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We introduce high-dimensional Morse-Smale systems with king-saddles. Every 
saddle of such system has a separatrix with heteroclinic intersections. We get the 
necessary and sufficient conditions of conjugacy of Morse-Smale diffeomorphisms 
with king-saddles. For every polar Morse-Smale system with two saddles on the n-
sphere Sn, one proves the existence of a king-saddle. This allows to get the necessary 
and sufficient conditions of conjugacy for such Morse-Smale diffeomorphisms on 
Sn, n ≥ 4. We give a simple sufficient condition of the existence of heteroclinic 
intersections for Morse-Smale systems on S3.
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0. Introduction

In 1960, Smale [27] introduced the class of dynamical systems (flows and diffeomorphisms) which later 
were called Morse-Smale systems. By definition, the Morse-Smale systems are dynamical systems whose 
non-wandering sets consist of finite number of periodic hyperbolic orbits with transversal intersections of 
invariant manifolds of periodic hyperbolic orbits [27,28]. Morse-Smale systems splits into Morse-Smale diffeo-
morphisms (which are dynamical systems with discrete time) and Morse-Smale flows (which are dynamical 
systems with continuous time). Palis and Smale [23,24] proved that the Morse-Smale systems are struc-
turally stable. Since a Morse-Smale system has zero topological entropy, one can say that the Morse-Smale 
systems are simplest structurally stable dynamical systems.

However, despite on a triviality of non-wandering set, the topological classification of Morse-Smale sys-
tems is a challenge problem. There are complete classifications of Morse-Smale systems on low-dimensional 
manifolds, and Morse-Smale diffeomorphisms on 3-manifolds, and some special classes on high-dimensional 
manifolds (see the surveys [9,18] concerning the topological classification of Morse-Smale systems). Andronov 
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and Ponryagin [1] described Morse-Smale flows on compact plane domain. Maier [17] completely classified 
Morse-Smale diffeomorphisms of circle. Peixoto [25] got the complete topological classification of Morse-
Smale flows without periodic trajectories on closed surfaces. Recently, Bonatti, Grines, and Pochinka [4]
constructed a complete topological invariant for Morse-Smale diffeomorphisms of closed 3-manifolds. Let us 
mention the paper [3] where the authors of the paper classified 3-dimensional Morse-Smale diffeomorphisms 
whose saddles have the same Morse index and form a heteroclinic chain. As to high-dimensional Morse-Smale 
diffeomorphisms, there are few results. Grines, Gurevich, and Medvedev [6,7] classified high-dimensional 
Morse-Smale diffeomorphisms without heteroclinic intersections of separatrices of saddle periodic points 
(see also [8]).

In contract with [6,7], we consider high-dimensional Morse-Smale systems which have necessarily hete-
roclinic intersections, so-called systems with king-saddles. Roughly speaking, a king saddle has a separatrix 
which intersect separatrices of every other saddles (see exact definition below). We get the necessary and 
sufficient conditions of conjugacy of Morse-Smale diffeomorphisms with king-saddles. For polar Morse-Smale 
systems with two saddles on n-sphere, one proves the existence of king-saddles. This allows to get the neces-
sary and sufficient conditions of conjugacy for such Morse-Smale systems. Let us formulate the main results 
(basic definitions of Dynamical Systems see in [2,26,28]).

Later on, Mn is a closed smooth and connected n-manifold, n ≥ 3 or n ≥ 4. A non-wandering set of 
Morse-Smale system S is denoted by NW (S). Mainly, we recall some definitions only for diffeomorphisms, 
as this definitions for flows are similar.

Let f : Mn → Mn be a diffeomorphism of Mn, and p a periodic point of period k ∈ N. The stable 
manifold W s(p) is defined to be the set of points x ∈ Mn such that �(fkj(x); p) → 0 as j → ∞ where �
is a metric on Mn. The unstable manifold Wu(p) is the stable manifold of p for the diffeomorphism f−1. 
Stable and unstable manifolds are called invariant manifolds. It is well known that if p is hyperbolic, then 
every invariant manifold is an immersed submanifold homeomorphic to Euclidean space. Moreover, W s(p)
and Wu(p) are intersected transversally at p, and dimW s(p) + dimWu(p) = n.

A periodic orbit p is called a sink periodic point (resp., source periodic point) if dimW s(p) = n and 
dimWu(p) = 0 (resp., dimW s(p) = 0 and dimWu(p) = n). A periodic point σ is called a saddle periodic 
point if 1 ≤ dimWu(σ) ≤ n − 1 (automatically, 1 ≤ dimW s(σ) ≤ n − 1). A sink (resp., source, saddle) 
periodic point p is called a sink (resp., source, saddle) provided p is a fixed point.

Let p, q be saddle periodic points such that Wu(p) ∩W s(q) �= ∅. Then the intersection Wu(p) ∩W s(q)
is called heteroclinic. Note that according to the definition of Morse-Smale diffeomorphisms, the invariant 
manifolds Wu(p), W s(q) are intersected transversally.

To simplify the exposition, we’ll assume that all periodic points of diffeomorphisms are fixed points 
(for flows, it holds automatically). This assumption holds for some iteration of diffeomorphism. Following 
[19,21], denote by MSdiff (Mn; a, b, c) (resp., MSflow(Mn; a, b, c)) the set of Morse-Smale diffeomorphisms 
f : Mn → Mn (resp., flows f t) such that the non-wandering set NW (f) (resp., NW (f t)) consists of a
sinks, b sources, and c saddles. Recall that due to Smale [27], a ≥ 1 and b ≥ 1. Set MS(Mn; a, b, c) =
MSdiff (Mn; a, b, c) ∪MSflow(Mn; a, b, c).

A saddle σ0 of f ∈ MSdiff (Mn; a, b, c) is called an u-king-saddle provided Wu(σ0) ∩ W s(σ) �= ∅ for 
every another saddle σ of f . Similarly, σ0 is called an s-king-saddle provided W s(σ0) ∩Wu(σ) �= ∅ for every 
another saddle σ of f .

First, we show that any Morse-Smale system from the set MS(Sn; 1, 1, 2) has king-saddles. Let us recall 
that MS(Sn; 1, 1, 2) consists of Morse-Smale systems on the n-sphere Sn whose non-wandering set consists 
of a sink, a source, and two saddles. In particular, every system from MS(Sn; 1, 1, 2) is a polar gradient-like 
system. Recall that the Morse index of fixed point σ equals the dimension of the unstable manifold Wu(σ)
of σ.
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Theorem 1. Given any n ≥ 3, MS(Sn; 1, 1, 2) �= ∅, and saddles of any system from the set MS(Sn; 1, 1, 2)
has different Morse indexes. Moreover, any Morse-Smale system from the set MS(Sn; 1, 1, 2) has both u-
and s-king-saddles. To be precise, the saddle with biggest Morse index is an u-king saddle, and the saddle 
with smallest Morse index is an s-king saddle.

To prove this result, we construct the special decompositions of the n-sphere Sn. To be precise, the 
following technical statement takes place. Below, Dk is the unit k-dimensional disk.

Proposition 1. The following decompositions of Sn, n ≥ 3, hold:

Sn =
(
S1 ×Dn−1)⋃

h

(
D2 × Sn−2) =

(
S2 ×Dn−2)⋃

h

(
D3 × Sn−3) = · · · =

=
(
Sk ×Dn−k

)⋃

h

(
Dk+1 × Sn−k−1) = · · · =

(
Sn−2 ×D2)⋃

h

(
Dn−1 × S1)

where h : ∂
(
Sk ×Dn−k

)
= Sk × Sn−k−1 → Sk × Sn−k−1 = ∂

(
Dk+1 × Sn−k−1) is the natural identification 

provided n ≥ 4, and h is a special identification provided n = 3.

For n = 4, the decomposition S4 =
(
S2 ×D2)∪h

(
S1 ×D3) is the consequence of the more general result 

by Laudenbach and Poenaru [14].
Now, we are going to give a necessary and sufficient condition of conjugacy of Morse-Smale diffeomor-

phisms containing king-saddles. Recall that diffeomorphisms f1, f2 : Mn → Mn are called conjugate, if 
there is a homeomorphism h : Mn → Mn such that h ◦ f1 = f2 ◦ h.

In [20], the authors introduced the notation of equivalent embedding as follows. Let Mk
1 , Mk

2 ⊂ Mn be 
topologically embedded k-manifolds, 1 ≤ k ≤ n − 1. We say that they have the equivalent embedding if 
there are neighborhoods U(clos Mk

1 ), U(clos Mk
2 ) of clos Mk

1 , clos Mk
2 respectively and a homeomorphism 

h : U(clos Mk
1 ) → U(clos Mk

2 ) such that h(Mk
1 ) = Mk

2 . Here, clos N means the topological closure of N . 
This notation allows to classify Morse-Smale flows with non-wandering sets consisting of three equilibriums 
[20]. To be precise, it was proved that two such flows f t

1, f t
2 are topologically equivalent if and only if 

the stable (or unstable) separatrices of saddles of f t
1, f t

2 respectively have the equivalent embedding. Note 
that the notation of equivalent embedding goes back to a scheme introduced by Leontovich and Maier 
[15,16]. If one considers a conjugacy, we have to add conjugacy relations to the equivalent embedding. The 
modification of (global) conjugacy is a local conjugacy when the conjugacy holds in some neighborhoods 
of compact invariant sets. We introduce the intermediate notion, so-called a locally equivalent dynamical 
embedding (in short, dynamical embedding), as follows.

Let f1, f2 : Mn → Mn be homeomorphisms of closed topological n-manifold Mn, n ≥ 2, and N1, N2
invariant sets of f1, f2 respectively i.e. fi(Ni) = Ni, i = 1, 2. We say that the sets N1, N2 have the same 
dynamical embedding if there are neighborhoods δ1, δ2 of clos N1, clos N2 respectively and a homeomorphism 
h0 : δ1 ∪ f1(δ1) → Mn such that

h0(δ1) = δ2, h0(clos N1) = clos N2, h0 ◦ f1|δ1 = f2 ◦ h0|δ1 (1)

Now we are ready to formulate the necessary and sufficient condition of conjugacy for Morse-Smale 
diffeomorphisms with king-saddles.

Theorem 2. Let fi : Mn → Mn be a Morse-Smale diffeomorphism of closed n-manifold Mn, n ≥ 3, and σi

an u(s)-king-saddle of fi, i = 1, 2. Then f1 and f2 are topologically conjugate if and only if the invariant 
manifolds Wu(s)(σ1), Wu(s)(σ2) have the same dynamical embedding.
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Theorems 1 and 2 allows to get the necessary and sufficient conditions of conjugacy for Morse-Smale 
diffeomorphisms MSdiff (Sn; 1, 1, 2).

Theorem 3. Let fi ∈ MSdiff (Sn; 1, 1, 2) be a Morse-Smale diffeomorphism with saddles σ(i)
1 , σ(i)

2 , i = 1, 2, 
n ≥ 4. Suppose that the Morse index of σ(i)

1 is more than the Morse index of σ(i)
2 . Then f1, f2 are topologically 

conjugate if and only if one of the following conditions holds:

• the unstable manifolds Wu(σ(1)
1 ), Wu(σ(2)

1 ) have the same dynamical embedding;
• the stable manifolds W s(σ(1)

2 ), W s(σ(2)
2 ) have the same dynamical embedding.

The following result gives the sufficient conditions of the existence of heteroclinic intersections for Morse-
Smale systems on S3.

Theorem 4. Let f : S3 → S3 be a Morse-Smale diffeomorphism such that the number of sources equals the 
number of saddles with the Morse index two. Then f has heteroclinic intersections.

For the number of sources (and the number of saddles with Morse index two) equals 1, this result was 
proved in [11].

Corollary 1. Let f t be a gradient-like Morse-Smale flow on S3. If the number of sources equals the number 
of saddles with the Morse index two, then f t has heteroclinic intersections

This corollary is useful for the problem on the existence of separators in magnetic fields in electrically 
conducting fluids, see [10].

The structure of the paper is the following. In Section 1, we formulate the main definitions and give some 
previous results. In Section 2, one proves main results.

Acknowledgments. The authors are partially supported by Laboratory of Dynamical Systems and Applica-
tions of National Research University Higher School of Economics, of the Ministry of science and higher 
education of the RF, grant ag. N0 075-15-2019-1931. We thank the unknown Reviewer for very useful 
remarks which improved the text.

1. Preliminaries

Let f : M → M be a diffeomorphism and p ∈ M a fixed hyperbolic point of f . Suppose that the 
restriction f |Wu(p) preserves the orientation of Wu(p). Then Indp(f) = (−1)dimWu(p) is a topological index 
of f at p. Later on, we always assume that the restriction of diffeomorphism on an unstable manifold of 
fixed point is a preserving orientation mapping.

Let f∗k : Hk(M, R) → Hk(M, R) be an isomorphism induced by f : M → M in the homology group 
Hk(M, R) = Hk(M), and tr (f∗k) a trace of f∗k, 0 ≤ k ≤ dimM . Suppose that the set Fix (f) of fixed 
points of f consists of hyperbolic. The following Lefschetz formula holds:

dimM∑

k=0

(−1)ktr (f∗k) =
∑

p∈Fix (f)

Indp(f). (2)

For the reference, we formulate the following result proved in [11] (see also [5] and [21], Proposition 1).

Proposition 2. Let f : Mn → Mn be a Morse-Smale diffeomorphism, and W τ (σ) an invariant manifold 
of dimension 2 ≤ d ≤ n − 1 of a saddle σ where τ ∈ {s, u}. Suppose that W τ (σ) has no heteroclinic 
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intersections with other separatrices. Then Sepτ (σ) = W τ (σ) \ {σ} belongs to unstable (if τ = s) or stable 
(if τ = u) manifold of some node (source or sink, respectively) periodic point, say N , and the topological 
closure of Sepτ (σ) is a topologically embedded d-sphere that equals W τ(σ) ∪ {N} = Sd

τ . Moreover, Sd
τ is a 

locally flat embedded sphere provided d �= n − 2.

Proof of Proposition 1. Let Rn+1 be Euclidean space endowed with coordinates (x1, . . . , xn+1), and the 
n-sphere Sn defined by the equality

x2
1 + x2

2 + · · · + x2
n + x2

n+1 = 1, n ≥ 3.

Given any fixed number 1 ≤ k ≤ n − 1, Rn+1 = Rk+1 ⊕Rn−k where Rk+1 is defined by xk+2 = 0, . . ., 
xn+1 = 0 and Rn−k is defined by x1 = 0, . . ., xk+1 = 0. Clearly, the intersection Sn ∩Rk+1 is the k-sphere 
Sk

1 ⊂ Sn defined by the equality

Sk
1 : x2

1 + · · · + x2
k+1 = 1, xk+2 = 0, . . . , xn+1 = 0.

In Rk+1, this sphere bounds the closed (k+ 1)-disk denoted by Dk+1
1 . Similarly, the intersection Sn ∩Rn−k

is the (n − k − 1)-sphere Sn−k−1
2 ⊂ Sn defined by the equality

Sn−k−1
2 : x1 = 0, . . . , xk+1 = 0, x2

k+2 + · · · + x2
n+1 = 1.

In Rn−k, the sphere Sn−k−1
2 bounds closed (n − k)-disk denoted by Dn−k

2 .
Let Mn

1 be the n-manifold defined as follows

Mn
1 : x2

1 + · · · + x2
k+1 = 1, x2

k+2 + · · · + x2
n+1 ≤ 1.

Clearly, Mn
1 = Sk

1 ×Dn−k
2 . Similarly, set

Mn
2 : x2

1 + · · · + x2
k+1 ≤ 1, x2

k+2 + · · · + x2
n+1 = 1.

Clearly, Mn
2 = Dk+1

1 × Sn−k−1
2 . The manifolds Mn

1 , Mn
2 have the common boundary ∂Mn

1 = ∂Mn
2 that 

equals the intersection

Mn
1 ∩Mn

2 = ∂Mn
1 = ∂Mn

2 = Sk
1 × Sn−k−1

2 : x2
1 + · · · + x2

k+1 = 1, x2
k+2 + · · · + x2

n+1 = 1.

Let us prove that the union Mn
1 ∪Mn

2 homeomorphic to Sn. Indeed, for any point p0 = (x1,0, . . . , xn+1,0) ∈
Sn, we denote by l0 the ray starting at the origin (0, . . . , 0) ∈ Rn+1 and passing through p0. Let us 
show that l0 intersects Mn

1 ∪Mn
2 at a unique point. If the parameter t ∈ [1; ∞) increases, then the point 

pt = (
√
tx1,0, . . . , 

√
txn+1,0) moves from p0 along l0 to infinity. The terms

wt = (tx1,0)2 + · · · + (txn+1,0)2 = t2(x2
1 + · · · + x2

n+1) =

= (tx1,0)2 + · · · + (txk+1,0)2 + (txk+2,0)2 + · · · + (txn+1,0)2,

increases boundless beginning with 1. This follows that there is t0 ∈ [1; ∞) such that wt > 1. In addition, 
one of the following possibility holds

a) (tx1,0)2 + · · · + (txk+1,0)2 < 1, (txk+2,0)2 = · · · + (txn+1,0)2 = 1;
b) (tx1,0)2 + · · · + (txk+1,0)2 = 1, (txk+2,0)2 = · · · + (txn+1,0)2 < 1;
c) (tx1,0)2 + · · · + (txk+1,0)2 = 1, (txk+2,0)2 = · · · + (txn+1,0)2 = 1.
In the case (a), the intersection l0 ∩Mn

1 ∪Mn
2 consists of a unique point pt0 belonging to the interior of 

the manifold Mn
2 . In the case (b), the intersection l0 ∩Mn

1 ∪Mn
2 consists of a unique point pt0 belonging to 
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the interior of the manifold Mn
1 . At last in the case (c), the intersection l0 ∩Mn

1 ∪Mn
2 consists of a unique 

point pt0 belonging to the intersection of the boundaries of the manifolds Mn
1 , Mn

2 . Thus, the corresponding
p0 −→ pt0 defines the mapping ϑ : Sn → Mn

1 ∪Mn
2 . By similar way, one can show that there is the inverse 

mapping ϑ−1 : Mn
1 ∪ Mn

2 → Sn. We see that the union Mn
1 ∪ Mn

2 is a piecewise linear manifold. Since 
the mapping ϑ : Sn → Mn

1 ∪ Mn
2 is a projection along rays, ϑ is a homeomorphism. This completes the 

proof. �
Let us introduce invariant sets that determine dynamics of Morse-Smale diffeomorphism. Let f : Mn →

Mn be a Morse-Smale diffeomorphism whose non-wandering set NW (f) consists of the set α(f) of sources, 
the set ω(f) of sinks, and the set σ(f) of saddles. Set

A(f) = ω(f)
⋃

si∈σ(f)

Wu(si), R(f) = α(f)
⋃

si∈σ(f)

W s(si).

We see that A(f) (respectively, R(f)) is the union of ω(f) (resp., α(f)) and unstable (resp., stable) manifolds 
of saddles from the set σ(f). The following statement proved in [22] gives the necessary and sufficient 
conditions of conjugacy of Morse-Smale diffeomorphisms.

Proposition 3. Two Morse-Smale diffeomorphisms f1, f2 : Mn → Mn of closed n-manifold Mn, n ≥ 2, are 
conjugate if and only if one of the following conditions holds:

• the sets A(f1), A(f2) have the same dynamical embedding;
• the sets R(f1), R(f2) have the same dynamical embedding.

2. Proofs of main results

Proof of Theorem 1. It is enough to construct a polar Morse-Smale flow ∈ MSflow(Sn; 1, 1, 2), since a 
t-time shift along trajectories gives a Morse-Smale diffeomorphism ∈ MSdiff (Sn; 1, 1, 2).

Due to Proposition 1, there is the decomposition Sn =
(
Sk ×Dn−k

)⋃ (
Dk+1 × Sn−k−1) of Sn. Let 
v1,k

be a vector field on the k-sphere Sk
1 = Sn ∩ Rk+1 such that the non-wandering set of 
v1,k consists of the 

source at the point (1, 0, . . . , 0) and the sink at the point (−1, 0, . . . , 0). Such vector field induces a flow 
sometime called a sink-source flow.

Denote by A1(x1, . . . , xk+1), . . ., Ak+1(x1, . . . , xk+1) the coordinates of the vector field 
v1,k, i.e.


v1,k(x1, . . . , xk+1) = (A1(x1, . . . , xk+1), . . . , Ak+1(x1, . . . , xk+1)) .

Let


V 1 = (A1(x1, . . . , xk+1), . . . , Ak+1(x1, . . . , xk+1), xk+2, . . . , xn+1)

be the vector field on Mn
1 = Sk

1 ×Dn−k
2 . Since the vector field


vk+1,n+1 = (0, . . . , 0, xk+2, . . . , xn+1)

has the hyperbolic source (0, . . . , 0) on the disk Dn−k
2 , the vector field 
V 1 has the hyperbolic source α =

(1, 0, . . . , 0) ∈ Rn+1 and the hyperbolic saddle σ1 = (−1, 0, . . . , 0) ∈ Rn+1. By construction, the vector field 

V 1 has the repelling set Sk

1 . Therefore,

W s(σ1) = Sk
1 \ {α} = {(x1, . . . , xn+1) : x2

1 + · · · + x2
k+1 = 1, xk+2 = 0, . . . , xn+1 = 0, x1 �= 1},
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Wu(σ1) ∩Mn
1 ⊂ {(x1, . . . , xn+1) : x1 = −1, x2 = 0, . . . , xk+1 = 0}.

We see that σ1 is a saddle of the type (n − k, k). Since the vector field 
vk+1,n+1 on ∂Dn−k
2 is directed 

outside of Dn−k
2 and transversal to ∂Dn−k

2 , the vector field 
V 1 on ∂Mn
1 = Sk

1 × Sn−k−1
2 is directed outside 

of Mn
1 = Sk

1 ×Dn−k
2 and is transversal to the boundary ∂Mn

1 = Sk
1 × Sn−k−1

2 .
Similarly, one constructs the vector field 
V 2 on Mn

2 = Dk+1
1 × Sn−k−1

2 as follows


V 2 = (−x1, . . . ,−xk+1, Bk+2(xk+2, . . . , xn+1), . . . , Bn+1(xk+2, . . . , xn+1))

where the vector field


w2,k+1(xk+2, . . . , xn+1) = (Bk+2(xk+2, . . . , xn+1), . . . , Bn+1(xk+2, . . . , xn+1))

has the hyperbolic source at the point (0, . . . , 0, 1) and hyperbolic sink at the point (0, . . . , 0, −1) on the 
(n −k−1)-sphere Sn−k−1

2 ⊂ Sn. By construction, the vector field 
V 2 has the attracting set {0} ×Sn−k−1
2 ⊂

Mn
2 . Therefore, the vector field 
V 2 has the hyperbolic saddle σ2 = (0, . . . , 0, 1) and the hyperbolic sink 

ω = (0, . . . , −1). Similarly, one can show that

Wu(σ2) = Sn−k−1
2 \ {ω} = {(x1, . . . , xn+1) : x1 = 0, . . . , xk+1 = 0, x2

k+2 + · · · + x2
n+1 = 1, xn+1 �= −1}

W s(σ2) ∩Mn
2 ⊂ {(x1, . . . , xn+1) : x2

1 + · · · + x2
k+1 ≤ 1, xk+2 = 0, . . . , xn = 0, xn+1 = 1}.

We see that σ2 is a saddle of the type (n −k−1, k+1). Since the vector field 
vk+1,n+1 on ∂Dk+1
1 is directed 

inside of Dk+1
1 and transversal to ∂Dk+1

1 , the vector field 
V 2 on ∂Mn
2 = Sk

1 × Sn−k−1
2 is directed inside of 

Mn
2 = Dk+1

1 × Sn−k−1
2 and transversal to the boundary ∂Mn

2 = Sk
1 × Sn−k−1

2 . It follows from Proposition 1
that the vector fields 
V 1, 
V 2 form the piecewise-linear vector field 
V on Mn

1 ∪ Mn
2 = Sn. Clearly, the 

integrable curves of 
V satisfy the uniqueness condition (given any point, there is a unique integrable curve 
through the point).

By construction, the non-wandering set of 
V consists of the hyperbolic source α = (1, 0, . . . , 0), the 
hyperbolic sink ω = (0, . . . , 0, −1), and the hyperbolic saddles σ1 = (−1, 0, . . . , 0), σ2 = (0, . . . , 0, 1). Note 
that the saddles have different topological indexes ind(σ1) = (−1)n−k and ind(σ2) = (−1)n−k−1.

It is easy to see that W s(σ1) ∩Wu(σ2) = ∅ while the intersection Wu(σ1) ∩W s(σ2) is non-empty and 
consists of the integrable curve passing through the point (−1, 0, . . . , 0, 1).

Indeed, by construction, Wu(σ1) ∩Mn
1 = {σ1} ×Dn−k

2 , W s(σ2) ∩Mn
1 = Dk+1

1 × {σ2}. Hence, Wu(σ1) ∩
∂Mn

1 = {σ1} ×Sn−k−1
2 , W s(σ2) ∩ ∂Mn

1 = Sk
1 ×{σ2}. The spheres {σ1} ×Sn−k−1

2 , Sk
1 ×{σ2} are intersected 

transversally at a unique point {σ1} × {σ2}. This implies that the intersection Wu(σ1) ∩ W s(σ2) is non-
empty and consists of the integrable curve passing through the point (−1, 0, . . . , 0, 1). To be precise, the 
heteroclinic intersection Wu(σ1) ∩W s(σ2) is the union of the segments I1 = {(x1, . . . , xn+1) : x1 = −1, x2 =
0, . . . , xn = 0, 0 < xn+1 ≤ 1}, I1 = {(x1, . . . , xn+1) : −1 ≤ x1 < 0, x2 = 0, . . . , xn = 0, xn+1 = 1}. Except 
the point (−1, 0, . . . , 0, 1), the intersection Wu(σ1) ∩W s(σ2) is transversal because of the structure of the 
vector fields 
V 1, 
V 2.

A tubular neighborhood U of the common boundary Sk
1 × Sn−k−1

2 of the manifolds Mn
1 and Mn

2 is 
homeomorphic to Sk

1 ×Sn−k−1
2 × (−1; +1). One boundary component C1 = Sk

1 ×Sn−k−1
2 ×{−1} belongs to 

Mn
1 while another boundary component C2 = Sk

1 × Sn−k−1
2 × {+1} belongs to Mn

2 . One can take U such 
that the both components C1, C2 of the boundary ∂U are transversal to the vector field 
V . It allows to 
smooth out 
V near Sk

1 × Sn−k−1
2 to get a smooth vector field equal to 
V outside of U . This gives a polar 

Morse-Smale vector field with two saddles on Sn. Hence, MS(Sn; 1, 1, 2) �= ∅.
Now, we have to prove that saddles of any system from the set MS(Sn; 1, 1, 2) have different Morse 

indexes. It is sufficient to prove this statement for the Morse-Smale diffeomorphisms MSdiff(Sn; 1, 1, 2), 
since the desired statement follows for MSflow(Sn; 1, 1, 2) automatically.
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Let f ∈ MSdiff (Sn; 1, 1, 2). We see that H0(Sn) = Hn(Sn) = 1, Hk(Sn) = 0, 1 ≤ k ≤ n − 1. It follows 
that for Sn, the Lefschetz formula (2) gives the following equality

1 + (−1)n =
∑

p∈Fix (f)

Indp(f). (3)

Denote by α the source and by ω the sink of f . Clearly, Indα(f) = (−1)n and Indω(f) = 1. Therefore, the 
formula (3) becomes

∑

p∈Fix (f)\(α∪ω)

Indp(f) = 0. (4)

Let σi be a saddle of f and μi the Morse index of σi, i = 1, 2. Then (4) implies the equality

(−1)μ1 + (−1)μ2 = 0. (5)

As a consequence, μ1 �= μ2. Thus, the saddles of f ∈ MSdiff (Sn; 1, 1, 2) have different Morse indexes. Later 
on for definiteness, we’ll assume μ1 < μ2.

Let us prove that f ∈ MSdiff (Sn; 1, 1, 2) has both u- and s-king-saddles. First, we show that the following 
inclusions hold

Wu(σ1) \ σ1 ⊂ W s(ω), W s(σ2) \ σ2 ⊂ Wu(α).

Indeed, according to [28], a supporting manifold is the union of stable (unstable) invariant manifolds of 
non-wandering points. Taking in mind W s(α) = α and Wu(ω) = ω, one gets

Sn = W s(σ1) ∪W s(ω) ∪W s(σ2) ∪ {α} = Wu(σ1) ∪Wu(α) ∪Wu(σ2) ∪ {ω}. (6)

Recall that stable and unstable manifolds of Morse-Smale diffeomorphism intersect transversally (if an 
intersection is not empty). Suppose for a moment that Wu(σ1) ∩ W s(σ2) �= ∅. Since Wu(σ1) = μ1 and 
dimW s(σ2) = n − μ2, μ1 + (n − μ2) < n. Hence, the intersection Wu(σ1) ∩ W s(σ2) is not transversal. 
Therefore, Wu(σ1) ∩ W s(σ2) = ∅. Note that Morse-Smale diffeomorphisms have no homoclinic points. It 
follows from (6) that Wu(σ1) \σ1 ⊂ W s(ω). The second inclusion W s(σ2) \σ2 ⊂ Wu(α) is proved similarly.

Due to Proposition 2, the union Sμ1
ω

def= Wu(σ1) ∪ {ω} is a topologically embedded μ1-sphere and the 

union Sn−μ2
α

def= W s(σ2) ∪ {α} is a topologically embedded (n − μ2)-sphere.
To finish the proof we have to prove W s(σ1) ∩ Wu(σ2) �= ∅. Suppose the contrary. It follows from (6)

that W s(σ1) has no heteroclinic intersections. By Proposition 2, the union W s(σ1) ∩ {α} is a topologically 
embedded (n − μ1)-sphere denoted by Sn−μ1

1 . Since f is a Morse-Smale diffeomorphism, the invariant 
manifolds W s(σ1) and Wu(σ1) intersect transversally at unique point σ1. Hence, the index of the intersection 
Sμ1
ω ∩ Sn−μ1

1 equals −1 or +1. This is impossible because of H1(Sn, Z) = · · · = Hn−1(Sn, Z) = 0. We see 
that W s(σ1) ∩Wu(σ2) �= ∅. Thus, the saddle with biggest Morse index is an u-king saddle, and the saddle 
with smallest Morse index is an s-king saddle. This completes the proof. �
Remark. Note that a saddle of Morse-Smale diffeomorphism f can not be u- and s-king saddle simultaneously 
except it is a unique saddle. Indeed, suppose σ is an u- and s-king saddle, and there is another saddle σ1. 
Then W s(σ) ∩ Wu(σ1) �= ∅ and Wu(σ) ∩ W s(σ1) �= ∅. Due to Lemma 7.2 [28] (see also Lemma 1.20 
[13]), the diffeomorphism f must have infinitely many periodic points. This is impossible for a Morse-Smale 
diffeomorphism.
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Proof of Theorem 2. Let fi : Mn → Mn be a Morse-Smale diffeomorphism of closed n-manifold Mn, n ≥ 2, 
i = 1, 2. We assume that all points of the non-wandering set NW (fi) are fixed. Suppose for definiteness that 
fi has an u-king saddle σi, i = 1, 2. Obviously, if f1 and f2 are topologically conjugate then the invariant 
manifolds Wu(σ1), Wu(σ2) have the same dynamical embedding.

Let us show that if Wu(σ1), Wu(σ2) have the same dynamical embedding then f1 and f2 are topologically 
conjugate. Since σi is an u-king saddle, Wu(σi) ∩W s(σ) �= ∅ for every another saddle σ of fi. Due to [27], 
clos Wu(σ) ⊂ clos Wu(σi). It follows from [5], Proposition 2.1, that any sink belongs to the topological 
closure of unstable manifold of some saddle of fi. As a consequence, A(fi) = clos Wu(σi). Therefore, the 
same dynamical embedding of Wu(σ1), Wu(σ2) implies the same dynamical embedding of A(f1), A(f2). 
Due to Proposition 3, the diffeomorphisms f1, f2 are topologically conjugate. This completes the proof. �
Proof of Theorem 3. Denote by μ(i)

1 and μ(i)
2 the Morse indexes the saddles σ(i)

1 , σ(i)
2 respectively, i = 1, 2. 

Due to the conditions, μ(i)
1 > μ

(i)
2 . According to Theorem 1, the saddle with biggest Morse index is an u-king 

saddle, and the saddle with smallest Morse index is an s-king saddle. Hence, σ(1)
1 and σ(2)

1 are u-king saddles 
of f1 and f2 respectively. Similarly, σ(1)

2 and σ(2)
2 are s-king saddles of f1 and f2 respectively. It follows from 

Theorem 2 that f1, f2 are topologically conjugate if and only if the unstable manifolds Wu(σ(1)
1 ), Wu(σ(2)

1 )
have the same dynamical embedding, or the stable manifolds W s(σ(1)

2 ), W s(σ(2)
2 ) have the same dynamical 

embedding. This completes the proof. �
Proof of Theorem 4. Let σ1, . . ., σk be the saddles with the Morse index two. By the conditions, f has 
the same number of sources denoted by α1, . . ., αk. Due to [5], the set R = ∪k

i=1αi ∪k
j=1 σj is a repelling 

connecter graph. Since the number of sources equals the number of saddles with the Morse index 2, R has a 
unique simple cycle denoted by CR. This implies the existence of tubular neighborhood U(R) of R belonging 
to the repelling domain of R such that U(R) homeomorphic to a sold torus. Denote by σi1 , . . ., σis the 
saddles belonging to CR. Taking U(R) sufficiently small if necessary, one can assume that each unstable 
manifold Wu(σj), j = i1, . . . , is, has the intersection with the torus ∂U(R) being a meridian of ∂U(R).

According the Lefshetz formula (see, for example [26]), the number of sinks equals the number of saddles 
with the Morse index one. Therefore, one can construct the attracting set A = ∪iωi ∪j σ̃j with the tubular 
neighborhood U(A) homeomorphic to a solid torus where ωi are sinks and σ̃j are saddles with the Morse 
index one. Moreover, the stable manifolds of the saddles σ̃j forming a cycle in A has the intersection with the 
torus ∂U(A) being a meridian of ∂U(A). Due to [5], the pair A, R forms a global dynamic attractor-repeller 
of f . Hence, fm(∂U(R)) ⊂ U(A) and f−m(∂U(A)) ⊂ U(R) for some m ∈ N. Clearly, fm(∂U(R)) does 
not bound a domain in U(A) \ CA, and f−m(∂U(A)) does not bound a domain in U(R) \ CR. It follows 
from [12], Theorem 3.3, that fm(∂U(R)) is parallel to ∂U(A), and f−m(∂U(A)) is parallel to ∂U(R). As a 
consequence, the sphere S3 can be represented as the union U(A) ∩ϑU(R) of the solid torii U(A), U(R) with 
the identification the their boundaries under the diffeomorphisms ϑ : ∂U(A) → ∂U(R). Let μ be a standard 
meridian on ∂U(A). Then ϑ(μ) have to intersect a standard meridian on ∂U(R). Therefore, there exists an 
unstable manifold Wu(σil) that intersects a stable manifold W s(σ̃r) of some saddles σil , σ̃r. Hence, f has 
heteroclinic intersections. �
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