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Numerical experiments are presented to demonstrate the 
practical performance of our methods.
© 2022 The Authors. Published by Elsevier Ltd on behalf of 

Association of European Operational Research Societies 
(EURO). This is an open access article under the CC 

BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Today’s data revolution is transforming the world, with vast amounts of data col-
lected daily from a wide range of sources. Automation is necessary when processing 
and extracting information from such large quantities of data, and machine learning has 
proven to be a useful tool to assist with this task. The essence of machine learning is 
to build, and then train, models. To speed up the process of training, modern computer 
architectures can be used, where instead of one single computing device, the problem 
and associated data is shared among many devices/agents. This leads to the following 
distributed learning/optimization problem formulation

min
x∈Rd

n∑
i=1

fi(x), (1)

where each agent/device i ∈ [n] := {1, 2, . . . , n}, has an associated local loss function 
fi : Rd → R, as well as its own locally stored data.

Federated Learning (FL) [15,18] is a subset of distributed machine learning, where one 
assumes that computing agents are simply general user devices, (for example, smart-
phones, tablets, laptops, personal computers), and where different devices may have 
different memory capacity and computing power. This leads to many new and impor-
tant problems and questions that did not arise previously in the classical distributed 
setting [16]. For example, data may be spread unequally between devices, privacy con-
siderations may prohibit the sharing of data between certain devices on the network, 
poor or unreliable connectivity may inhibit the flow of data, and data on certain devices 
may be of poorer quality compared with others.

Given these issues, this work focuses on personalization for federated learning. Notice 
that in (1), the model parameter x is found using global data (from all agents). However, 
the inclusion of a particular individual agent might negatively impact the global training 
process if their local data differs markedly from the global data, or if they have low 
quality local data; in this case training the global model may lead to a poor solution. 
On the other hand, each user may have very little local data, and the process of training 
a model solely on local data may also lead to a poor quality solution. The question of 
how to balance the two extremes, global versus local, gave rise to Personalized Federated 
Learning (PFL) [10,8,11].

http://creativecommons.org/licenses/by-nc-nd/4.0/
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For PFL, each agent i has their own parameter xi, but the discrepancy between the 
parameters held on different devices is penalized. Correspondingly, PFL can be formu-
lated as the following regularized optimization problem:

min
x∈Rnd

n∑
i=1

fi(xi) + λ

2 r(x), (2)

where the vector x = [xT
1 , . . . , x

T
n ]T ∈ Rnd is the concatenation of the n local vectors 

{xi ∈ Rd}ni=1, r(x) is a convex penalty function, and the weight parameter λ balances 
the degree of personalization. There are many possible choices for the penalty function 
r(x). A simple option is to let r(x) be the deviation between the local models and their 
average [8,10,11]:

r(x) =
n∑

i=1
‖xi − x̄‖2, where x̄ = 1

n
(x1 + · · · + xn). (3)

This is a reasonable choice in the centralized distributed setting, where devices com-
municate with a central server, sending and receiving information without failures. In 
this case, calculating the average x̄ is easy: all agents i simply send their local xi to the 
central server, which then calculates the average x̄, and communicates it back to every 
agent. In this paper we consider a more general setup, where different penalty functions 
might be more appropriate.

Throughout this work we consider decentralized distributed learning, where there is 
no main server (node), but instead all devices are connected via some large network. 
Moreover, each agent in the network can only communicate with its neighbors. Math-
ematically, the network is represented by a fixed, un-directed, connected graph, where 
each node corresponds to an agent, and connections between agents are represented by 
edges. Although a decentralized setting is assumed here, our problem formulation is gen-
eral enough to include a centralized set-up as a special case (simply take a complete 
graph). However, a decentralized setup perhaps better captures the federated learning 
setting, where each device only communicates with a limited number of other agents, 
corresponding to an incomplete graph. As previously mentioned, communication links 
between certain agents may be inaccessible, for example, due to the (poor) quality of 
connection between agents, or due to remoteness of location, and this leads to missing 
edges in the graph.

In a decentralized setting, using the penalty in (3) is not sensible because of the 
impracticality of calculating the average x̄. (Note that to calculate x̄, all local xi’s must 
be sent to one device (node) and then the average x̄ broadcast back to every node, which 
is a long and expensive operation, especially for large networks.) With this in mind, here 
we propose the use of a different penalty r(x), which is more suitable for a decentralized 
setup. Hence, the problem formulation considered in this work is:
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min
x∈Rnd

F (x) =
n∑

i=1
fi(xi)︸ ︷︷ ︸
f(x)

+ λ

2 〈x,Wx〉︸ ︷︷ ︸
g(x)

, (4)

where W is a communication matrix that reflects the properties of the network (see 
Section 1.2 for a formal definition of W ). The function r(x) = 〈x, Wx〉 penalizes the 
difference between neighboring local models in the network, and is computationally 
friendlier than (3) in a decentralized setting. The matrix W determines how much an 
agent depends on each of the other nodes in the learning process. This is achieved due 
to the fact that W represents the structure of the communication graph, gives infor-
mation about the remoteness of the nodes, the speed of transfer between them, and 
carries weights of how much to rely on one or another neighbor in the network. Note 
that Wx = 0 (and consequently r(x) = 0) if and only if x1 = · · · = xn. This penalty 
function is not new and has been used in the literature in several contexts, for example, 
for classical decentralized minimization with large λ [17,7,3], and for multitask PFL with 
small λ [23,26,3].

The parameter λ balances the ‘global vs local’ trade-off. For example, consider the 
following extremes:

∗ If λ = 0, then (4) becomes minx∈Rnd

∑n
i=1 fi(xi), where the local function fi held 

by agent i is minimized by x∗
i , and x∗

i is likely to be different than that obtained for 
agent j. This is equivalent to independent local training of the models.

∗ As λ → +∞, (4) tends to the distributed problem where the local arguments are con-
strained to be equal: i.e., minx1=···=xn∈Rd

∑n
i=1 fi(xi). This is equivalent to problem 

(1) and the training of one global model.

1.1. Preliminaries

Throughout this work the following assumption is made regarding the functions in 
(4).

Assumption 1. It is assumed that each fi : Rd → R in problem (4) is

∗ L-smooth w.r.t the �2-norm, i.e. for all u, v ∈ Rd, ‖∇fi(u) −∇fi(v)‖2 ≤ L‖u − v‖2; 
and

∗ μ-strongly-convex w.r.t. the �2-norm, i.e. ∀u, v ∈ Rd, fi(u) − fi(v) ≥ 〈∇fi(v), u −
v〉 + μ

2 ‖u− v‖2
2.

By Assumption 1, f in (4) is L-smooth and μ-strongly convex, and subsequently F is 
also μ-strongly convex.
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1.2. Communication

The communication network is modeled as a fixed, connected, undirected graph, 
G = (V, E), where V = {1, . . . , n} are vertices (devices) and E = {(i, j) | i, j ∈ V}
are edges (connections between devices). Note that (i, j) ∈ E if and only if there exists 
a communication link between agents i and j. For such a graph, a gossip matrix Ŵ is 
defined as follows.

Definition 1 (Gossip matrix). A matrix Ŵ ∈ Rd×d, associated with a graph G, is called 
a gossip matrix, if it satisfies the following conditions:

1. Ŵ is symmetric positive semi-definite;
2. The kernel of Ŵ consists of the vector 1 = (1, . . . , 1)�;
3. Ŵ is defined on the edges of the communication network: ŵi,j = 0 if and only if 

i = j or (i, j) ∈ E .

The communication matrix W in (4) is W = Ŵ ⊗ Id, i.e., W is the Kronecker prod-
uct of a gossip matrix Ŵ and the identity matrix Id. Because only neighboring agents 
can communicate in this decentralized optimization setting, it is assumed that commu-
nication is made via a gossip protocol [4,19], i.e., Ŵ is a gossip matrix (Definition 1) 
and communication is realized via matrix-vector multiplication with W . During one 
communication/communication round, for every node, full local vectors of dimension 
d (e.g. variables {xi} or gradients {∇fi(xi)}) are exchanged with all neighbors. This 
work supposes that the network remains unchanged, all connections are stable, and no 
interruptions nor asynchronous/delayed transmissions are considered.

Here, λmax(W ) denotes the maximum eigenvalue of W , λ+
min(W ) denotes the minimum 

positive eigenvalue of W and χ ≥ λmax(W )/λ+
min(W ) is an upper bound on the condition 

number. Because W = Ŵ ⊗ Id, it holds that λmax(W ) = λmax(Ŵ ) and λ+
min(W ) =

λ+
min(Ŵ ). The quantity χ reflects how quickly information is transmitted through the 

graph; a small χ corresponds to fast transmission, while a large χ corresponds to slow 
transmission.

A simple example of a matrix Ŵ satisfying Definition 1 is the Laplacian matrix. For 
example, the Laplacian of a linear graph (chain) is

Ŵ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2 −1

−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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In terms of personalization, this means that the model on the first node relies directly 
on the 2nd node. In turn the 2nd node depends on the 1st and 3rd nodes, and so on. 
In particular, the 1st and last nodes depend on each other weakly and only indirectly 
through the whole chain.

However, it is also possible to define Ŵ in a more complex way. For example, in the 
case of a linear graph, one can add weights that represent how much a given node relies 
upon its neighbors:

Ŵ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 1.5 −0.5

−0.5 1 −0.5
−0.5 1.2 −0.7

. . . . . . . . .
−0.5 1.5 −1

−1 1 −1
−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In this example, the second node trusts the 1st node more than the 3rd, while the third 
node trusts the 2nd and 4th nodes equally, etc.

2. Contributions

In this paper, we study the personalized federated learning formulation (4). Lower 
complexity bounds for communication and local computation are proposed, and we de-
velop several algorithms capable of achieving the lower bounds. Our results extend the 
work in [8], which used the penalty (3), to problem (4), which involves a penalty more 
amenable to the decentralized setting. Our contributions are summarized now.

– Lower bounds. We present lower bounds for the decentralized personalized federated 
learning problem (4) in the deterministic case (i.e., when we have access to full 
gradients for each fi); see Section 3. The lower bounds are valid for all values of the 
parameter λ. In particular, in the smooth strongly convex case with small λ, the lower 
bounds are of the order 

√
λλmax (W ) /μ, which can be a significant improvement 

on the bound 
√
χL/μ in the general, non-personalized case, [21]. This reflects a 

key advantage of the formulation (4), because it is then possible to both solve the 
problem of personalizing the models, and also to significantly reduce the total number 
of communications. This is an important factor not only in federated learning, but 
also in general distributed learning. Note that the lower bounds obtained in the 
work [8] are a special case of our lower bounds, when the communication network 
is represented by a fully connected graph. A summary of these lower bounds is 
presented in Table 1.
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Table 1
Summary of complexity results (upper and lower bounds) on communications 
(comm) and local computations (local) for finding an ε-optimal solution of (4)
in the deterministic (gradient) case.

Lower bounds Upper bounds

comm Ω̃
(
min

{√
λλmax(W )

μ ,
√

L
μχ

})
Õ
(
min

{√
λλmax(W )

μ ,
√

L
μχ

})
local Ω̃

(√
L
μ

)
Õ
(√

L
μ

)

– Near-optimal algorithm. Another contribution is the development of optimal algo-
rithms that match the theoretical lower bounds. The Accelerated Meta-Algorithm 
of [6] (for general composite problems), is used as the base algorithm. The appli-
cation of this algorithm to our problem formulation (4) is discussed, and specific 
implementation modes are suggested depending on small and large values of the reg-
ularization parameter λ. The analysis of the convergence in these modes shows that 
using this approach we achieve the lower optimal bounds up to logarithmic factors 
(Section 4.2). Hence, our algorithm is ‘near-optimal’ in the deterministic case; see 
Section 4.

– Stochastic case. We extend the previously reported results from the deterministic case 
(when the full gradient for all fi is available), to the stochastic setting. In particular, 
we consider the case when each local function fi is a finite sum (for example, the 
sum of batches), i.e. fi = 1

M

∑M
m=1 fi,m. In this case, for one call of the oracle we 

can get only the gradient of one term fi,m. We provide lower bounds, as well as a 
stochastic modification of our near-optimal deterministic algorithm; see Section 4.3.

– Experiments. We present numerical experiments to demonstrate the benefits of our 
approach. In particular, we used several datasets from the benchmark LIBSVM 
library, and we considered several different graph structures. We also run the ex-
periments for several values of the penalty parameter λ, to better understand the 
impact of personalization; see Section 5.

3. Lower bounds

In this section, optimal algorithms for problems of the form (4) are described, and 
lower bounds on the local computation and communication costs for such optimal al-
gorithms, are presented. We begin with the following assumption, which describes the 
properties of algorithms relevant for this work, (i.e., the properties of the algorithms for 
which the lower bounds, developed later in this section, are valid). Such an assumption 
is common in the literature; see, for example, [8,12,21].

Assumption 2. Consider an Algorithm A, for problem (4). Then, the iterates {xk}Kk=1 of 
Algorithm A are generated using only components available in local memory, where, for 
each node of graph G the sequence of local memory {Mi,k}Kk=1 for 1 ≤ i ≤ n is:
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Mi,0 =
{
x0
i

}
,

Mi,k+1 =

⎧⎪⎨⎪⎩
span {Mi,k,∇fi(yi)} ,∀yi ∈ Mi,k if local comp. at iteration k

span
{ ⋃

j:(i,j)∈E
Mj,k

}
if communication at iteration k.

Assumption 2 can be interpreted as follows. Initially, each agent i (corresponding to 
a node on graph G) has local memory Mi,0, which comprises of the initial point x0

i . At 
any iteration k ≥ 1, the algorithm can either perform a computation using the locally 
available memory, or it can carry out a communication step. If the algorithm performs 
a local computation, then each device can calculate the gradient at any point from its 
current memory Mi,k and take a linear combination of this gradient with the previously 
generated points stored in Mi,k. If the algorithm performs a communication step, then 
information is exchanged with neighbors and the current local memory Mi,k is combined 
with that held by its neighbors. Such an algorithm is first order, because it generates its 
iterates using linear combinations of local points and gradients.

We are now ready to present our first theorem, which gives a lower bound on the num-
ber of communications needed by an algorithm whose iterates are generated according 
to Assumption 2. (The proof can be found in Appendix B.)

Theorem 1. Let χ ≥ 3, L ≥ 2μ, and λλ+
min(W ) ≥ μ. Then there exist functions 

f1, f2, . . . , fn : Rd → R satisfying Assumption 1, a graph G with associated matrix Ŵ
satisfying Definition 1, and an initial point x0 = [(x0

1)T , . . . (x0
n)T ]T ∈ Rnd, such that 

any algorithm A (satisfying Assumption 2) among K iterations need to make at least

Ω
(

min
{√

λλmax(W )
μ

,

√
(L− μ)χ

μ

}
log 1

ε

)
communications

to achieve ε-optimal solution in the outputs (‖xj − x∗
j‖2ε for all j).

The proof of this Theorem is placed in Appendix B.
It remains to develop lower bounds for the local computation costs for any algorithm 

A satisfying Assumption 2. Hence, consider a special instance of problem (4), where 
x0 ∈ Rnd, f1 = f2 = · · · = fn, and Ŵ is the Laplace matrix for a fully connected graph. 
Then (4) reduces to the minimization of the single local function f1 (communication 
is unnecessary, irrespective of λ, because the functions are all identical). Now, if f1 is 
chosen to be the worst-case quadratic from [20], then the lower bound of at least

N loc = Ω
(√

L
μ log 1

ε

)
(5)

gradient calls are needed to find an ε-optimal solution.
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4. Algorithms

The goal of this section is to develop an optimal algorithm for problem (4), i.e., to 
develop an algorithm whose iterates satisfy the lower bounds in Section 3. In Section 4.1, 
we discuss an algorithm that can be applied to general composite optimization problems. 
In Section 4.2, this algorithm is specialized to the application considered in this work, 
that of decentralized personalized federated learning (4). The algorithms in Sections 4.1
and 4.2 can be applied to deterministic problems, and the extension to a stochastic 
setting is considered in Section 4.3. In particular, the case when the function at each 
node has finite sum structure is considered, and two approaches, both equipped with 
convergence results, are described and compared.

4.1. Accelerated meta-algorithm

In this section, consider the general composite optimization problem

min
x∈Rnd

H(x) = h1(x) + h2(x). (6)

(Later we will consider how h1 and h2 in (6) are related to f and g in (4).) The following 
assumption is made about problem (6).

Assumption 3. For the problem (6), it is assumed that h1 is convex and L(h1)-smooth, 
that h2 is convex and L(h2)-smooth, and that H is μ-strongly convex.

There are many efficient algorithms that can be applied to problem (6), including the 
Accelerated-Meta-Algorithm (see Algorithm 1) proposed in [6], as well as its restarted 
version (see Algorithm 2).

Algorithm 1 Accelerated Meta-Algorithm (MA) [6].
Input: starting point x0 ∈ Rnd, no. of iterations K, parameter γ > 0, accuracy δ > 0
Initialization: A0 = 0, y0 = x0, τ = 1

2γ
for k = 0, . . . , K − 1 do

ak+1 =
τ +

√
τ2 + 4τAk

2
Ak+1 = Ak + ak+1

wk =
Ak

Ak+1 yk +
ak+1

Ak+1 xk

Find yk+1 ∈ Rnd, such that ‖ŷk+1 − yk+1‖2
2 ≤ δ, where

ŷk+1 = argmin
y∈Rnd

{
〈∇h1(wk),y − wk〉 + h2(y) +

γ

2
‖y − wk‖2

2

}
(7)

xk+1 = xk − ak+1∇H(yk+1)
end for
Output: yK
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Algorithm 2 Restarted Accelerated Meta-Algorithm (Restarted-MA) [6].
Input: initial point x0 ∈ Rnd, no. of iterations S, parameter γ > 0, accuracy δ > 0
Initialization: Ns = max

{⌈
4 ·
√

2γ
μ

⌉
, 1
}

for s = 0, . . . , S − 1 do
xs+1 = MA(xs, Ns, γ, δ)

end for
Output: xS

Remark 1. Note that (7) can be solved, for example, by Accelerated Gradient Descent 
[20].

The following convergence results hold for Restarted-MA (Algorithm 2) applied to 
problem (6).

Theorem 2 (Theorem 3 in [24]). Let Assumption 3 hold, let γ ≥ 2L(h1), let ε > 0, and 
let

δ ≤ εμ

8642(L(h1) + L(h2) + γ)2 .

If Algorithm 2 runs for

S = O
(√

L(h1)
μ log 1

ε

)
(8)

iterations, generating output xS, then H(xS) −H(x∗) ≤ ε, where x∗ denotes the optimal 
solution to (6).

4.2. Convergence analysis – near-optimal algorithm

Section 4.1 introduced an accelerated algorithm for the general problem (6), with asso-
ciated convergence results. The purpose of this section is to make a connection between 
the results in Section 4.1, and how they are applicable in the context of personalized 
federated learning (i.e., problem (4)). Moreover, the lower bounds established in Sec-
tion 3 related to local computation and communication costs for an optimal algorithm 
for problem (4). Thus, another goal is to show that Algorithms 1+2 is an optimal algo-
rithm for (4), by showing that it achieves the lower bounds on communication and local 
computation costs presented in Section 3.

By comparing problems (4) and (6), it can be seen that they are both convex and 
composite. The key here is that we do not make a one-to-one correspondence between 
(f, g) and (h1, h2). That is, depending on the parameter λ, two different cases — one in 
which f ≡ h1 and g ≡ h2, while the other in which f ≡ h2 and g ≡ h1 — are considered. 
Practical versions of Algorithm 1 for the problem (4) are presented in Appendix A
(Algorithms 4 and 5).
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Regardless, to apply Algorithm 1+2, it is necessary to compute the gradients for both 
h1 and h2 (recall subproblem (7)), and therefore for both f and g when extending to the 
original problem (4). So, let us study how to compute the gradients ∇f and ∇g for (4), 
and try to understand where the communications arise. Note that the computation of 
∇f does not require communication. Indeed, each block i has a corresponding gradient 
∇fi (taken with respect to the local variables xi), and the ‘long’ gradient ∇f is simply 
the concatenation of the block gradients. On the other hand, ∇g(x) = λWx, and to 
compute the matrix-vector product Wx requires communication with neighbors (recall 
the gossip protocol described in Section 1.2, and see also [4,19]). It can be shown that 
computing ∇g(x) is equivalent to one communication. Therefore, if we know how many 
times ∇f(x) and ∇g(x) are called by Algorithm 1, then complexities for the number of 
local computations and communications, respectively, can be obtained.

We are now ready to present the main convergence theorem of this paper, which 
provides complexity results for the local computation and communication costs for an 
optimal algorithm for problem (4).

Theorem 3. Let Assumption 1 hold and let the graph G have an associated matrix Ŵ
that satisfies Definition 1. Then, to obtain an ε-optimal solution to problem (4), solving 
by Algorithm 2 with

δ = εμ

30002(L + λλmax(W ))2 , (9)

requires the number of communications and local computations, respectively, to be of the 
order

Ncomm = O
(

min
{√

λλmax(W )
μ ,

√
L
μχ

}
log 1

ε log 1
δ

)
, (10)

and

N loc = O
(√

L
μ log 1

ε log 1
δ

)
. (11)

Proof. First, note that G is a quadratic function with a positive semi-definite Hessian, 
so it is λmax(W )-smooth and convex. Moreover, it is λλ+

min(W )-strongly convex on the 
subspace (Ker W )⊥. By Assumption 1, f is L-smooth and μ-strongly convex. Hence, F
is strongly convex. Thus, the conditions of Theorem 2 hold, and the application of its 
analysis is valid. The remainder of the analysis is split into two cases.

Case 1: λλmax(W ) ≥ L. Here, let h1(x) = f(x) and h2(x) = g(x). Theorem 2 gives 
the complexity for the function h1 = f , i.e. the number of local computations N loc is 
given in (11). Also, it can be shown that δ in (9) satisfies the condition in Theorem 2.

Next, consider the auxiliary problem (7). By Definition 1, Ker W is not empty, and 
the function g(x) takes a zero on this subspace. Then we can divide our problem into 
two subproblems: minimization of a quadratic form with matrix γ · I on Ker W and 
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minimization of a quadratic form with matrix λW + γ · I on (Ker W )⊥. The complexity 
of the first problem is O (1). The second problem is λλ+

min(W )-strongly convex, and if the 
Accelerated Gradient Method [20] is used to solve this subproblem, then the complexity 
is

O
(√

γ+λλmax(W )
max{γ,λλ+

min(W )} log 1
δ

)
. (12)

This is the complexity for a single subproblem (7) solve, but (7) is solved (5) times. 
Overall, this means that the total number of calls of ∇g is:

N comm = O
(√

L
μ

√
γ+λλmax(W )

max{γ,λλ+
min(W )} log 1

ε log 1
δ

)
.

Noting that √
γ+λλmax(W )

max{γ,λλ+
min(W )} = min

{√
γ+λλmax(W )

γ ,

√
γ+λλmax(W )
λλ+

min(W )

}
,

and taking γ = 2L, gives (10).
Case 2: λλmax(W ) < L. Here, let h1 = g and h2 = f . Theorem 2 gives the complexity 

for the function h1 = g, i.e. the number of communications is

N comm = O
(√

λλmax(W )
μ log 1

ε

)
= O

(
min

{√
λλmax(W )

μ ,
√

L
μχ

}
log 1

ε log 1
δ

)
. (13)

In last step we additionally use that χ ≥ 1. Also, it can be shown that δ in (9) satisfies 
the condition in Theorem 2. If the Accelerated Gradient Method [20] is used to solve 
subproblem (7), the complexity for a single subproblem solve is again given by (12), and 
this subproblem is solved (13) times. Then we can find the number of calls for ∇f :

N loc = O
(√

λλmax(W )
μ

√
L+γ
μ+γ log 1

ε log 1
δ

)
.

Taking γ = 2λλmax(W ) gives (11).
Finally, combining the two cases establishes the theorem statement. �

Remark 2. Note that in the centralized case (with a completely connected communication 
network) we have that χ = 1, λmax(W ) = 1 and our method converges with the following 
rates:

N comm = Õ
(
min

{√
λ
μ ,
√

L
μ

})
, N loc = Õ

(√
L
μ

)
.

These bounds coincide with lower bounds for centralized PFL [8].
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4.3. Stochastic case

Here we extend the work previously presented and consider the stochastic case of 
problem (4). In particular, it is assumed that each local function has a sum structure, 
so that (4) becomes

min
x∈Rnd

n∑
i=1

1
M

M∑
m=1

fi,m(xi)︸ ︷︷ ︸
fi(xi)

+λ

2 〈x,Wx〉. (14)

This setup often arises when we consider fi(xi) = Eξi∼Di
[fξi(xi)], where Di is an un-

known distribution, fξi(xi) represents the loss of model xi on sample ξi, and fi(xi) is 
the generalization error. Since we do not know the distribution Di, we cannot work with 
fi(xi) directly, and typically replace it with an approximation via Monte Carlo integra-
tion fi(xi) = 1

M

∑M
m=1 fi,m(xi). In this context, the problem is known as empirical risk 

minimization. This formulation is currently the main setting for solving supervised learn-
ing problems [22]. Usually it is expensive to compute the full gradients ∇fi(xi) at each 
iteration, so instead, each node independently and uniformly chooses an index (batch 
number) mi and calculates the gradient ∇fi,mi

(xi) for that batch only. It turns out that 
we obtain the stochastic gradient typical of learning processes. Moreover ∇fi,mi

(xi) is 
an unbiased estimator of ∇fi(xi).

The following assumption (a modification of Assumption 1) is used here.

Assumption 4. It is assumed that each fi : Rd → R in problem (14) is:

∗ L-average smooth w.r.t. l2-norm, i.e. ∀u, v ∈ Rd, 1
M

∑M
m=1 ‖∇fi,m(u) −∇fi,m(v)‖2 ≤

L2‖u − v‖2;
∗ μ-strongly-convex w.r.t. l2-norm i.e. ∀u, v ∈ Rd, 〈∇fi(u) −∇fi(v), u −v〉 ≥ 2μ‖u −v‖2.

We present two approaches for solving problem (14). These approaches are efficient 
in the case of small λ. The key idea of the first approach (which uses the Accelerated 
Meta-Algorithm combined with L-Katyusha as the subproblem solver) is that problem 
(14) is considered as composite problem (6). In the second approach (Accelerated Ran-
domized Algorithm for Decentralized Minimization) the ideas of variance reduction and 
importance sampling are used.

Accelerated meta-algorithm + L-Katyusha
As previously mentioned, the main idea behind this approach is to view problem (14)

as the composite problem (6). In particular, Section 4.2 showed that (4) can be solved 
by the Accelerated Meta-Algorithm with h1 = g, h2 = f . With this choice of h1 and h2
communications occur only in the outer loop, when we compute ∇g(x) = λWx. The local 
computations of ∇fi(xi) take place in the inner loop. But now, the inner problem (7) has 
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a finite-sum structure (since fi has a finite-sum structure and hence h2 does as well). As 
previously mentioned, it is computationally expensive to use the full gradient for h2, so 
typically for the subproblem (7), stochastic methods, such as the classical SGD method, 
are employed. Note that SGD converges only to a neighborhood of the solution, but for 
the finite-sum type problem it is known that one can use a variance reduction technique 
[13,1,9] to achieve convergence to an exact solution. For this reason, we chose to use 
an accelerated and practical method that incorporates a variance reduction approach – 
L-Katyusha [9].

Theorem 4. Let Assumption 4 hold and let the graph G have an associated matrix Ŵ
that satisfies Definition 1. Then, to obtain an ε-optimal solution to problem (4), solving 
by Algorithm 1 combined with L-Katyusha, with

δ = εμ

30002(L + λλmax(W ))2 ,

requires the number of communications and local computations, respectively, to be of the 
order

N comm = O
(√

λλmax(W )
μ log 1

ε log 1
δ

)
,

and

N loc = O
((

M
√

λλmax(W )
μ +

√
ML
μ

)
log 1

ε log 1
δ

)
.

The proof of this theorem is similar to the proof of Theorem 3 and can be found in 
Appendix C.

Remark 3. Note that the Accelerated Meta-Algorithm + L-Katyusha is suboptimal when 
Mλλmax(W ) ≤ L.

Accelerated randomized algorithm for decentralized minimization
In contrast with the previous approach, Algorithm 3 uses variance reduction and 

importance sampling techniques and is based on L-Katyusha [9]. We now view problem 
(14) as being the sum of M + 1 functions: there are M functions fi, as well as the 
composite term g. In Line 3 of Algorithm 3 the value of a random variable ξk determines 
what to choose: f (make a local computation with probability 1 − p) or g (make a 
communication with probability p). If the outcome is a local computation, then we choose 
index i of the function f . We give a practical version of Algorithm 3 in Appendix A
(Algorithm 6).

At each iteration of the algorithm, between 0 and 2 communications are made. As 
noted above, the first communication can take place if ξk = 0. And then the value of a 
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Algorithm 3 Accelerated Randomized for Decentralized Minimization (ARDM).
Input: starting point x0 ∈ Rnd, number of iterations K, parameters 0 < θ1, θ2 < 1, η, β, γ > 0, probabil-

ities p, ρ
Initialization: y0 = z0 = u0 = x0 and ĝ0 = λWy0 + ∇f(y0)

1: for k = 0, 1, 2, . . .K − 1 do
2: xk = θ1zk + θ2uk + (1 − θ1 − θ2)yk

3: Generate ξk =
{

1, with probability 1 − p

0, with probability p

4: if ξk = 0 then
5: gk = λ

p

(
Wxk − Wuk

)
+ ĝk

6: else
7: Sample indices mk

1 , . . .mk
n for each node independently and uniformly from [M ]

8: gk = 1
1−p

(
∇fmk (xk) − ∇fmk (uk)

)
+ ĝk with ∇fmk (x) = (∇fT

1,mk
1
(x1), . . . , ∇fT

n,mk
n
(xn))T

9: end if
10: yk+1 = xk − ηgk

11: zk+1 = βzk + (1 − β)xk + γ
η (yk+1 − xk)

12: Generate ξk+ 1
2 =

{
1, with prob. 1 − ρ

0, with prob. ρ

13: if ξk+1/2 = 0 then
14: uk+1 = yk+1

15: ĝk+1 = λWyk+1 + ∇f(yk+1)
16: else
17: uk+1 = uk

18: ĝk+1 = ĝk

19: end if
20: end for

random variable ξk+ 1
2 determines whether to update ĝk or not. If ĝk is updated, then 

Algorithm 3 makes a communication and a local computation. The following theorem 
states the convergence rate of Algorithm 3.

Theorem 5. Let Assumption 4 hold and let the graph G have an associated matrix Ŵ
that satisfies Definition 1. Then, to obtain an ε-optimal solution to problem (4) using 
Algorithm 3, we can choose parameters γ, η, β, p = λλmax(W )

L̄+λλmax(W ) , and ρ = 1
M such that 

we need the following number of communications (on average)

N comm = O
(√

λλmax(W )
μ log 1

ε

)
.

For ρ = p we can achieve the following number of local computations (on average)

N loc = O
((

M +
√

ML
μ

)
log 1

ε

)
.

The proof of this Theorem can be found in Appendix D.

Remark 4. Accelerated Meta-Algorithm + L-Katyusha has optimal local computational 
complexity when Mλλmax(W ) ≤ L. In contrast, the second algorithm has better local 
computation complexity (on average) if λλmax(W ) < L and Mλλmax(W ) ≥ L.
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Table 2
The number of features and number of samples for 
each dataset used in the numerical experiments.

dataset # features (d) # samples
mushrooms 112 8,124

a9a 123 32,561

covtype.scale 54 581,012

rcv1.binary 47,236 20,242

5. Numerical experiments

In this section, we present several numerical experiments to demonstrate the practical 
advantages of the proposed approach for problem (4). We study logistic loss functions,

fi(xi) = 1
n

⎛⎝ 1
mi

mi∑
j=1

log(1 + e−yi
ja

i
jxi)

⎞⎠ ,

where {(aij , yij)}mi
j=1 is local dataset stored on each machine i ∈ {1, 2, . . . , n}, aij ∈ Rd

represents the feature vector and yij ∈ {−1, 1} is the label. In the experiments, the power 
method was used to estimate the smoothness parameter of the objective function, as well 
as λmax(W ).

Datasets The experiments were performed on datasets from the LIBSVM [5] database.1
Table 2 shows the basic characteristics of the datasets that were used.

The communication networks In the experiments, three different network topologies 
were considered:

1. Cyclic: In this topology, devices are connected in a cycle, where each device is con-
nected to it’s two closest neighbors only. In this communication network, it takes 
∼ n

2 iterations to transmit information between two devices on opposite sides of the 
cycle.

2. Grid: Here devices are organized in a 
√
n × √

n grid, and are connected to their 
nearest neighbors.2

3. Erdos: A random communication graph, also known as an Erdős-Rényi graph.3

1 The datasets are available at https://www .csie .ntu .edu .tw /~cjlin /libsvmtools /datasets/.
2 https://networkx .org /documentation /networkx -1 .10 /reference /generated /networkx .generators .classic .

grid _2d _graph .html.
3 https://networkx .org /documentation /stable /reference /generated /networkx .generators .random _

graphs .erdos _renyi _graph .html.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.generators.classic.grid_2d_graph.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.generators.classic.grid_2d_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.erdos_renyi_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.erdos_renyi_graph.html
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Fig. 1. Evolution of ‖∇f(xt)‖ for different datasets, regularization parameter and different level of solving 
the subproblem (7) (larger T means we optimize the subproblem better).

We used the networkx python package4 to generate random bi-directional graphs with 
the structures described above. As highlighted in the theory, the algorithm depends on 
the parameters λ, λmax(W ) and L. We ran several experiments with varying values of 
λ, where

λ = r L
λmax(W ) , r > 0. (15)

5.1. Solving the sub-problem

Algorithm 1 requires the solution to the auxiliary problem (7). To avoid communica-
tion costs, an approximate solution to (7) was obtained by performing T iterations of 
Nesterov’s accelerated gradient method. In Fig. 1 we show the evolution of ‖∇f(xt)‖
for various selections of parameter T . Observe that the behavior for T ∈ {2, 4, . . . , 32}
is almost identical (in terms of the iterations of the algorithm), however, larger T re-
quires additional rounds of communications. Therefore, in the following experiments we 
selected T = 2.

5.2. Effect of the regularization parameter

The main benefit of personalized federated learning is the ability to have slightly 
different local models, xi, for each device i. The regularization term λxTWx penalizes 

4 The networkx package https://networkx .org/ is hosted at https://github .com /networkx /networkx.

https://networkx.org/
https://github.com/networkx/networkx


1

Fig. 2. Evolution of ‖∇f(xt)‖ and xT
t Wxt for various datasets, levels of λ and number of devices n ∈

{25, 100} with cyclic network.

local models (i.e., the xi’s) that are different from their mean, where the parameter λ
controls the emphasis placed on this penalty term. When λ is large, problem (4) tends 
to a consensus/classical federated learning problem, because there is a large penalty for 
models that are different at distinct devices. The current work focuses on personalized
federated learning, so here we consider the small λ regime.

Recall that for each problem instance considered, two iterations of accelerated gradient 
descent (T = 2) were used to give an approximate solution to subproblem (7). The 
parameter λ is defined in (15), and several values of r ∈ {1, 12 , 

1
4 , 

1
8 , 

1
16} were used. Let 

us stress that, as the number of local functions n increases, the matrix W changes, and 
hence, so too does λmax(W ). One can observe that, as expected, larger values of λ (that 
corresponds to larger values of r) lead to solutions x ∈ Rnd that have a smaller value of 
the penalty term xTWx. Figs. 2 (cyclic network), 3 (grid network) and 4 (Erdős-Rényi 
network) show the results of several numerical experiments.

5.3. Local training accuracy

In Fig. 5 we demonstrate the main benefit of using PFL - namely, the ability for 
each device to have a slightly different local model, thereby capturing small differences 
in the local data. This is done by selecting various values of λ and observing the affect 
that has on the training accuracy over various local functions fi. We plot the average 
accuracy over local accuracies (each using their own set of parameters). For the mush-
rooms and a9a datasets, the algorithm quickly achieved very good local accuracy for all 
8 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
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Fig. 3. Evolution of ‖∇f(xt)‖ and xT
t Wxt for various datasets, levels of λ and number of devices n ∈

{25, 100} with grid network.

Fig. 4. Evolution of ‖∇f(xt)‖ and xT
t Wxt for various datasets, levels of λ and number of devices n ∈

{25, 100} with erdos network.
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Fig. 5. Comparison of average accuracy of local models on local data for various communication networks 
and levels of λ (r).

local models. However, the covtype (more samples) and rcv1 (more features) datasets 
were more challenging. For the rcv1 dataset, we can see that initially (mainly due to the 
over-parametrization of the data) the local models achieve better accuracy (for smaller 
value of λ (r)), demonstrating the advantages of PFL.

5.4. Partial worker participation

One of the challenges of the FL setting is the fact that not all devices can always 
participate in all the communications [14,25]. To simulate such a scenario, we conducted 
the following two experiments:

1. Randomly dropping communication edge(s). For each iteration, and each commu-
nication edge e, the edge is kept with probability pe, or dropped with probability 
1 −pe. The result is that the gossip matrix W is randomly modified at each iteration. 
In Figs. 6 and 7 we demonstrate empirically that keeping some communication edges 
with probability pe ∈ {1.0, 0.9, 0.5, 0.1} only mildly affects the convergence.
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Fig. 6. Evolution of ‖∇f(xt)‖ and xT
t Wxt for various datasets, number of devices n ∈ {25, 100} and different 

probability of keeping the communication edge p with the erdos network.

2. Randomly dropping the device(s) from communication. In this case, a subset of 
devices is randomly selected. In particular, at each iteration, a device is kept with 
probability pd, and excluded/dropped with probability 1 − pd. As before, the effect 
is that the gossip matrix W is randomly modified at each iteration. In Figs. 8 and 
9 we demonstrate empirically that keeping only some devices with probability pd ∈
{1.0, 0.9, 0.5, 0.1} only mildly affects the convergence.

5.5. The benefit of personalized training

In Section 5.2 we discussed the case when λ ≤ L
λmax(W ) that allows for more per-

sonalization of local models. Note that, as discussed in Section 4.2, we use Algorithm 1
with different settings for h1(x) and h2(x) depending on the value of λ. In Fig. 10 we 
investigate the behavior of Algorithm 1 for λ = r L

λmax(W ) with r ∈ {0.125, 16}. Note that 
a larger value of λ (r) corresponds to larger penalization if the model deviates from the 
mean (xTWx); consequently, this allows less personalization.

6. Conclusion

In this work we studied the problem of decentralized personalized federated learning. 
Problem (4) used a penalty term that was based upon the specific network structure, 
which was more appropriate than a ‘deviation from the average’ penalty in the decentral-
ized setting. We presented lower bounds on the local communication and computation 
costs, and we presented algorithms that achieved these lower bounds. Numerical exper-
iments demonstrated the benefits of this approach.
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Fig. 7. Evolution of ‖∇f(xt)‖ and xT
t Wxt for various datasets, number of devices n ∈ {25, 100} and different 

probability of keeping the communication edge p with grid network.

Fig. 8. Evolution of ‖∇f(xt)‖ and xT
t Wxt for various datasets, number of devices n ∈ {25, 100} and different 

probability p of keeping the device in the communication with erdos network.

Interesting issues for further research are those related to the more practical features 
arising in a federated learning setup, including asynchronous and delayed transmissions, 
and compression of information to reduce communication cost, among others. It would 
also be interesting to perform numerical experiments using the Leaf framework (https://
leaf .cmu .edu).

https://leaf.cmu.edu
https://leaf.cmu.edu
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Fig. 9. Evolution of ‖∇f(xt)‖ and xT
t Wxt for various datasets, number of devices n ∈ {25, 100} and different 

probability p of keeping the device in the communication with grid network.

Fig. 10. Evolution of ‖∇f(xt)‖, xT
t Wxt and average accuracy of local models for rcv1 datasets and erdos 

and grid network. We compare with two levels of regularization: low with λ = 0.125 · L
λmax(W ) and high with 

λ = 16 · L
λmax(W ) . Note that, although both regularization values give comparable ‖∇f(xt)‖, the average 

accuracy for the case with smaller penalization is better.
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Appendix A. Versions of Algorithms 1 and 3 for problem (4)

Algorithm 4 MA for λλmax(W ) ≥ L.
Input: starting point x0

i = x0 ∈ Rd, no. of iterations K, parameter γ = 2L > 0, accuracy δ > 0
Initialization: A0 = 0, y0

i = x0
i , τ = 1

2γ
for k = 0, . . . , K − 1 do

ak+1 =
τ +

√
τ2 + 4τAk

2
Ak+1 = Ak + ak+1

Local update: wk
i =

Ak

Ak+1 y
k
i +

ak+1

Ak+1 x
k
i

Local computation: uk
i = ∇fi(wk

i )
Solve subproblem via gossip communications, i.e. find yk+1 ∈ Rnd, such that ‖ŷk+1 − yk+1‖2

2 ≤ δ, 
where

ŷk+1 = argmin
y∈Rnd

{
〈∇h1(wk),y − wk〉 + h2(y) +

γ

2
‖y − wk‖2

2

}

Compute zk
i via gossip communication with neighbors: zk = λWyk+1

Local update: xk+1
i = xk

i − ak+1(∇fi(yk+1
i ) + zk

i )
end for
Output: {yK

i }

Algorithm 5 MA for λλmax(W ) < L.
Input: starting point x0

i = x0 ∈ Rd, no. of iterations K, parameter γ = 2L > 0, accuracy δ > 0
Initialization: A0 = 0, y0

i = x0
i , τ = 1

2γ
for k = 0, . . . , K − 1 do

ak+1 =
τ +

√
τ2 + 4τAk

2
Ak+1 = Ak + ak+1

Local update: wk
i =

Ak

Ak+1 y
k
i +

ak+1

Ak+1 x
k
i

Compute uk
i via gossip communication with neighbors: uk = λWwk

Solve local subproblem, i.e. find yk+1
i ∈ Rnd, such that ‖ŷk+1

i − yk+1
i ‖2

2 ≤ δ, where

y
k+1
i = argmin

yi∈Rd

{
〈uk

i , yi − w
k
i 〉 + fi(yi) +

γ

2
‖yi − w

k
i ‖

2
2

}

Compute zk
i via gossip communication with neighbors: zk = λWyk+1

Local update: xk+1
i = xk

i − ak+1(∇fi(yk+1
i ) + zk

i )
end for
Output: {yK

i }
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Algorithm 6 ARDM.
Input: starting point x0

i = x0 ∈ Rd, number of iterations K, parameters 0 < θ1, θ2 < 1, η, β, γ > 0, 
probabilities p, ρ

Initialization: y0
i = z0

i = u0
i = x0

i and ĝ0
i = λy0

i + ∇fi(y0
i )

1: for k = 0, 1, 2, . . .K − 1 do
2: Local update: xk

i = θ1z
k
i + θ2u

k
i + (1 − θ1 − θ2)yk

i

3: Generate ξk =
{

1, with probability 1 − p

0, with probability p

4: if ξk = 0 then
5: Compute bki via gossip communication with neighbors: bk = λ

pWxk

6: Local update: gk
i = bki − ak

i + ĝk
i

7: else
8: Sample indices mk

1 , . . .mk
n for each node independently and uniformly from [M ]

9: Local computation: gk
i = 1

1−p

(
∇fi,mk

i
(xk

i ) − ∇fi,mk
i
(uk

i )
)

+ ĝk
i

10: end if
11: Local update: yk+1

i = xk
i − ηgk

i

12: Local update: zk+1
i = βzk

i + (1 − β)xk
i + γ

η (yk+1
i − xk

i )

13: Generate ξk+ 1
2 =

{
1, with prob. 1 − ρ

0, with prob. ρ

14: if ξk+1/2 = 0 then
15: uk+1

i = yk+1
i

16: Compute ak+1
i via gossip communication with neighbors: ak+1 = λ

pWuk+1

17: Compute cki via gossip communication with neighbors: ck = λWyk+1

18: Local update: ĝk+1
i = cki + ∇fi(yk+1

i )
19: else
20: uk+1

i = uk
i

21: ak+1
i = ak

i

22: ĝk+1
i = ĝk

i

23: end if
24: end for

Appendix B. Proof of Theorem 1

In this section, we prove lower convergence bounds of algorithms satisfying Assump-
tion 2 for the problem (4). To do this, we need to give an example of ‘bad’ functions that 
satisfy Assumption 1, and an example of a ‘bad’ arrangement of these functions in some 
graph with a ‘bad’ matrix Ŵ (Definition 1) with an upper bound of condition number 
χ. Following [20,8] we consider quadratic functions, and following [21], we construct a 
linear graph.

Let us start with the network. As the gossip matrix, we take the Laplacian of the 
linear graph. Then, for our problem (4), we get that the matrix W has the following 
form W = Ŵ ⊗ Id, where Ŵ = 1

2U , and U is

U =

⎛⎜⎜⎜⎜⎝
1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

⎞⎟⎟⎟⎟⎠ . (16)
−1 1
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It is known that the spectrum of the (scaled by 1/2) Laplacian matrix of the linear graph 
with n vertices, is 2 sin2 (πk

2n
)

for k = 0, . . . , n − 1, [2]. Thus, the condition number is 

χ(n) =
sin2

(
π(n−1)

2n

)
sin2

(
π
2n
) . Since we consider χ ≥ 3, one can find n ≥ 3 such that χ(n) ≤ χ <

χ(n +1). Moreover, for n ≥ 3 we can guarantee that λmax(n) ≥ 3
2 , 4

n2 ≤ λ+
min(n) ≤ 5

n2 and 

χ(n + 1) ≤ 1
sin2

(
π

2(n+1)
) ≤ (n+1)2

2 . It turns out that if we choose as the ‘bad’ network, 

a linear graph with n vertices (where n is such that χn ≤ χ < χn+1), and take the 
Laplacian of this graph as the gossip matrix, then we satisfy Definition 1 and χ is an 
upper bound for the condition number of the gossip matrix. And one can note that 
n − 1 >

√
2χ− 2 ≥ 1

5
√
χ (since χ ≥ 3), 1 ≤ 2

3λmax(n) and 4
n2 ≤ λ+

min(n) ≤ 5
n2 .

Now let us move on to the ‘bad’ functions. We choose the dimension of these functions 
equivalent to d = 2T with large enough T (to be defined later). Next, we divide the 
nodes of the network into three types: the first type includes V1 = {1}, the second type 
includes V2 = {2, n− 1}, the third type includes V3 = {n}. Each type of node has its 
own functions:

fi(x) =

⎧⎪⎪⎨⎪⎪⎩
μ
2 ‖x‖2 + ax(1) + cλ

2

(∑T−1
t=1

(
x(2t) − x(2t+1))2)+ bλ

2
(
x(2T ))2 , if i ∈ V1,

φ · μ
2 ‖x‖2, if i ∈ V2,

μ
2 ‖x‖2 + cλ

2

(∑T−1
t=0

(
x(2t+1) − x(2t+2))2) , if i ∈ V3,

(17)
where constants a, b, c will be defined shortly. The parameter φ takes two values: 1 or 0. 
We will consider both values below, we need 0 to simplify the mathematical calculations, 
note that in this case we slightly change the class of problems, since not all functions fi
are strongly convex and we slightly go beyond Assumption 1.

In the proof we will rely on [8]. In particular, we will prove similar (but not analogous) 
lemmas.

Let us introduce the solution of the problem (4) with (17). For the first type of node, 
we denote the solution by x∗, for the third type node by z∗, and for the second type 
nodes by y∗2 , . . . , y∗n−1. Using this notation we write down the optimality conditions for 
(4). First write down for x∗:(

μ

λ
+ 1

2

)
(x∗)(1) + a

λ
− 1

2(y∗2)(1) = 0, (18)(
c + μ

λ
+ 1

2

)
(x∗)(2t) − c(x∗)(2t+1) − 1

2(y∗2)(2t) = 0, for 1 ≤ t ≤ T − 1, (19)(
c + μ

λ
+ 1

2

)
(x∗)(2t+1) − c(x∗)(2t) − 1

2(y∗2)(2t+1) = 0, for 1 ≤ t ≤ T − 1, (20)(
μ

λ
+ b + 1

2

)
(x∗)(2T ) − 1

2(y∗2)(2T ) = 0. (21)

Then for z∗:
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(
c + μ

λ
+ 1

2

)
(z∗)(2t−1) − c(z∗)(2t) − 1

2(y∗n−1)
(2t−1) = 0, for 1 ≤ t ≤ T, (22)(

c + μ

λ
+ 1

2

)
(z∗)(2t) − c(z∗)(2t−1) − 1

2(y∗n−1)
(2t) = 0, for 1 ≤ t ≤ T, (23)

Finally for y∗2 , . . . , y∗n−1:(
1 + φμ

λ

)
(y∗2)(t) − 1

2(y∗3)(t) − 1
2(x∗)(t) = 0, for 1 ≤ t ≤ 2T, (24)(

1 + φμ

λ

)
(y∗i )(t) −

1
2(y∗i+1)(t) −

1
2(y∗i−1)(t) = 0, for 1 ≤ t ≤ 2T, (25)(

1 + φμ

λ

)
(y∗n−1)(t) −

1
2(y∗n−2)(t) −

1
2(z∗)(t) = 0, for 1 ≤ t ≤ 2T. (26)

First, we give a proof of the lemma that indicates a recursive connection of coordinates 
x∗ and z∗. Before we introduce new notation:

wt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
(z∗)(t)

(x∗)(t)

)
if t is even(

(x∗)(t)

(z∗)(t)

)
if t is odd

.

Lemma 1. The sequence wt satisfies the following recursion relation:

wt+1 = Qwt with Q =
( −B

2c
1
c

(
c + μ

λ + 1
2 − A

2
)

−1
c

(
c + μ

λ + 1
2 − A

2
) 2

Bc

(
c + μ

λ + 1
2 − A

2
)2 − 2c

B

)
,

where

A =
(

1 − 1
n− 1

)
, B = 1

n− 1 , for φ = 0,

or

A = ωn−2
2 − ωn−2

1
ωn−1

2 − ωn−1
1

, B = ω2 − ω1

ωn−1
2 − ωn−1

1
, for φ = 1,

with ω1 = 1 + μ
λ −

√
2μ
λ + μ2

λ2 and ω2 = 1 + μ
λ +

√
2μ
λ + μ2

λ2 .

Proof. We start from (24), (25), (26). One can note that we have recursion with two 
initial conditions:

(y∗i )(t) =
(

2 + 2φμ
)

(y∗i−1)(t) − (y∗i−2)(t) with (y∗1)(t) = (x∗)(t), (y∗n)(t) = (z∗)(t).

λ
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If φ = 0, the expressions for (y∗i )(t) are as follows:

(y∗i )(t) =
(

i

n− 1 − 1
n− 1

)
(z∗)(t) +

(
n

n− 1 − i

n− 1

)
(x∗)(t).

In particular, (y∗2)(t) =
(
1 − 1

n−1

)
(x∗)(t) + 1

n−1 (z∗)(t) and (y∗n−1)(t) =
(
1 − 1

n−1

)
(z∗)(t)

+ 1
n−1 (x∗)(t). When φ = 1, the expressions for (y∗i )(t) become more complicated:

(y∗i )(t) = C1ω
i−1
1 + C2ω

i−1
2 = ωn−i

2 − ωn−i
1

ωn−1
2 − ωn−1

1
(x∗)(t) + ωi−1

2 − ωi−1
1

ωn−1
2 − ωn−1

1
(z∗)(t),

with ω1 = 1 + μ
λ −

√
2μ
λ + μ2

λ2 and ω2 = 1 + μ
λ +

√
2μ
λ + μ2

λ2 . In particular, 

(y∗2)(t) = ωn−2
2 −ωn−2

1
ωn−1

2 −ωn−1
1

(x∗)(t) + ω2−ω1
ωn−1

2 −ωn−1
1

(z∗)(t) and (y∗n−1)(t) = ωn−2
2 −ωn−2

1
ωn−1

2 −ωn−1
1

(z∗)(t) +
ω2−ω1

ωn−1
2 −ωn−1

1
(x∗)(t). In both cases of φ we have that (y∗2)(t) = A · (x∗)(t) + B · (z∗)(t)

and (y∗n−1)(t) = A · (z∗)(t) + B · (x∗)(t) with some A and B. We can substitute these 
(y∗2)(t) and (y∗n−1)(t) into (19), (20), (22), (23) and have:(

c + μ

λ
+ 1

2

)
(x∗)(2t) − c(x∗)(2t+1) − A

2 (x∗)(2t) − B

2 (z∗)(2t) = 0, for 1 ≤ t ≤ T − 1,(
c + μ

λ
+ 1

2

)
(x∗)(2t+1)−c(x∗)(2t)− A

2 (x∗)(2t+1)− B

2 (z∗)(2t+1) = 0, for 1 ≤ t ≤ T −1,(
c + μ

λ
+ 1

2

)
(z∗)(2t−1) − c(z∗)(2t) − A

2 (z∗)(2t−1) − B

2 · (x∗)(2t−1) = 0, for 1 ≤ t ≤ T,

(27)(
c + μ

λ
+ 1

2

)
(z∗)(2t) − c(z∗)(2t−1) − A

2 (z∗)(2t) − B

2 · (x∗)(2t) = 0, for 1 ≤ t ≤ T. (28)

The first two expressions together can be rewritten as follows:

(
c 0

−c− μ
λ − 1

2 + A
2

B
2

)(
(x∗)(2t+1)

(z∗)(2t+1)

)
=
(
c + μ

λ + 1
2 − A

2 −B
2

−c 0

)(
(x∗)(2t)

(z∗)(2t)

)
,

or(
(x∗)(2t+1)

(z∗)(2t+1)

)
=
(

c 0
−c− μ

λ − 1
2 + A

2
B
2

)−1(
c + μ

λ + 1
2 − A

2 −B
2

−c 0

)(
(x∗)(2t)

(z∗)(2t)

)

= 2
Bc

(
B
2 0

c + μ
λ + 1

2 − A
2 c

)(
c + μ

λ + 1
2 − A

2 −B
2

−c 0

)(
(x∗)(2t)

(z∗)(2t)

)

=
( 1

c

(
c + μ

λ + 1
2 − A

2
)

−B
2c

2 (c + μ + 1 − A
)2 − 2c −1 (c + μ + 1 − A

))((x∗)(2t)

(z∗)(2t)

)

Bc λ 2 2 B c λ 2 2
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=
( −B

2c
1
c

(
c + μ

λ + 1
2 − A

2
)

−1
c

(
c + μ

λ + 1
2 − A

2
) 2

Bc

(
c + μ

λ + 1
2 − A

2
)2 − 2c

B

)(
(z∗)(2t)

(x∗)(2t)

)

= Q

(
(z∗)(2t)

(x∗)(2t)

)
.

Similarly, from (27) and (28) one can get that(
(z∗)(2t)

(x∗)(2t)

)
= Q

(
(x∗)(2t−1)

(z∗)(2t−1)

)
.

Using the definition of wt completes the proof. �
Then, we follow the idea from [8]. From the proof of the previous lemma we know 

that (y∗2)(t) = A · (x∗)(t) + B · (z∗)(t). Then, substituting (y∗2)(1) and (y∗2)(2T ) into (18)
and (21), we obtain that the value of w1 and w2T depends on the parameters a and b. 
Hence, by varying the parameters a and b, one can obtain that w1, w2, . . . , w2T are 
eigenvectors of the matrix Q, i.e. w2 = Qw1 = γw1 etc. This idea is implemented in the 
following lemma.

Lemma 2. For any L, μ, and λ (L ≥ 2μ, and λλ+
min(W ) ≥ μ), there exists a choice of 

parameters a, b, c such that w1, w2, . . .w2T are eigenvectors of matrix Q corresponding 
to the eigenvalue γ ∈ (0; 1), where

γ ≥ 1 − max
{

2
√

μn2

λ
, 3
√

μ

L− μ

}
.

Moreover, the problem (4) + (17) with these parameters a, b, c satisfies Assumption 1.

Proof. First we give the values of a, b, and c:

c =
{

1, for μ + λ ≤ L,
μ
λ · δ = μ

λ · L−μ
μ , for μ + λ > L,

b = Bα

2 − μ

λ
− 1

2 + A

2 and any a, (29)

where

α = −
1−2A+A2+B2+4c−4Ac+4μ

λ−4Aμ
λ+8cμ

λ+4μ2
λ2 +

√(
−1+2A−A2+B2−4μ

λ+4Aμ
λ−4μ2

λ2

)(
−1+2A−A2+B2−8c+8Ac−16c2−4μ

λ+4Aμ
λ−16cμ

λ−4μ2
λ2

)
2B
(
−1+A−2c−2μ

λ

) .

Let us check that the problem (4) + (17) satisfies Assumption 1. Note that by the 
choice of c, it suffices to verify that 0 ≤ bλ ≤ cλ ≤ L −μ. We make this verification with 
Mathematica (here and below, when using Mathematica, we replace μ

λ with x). First, 
we check these inequalities when ϕ = 0 (A = n−2 and B = 1 ):
n−1 n−1
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• bλ ≤ cλ (or α ≤ 1
B

(
2c + 1 −A + 2μ

λ

)
) for 0 < c ≤ 1 and x = μ

λ > 0, x =
μ
λ ≤ λ+

min ≤ 5
n2 (since in Theorem 1 we assume that μλ ≤ λ+

min and above we 
estimated that λ+

min ≤ 5
n2 )

• 0 ≤ b (or α ≥ 1
B

(
1 −A + 2μ

λ

)
) for 0 < c ≤ 1 and x = μ

λ > 0, x = μ
λ ≤ λ+

min ≤ 5
n2

In the case of ϕ = 1, we replace the expressions for A and B from Lemma 1 by their 
Taylor approximations:

A ≈ n− 2
n− 1 − 2n2 − 7n + 6

3(n− 1)
μ

λ
+ (4n3 − 8n2 + 3n)(n− 2)

45(n− 1)
μ2

λ2 ,

B ≈ n− 2
n− 1 − n2 − 2n

3(n− 1)
μ

λ
+ 7n4 − 28n3 + 37n2 − 18n

90(n− 1)
μ2

λ2 .

(30)

Then, we can check inequalities for b:

• bλ ≤ cλ (or α ≤ 1
B

(
2c + 1 −A + 2μ

λ

)
) for 0 < c ≤ 1 and x = μ

λ > 0, x = μ
λ ≤

λ+
min ≤ 5

n2

• 0 ≤ b (or α ≥ 1
B

(
1 −A + 2μ

λ

)
) for 0 < c ≤ 1 and x = μ

λ > 0, x = μ
λ ≤ λ+

min ≤ 5
n2
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Next, we turn to eigenvalues and vectors. One can find them:
We take the smallest eigenvalue

γ =
4−8A+4A2−4B2+16c−16Ac+16μ

λ−16Aμ
λ+32cμ

λ+16μ2
λ2 −

√
−256B2c2+

(
−4+8A−4A2+4B2−16c+16Ac−16μ

λ+16Aμ
λ−32cμ

λ−16μ2
λ2

)2
16Bc

and the corresponding eigenvector

v =
(
α
1

)
.

By simply substituting b from expression (29) and (y∗2)(t) = A · (x∗)(t) + B · (z∗)(t) into 
equations (21), one can note that w2T is an eigenvector of Q. It means that γw2T = Qw2T
or w2T = γQ−1w2T . From Lemma 1 we also have Q−1w2T = w2T−1. As the result, 
w2T = γw2T−1, i.e. w2T−1 is also an eigenvector of Q. Continuing further, we can obtain 
that all vectors w2T , . . . , w1 are eigenvectors of Q. The choice of parameter a does not 
affect, it only determines the value of ‖w1‖.

Finally, we need to make sure that this γ satisfies the conditions of the lemma. Let 
us consider the three cases separately.

1) μ +λ ≤ L. In this case c = 1. We want to verify that γ ∈ (0; 1) and γ ≥ 1 −2
√

μn2

λ . 
This inequality need to be checked with the constraints: x = μ

λ > 0, x = μ
λ ≤ λ+

min ≤ 5
n2

(since in Theorem 1 we assume that μλ ≤ λ+
min and above we estimated that λ+

min ≤ 5
n2 , 

when we construct the network). First, we check these inequalities when ϕ = 0:

• γ > 0

• γ < 1
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• γ ≥ 1 − 2
√

μn2

λ

In the case of ϕ = 1, we use (30):

• γ > 0

• γ < 1

• γ ≥ 1 − 2
√

μn2

λ

2) μ + λ > L ≥ μ + λλ+
min. In this case c = L−μ

λ = μ
λ · δ = xδ. We want to verify that 

γ ∈ (0; 1) and γ ≥ 1 − 2
√

μn2

λ . This inequality need to be checked with the constraints: 
δ ≥ 1 (since in Theorem 1 we assume that L ≥ 2μ and then δ = L−μ ≥ 1), x = μ > 0, 
μ λ
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x = μ
λ ≤ λ+

min ≤ 5
n2 and 1

x > δ ≥ 1
x · λ+

min ≥ 1
x · 4

n2 (constraints of the considered case). 
First, we check these inequalities when ϕ = 0:

• γ > 0

• γ < 1

• γ ≥ 1 − 2
√

μn2

λ

In the case of ϕ = 1, we use (30):

• γ > 0

• γ < 1
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• γ ≥ 1 − 2
√

μn2

λ

3) μ +λλ+
min > L. In this case c = L−μ

λ = 1
x · δ = xδ. We want to verify that γ ∈ (0; 1)

and γ ≥ 1 − 3
√

μ
L−μ . This inequality need to be checked with the constraints: δ ≥ 1, 

x = 1
x > 0, x = 1

x
1
x ≤ λ+

min ≤ 5
n2 and δ < 1

x ·λ+
min ≤ 1

x · 5
n2 (constraints of the considered 

case). First, we check these inequalities when ϕ = 0:

• γ > 0

• γ < 1

• γ ≥ 1 − 3
√

μ
L−μ

In the case of ϕ = 1, we use (30):

• γ > 0
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• γ < 1

• γ ≥ 1 − 3
√

μ
L−μ

�
The previous Lemmas show what the solution of the problem (4) + (17) is. Now let 

us determine how quickly we can approach it.

Lemma 3. Let the problem (4) + (17) be solved by any method that satisfies Assumption 2. 
Then after K iterations with q communication rounds, only the first 

⌊
q

n−1

⌋
coordinates 

of the global output can be non-zero while the rest of the d −
⌊

q
n−1

⌋
coordinates are strictly 

equal to zero.

Proof. We begin introducing some notation for our proof. Let

E0 := {0}, Ej := span{e1, . . . , ej}.

Note that, if we initialize all x0
i = 0, then we have Mi,0 = E0.
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Suppose that, at some given time k, for some j, Mj,k = El. Let us analyze how Mj,k

can change by performing only local computations.
We consider the case when l odd (case with even l can be analyzed the same way). 

After one local update, we have the following:
1) For node j ∈ V1, it holds

Mj,k+1 = El, (31)

because of the block diagonal structure of (17). The situation does not change, no matter 
how many local computations one does.

2) For node j ∈ V3, it holds

Mj,k+1 = El+1,

It means that, after local computations, one has an update in output and machine on 
V3 can progress by one new non-zero coordinate.

This means that we constantly have to transfer progress from the machine from V1
to the machine from V3 and back. Initially, all devices have zero coordinates. Further, 
the machine from V1 can receive the first nonzero coordinate (but only the first, the 
second is not), and the rest of the devices are left with all zeros. Next, we pass the first 
non-zero coordinate to the machine from V3. To do this, n −1 communication rounds are 
needed. By doing so, they can make the second coordinate non-zero, and then transfer 
this progress to the machine from V1. Then the process continues in the same way. This 
completes the proof. �

Now we are ready to complete the proof of Theorem 1. The previous reasoning, as 
well as Lemmas 1, 2, and 3, gives that we can construct the “bad” problem of type (4)
with the “bad” network (satisfying Definition 1) as well as with the “bad” functions 
(17) (satisfying Assumption 1). Moreover, we know that only 

⌊
q

n−1

⌋
coordinates in the 

output can coincide with the solution, and the other coordinates are exactly zero. Then 
we just have to put T = 1

2

(
max{1, logγ 1

2} +
⌊

q
n−1

⌋)
in the dimension of the problem 

d = 2T , and obtain the following estimate on the outputs from V1 and V3:

‖xK − x∗‖2 + ‖zK − z∗‖2

‖x0 − x∗‖2 + ‖z0 − z∗‖2 =

∑2T
i=
⌊ q
n−1

⌋
+1 ‖wi‖2∑2T

i=1 ‖wi‖2
≥

∑2T
i=
⌊ q
n−1

⌋
+1 γ

i−1‖w1‖2∑2T
i=1 γ

i−1‖w1‖2

= γ

⌊ q
n−1

⌋∑2T−1−
⌊ q
n−1

⌋
i=0 γi∑2T−1

i=0 γi
= γ

⌊ q
n−1

⌋ 1 − γ
2T−

⌊ q
n−1

⌋
1 − γ2T

≥ 1
2γ

⌊ q
n−1

⌋
≥ 1

2

(
1 − max

{
2
√

μn2

λ
, 3
√

μ

L− μ

}) q
n−1

.
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In the other words it means that:

q = Ω
(

min
{√

λ(n− 1)2
μn2 ,

√
(L− μ)(n− 1)2

μ

}
log (‖x0 − x∗‖2 + ‖z0 − z∗‖2)

ε

)

= Ω
(

min
{√

λ

μ
,

√
(L− μ)(n− 1)2

μ

}
log (‖x0 − x∗‖2 + ‖z0 − z∗‖2)

ε

)

When constructing the “bad” network, we proved that n − 1 >
√

2χ − 2 ≥ 1
5
√
χ 1 ≤

2
3λmax(n). Hence, we get

q = Ω
(

min
{√

λ(n− 1)2
μn2 ,

√
(L− μ)(n− 1)2

μ

}
log (‖x0 − x∗‖2 + ‖z0 − z∗‖2)

ε

)

= Ω
(

min
{√

λλmax(W )
μ

,

√
(L− μ)χ

μ

}
log (‖x0 − x∗‖2 + ‖z0 − z∗‖2)

ε

)
.

Which is what we needed to prove. �
Appendix C. Proof of Theorem 4

For the following analysis, recall the auxiliary problem (7) from Algorithm 1 with 
p = 1, h1(x) like sum component, h2(x) like λ2 〈x, Wx〉, which is restated for convenience:

ŷk+1 = argmin
y∈Rnd

{
〈∇h1(wk),y − wk〉 + h2(y) + γ

2 ‖y − wk‖2
2

}
Now we look carefully at the auxiliary problem. This problem is (L + γ)-smooth and 

(μ +γ) strongly-convex, so we can apply L-Katyusha algorithm from [9]. The complexity 
of solving problem (7) is

O
((

M +

√
M(γ + L)
γ + μ

)
log 1

δ

)
,

where δ denotes the accuracy of the solution to the auxiliary problem (7). The number 
of calls of the gradient of f is

NWx = O
(√

λλmax(W )
μ

log 1
ε

)
(32)

while the number of calls of the gradient of G is
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N∇fk = O
(√

λλmax(W )
μ

(
M +

√
M(L + γ)
μ + γ

)
log 1

ε
log 1

δ

)
.

Taking γ be equal to λλmax (W ), we get

N∇fk = O
((

M

√
λλmax(W )

μ
+

√
ML

μ

)
log 1

ε
log 1

δ

)
.

Now we consider δ, the accuracy of the auxiliary problem (7). According to Theorem 2, 
we can take δ as

δ = εμ

8642(L + λλmax(W ) + γ)2 ,

because the function f(x) is L-smooth and λ2 〈x,Wx〉 is λλmax (W )-smooth. �
Appendix D. Proof of Theorem 5

Let us use the additional notation G(xk, uk) = gk + λWuk + ∇f(uk) for short. Let 
us consider our problem as a finite sum problem with r + 1 terms.

F (x) = 1
r

r∑
j=1

gj(x) + gr+1(x),

where gj(x) =
n∑

k=1
fjk(xk) and gr+1(x) = λ

2 〈x, Wx〉. For such a problem, one can use 

the results of the convergence of the variance reduction method L-Katyusha (Algorithm 
3 from [9]) on which our method is based.

E
[
‖gk −∇F (xk)‖2] =

= (1 − p)E
[∥∥∥∥ 1

1 − p

(
∇fj(xk) −∇fj(uk)

)
+ λWuk + ∇f(uk) − λWxk −∇f(xk)

∥∥∥∥2
]

+ pE

[∥∥∥∥λp (Wxk −Wuk
)

+ λWuk + ∇f(uk) − λWxk −∇f(xk)
∥∥∥∥2
]

= (1 − p)
n∑

i=1

r∑
j=1

pj

[∥∥∥∥ 1
1 − p

(
∇fij(xk) −∇fij(uk)

)
+λWuk + ∇fi(uk) − λWxk −∇fi(xk)

∥∥2]
+ p

n∑∥∥∥∥λp (Wxk −Wuk
)

+ λWuk + ∇fi(uk) − λWxk −∇fi(xk)
∥∥∥∥2
i=1
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≤ (1 − p)
n∑

i=1

r∑
j=1

pj

∥∥∥∥ 1
1 − p

(
∇fij(xk) −∇fij(uk)

)∥∥∥∥2

+ p

∥∥∥∥λp (Wxk −Wuk
)∥∥∥∥2

≤ 1
1 − p

n∑
i=1

r∑
j=1

pj
∥∥∇fij(xk) −∇fij(uk)

∥∥2 + 2λλmax(W )
p

Dgr+1(uk,xk).

Choose pj = 1
r :

E
[
‖gk −∇F (xk)‖2]
≤ 2L

1 − p

n∑
j=1

Dfj (uk,xk) + 2λλmax(W )
p

Dgr+1(uk,xk)

= 2L
1 − p

Df (uk,xk) + 2λλmax(W )
p

Dgr+1(uk,xk)

≤ max
{

2L
1 − p

,
2λλmax(W )

p

}
DF (uk,xk)

Choose L = max
{

L
1−p ,

λλmax(W )
p

}
, then,

E
[
‖Gk −∇F (xk)‖2] ≤ 2LDF (uk,xk).

Assumption 5.1 from [9] holds. By Proposition 5.1 from [9] iteration complexity of Al-
gorithm 3 is

O

((
1
ρ

+

√
L + λλmax(W )

μ
+

√
L
ρμ

)
log 1

ε

)

Note that optimal complexities in Algorithm 3 for local computations and communi-
cations are achieved on different sets of p and ρ. Let us get them separately.

∗ The local stochastic gradient complexity of a single iteration of Algorithm 3 is 0 if 
ξk = 0, ξk+ 1

2 = 1, 1 if ξk = 1, ξk+ 1
2 = 1, r + 1 if ξk = 1, ξk+ 1

2 = 0 and M if ξk = 0, 
ξk+ 1

2 = 0.

O
(

((1 − p)(1 − ρ) + (M + 1)(1 − p)ρ + Mpρ) ·

·
(

1
ρ

+

√
L + λλmax(W )

μ
+

√
L
ρμ

)
log 1

ε

)

= O
(

(1 − p + Mρ)
(

1
ρ

+

√
L + λλmax(W )

μ
+

√
L
ρμ

)
log 1

ε

)
.
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For ρ = 1
M , p = λλmax(W )

L̄+λλmax(W ) the total expected local stochastic gradient complexity 
of Algorithm 3 becomes

O
(

(1 − p + Mρ)
(

1
ρ

+

√
L + λλmax(W )

μ
+

√
L
ρμ

)
log 1

ε

)

≤ O
(

2
(
M +

√
L + λλmax(W )

μ
+

√
ML
μ

)
log 1

ε

)

= O
((

M +

√
M(L + λλmax(W ))

μ

)
log 1

ε

)
.

∗ The total communication complexity of Algorithm 3 is the sum of communication 
complexity coming from the full gradient computation (if statement that includes 
ξk+ 1

2 ) and the rest (if statement that includes ξk). The former requires a communi-
cation if ξk+ 1

2 = 0, the latter if ξk is equal to 0. The expected total communication 
O (ρ + p) per iteration. Thus, the total communication complexity is bounded by

O
(

(p + ρ)
(

1
ρ

+

√
L + λλmax(W )

μ
+

√
L
ρμ

)
log 1

ε

)
.

For ρ = p, p = λλmax(W )
L̄+λλmax(W ) the total communication complexity of Algorithm 3

becomes

O
(

(ρ + p)
(

1
ρ

+

√
L + λλmax(W )

μ
+

√
L
ρμ

)
log 1

ε

)

= O
((

1 + ρ

√
L + λλmax(W )

μ
+

√
ρ(L + λλmax(W ))

μ

)
log 1

ε

)

= O
(√

λλmax(W )(L + λλmax(W ))
(L + λλmax(W ))μ log 1

ε

)

= O
(√

λλmax(W )
μ

log 1
ε

)
. �
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