooth cascades Russ. Math. Surv. 39 85-131
[36] Pugh C and Shub M 1981 Embedding suspensions of subshifts of finite type in S^{3} Contributions in Geometry and Analysis ed C Percell and R Sacksteder (Berlin: Springer)
[37] Pugh C and Shub M 1970 The Ω-stability theorem for flows Invent. Math. 11 150-8
[38] Robinson C 1976 Structural stability of C^{1} diffeomorphisms J. Differ. Equ. 22 28-73
[39] Robinson C 1999 Dynamical Systems: Stability, Symbolic Dynamics, and Chaos (Studies in Adv. Math.) 2nd edn (Boca Raton, FL: CRC Press)
[40] Robinson C and Williams R 1976 Classification of expanding attractors: an example Topology 15 321-3
[41] Shub M 1972 Structurally stable diffeomorphisms are dense Bull. Am. Math. Soc. 78 817-8
[42] Smale S 1960 Morse inequalities for a dynamical system Bull. Am. Math. Soc. 66 43-9
[43] Smale S 1967 Differentiable dynamical systems Bull. Am. Math. Soc. 73 747-817
[44] Thurston W 1997 Three-Dimensional Geometry and Topology (Princeton, NJ: Prinston University Press)
[45] Verjovsky A 1974 Codimension one Anosov flows Bol. Soc. Mat. Mex. 19 49-77
[46] Williams R F 1974 Expanding attractors Publ. Math. IHÉS 43 169-203
[47] Zeeman E C 1975 Morse inequalities for diffeomorphisms with shoes and flows with solenoids Dynamical Systems—Warwick, 1974 (Lect. Notes Math. vol 468) (Berlin: Springer) pp 44-7
[48] Zhuzhoma E V and Isaenkova N V 2009 Classification of one-dimensional expanding attractors Math. Notes 86 333-41

[^0]: *Author to whom any correspondence should be addressed.

