
EURO Journal on Computational Optimization 10 (2022) 100041
Contents lists available at ScienceDirect

EURO Journal on Computational
Optimization

www.elsevier.com/locate/ejco

Decentralized personalized federated learning:
Lower bounds and optimal algorithm for all
personalization modes

Abdurakhmon Sadiev a,b,∗, Ekaterina Borodich a,c,
Aleksandr Beznosikov a,b,c, Darina Dvinskikh c,
Saveliy Chezhegov a, Rachael Tappenden d, Martin Takáč b,
Alexander Gasnikov a,b,c,e

a Moscow Institute of Physics and Technology (MIPT), Russia
b Mohamed bin Zayed University of Artificial Intelligence (MBZUAI), United Arab
Emirates
c HSE University, Russia
d University of Canterbury, New Zealand
e Institute for Information Transmission Problems RAS, Russia

a r t i c l e i n f o a b s t r a c t

Dataset link: https://www .csie .ntu .
edu .tw /~cjlin /libsvmtools /datasets/

Keywords:
Federated learning
Decentralized optimization
Distributed optimization
Lower and upper bounds
Accelerated algorithms

This paper considers the problem of decentralized, personal-
ized federated learning. For centralized personalized federated
learning, a penalty that measures the deviation from the local
model and its average, is often added to the objective function.
However, in a decentralized setting this penalty is expensive
in terms of communication costs, so here, a different penalty
— one that is built to respect the structure of the underlying
computational network — is used instead. We present lower
bounds on the communication and local computation costs for
this problem formulation and we also present provably optimal
methods for decentralized personalized federated learning.

* Corresponding author.
E-mail address: sadiev.aa@phystech.edu (A. Sadiev).
https://doi.org/10.1016/j.ejco.2022.100041
2192-4406/© 2022 The Authors. Published by Elsevier Ltd on behalf of Association of European
Operational Research Societies (EURO). This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.ejco.2022.100041
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ejco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejco.2022.100041&domain=pdf
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
mailto:sadiev.aa@phystech.edu
https://doi.org/10.1016/j.ejco.2022.100041
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
Numerical experiments are presented to demonstrate the
practical performance of our methods.
© 2022 The Authors. Published by Elsevier Ltd on behalf of

Association of European Operational Research Societies
(EURO). This is an open access article under the CC

BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Today’s data revolution is transforming the world, with vast amounts of data col-
lected daily from a wide range of sources. Automation is necessary when processing
and extracting information from such large quantities of data, and machine learning has
proven to be a useful tool to assist with this task. The essence of machine learning is
to build, and then train, models. To speed up the process of training, modern computer
architectures can be used, where instead of one single computing device, the problem
and associated data is shared among many devices/agents. This leads to the following
distributed learning/optimization problem formulation

min
x∈Rd

n∑
i=1

fi(x), (1)

where each agent/device i ∈ [n] := {1, 2, . . . , n}, has an associated local loss function
fi : Rd → R, as well as its own locally stored data.

Federated Learning (FL) [15,18] is a subset of distributed machine learning, where one
assumes that computing agents are simply general user devices, (for example, smart-
phones, tablets, laptops, personal computers), and where different devices may have
different memory capacity and computing power. This leads to many new and impor-
tant problems and questions that did not arise previously in the classical distributed
setting [16]. For example, data may be spread unequally between devices, privacy con-
siderations may prohibit the sharing of data between certain devices on the network,
poor or unreliable connectivity may inhibit the flow of data, and data on certain devices
may be of poorer quality compared with others.

Given these issues, this work focuses on personalization for federated learning. Notice
that in (1), the model parameter x is found using global data (from all agents). However,
the inclusion of a particular individual agent might negatively impact the global training
process if their local data differs markedly from the global data, or if they have low
quality local data; in this case training the global model may lead to a poor solution.
On the other hand, each user may have very little local data, and the process of training
a model solely on local data may also lead to a poor quality solution. The question of
how to balance the two extremes, global versus local, gave rise to Personalized Federated
Learning (PFL) [10,8,11].

http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 3
For PFL, each agent i has their own parameter xi, but the discrepancy between the
parameters held on different devices is penalized. Correspondingly, PFL can be formu-
lated as the following regularized optimization problem:

min
x∈Rnd

n∑
i=1

fi(xi) + λ

2 r(x), (2)

where the vector x = [xT
1 , . . . , x

T
n]T ∈ Rnd is the concatenation of the n local vectors

{xi ∈ Rd}ni=1, r(x) is a convex penalty function, and the weight parameter λ balances
the degree of personalization. There are many possible choices for the penalty function
r(x). A simple option is to let r(x) be the deviation between the local models and their
average [8,10,11]:

r(x) =
n∑

i=1
‖xi − x̄‖2, where x̄ = 1

n
(x1 + · · · + xn). (3)

This is a reasonable choice in the centralized distributed setting, where devices com-
municate with a central server, sending and receiving information without failures. In
this case, calculating the average x̄ is easy: all agents i simply send their local xi to the
central server, which then calculates the average x̄, and communicates it back to every
agent. In this paper we consider a more general setup, where different penalty functions
might be more appropriate.

Throughout this work we consider decentralized distributed learning, where there is
no main server (node), but instead all devices are connected via some large network.
Moreover, each agent in the network can only communicate with its neighbors. Math-
ematically, the network is represented by a fixed, un-directed, connected graph, where
each node corresponds to an agent, and connections between agents are represented by
edges. Although a decentralized setting is assumed here, our problem formulation is gen-
eral enough to include a centralized set-up as a special case (simply take a complete
graph). However, a decentralized setup perhaps better captures the federated learning
setting, where each device only communicates with a limited number of other agents,
corresponding to an incomplete graph. As previously mentioned, communication links
between certain agents may be inaccessible, for example, due to the (poor) quality of
connection between agents, or due to remoteness of location, and this leads to missing
edges in the graph.

In a decentralized setting, using the penalty in (3) is not sensible because of the
impracticality of calculating the average x̄. (Note that to calculate x̄, all local xi’s must
be sent to one device (node) and then the average x̄ broadcast back to every node, which
is a long and expensive operation, especially for large networks.) With this in mind, here
we propose the use of a different penalty r(x), which is more suitable for a decentralized
setup. Hence, the problem formulation considered in this work is:

4 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
min
x∈Rnd

F (x) =
n∑

i=1
fi(xi)︸ ︷︷ ︸
f(x)

+ λ

2 〈x,Wx〉︸ ︷︷ ︸
g(x)

, (4)

where W is a communication matrix that reflects the properties of the network (see
Section 1.2 for a formal definition of W). The function r(x) = 〈x, Wx〉 penalizes the
difference between neighboring local models in the network, and is computationally
friendlier than (3) in a decentralized setting. The matrix W determines how much an
agent depends on each of the other nodes in the learning process. This is achieved due
to the fact that W represents the structure of the communication graph, gives infor-
mation about the remoteness of the nodes, the speed of transfer between them, and
carries weights of how much to rely on one or another neighbor in the network. Note
that Wx = 0 (and consequently r(x) = 0) if and only if x1 = · · · = xn. This penalty
function is not new and has been used in the literature in several contexts, for example,
for classical decentralized minimization with large λ [17,7,3], and for multitask PFL with
small λ [23,26,3].

The parameter λ balances the ‘global vs local’ trade-off. For example, consider the
following extremes:

∗ If λ = 0, then (4) becomes minx∈Rnd

∑n
i=1 fi(xi), where the local function fi held

by agent i is minimized by x∗
i , and x∗

i is likely to be different than that obtained for
agent j. This is equivalent to independent local training of the models.

∗ As λ → +∞, (4) tends to the distributed problem where the local arguments are con-
strained to be equal: i.e., minx1=···=xn∈Rd

∑n
i=1 fi(xi). This is equivalent to problem

(1) and the training of one global model.

1.1. Preliminaries

Throughout this work the following assumption is made regarding the functions in
(4).

Assumption 1. It is assumed that each fi : Rd → R in problem (4) is

∗ L-smooth w.r.t the �2-norm, i.e. for all u, v ∈ Rd, ‖∇fi(u) −∇fi(v)‖2 ≤ L‖u − v‖2;
and

∗ μ-strongly-convex w.r.t. the �2-norm, i.e. ∀u, v ∈ Rd, fi(u) − fi(v) ≥ 〈∇fi(v), u −
v〉 + μ

2 ‖u− v‖2
2.

By Assumption 1, f in (4) is L-smooth and μ-strongly convex, and subsequently F is
also μ-strongly convex.

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 5
1.2. Communication

The communication network is modeled as a fixed, connected, undirected graph,
G = (V, E), where V = {1, . . . , n} are vertices (devices) and E = {(i, j) | i, j ∈ V}
are edges (connections between devices). Note that (i, j) ∈ E if and only if there exists
a communication link between agents i and j. For such a graph, a gossip matrix Ŵ is
defined as follows.

Definition 1 (Gossip matrix). A matrix Ŵ ∈ Rd×d, associated with a graph G, is called
a gossip matrix, if it satisfies the following conditions:

1. Ŵ is symmetric positive semi-definite;
2. The kernel of Ŵ consists of the vector 1 = (1, . . . , 1)�;
3. Ŵ is defined on the edges of the communication network: ŵi,j = 0 if and only if

i = j or (i, j) ∈ E .

The communication matrix W in (4) is W = Ŵ ⊗ Id, i.e., W is the Kronecker prod-
uct of a gossip matrix Ŵ and the identity matrix Id. Because only neighboring agents
can communicate in this decentralized optimization setting, it is assumed that commu-
nication is made via a gossip protocol [4,19], i.e., Ŵ is a gossip matrix (Definition 1)
and communication is realized via matrix-vector multiplication with W . During one
communication/communication round, for every node, full local vectors of dimension
d (e.g. variables {xi} or gradients {∇fi(xi)}) are exchanged with all neighbors. This
work supposes that the network remains unchanged, all connections are stable, and no
interruptions nor asynchronous/delayed transmissions are considered.

Here, λmax(W) denotes the maximum eigenvalue of W , λ+
min(W) denotes the minimum

positive eigenvalue of W and χ ≥ λmax(W)/λ+
min(W) is an upper bound on the condition

number. Because W = Ŵ ⊗ Id, it holds that λmax(W) = λmax(Ŵ) and λ+
min(W) =

λ+
min(Ŵ). The quantity χ reflects how quickly information is transmitted through the

graph; a small χ corresponds to fast transmission, while a large χ corresponds to slow
transmission.

A simple example of a matrix Ŵ satisfying Definition 1 is the Laplacian matrix. For
example, the Laplacian of a linear graph (chain) is

Ŵ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2 −1

−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

6 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
In terms of personalization, this means that the model on the first node relies directly
on the 2nd node. In turn the 2nd node depends on the 1st and 3rd nodes, and so on.
In particular, the 1st and last nodes depend on each other weakly and only indirectly
through the whole chain.

However, it is also possible to define Ŵ in a more complex way. For example, in the
case of a linear graph, one can add weights that represent how much a given node relies
upon its neighbors:

Ŵ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 1.5 −0.5

−0.5 1 −0.5
−0.5 1.2 −0.7

.
−0.5 1.5 −1

−1 1 −1
−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In this example, the second node trusts the 1st node more than the 3rd, while the third
node trusts the 2nd and 4th nodes equally, etc.

2. Contributions

In this paper, we study the personalized federated learning formulation (4). Lower
complexity bounds for communication and local computation are proposed, and we de-
velop several algorithms capable of achieving the lower bounds. Our results extend the
work in [8], which used the penalty (3), to problem (4), which involves a penalty more
amenable to the decentralized setting. Our contributions are summarized now.

– Lower bounds. We present lower bounds for the decentralized personalized federated
learning problem (4) in the deterministic case (i.e., when we have access to full
gradients for each fi); see Section 3. The lower bounds are valid for all values of the
parameter λ. In particular, in the smooth strongly convex case with small λ, the lower
bounds are of the order

√
λλmax (W) /μ, which can be a significant improvement

on the bound
√
χL/μ in the general, non-personalized case, [21]. This reflects a

key advantage of the formulation (4), because it is then possible to both solve the
problem of personalizing the models, and also to significantly reduce the total number
of communications. This is an important factor not only in federated learning, but
also in general distributed learning. Note that the lower bounds obtained in the
work [8] are a special case of our lower bounds, when the communication network
is represented by a fully connected graph. A summary of these lower bounds is
presented in Table 1.

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 7
Table 1
Summary of complexity results (upper and lower bounds) on communications
(comm) and local computations (local) for finding an ε-optimal solution of (4)
in the deterministic (gradient) case.

Lower bounds Upper bounds

comm Ω̃
(
min

{√
λλmax(W)

μ ,
√

L
μχ

})
Õ
(
min

{√
λλmax(W)

μ ,
√

L
μχ

})
local Ω̃

(√
L
μ

)
Õ
(√

L
μ

)

– Near-optimal algorithm. Another contribution is the development of optimal algo-
rithms that match the theoretical lower bounds. The Accelerated Meta-Algorithm
of [6] (for general composite problems), is used as the base algorithm. The appli-
cation of this algorithm to our problem formulation (4) is discussed, and specific
implementation modes are suggested depending on small and large values of the reg-
ularization parameter λ. The analysis of the convergence in these modes shows that
using this approach we achieve the lower optimal bounds up to logarithmic factors
(Section 4.2). Hence, our algorithm is ‘near-optimal’ in the deterministic case; see
Section 4.

– Stochastic case. We extend the previously reported results from the deterministic case
(when the full gradient for all fi is available), to the stochastic setting. In particular,
we consider the case when each local function fi is a finite sum (for example, the
sum of batches), i.e. fi = 1

M

∑M
m=1 fi,m. In this case, for one call of the oracle we

can get only the gradient of one term fi,m. We provide lower bounds, as well as a
stochastic modification of our near-optimal deterministic algorithm; see Section 4.3.

– Experiments. We present numerical experiments to demonstrate the benefits of our
approach. In particular, we used several datasets from the benchmark LIBSVM
library, and we considered several different graph structures. We also run the ex-
periments for several values of the penalty parameter λ, to better understand the
impact of personalization; see Section 5.

3. Lower bounds

In this section, optimal algorithms for problems of the form (4) are described, and
lower bounds on the local computation and communication costs for such optimal al-
gorithms, are presented. We begin with the following assumption, which describes the
properties of algorithms relevant for this work, (i.e., the properties of the algorithms for
which the lower bounds, developed later in this section, are valid). Such an assumption
is common in the literature; see, for example, [8,12,21].

Assumption 2. Consider an Algorithm A, for problem (4). Then, the iterates {xk}Kk=1 of
Algorithm A are generated using only components available in local memory, where, for
each node of graph G the sequence of local memory {Mi,k}Kk=1 for 1 ≤ i ≤ n is:

8 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
Mi,0 =
{
x0
i

}
,

Mi,k+1 =

⎧⎪⎨⎪⎩
span {Mi,k,∇fi(yi)} ,∀yi ∈ Mi,k if local comp. at iteration k

span
{ ⋃

j:(i,j)∈E
Mj,k

}
if communication at iteration k.

Assumption 2 can be interpreted as follows. Initially, each agent i (corresponding to
a node on graph G) has local memory Mi,0, which comprises of the initial point x0

i . At
any iteration k ≥ 1, the algorithm can either perform a computation using the locally
available memory, or it can carry out a communication step. If the algorithm performs
a local computation, then each device can calculate the gradient at any point from its
current memory Mi,k and take a linear combination of this gradient with the previously
generated points stored in Mi,k. If the algorithm performs a communication step, then
information is exchanged with neighbors and the current local memory Mi,k is combined
with that held by its neighbors. Such an algorithm is first order, because it generates its
iterates using linear combinations of local points and gradients.

We are now ready to present our first theorem, which gives a lower bound on the num-
ber of communications needed by an algorithm whose iterates are generated according
to Assumption 2. (The proof can be found in Appendix B.)

Theorem 1. Let χ ≥ 3, L ≥ 2μ, and λλ+
min(W) ≥ μ. Then there exist functions

f1, f2, . . . , fn : Rd → R satisfying Assumption 1, a graph G with associated matrix Ŵ
satisfying Definition 1, and an initial point x0 = [(x0

1)T , . . . (x0
n)T]T ∈ Rnd, such that

any algorithm A (satisfying Assumption 2) among K iterations need to make at least

Ω
(

min
{√

λλmax(W)
μ

,

√
(L− μ)χ

μ

}
log 1

ε

)
communications

to achieve ε-optimal solution in the outputs (‖xj − x∗
j‖2ε for all j).

The proof of this Theorem is placed in Appendix B.
It remains to develop lower bounds for the local computation costs for any algorithm

A satisfying Assumption 2. Hence, consider a special instance of problem (4), where
x0 ∈ Rnd, f1 = f2 = · · · = fn, and Ŵ is the Laplace matrix for a fully connected graph.
Then (4) reduces to the minimization of the single local function f1 (communication
is unnecessary, irrespective of λ, because the functions are all identical). Now, if f1 is
chosen to be the worst-case quadratic from [20], then the lower bound of at least

N loc = Ω
(√

L
μ log 1

ε

)
(5)

gradient calls are needed to find an ε-optimal solution.

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 9
4. Algorithms

The goal of this section is to develop an optimal algorithm for problem (4), i.e., to
develop an algorithm whose iterates satisfy the lower bounds in Section 3. In Section 4.1,
we discuss an algorithm that can be applied to general composite optimization problems.
In Section 4.2, this algorithm is specialized to the application considered in this work,
that of decentralized personalized federated learning (4). The algorithms in Sections 4.1
and 4.2 can be applied to deterministic problems, and the extension to a stochastic
setting is considered in Section 4.3. In particular, the case when the function at each
node has finite sum structure is considered, and two approaches, both equipped with
convergence results, are described and compared.

4.1. Accelerated meta-algorithm

In this section, consider the general composite optimization problem

min
x∈Rnd

H(x) = h1(x) + h2(x). (6)

(Later we will consider how h1 and h2 in (6) are related to f and g in (4).) The following
assumption is made about problem (6).

Assumption 3. For the problem (6), it is assumed that h1 is convex and L(h1)-smooth,
that h2 is convex and L(h2)-smooth, and that H is μ-strongly convex.

There are many efficient algorithms that can be applied to problem (6), including the
Accelerated-Meta-Algorithm (see Algorithm 1) proposed in [6], as well as its restarted
version (see Algorithm 2).

Algorithm 1 Accelerated Meta-Algorithm (MA) [6].
Input: starting point x0 ∈ Rnd, no. of iterations K, parameter γ > 0, accuracy δ > 0
Initialization: A0 = 0, y0 = x0, τ = 1

2γ
for k = 0, . . . , K − 1 do

ak+1 =
τ +

√
τ2 + 4τAk

2
Ak+1 = Ak + ak+1

wk =
Ak

Ak+1 yk +
ak+1

Ak+1 xk

Find yk+1 ∈ Rnd, such that ‖ŷk+1 − yk+1‖2
2 ≤ δ, where

ŷk+1 = argmin
y∈Rnd

{
〈∇h1(wk),y − wk〉 + h2(y) +

γ

2
‖y − wk‖2

2

}
(7)

xk+1 = xk − ak+1∇H(yk+1)
end for
Output: yK

10 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
Algorithm 2 Restarted Accelerated Meta-Algorithm (Restarted-MA) [6].
Input: initial point x0 ∈ Rnd, no. of iterations S, parameter γ > 0, accuracy δ > 0
Initialization: Ns = max

{⌈
4 ·
√

2γ
μ

⌉
, 1
}

for s = 0, . . . , S − 1 do
xs+1 = MA(xs, Ns, γ, δ)

end for
Output: xS

Remark 1. Note that (7) can be solved, for example, by Accelerated Gradient Descent
[20].

The following convergence results hold for Restarted-MA (Algorithm 2) applied to
problem (6).

Theorem 2 (Theorem 3 in [24]). Let Assumption 3 hold, let γ ≥ 2L(h1), let ε > 0, and
let

δ ≤ εμ

8642(L(h1) + L(h2) + γ)2 .

If Algorithm 2 runs for

S = O
(√

L(h1)
μ log 1

ε

)
(8)

iterations, generating output xS, then H(xS) −H(x∗) ≤ ε, where x∗ denotes the optimal
solution to (6).

4.2. Convergence analysis – near-optimal algorithm

Section 4.1 introduced an accelerated algorithm for the general problem (6), with asso-
ciated convergence results. The purpose of this section is to make a connection between
the results in Section 4.1, and how they are applicable in the context of personalized
federated learning (i.e., problem (4)). Moreover, the lower bounds established in Sec-
tion 3 related to local computation and communication costs for an optimal algorithm
for problem (4). Thus, another goal is to show that Algorithms 1+2 is an optimal algo-
rithm for (4), by showing that it achieves the lower bounds on communication and local
computation costs presented in Section 3.

By comparing problems (4) and (6), it can be seen that they are both convex and
composite. The key here is that we do not make a one-to-one correspondence between
(f, g) and (h1, h2). That is, depending on the parameter λ, two different cases — one in
which f ≡ h1 and g ≡ h2, while the other in which f ≡ h2 and g ≡ h1 — are considered.
Practical versions of Algorithm 1 for the problem (4) are presented in Appendix A
(Algorithms 4 and 5).

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 11
Regardless, to apply Algorithm 1+2, it is necessary to compute the gradients for both
h1 and h2 (recall subproblem (7)), and therefore for both f and g when extending to the
original problem (4). So, let us study how to compute the gradients ∇f and ∇g for (4),
and try to understand where the communications arise. Note that the computation of
∇f does not require communication. Indeed, each block i has a corresponding gradient
∇fi (taken with respect to the local variables xi), and the ‘long’ gradient ∇f is simply
the concatenation of the block gradients. On the other hand, ∇g(x) = λWx, and to
compute the matrix-vector product Wx requires communication with neighbors (recall
the gossip protocol described in Section 1.2, and see also [4,19]). It can be shown that
computing ∇g(x) is equivalent to one communication. Therefore, if we know how many
times ∇f(x) and ∇g(x) are called by Algorithm 1, then complexities for the number of
local computations and communications, respectively, can be obtained.

We are now ready to present the main convergence theorem of this paper, which
provides complexity results for the local computation and communication costs for an
optimal algorithm for problem (4).

Theorem 3. Let Assumption 1 hold and let the graph G have an associated matrix Ŵ
that satisfies Definition 1. Then, to obtain an ε-optimal solution to problem (4), solving
by Algorithm 2 with

δ = εμ

30002(L + λλmax(W))2 , (9)

requires the number of communications and local computations, respectively, to be of the
order

Ncomm = O
(

min
{√

λλmax(W)
μ ,

√
L
μχ

}
log 1

ε log 1
δ

)
, (10)

and

N loc = O
(√

L
μ log 1

ε log 1
δ

)
. (11)

Proof. First, note that G is a quadratic function with a positive semi-definite Hessian,
so it is λmax(W)-smooth and convex. Moreover, it is λλ+

min(W)-strongly convex on the
subspace (Ker W)⊥. By Assumption 1, f is L-smooth and μ-strongly convex. Hence, F
is strongly convex. Thus, the conditions of Theorem 2 hold, and the application of its
analysis is valid. The remainder of the analysis is split into two cases.

Case 1: λλmax(W) ≥ L. Here, let h1(x) = f(x) and h2(x) = g(x). Theorem 2 gives
the complexity for the function h1 = f , i.e. the number of local computations N loc is
given in (11). Also, it can be shown that δ in (9) satisfies the condition in Theorem 2.

Next, consider the auxiliary problem (7). By Definition 1, Ker W is not empty, and
the function g(x) takes a zero on this subspace. Then we can divide our problem into
two subproblems: minimization of a quadratic form with matrix γ · I on Ker W and

12 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
minimization of a quadratic form with matrix λW + γ · I on (Ker W)⊥. The complexity
of the first problem is O (1). The second problem is λλ+

min(W)-strongly convex, and if the
Accelerated Gradient Method [20] is used to solve this subproblem, then the complexity
is

O
(√

γ+λλmax(W)
max{γ,λλ+

min(W)} log 1
δ

)
. (12)

This is the complexity for a single subproblem (7) solve, but (7) is solved (5) times.
Overall, this means that the total number of calls of ∇g is:

N comm = O
(√

L
μ

√
γ+λλmax(W)

max{γ,λλ+
min(W)} log 1

ε log 1
δ

)
.

Noting that √
γ+λλmax(W)

max{γ,λλ+
min(W)} = min

{√
γ+λλmax(W)

γ ,

√
γ+λλmax(W)
λλ+

min(W)

}
,

and taking γ = 2L, gives (10).
Case 2: λλmax(W) < L. Here, let h1 = g and h2 = f . Theorem 2 gives the complexity

for the function h1 = g, i.e. the number of communications is

N comm = O
(√

λλmax(W)
μ log 1

ε

)
= O

(
min

{√
λλmax(W)

μ ,
√

L
μχ

}
log 1

ε log 1
δ

)
. (13)

In last step we additionally use that χ ≥ 1. Also, it can be shown that δ in (9) satisfies
the condition in Theorem 2. If the Accelerated Gradient Method [20] is used to solve
subproblem (7), the complexity for a single subproblem solve is again given by (12), and
this subproblem is solved (13) times. Then we can find the number of calls for ∇f :

N loc = O
(√

λλmax(W)
μ

√
L+γ
μ+γ log 1

ε log 1
δ

)
.

Taking γ = 2λλmax(W) gives (11).
Finally, combining the two cases establishes the theorem statement. �

Remark 2. Note that in the centralized case (with a completely connected communication
network) we have that χ = 1, λmax(W) = 1 and our method converges with the following
rates:

N comm = Õ
(
min

{√
λ
μ ,
√

L
μ

})
, N loc = Õ

(√
L
μ

)
.

These bounds coincide with lower bounds for centralized PFL [8].

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 13
4.3. Stochastic case

Here we extend the work previously presented and consider the stochastic case of
problem (4). In particular, it is assumed that each local function has a sum structure,
so that (4) becomes

min
x∈Rnd

n∑
i=1

1
M

M∑
m=1

fi,m(xi)︸ ︷︷ ︸
fi(xi)

+λ

2 〈x,Wx〉. (14)

This setup often arises when we consider fi(xi) = Eξi∼Di
[fξi(xi)], where Di is an un-

known distribution, fξi(xi) represents the loss of model xi on sample ξi, and fi(xi) is
the generalization error. Since we do not know the distribution Di, we cannot work with
fi(xi) directly, and typically replace it with an approximation via Monte Carlo integra-
tion fi(xi) = 1

M

∑M
m=1 fi,m(xi). In this context, the problem is known as empirical risk

minimization. This formulation is currently the main setting for solving supervised learn-
ing problems [22]. Usually it is expensive to compute the full gradients ∇fi(xi) at each
iteration, so instead, each node independently and uniformly chooses an index (batch
number) mi and calculates the gradient ∇fi,mi

(xi) for that batch only. It turns out that
we obtain the stochastic gradient typical of learning processes. Moreover ∇fi,mi

(xi) is
an unbiased estimator of ∇fi(xi).

The following assumption (a modification of Assumption 1) is used here.

Assumption 4. It is assumed that each fi : Rd → R in problem (14) is:

∗ L-average smooth w.r.t. l2-norm, i.e. ∀u, v ∈ Rd, 1
M

∑M
m=1 ‖∇fi,m(u) −∇fi,m(v)‖2 ≤

L2‖u − v‖2;
∗ μ-strongly-convex w.r.t. l2-norm i.e. ∀u, v ∈ Rd, 〈∇fi(u) −∇fi(v), u −v〉 ≥ 2μ‖u −v‖2.

We present two approaches for solving problem (14). These approaches are efficient
in the case of small λ. The key idea of the first approach (which uses the Accelerated
Meta-Algorithm combined with L-Katyusha as the subproblem solver) is that problem
(14) is considered as composite problem (6). In the second approach (Accelerated Ran-
domized Algorithm for Decentralized Minimization) the ideas of variance reduction and
importance sampling are used.

Accelerated meta-algorithm + L-Katyusha
As previously mentioned, the main idea behind this approach is to view problem (14)

as the composite problem (6). In particular, Section 4.2 showed that (4) can be solved
by the Accelerated Meta-Algorithm with h1 = g, h2 = f . With this choice of h1 and h2
communications occur only in the outer loop, when we compute ∇g(x) = λWx. The local
computations of ∇fi(xi) take place in the inner loop. But now, the inner problem (7) has

14 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
a finite-sum structure (since fi has a finite-sum structure and hence h2 does as well). As
previously mentioned, it is computationally expensive to use the full gradient for h2, so
typically for the subproblem (7), stochastic methods, such as the classical SGD method,
are employed. Note that SGD converges only to a neighborhood of the solution, but for
the finite-sum type problem it is known that one can use a variance reduction technique
[13,1,9] to achieve convergence to an exact solution. For this reason, we chose to use
an accelerated and practical method that incorporates a variance reduction approach –
L-Katyusha [9].

Theorem 4. Let Assumption 4 hold and let the graph G have an associated matrix Ŵ
that satisfies Definition 1. Then, to obtain an ε-optimal solution to problem (4), solving
by Algorithm 1 combined with L-Katyusha, with

δ = εμ

30002(L + λλmax(W))2 ,

requires the number of communications and local computations, respectively, to be of the
order

N comm = O
(√

λλmax(W)
μ log 1

ε log 1
δ

)
,

and

N loc = O
((

M
√

λλmax(W)
μ +

√
ML
μ

)
log 1

ε log 1
δ

)
.

The proof of this theorem is similar to the proof of Theorem 3 and can be found in
Appendix C.

Remark 3. Note that the Accelerated Meta-Algorithm + L-Katyusha is suboptimal when
Mλλmax(W) ≤ L.

Accelerated randomized algorithm for decentralized minimization
In contrast with the previous approach, Algorithm 3 uses variance reduction and

importance sampling techniques and is based on L-Katyusha [9]. We now view problem
(14) as being the sum of M + 1 functions: there are M functions fi, as well as the
composite term g. In Line 3 of Algorithm 3 the value of a random variable ξk determines
what to choose: f (make a local computation with probability 1 − p) or g (make a
communication with probability p). If the outcome is a local computation, then we choose
index i of the function f . We give a practical version of Algorithm 3 in Appendix A
(Algorithm 6).

At each iteration of the algorithm, between 0 and 2 communications are made. As
noted above, the first communication can take place if ξk = 0. And then the value of a

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 15
Algorithm 3 Accelerated Randomized for Decentralized Minimization (ARDM).
Input: starting point x0 ∈ Rnd, number of iterations K, parameters 0 < θ1, θ2 < 1, η, β, γ > 0, probabil-

ities p, ρ
Initialization: y0 = z0 = u0 = x0 and ĝ0 = λWy0 + ∇f(y0)

1: for k = 0, 1, 2, . . .K − 1 do
2: xk = θ1zk + θ2uk + (1 − θ1 − θ2)yk

3: Generate ξk =
{

1, with probability 1 − p

0, with probability p

4: if ξk = 0 then
5: gk = λ

p

(
Wxk − Wuk

)
+ ĝk

6: else
7: Sample indices mk

1 , . . .mk
n for each node independently and uniformly from [M]

8: gk = 1
1−p

(
∇fmk (xk) − ∇fmk (uk)

)
+ ĝk with ∇fmk (x) = (∇fT

1,mk
1
(x1), . . . , ∇fT

n,mk
n
(xn))T

9: end if
10: yk+1 = xk − ηgk

11: zk+1 = βzk + (1 − β)xk + γ
η (yk+1 − xk)

12: Generate ξk+ 1
2 =

{
1, with prob. 1 − ρ

0, with prob. ρ

13: if ξk+1/2 = 0 then
14: uk+1 = yk+1

15: ĝk+1 = λWyk+1 + ∇f(yk+1)
16: else
17: uk+1 = uk

18: ĝk+1 = ĝk

19: end if
20: end for

random variable ξk+ 1
2 determines whether to update ĝk or not. If ĝk is updated, then

Algorithm 3 makes a communication and a local computation. The following theorem
states the convergence rate of Algorithm 3.

Theorem 5. Let Assumption 4 hold and let the graph G have an associated matrix Ŵ
that satisfies Definition 1. Then, to obtain an ε-optimal solution to problem (4) using
Algorithm 3, we can choose parameters γ, η, β, p = λλmax(W)

L̄+λλmax(W) , and ρ = 1
M such that

we need the following number of communications (on average)

N comm = O
(√

λλmax(W)
μ log 1

ε

)
.

For ρ = p we can achieve the following number of local computations (on average)

N loc = O
((

M +
√

ML
μ

)
log 1

ε

)
.

The proof of this Theorem can be found in Appendix D.

Remark 4. Accelerated Meta-Algorithm + L-Katyusha has optimal local computational
complexity when Mλλmax(W) ≤ L. In contrast, the second algorithm has better local
computation complexity (on average) if λλmax(W) < L and Mλλmax(W) ≥ L.

16 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
Table 2
The number of features and number of samples for
each dataset used in the numerical experiments.

dataset # features (d) # samples
mushrooms 112 8,124

a9a 123 32,561

covtype.scale 54 581,012

rcv1.binary 47,236 20,242

5. Numerical experiments

In this section, we present several numerical experiments to demonstrate the practical
advantages of the proposed approach for problem (4). We study logistic loss functions,

fi(xi) = 1
n

⎛⎝ 1
mi

mi∑
j=1

log(1 + e−yi
ja

i
jxi)

⎞⎠ ,

where {(aij , yij)}mi
j=1 is local dataset stored on each machine i ∈ {1, 2, . . . , n}, aij ∈ Rd

represents the feature vector and yij ∈ {−1, 1} is the label. In the experiments, the power
method was used to estimate the smoothness parameter of the objective function, as well
as λmax(W).

Datasets The experiments were performed on datasets from the LIBSVM [5] database.1
Table 2 shows the basic characteristics of the datasets that were used.

The communication networks In the experiments, three different network topologies
were considered:

1. Cyclic: In this topology, devices are connected in a cycle, where each device is con-
nected to it’s two closest neighbors only. In this communication network, it takes
∼ n

2 iterations to transmit information between two devices on opposite sides of the
cycle.

2. Grid: Here devices are organized in a
√
n × √

n grid, and are connected to their
nearest neighbors.2

3. Erdos: A random communication graph, also known as an Erdős-Rényi graph.3

1 The datasets are available at https://www .csie .ntu .edu .tw /~cjlin /libsvmtools /datasets/.
2 https://networkx .org /documentation /networkx -1 .10 /reference /generated /networkx .generators .classic .

grid _2d _graph .html.
3 https://networkx .org /documentation /stable /reference /generated /networkx .generators .random _

graphs .erdos _renyi _graph .html.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.generators.classic.grid_2d_graph.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.generators.classic.grid_2d_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.erdos_renyi_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.erdos_renyi_graph.html

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 17
Fig. 1. Evolution of ‖∇f(xt)‖ for different datasets, regularization parameter and different level of solving
the subproblem (7) (larger T means we optimize the subproblem better).

We used the networkx python package4 to generate random bi-directional graphs with
the structures described above. As highlighted in the theory, the algorithm depends on
the parameters λ, λmax(W) and L. We ran several experiments with varying values of
λ, where

λ = r L
λmax(W) , r > 0. (15)

5.1. Solving the sub-problem

Algorithm 1 requires the solution to the auxiliary problem (7). To avoid communica-
tion costs, an approximate solution to (7) was obtained by performing T iterations of
Nesterov’s accelerated gradient method. In Fig. 1 we show the evolution of ‖∇f(xt)‖
for various selections of parameter T . Observe that the behavior for T ∈ {2, 4, . . . , 32}
is almost identical (in terms of the iterations of the algorithm), however, larger T re-
quires additional rounds of communications. Therefore, in the following experiments we
selected T = 2.

5.2. Effect of the regularization parameter

The main benefit of personalized federated learning is the ability to have slightly
different local models, xi, for each device i. The regularization term λxTWx penalizes

4 The networkx package https://networkx .org/ is hosted at https://github .com /networkx /networkx.

https://networkx.org/
https://github.com/networkx/networkx

1

Fig. 2. Evolution of ‖∇f(xt)‖ and xT
t Wxt for various datasets, levels of λ and number of devices n ∈

{25, 100} with cyclic network.

local models (i.e., the xi’s) that are different from their mean, where the parameter λ
controls the emphasis placed on this penalty term. When λ is large, problem (4) tends
to a consensus/classical federated learning problem, because there is a large penalty for
models that are different at distinct devices. The current work focuses on personalized
federated learning, so here we consider the small λ regime.

Recall that for each problem instance considered, two iterations of accelerated gradient
descent (T = 2) were used to give an approximate solution to subproblem (7). The
parameter λ is defined in (15), and several values of r ∈ {1, 12 ,

1
4 ,

1
8 ,

1
16} were used. Let

us stress that, as the number of local functions n increases, the matrix W changes, and
hence, so too does λmax(W). One can observe that, as expected, larger values of λ (that
corresponds to larger values of r) lead to solutions x ∈ Rnd that have a smaller value of
the penalty term xTWx. Figs. 2 (cyclic network), 3 (grid network) and 4 (Erdős-Rényi
network) show the results of several numerical experiments.

5.3. Local training accuracy

In Fig. 5 we demonstrate the main benefit of using PFL - namely, the ability for
each device to have a slightly different local model, thereby capturing small differences
in the local data. This is done by selecting various values of λ and observing the affect
that has on the training accuracy over various local functions fi. We plot the average
accuracy over local accuracies (each using their own set of parameters). For the mush-
rooms and a9a datasets, the algorithm quickly achieved very good local accuracy for all
8 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 19

Fig. 3. Evolution of ‖∇f(xt)‖ and xT
t Wxt for various datasets, levels of λ and number of devices n ∈

{25, 100} with grid network.

Fig. 4. Evolution of ‖∇f(xt)‖ and xT
t Wxt for various datasets, levels of λ and number of devices n ∈

{25, 100} with erdos network.

20 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
Fig. 5. Comparison of average accuracy of local models on local data for various communication networks
and levels of λ (r).

local models. However, the covtype (more samples) and rcv1 (more features) datasets
were more challenging. For the rcv1 dataset, we can see that initially (mainly due to the
over-parametrization of the data) the local models achieve better accuracy (for smaller
value of λ (r)), demonstrating the advantages of PFL.

5.4. Partial worker participation

One of the challenges of the FL setting is the fact that not all devices can always
participate in all the communications [14,25]. To simulate such a scenario, we conducted
the following two experiments:

1. Randomly dropping communication edge(s). For each iteration, and each commu-
nication edge e, the edge is kept with probability pe, or dropped with probability
1 −pe. The result is that the gossip matrix W is randomly modified at each iteration.
In Figs. 6 and 7 we demonstrate empirically that keeping some communication edges
with probability pe ∈ {1.0, 0.9, 0.5, 0.1} only mildly affects the convergence.

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 21
Fig. 6. Evolution of ‖∇f(xt)‖ and xT
t Wxt for various datasets, number of devices n ∈ {25, 100} and different

probability of keeping the communication edge p with the erdos network.

2. Randomly dropping the device(s) from communication. In this case, a subset of
devices is randomly selected. In particular, at each iteration, a device is kept with
probability pd, and excluded/dropped with probability 1 − pd. As before, the effect
is that the gossip matrix W is randomly modified at each iteration. In Figs. 8 and
9 we demonstrate empirically that keeping only some devices with probability pd ∈
{1.0, 0.9, 0.5, 0.1} only mildly affects the convergence.

5.5. The benefit of personalized training

In Section 5.2 we discussed the case when λ ≤ L
λmax(W) that allows for more per-

sonalization of local models. Note that, as discussed in Section 4.2, we use Algorithm 1
with different settings for h1(x) and h2(x) depending on the value of λ. In Fig. 10 we
investigate the behavior of Algorithm 1 for λ = r L

λmax(W) with r ∈ {0.125, 16}. Note that
a larger value of λ (r) corresponds to larger penalization if the model deviates from the
mean (xTWx); consequently, this allows less personalization.

6. Conclusion

In this work we studied the problem of decentralized personalized federated learning.
Problem (4) used a penalty term that was based upon the specific network structure,
which was more appropriate than a ‘deviation from the average’ penalty in the decentral-
ized setting. We presented lower bounds on the local communication and computation
costs, and we presented algorithms that achieved these lower bounds. Numerical exper-
iments demonstrated the benefits of this approach.

22 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
Fig. 7. Evolution of ‖∇f(xt)‖ and xT
t Wxt for various datasets, number of devices n ∈ {25, 100} and different

probability of keeping the communication edge p with grid network.

Fig. 8. Evolution of ‖∇f(xt)‖ and xT
t Wxt for various datasets, number of devices n ∈ {25, 100} and different

probability p of keeping the device in the communication with erdos network.

Interesting issues for further research are those related to the more practical features
arising in a federated learning setup, including asynchronous and delayed transmissions,
and compression of information to reduce communication cost, among others. It would
also be interesting to perform numerical experiments using the Leaf framework (https://
leaf .cmu .edu).

https://leaf.cmu.edu
https://leaf.cmu.edu

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 23
Fig. 9. Evolution of ‖∇f(xt)‖ and xT
t Wxt for various datasets, number of devices n ∈ {25, 100} and different

probability p of keeping the device in the communication with grid network.

Fig. 10. Evolution of ‖∇f(xt)‖, xT
t Wxt and average accuracy of local models for rcv1 datasets and erdos

and grid network. We compare with two levels of regularization: low with λ = 0.125 · L
λmax(W) and high with

λ = 16 · L
λmax(W) . Note that, although both regularization values give comparable ‖∇f(xt)‖, the average

accuracy for the case with smaller penalization is better.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was partially conducted while A. Sadiev, A. Beznosikov, D. Dvinskikh were
visiting research assistants and A. Gasnikov was a visiting scholar in Mohamed bin Zayed
University of Artificial Intelligence (MBZUAI).

24 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
The work of E. Borodich was supported by a grant for research centers in the field
of artificial intelligence, provided by the Analytical Center for the Government of the
Russian Federation in accordance with the subsidy agreement (agreement identifier
000000D730321P5Q0002) and the agreement with the Moscow Institute of Physics and
Technology dated November 1, 2021 No. 70-2021-00138.

Appendix A. Versions of Algorithms 1 and 3 for problem (4)

Algorithm 4 MA for λλmax(W) ≥ L.
Input: starting point x0

i = x0 ∈ Rd, no. of iterations K, parameter γ = 2L > 0, accuracy δ > 0
Initialization: A0 = 0, y0

i = x0
i , τ = 1

2γ
for k = 0, . . . , K − 1 do

ak+1 =
τ +

√
τ2 + 4τAk

2
Ak+1 = Ak + ak+1

Local update: wk
i =

Ak

Ak+1 y
k
i +

ak+1

Ak+1 x
k
i

Local computation: uk
i = ∇fi(wk

i)
Solve subproblem via gossip communications, i.e. find yk+1 ∈ Rnd, such that ‖ŷk+1 − yk+1‖2

2 ≤ δ,
where

ŷk+1 = argmin
y∈Rnd

{
〈∇h1(wk),y − wk〉 + h2(y) +

γ

2
‖y − wk‖2

2

}

Compute zk
i via gossip communication with neighbors: zk = λWyk+1

Local update: xk+1
i = xk

i − ak+1(∇fi(yk+1
i) + zk

i)
end for
Output: {yK

i }

Algorithm 5 MA for λλmax(W) < L.
Input: starting point x0

i = x0 ∈ Rd, no. of iterations K, parameter γ = 2L > 0, accuracy δ > 0
Initialization: A0 = 0, y0

i = x0
i , τ = 1

2γ
for k = 0, . . . , K − 1 do

ak+1 =
τ +

√
τ2 + 4τAk

2
Ak+1 = Ak + ak+1

Local update: wk
i =

Ak

Ak+1 y
k
i +

ak+1

Ak+1 x
k
i

Compute uk
i via gossip communication with neighbors: uk = λWwk

Solve local subproblem, i.e. find yk+1
i ∈ Rnd, such that ‖ŷk+1

i − yk+1
i ‖2

2 ≤ δ, where

y
k+1
i = argmin

yi∈Rd

{
〈uk

i , yi − w
k
i 〉 + fi(yi) +

γ

2
‖yi − w

k
i ‖

2
2

}

Compute zk
i via gossip communication with neighbors: zk = λWyk+1

Local update: xk+1
i = xk

i − ak+1(∇fi(yk+1
i) + zk

i)
end for
Output: {yK

i }

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 25
Algorithm 6 ARDM.
Input: starting point x0

i = x0 ∈ Rd, number of iterations K, parameters 0 < θ1, θ2 < 1, η, β, γ > 0,
probabilities p, ρ

Initialization: y0
i = z0

i = u0
i = x0

i and ĝ0
i = λy0

i + ∇fi(y0
i)

1: for k = 0, 1, 2, . . .K − 1 do
2: Local update: xk

i = θ1z
k
i + θ2u

k
i + (1 − θ1 − θ2)yk

i

3: Generate ξk =
{

1, with probability 1 − p

0, with probability p

4: if ξk = 0 then
5: Compute bki via gossip communication with neighbors: bk = λ

pWxk

6: Local update: gk
i = bki − ak

i + ĝk
i

7: else
8: Sample indices mk

1 , . . .mk
n for each node independently and uniformly from [M]

9: Local computation: gk
i = 1

1−p

(
∇fi,mk

i
(xk

i) − ∇fi,mk
i
(uk

i)
)

+ ĝk
i

10: end if
11: Local update: yk+1

i = xk
i − ηgk

i

12: Local update: zk+1
i = βzk

i + (1 − β)xk
i + γ

η (yk+1
i − xk

i)

13: Generate ξk+ 1
2 =

{
1, with prob. 1 − ρ

0, with prob. ρ

14: if ξk+1/2 = 0 then
15: uk+1

i = yk+1
i

16: Compute ak+1
i via gossip communication with neighbors: ak+1 = λ

pWuk+1

17: Compute cki via gossip communication with neighbors: ck = λWyk+1

18: Local update: ĝk+1
i = cki + ∇fi(yk+1

i)
19: else
20: uk+1

i = uk
i

21: ak+1
i = ak

i

22: ĝk+1
i = ĝk

i

23: end if
24: end for

Appendix B. Proof of Theorem 1

In this section, we prove lower convergence bounds of algorithms satisfying Assump-
tion 2 for the problem (4). To do this, we need to give an example of ‘bad’ functions that
satisfy Assumption 1, and an example of a ‘bad’ arrangement of these functions in some
graph with a ‘bad’ matrix Ŵ (Definition 1) with an upper bound of condition number
χ. Following [20,8] we consider quadratic functions, and following [21], we construct a
linear graph.

Let us start with the network. As the gossip matrix, we take the Laplacian of the
linear graph. Then, for our problem (4), we get that the matrix W has the following
form W = Ŵ ⊗ Id, where Ŵ = 1

2U , and U is

U =

⎛⎜⎜⎜⎜⎝
1 −1
−1 2 −1

.
−1 2 −1

⎞⎟⎟⎟⎟⎠ . (16)
−1 1

26 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
It is known that the spectrum of the (scaled by 1/2) Laplacian matrix of the linear graph
with n vertices, is 2 sin2 (πk

2n
)

for k = 0, . . . , n − 1, [2]. Thus, the condition number is

χ(n) =
sin2

(
π(n−1)

2n

)
sin2

(
π
2n
) . Since we consider χ ≥ 3, one can find n ≥ 3 such that χ(n) ≤ χ <

χ(n +1). Moreover, for n ≥ 3 we can guarantee that λmax(n) ≥ 3
2 , 4

n2 ≤ λ+
min(n) ≤ 5

n2 and

χ(n + 1) ≤ 1
sin2

(
π

2(n+1)
) ≤ (n+1)2

2 . It turns out that if we choose as the ‘bad’ network,

a linear graph with n vertices (where n is such that χn ≤ χ < χn+1), and take the
Laplacian of this graph as the gossip matrix, then we satisfy Definition 1 and χ is an
upper bound for the condition number of the gossip matrix. And one can note that
n − 1 >

√
2χ− 2 ≥ 1

5
√
χ (since χ ≥ 3), 1 ≤ 2

3λmax(n) and 4
n2 ≤ λ+

min(n) ≤ 5
n2 .

Now let us move on to the ‘bad’ functions. We choose the dimension of these functions
equivalent to d = 2T with large enough T (to be defined later). Next, we divide the
nodes of the network into three types: the first type includes V1 = {1}, the second type
includes V2 = {2, n− 1}, the third type includes V3 = {n}. Each type of node has its
own functions:

fi(x) =

⎧⎪⎪⎨⎪⎪⎩
μ
2 ‖x‖2 + ax(1) + cλ

2

(∑T−1
t=1

(
x(2t) − x(2t+1))2)+ bλ

2
(
x(2T))2 , if i ∈ V1,

φ · μ
2 ‖x‖2, if i ∈ V2,

μ
2 ‖x‖2 + cλ

2

(∑T−1
t=0

(
x(2t+1) − x(2t+2))2) , if i ∈ V3,

(17)
where constants a, b, c will be defined shortly. The parameter φ takes two values: 1 or 0.
We will consider both values below, we need 0 to simplify the mathematical calculations,
note that in this case we slightly change the class of problems, since not all functions fi
are strongly convex and we slightly go beyond Assumption 1.

In the proof we will rely on [8]. In particular, we will prove similar (but not analogous)
lemmas.

Let us introduce the solution of the problem (4) with (17). For the first type of node,
we denote the solution by x∗, for the third type node by z∗, and for the second type
nodes by y∗2 , . . . , y∗n−1. Using this notation we write down the optimality conditions for
(4). First write down for x∗:(

μ

λ
+ 1

2

)
(x∗)(1) + a

λ
− 1

2(y∗2)(1) = 0, (18)(
c + μ

λ
+ 1

2

)
(x∗)(2t) − c(x∗)(2t+1) − 1

2(y∗2)(2t) = 0, for 1 ≤ t ≤ T − 1, (19)(
c + μ

λ
+ 1

2

)
(x∗)(2t+1) − c(x∗)(2t) − 1

2(y∗2)(2t+1) = 0, for 1 ≤ t ≤ T − 1, (20)(
μ

λ
+ b + 1

2

)
(x∗)(2T) − 1

2(y∗2)(2T) = 0. (21)

Then for z∗:

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 27
(
c + μ

λ
+ 1

2

)
(z∗)(2t−1) − c(z∗)(2t) − 1

2(y∗n−1)
(2t−1) = 0, for 1 ≤ t ≤ T, (22)(

c + μ

λ
+ 1

2

)
(z∗)(2t) − c(z∗)(2t−1) − 1

2(y∗n−1)
(2t) = 0, for 1 ≤ t ≤ T, (23)

Finally for y∗2 , . . . , y∗n−1:(
1 + φμ

λ

)
(y∗2)(t) − 1

2(y∗3)(t) − 1
2(x∗)(t) = 0, for 1 ≤ t ≤ 2T, (24)(

1 + φμ

λ

)
(y∗i)(t) −

1
2(y∗i+1)(t) −

1
2(y∗i−1)(t) = 0, for 1 ≤ t ≤ 2T, (25)(

1 + φμ

λ

)
(y∗n−1)(t) −

1
2(y∗n−2)(t) −

1
2(z∗)(t) = 0, for 1 ≤ t ≤ 2T. (26)

First, we give a proof of the lemma that indicates a recursive connection of coordinates
x∗ and z∗. Before we introduce new notation:

wt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
(z∗)(t)

(x∗)(t)

)
if t is even(

(x∗)(t)

(z∗)(t)

)
if t is odd

.

Lemma 1. The sequence wt satisfies the following recursion relation:

wt+1 = Qwt with Q =
(−B

2c
1
c

(
c + μ

λ + 1
2 − A

2
)

−1
c

(
c + μ

λ + 1
2 − A

2
) 2

Bc

(
c + μ

λ + 1
2 − A

2
)2 − 2c

B

)
,

where

A =
(

1 − 1
n− 1

)
, B = 1

n− 1 , for φ = 0,

or

A = ωn−2
2 − ωn−2

1
ωn−1

2 − ωn−1
1

, B = ω2 − ω1

ωn−1
2 − ωn−1

1
, for φ = 1,

with ω1 = 1 + μ
λ −

√
2μ
λ + μ2

λ2 and ω2 = 1 + μ
λ +

√
2μ
λ + μ2

λ2 .

Proof. We start from (24), (25), (26). One can note that we have recursion with two
initial conditions:

(y∗i)(t) =
(

2 + 2φμ
)

(y∗i−1)(t) − (y∗i−2)(t) with (y∗1)(t) = (x∗)(t), (y∗n)(t) = (z∗)(t).

λ

28 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
If φ = 0, the expressions for (y∗i)(t) are as follows:

(y∗i)(t) =
(

i

n− 1 − 1
n− 1

)
(z∗)(t) +

(
n

n− 1 − i

n− 1

)
(x∗)(t).

In particular, (y∗2)(t) =
(
1 − 1

n−1

)
(x∗)(t) + 1

n−1 (z∗)(t) and (y∗n−1)(t) =
(
1 − 1

n−1

)
(z∗)(t)

+ 1
n−1 (x∗)(t). When φ = 1, the expressions for (y∗i)(t) become more complicated:

(y∗i)(t) = C1ω
i−1
1 + C2ω

i−1
2 = ωn−i

2 − ωn−i
1

ωn−1
2 − ωn−1

1
(x∗)(t) + ωi−1

2 − ωi−1
1

ωn−1
2 − ωn−1

1
(z∗)(t),

with ω1 = 1 + μ
λ −

√
2μ
λ + μ2

λ2 and ω2 = 1 + μ
λ +

√
2μ
λ + μ2

λ2 . In particular,

(y∗2)(t) = ωn−2
2 −ωn−2

1
ωn−1

2 −ωn−1
1

(x∗)(t) + ω2−ω1
ωn−1

2 −ωn−1
1

(z∗)(t) and (y∗n−1)(t) = ωn−2
2 −ωn−2

1
ωn−1

2 −ωn−1
1

(z∗)(t) +
ω2−ω1

ωn−1
2 −ωn−1

1
(x∗)(t). In both cases of φ we have that (y∗2)(t) = A · (x∗)(t) + B · (z∗)(t)

and (y∗n−1)(t) = A · (z∗)(t) + B · (x∗)(t) with some A and B. We can substitute these
(y∗2)(t) and (y∗n−1)(t) into (19), (20), (22), (23) and have:(

c + μ

λ
+ 1

2

)
(x∗)(2t) − c(x∗)(2t+1) − A

2 (x∗)(2t) − B

2 (z∗)(2t) = 0, for 1 ≤ t ≤ T − 1,(
c + μ

λ
+ 1

2

)
(x∗)(2t+1)−c(x∗)(2t)− A

2 (x∗)(2t+1)− B

2 (z∗)(2t+1) = 0, for 1 ≤ t ≤ T −1,(
c + μ

λ
+ 1

2

)
(z∗)(2t−1) − c(z∗)(2t) − A

2 (z∗)(2t−1) − B

2 · (x∗)(2t−1) = 0, for 1 ≤ t ≤ T,

(27)(
c + μ

λ
+ 1

2

)
(z∗)(2t) − c(z∗)(2t−1) − A

2 (z∗)(2t) − B

2 · (x∗)(2t) = 0, for 1 ≤ t ≤ T. (28)

The first two expressions together can be rewritten as follows:

(
c 0

−c− μ
λ − 1

2 + A
2

B
2

)(
(x∗)(2t+1)

(z∗)(2t+1)

)
=
(
c + μ

λ + 1
2 − A

2 −B
2

−c 0

)(
(x∗)(2t)

(z∗)(2t)

)
,

or(
(x∗)(2t+1)

(z∗)(2t+1)

)
=
(

c 0
−c− μ

λ − 1
2 + A

2
B
2

)−1(
c + μ

λ + 1
2 − A

2 −B
2

−c 0

)(
(x∗)(2t)

(z∗)(2t)

)

= 2
Bc

(
B
2 0

c + μ
λ + 1

2 − A
2 c

)(
c + μ

λ + 1
2 − A

2 −B
2

−c 0

)(
(x∗)(2t)

(z∗)(2t)

)

=
(1

c

(
c + μ

λ + 1
2 − A

2
)

−B
2c

2 (c + μ + 1 − A
)2 − 2c −1 (c + μ + 1 − A

))((x∗)(2t)

(z∗)(2t)

)

Bc λ 2 2 B c λ 2 2

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 29
=
(−B

2c
1
c

(
c + μ

λ + 1
2 − A

2
)

−1
c

(
c + μ

λ + 1
2 − A

2
) 2

Bc

(
c + μ

λ + 1
2 − A

2
)2 − 2c

B

)(
(z∗)(2t)

(x∗)(2t)

)

= Q

(
(z∗)(2t)

(x∗)(2t)

)
.

Similarly, from (27) and (28) one can get that(
(z∗)(2t)

(x∗)(2t)

)
= Q

(
(x∗)(2t−1)

(z∗)(2t−1)

)
.

Using the definition of wt completes the proof. �
Then, we follow the idea from [8]. From the proof of the previous lemma we know

that (y∗2)(t) = A · (x∗)(t) + B · (z∗)(t). Then, substituting (y∗2)(1) and (y∗2)(2T) into (18)
and (21), we obtain that the value of w1 and w2T depends on the parameters a and b.
Hence, by varying the parameters a and b, one can obtain that w1, w2, . . . , w2T are
eigenvectors of the matrix Q, i.e. w2 = Qw1 = γw1 etc. This idea is implemented in the
following lemma.

Lemma 2. For any L, μ, and λ (L ≥ 2μ, and λλ+
min(W) ≥ μ), there exists a choice of

parameters a, b, c such that w1, w2, . . .w2T are eigenvectors of matrix Q corresponding
to the eigenvalue γ ∈ (0; 1), where

γ ≥ 1 − max
{

2
√

μn2

λ
, 3
√

μ

L− μ

}
.

Moreover, the problem (4) + (17) with these parameters a, b, c satisfies Assumption 1.

Proof. First we give the values of a, b, and c:

c =
{

1, for μ + λ ≤ L,
μ
λ · δ = μ

λ · L−μ
μ , for μ + λ > L,

b = Bα

2 − μ

λ
− 1

2 + A

2 and any a, (29)

where

α = −
1−2A+A2+B2+4c−4Ac+4μ

λ−4Aμ
λ+8cμ

λ+4μ2
λ2 +

√(
−1+2A−A2+B2−4μ

λ+4Aμ
λ−4μ2

λ2

)(
−1+2A−A2+B2−8c+8Ac−16c2−4μ

λ+4Aμ
λ−16cμ

λ−4μ2
λ2

)
2B
(
−1+A−2c−2μ

λ

) .

Let us check that the problem (4) + (17) satisfies Assumption 1. Note that by the
choice of c, it suffices to verify that 0 ≤ bλ ≤ cλ ≤ L −μ. We make this verification with
Mathematica (here and below, when using Mathematica, we replace μ

λ with x). First,
we check these inequalities when ϕ = 0 (A = n−2 and B = 1):
n−1 n−1

30 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
• bλ ≤ cλ (or α ≤ 1
B

(
2c + 1 −A + 2μ

λ

)
) for 0 < c ≤ 1 and x = μ

λ > 0, x =
μ
λ ≤ λ+

min ≤ 5
n2 (since in Theorem 1 we assume that μλ ≤ λ+

min and above we
estimated that λ+

min ≤ 5
n2)

• 0 ≤ b (or α ≥ 1
B

(
1 −A + 2μ

λ

)
) for 0 < c ≤ 1 and x = μ

λ > 0, x = μ
λ ≤ λ+

min ≤ 5
n2

In the case of ϕ = 1, we replace the expressions for A and B from Lemma 1 by their
Taylor approximations:

A ≈ n− 2
n− 1 − 2n2 − 7n + 6

3(n− 1)
μ

λ
+ (4n3 − 8n2 + 3n)(n− 2)

45(n− 1)
μ2

λ2 ,

B ≈ n− 2
n− 1 − n2 − 2n

3(n− 1)
μ

λ
+ 7n4 − 28n3 + 37n2 − 18n

90(n− 1)
μ2

λ2 .

(30)

Then, we can check inequalities for b:

• bλ ≤ cλ (or α ≤ 1
B

(
2c + 1 −A + 2μ

λ

)
) for 0 < c ≤ 1 and x = μ

λ > 0, x = μ
λ ≤

λ+
min ≤ 5

n2

• 0 ≤ b (or α ≥ 1
B

(
1 −A + 2μ

λ

)
) for 0 < c ≤ 1 and x = μ

λ > 0, x = μ
λ ≤ λ+

min ≤ 5
n2

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 31
Next, we turn to eigenvalues and vectors. One can find them:
We take the smallest eigenvalue

γ =
4−8A+4A2−4B2+16c−16Ac+16μ

λ−16Aμ
λ+32cμ

λ+16μ2
λ2 −

√
−256B2c2+

(
−4+8A−4A2+4B2−16c+16Ac−16μ

λ+16Aμ
λ−32cμ

λ−16μ2
λ2

)2
16Bc

and the corresponding eigenvector

v =
(
α
1

)
.

By simply substituting b from expression (29) and (y∗2)(t) = A · (x∗)(t) + B · (z∗)(t) into
equations (21), one can note that w2T is an eigenvector of Q. It means that γw2T = Qw2T
or w2T = γQ−1w2T . From Lemma 1 we also have Q−1w2T = w2T−1. As the result,
w2T = γw2T−1, i.e. w2T−1 is also an eigenvector of Q. Continuing further, we can obtain
that all vectors w2T , . . . , w1 are eigenvectors of Q. The choice of parameter a does not
affect, it only determines the value of ‖w1‖.

Finally, we need to make sure that this γ satisfies the conditions of the lemma. Let
us consider the three cases separately.

1) μ +λ ≤ L. In this case c = 1. We want to verify that γ ∈ (0; 1) and γ ≥ 1 −2
√

μn2

λ .
This inequality need to be checked with the constraints: x = μ

λ > 0, x = μ
λ ≤ λ+

min ≤ 5
n2

(since in Theorem 1 we assume that μλ ≤ λ+
min and above we estimated that λ+

min ≤ 5
n2 ,

when we construct the network). First, we check these inequalities when ϕ = 0:

• γ > 0

• γ < 1

32 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
• γ ≥ 1 − 2
√

μn2

λ

In the case of ϕ = 1, we use (30):

• γ > 0

• γ < 1

• γ ≥ 1 − 2
√

μn2

λ

2) μ + λ > L ≥ μ + λλ+
min. In this case c = L−μ

λ = μ
λ · δ = xδ. We want to verify that

γ ∈ (0; 1) and γ ≥ 1 − 2
√

μn2

λ . This inequality need to be checked with the constraints:
δ ≥ 1 (since in Theorem 1 we assume that L ≥ 2μ and then δ = L−μ ≥ 1), x = μ > 0,
μ λ

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 33
x = μ
λ ≤ λ+

min ≤ 5
n2 and 1

x > δ ≥ 1
x · λ+

min ≥ 1
x · 4

n2 (constraints of the considered case).
First, we check these inequalities when ϕ = 0:

• γ > 0

• γ < 1

• γ ≥ 1 − 2
√

μn2

λ

In the case of ϕ = 1, we use (30):

• γ > 0

• γ < 1

34 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
• γ ≥ 1 − 2
√

μn2

λ

3) μ +λλ+
min > L. In this case c = L−μ

λ = 1
x · δ = xδ. We want to verify that γ ∈ (0; 1)

and γ ≥ 1 − 3
√

μ
L−μ . This inequality need to be checked with the constraints: δ ≥ 1,

x = 1
x > 0, x = 1

x
1
x ≤ λ+

min ≤ 5
n2 and δ < 1

x ·λ+
min ≤ 1

x · 5
n2 (constraints of the considered

case). First, we check these inequalities when ϕ = 0:

• γ > 0

• γ < 1

• γ ≥ 1 − 3
√

μ
L−μ

In the case of ϕ = 1, we use (30):

• γ > 0

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 35
• γ < 1

• γ ≥ 1 − 3
√

μ
L−μ

�
The previous Lemmas show what the solution of the problem (4) + (17) is. Now let

us determine how quickly we can approach it.

Lemma 3. Let the problem (4) + (17) be solved by any method that satisfies Assumption 2.
Then after K iterations with q communication rounds, only the first

⌊
q

n−1

⌋
coordinates

of the global output can be non-zero while the rest of the d −
⌊

q
n−1

⌋
coordinates are strictly

equal to zero.

Proof. We begin introducing some notation for our proof. Let

E0 := {0}, Ej := span{e1, . . . , ej}.

Note that, if we initialize all x0
i = 0, then we have Mi,0 = E0.

36 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
Suppose that, at some given time k, for some j, Mj,k = El. Let us analyze how Mj,k

can change by performing only local computations.
We consider the case when l odd (case with even l can be analyzed the same way).

After one local update, we have the following:
1) For node j ∈ V1, it holds

Mj,k+1 = El, (31)

because of the block diagonal structure of (17). The situation does not change, no matter
how many local computations one does.

2) For node j ∈ V3, it holds

Mj,k+1 = El+1,

It means that, after local computations, one has an update in output and machine on
V3 can progress by one new non-zero coordinate.

This means that we constantly have to transfer progress from the machine from V1
to the machine from V3 and back. Initially, all devices have zero coordinates. Further,
the machine from V1 can receive the first nonzero coordinate (but only the first, the
second is not), and the rest of the devices are left with all zeros. Next, we pass the first
non-zero coordinate to the machine from V3. To do this, n −1 communication rounds are
needed. By doing so, they can make the second coordinate non-zero, and then transfer
this progress to the machine from V1. Then the process continues in the same way. This
completes the proof. �

Now we are ready to complete the proof of Theorem 1. The previous reasoning, as
well as Lemmas 1, 2, and 3, gives that we can construct the “bad” problem of type (4)
with the “bad” network (satisfying Definition 1) as well as with the “bad” functions
(17) (satisfying Assumption 1). Moreover, we know that only

⌊
q

n−1

⌋
coordinates in the

output can coincide with the solution, and the other coordinates are exactly zero. Then
we just have to put T = 1

2

(
max{1, logγ 1

2} +
⌊

q
n−1

⌋)
in the dimension of the problem

d = 2T , and obtain the following estimate on the outputs from V1 and V3:

‖xK − x∗‖2 + ‖zK − z∗‖2

‖x0 − x∗‖2 + ‖z0 − z∗‖2 =

∑2T
i=
⌊ q
n−1

⌋
+1 ‖wi‖2∑2T

i=1 ‖wi‖2
≥

∑2T
i=
⌊ q
n−1

⌋
+1 γ

i−1‖w1‖2∑2T
i=1 γ

i−1‖w1‖2

= γ

⌊ q
n−1

⌋∑2T−1−
⌊ q
n−1

⌋
i=0 γi∑2T−1

i=0 γi
= γ

⌊ q
n−1

⌋ 1 − γ
2T−

⌊ q
n−1

⌋
1 − γ2T

≥ 1
2γ

⌊ q
n−1

⌋
≥ 1

2

(
1 − max

{
2
√

μn2

λ
, 3
√

μ

L− μ

}) q
n−1

.

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 37
In the other words it means that:

q = Ω
(

min
{√

λ(n− 1)2
μn2 ,

√
(L− μ)(n− 1)2

μ

}
log (‖x0 − x∗‖2 + ‖z0 − z∗‖2)

ε

)

= Ω
(

min
{√

λ

μ
,

√
(L− μ)(n− 1)2

μ

}
log (‖x0 − x∗‖2 + ‖z0 − z∗‖2)

ε

)

When constructing the “bad” network, we proved that n − 1 >
√

2χ − 2 ≥ 1
5
√
χ 1 ≤

2
3λmax(n). Hence, we get

q = Ω
(

min
{√

λ(n− 1)2
μn2 ,

√
(L− μ)(n− 1)2

μ

}
log (‖x0 − x∗‖2 + ‖z0 − z∗‖2)

ε

)

= Ω
(

min
{√

λλmax(W)
μ

,

√
(L− μ)χ

μ

}
log (‖x0 − x∗‖2 + ‖z0 − z∗‖2)

ε

)
.

Which is what we needed to prove. �
Appendix C. Proof of Theorem 4

For the following analysis, recall the auxiliary problem (7) from Algorithm 1 with
p = 1, h1(x) like sum component, h2(x) like λ2 〈x, Wx〉, which is restated for convenience:

ŷk+1 = argmin
y∈Rnd

{
〈∇h1(wk),y − wk〉 + h2(y) + γ

2 ‖y − wk‖2
2

}
Now we look carefully at the auxiliary problem. This problem is (L + γ)-smooth and

(μ +γ) strongly-convex, so we can apply L-Katyusha algorithm from [9]. The complexity
of solving problem (7) is

O
((

M +

√
M(γ + L)
γ + μ

)
log 1

δ

)
,

where δ denotes the accuracy of the solution to the auxiliary problem (7). The number
of calls of the gradient of f is

NWx = O
(√

λλmax(W)
μ

log 1
ε

)
(32)

while the number of calls of the gradient of G is

38 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
N∇fk = O
(√

λλmax(W)
μ

(
M +

√
M(L + γ)
μ + γ

)
log 1

ε
log 1

δ

)
.

Taking γ be equal to λλmax (W), we get

N∇fk = O
((

M

√
λλmax(W)

μ
+

√
ML

μ

)
log 1

ε
log 1

δ

)
.

Now we consider δ, the accuracy of the auxiliary problem (7). According to Theorem 2,
we can take δ as

δ = εμ

8642(L + λλmax(W) + γ)2 ,

because the function f(x) is L-smooth and λ2 〈x,Wx〉 is λλmax (W)-smooth. �
Appendix D. Proof of Theorem 5

Let us use the additional notation G(xk, uk) = gk + λWuk + ∇f(uk) for short. Let
us consider our problem as a finite sum problem with r + 1 terms.

F (x) = 1
r

r∑
j=1

gj(x) + gr+1(x),

where gj(x) =
n∑

k=1
fjk(xk) and gr+1(x) = λ

2 〈x, Wx〉. For such a problem, one can use

the results of the convergence of the variance reduction method L-Katyusha (Algorithm
3 from [9]) on which our method is based.

E
[
‖gk −∇F (xk)‖2] =

= (1 − p)E
[∥∥∥∥ 1

1 − p

(
∇fj(xk) −∇fj(uk)

)
+ λWuk + ∇f(uk) − λWxk −∇f(xk)

∥∥∥∥2
]

+ pE

[∥∥∥∥λp (Wxk −Wuk
)

+ λWuk + ∇f(uk) − λWxk −∇f(xk)
∥∥∥∥2
]

= (1 − p)
n∑

i=1

r∑
j=1

pj

[∥∥∥∥ 1
1 − p

(
∇fij(xk) −∇fij(uk)

)
+λWuk + ∇fi(uk) − λWxk −∇fi(xk)

∥∥2]
+ p

n∑∥∥∥∥λp (Wxk −Wuk
)

+ λWuk + ∇fi(uk) − λWxk −∇fi(xk)
∥∥∥∥2
i=1

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 39
≤ (1 − p)
n∑

i=1

r∑
j=1

pj

∥∥∥∥ 1
1 − p

(
∇fij(xk) −∇fij(uk)

)∥∥∥∥2

+ p

∥∥∥∥λp (Wxk −Wuk
)∥∥∥∥2

≤ 1
1 − p

n∑
i=1

r∑
j=1

pj
∥∥∇fij(xk) −∇fij(uk)

∥∥2 + 2λλmax(W)
p

Dgr+1(uk,xk).

Choose pj = 1
r :

E
[
‖gk −∇F (xk)‖2]
≤ 2L

1 − p

n∑
j=1

Dfj (uk,xk) + 2λλmax(W)
p

Dgr+1(uk,xk)

= 2L
1 − p

Df (uk,xk) + 2λλmax(W)
p

Dgr+1(uk,xk)

≤ max
{

2L
1 − p

,
2λλmax(W)

p

}
DF (uk,xk)

Choose L = max
{

L
1−p ,

λλmax(W)
p

}
, then,

E
[
‖Gk −∇F (xk)‖2] ≤ 2LDF (uk,xk).

Assumption 5.1 from [9] holds. By Proposition 5.1 from [9] iteration complexity of Al-
gorithm 3 is

O

((
1
ρ

+

√
L + λλmax(W)

μ
+

√
L
ρμ

)
log 1

ε

)

Note that optimal complexities in Algorithm 3 for local computations and communi-
cations are achieved on different sets of p and ρ. Let us get them separately.

∗ The local stochastic gradient complexity of a single iteration of Algorithm 3 is 0 if
ξk = 0, ξk+ 1

2 = 1, 1 if ξk = 1, ξk+ 1
2 = 1, r + 1 if ξk = 1, ξk+ 1

2 = 0 and M if ξk = 0,
ξk+ 1

2 = 0.

O
(

((1 − p)(1 − ρ) + (M + 1)(1 − p)ρ + Mpρ) ·

·
(

1
ρ

+

√
L + λλmax(W)

μ
+

√
L
ρμ

)
log 1

ε

)

= O
(

(1 − p + Mρ)
(

1
ρ

+

√
L + λλmax(W)

μ
+

√
L
ρμ

)
log 1

ε

)
.

40 A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041
For ρ = 1
M , p = λλmax(W)

L̄+λλmax(W) the total expected local stochastic gradient complexity
of Algorithm 3 becomes

O
(

(1 − p + Mρ)
(

1
ρ

+

√
L + λλmax(W)

μ
+

√
L
ρμ

)
log 1

ε

)

≤ O
(

2
(
M +

√
L + λλmax(W)

μ
+

√
ML
μ

)
log 1

ε

)

= O
((

M +

√
M(L + λλmax(W))

μ

)
log 1

ε

)
.

∗ The total communication complexity of Algorithm 3 is the sum of communication
complexity coming from the full gradient computation (if statement that includes
ξk+ 1

2) and the rest (if statement that includes ξk). The former requires a communi-
cation if ξk+ 1

2 = 0, the latter if ξk is equal to 0. The expected total communication
O (ρ + p) per iteration. Thus, the total communication complexity is bounded by

O
(

(p + ρ)
(

1
ρ

+

√
L + λλmax(W)

μ
+

√
L
ρμ

)
log 1

ε

)
.

For ρ = p, p = λλmax(W)
L̄+λλmax(W) the total communication complexity of Algorithm 3

becomes

O
(

(ρ + p)
(

1
ρ

+

√
L + λλmax(W)

μ
+

√
L
ρμ

)
log 1

ε

)

= O
((

1 + ρ

√
L + λλmax(W)

μ
+

√
ρ(L + λλmax(W))

μ

)
log 1

ε

)

= O
(√

λλmax(W)(L + λλmax(W))
(L + λλmax(W))μ log 1

ε

)

= O
(√

λλmax(W)
μ

log 1
ε

)
. �

References

[1] Zeyuan Allen-Zhu Katyusha, The first direct acceleration of stochastic gradient methods, J. Mach.
Learn. Res. 18 (1) (2017) 8194–8244.

[2] William N. Anderson Jr, Thomas D. Morley, Eigenvalues of the laplacian of a graph, Linear Mul-
tilinear Algebra 18 (2) (1985) 141–145.

[3] Aleksandr Beznosikov, Vadim Sushko, Abdurakhmon Sadiev, Alexander Gasnikov, Decentralized
personalized federated min-max problems, arXiv preprint, arXiv :2106 .07289, 2021.

http://refhub.elsevier.com/S2192-4406(22)00017-X/bib5077D0A86F04E0B6EBA96154852AF32Bs1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib5077D0A86F04E0B6EBA96154852AF32Bs1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib8C9FBFFC139534BD7A89D5CF15A2B87Es1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib8C9FBFFC139534BD7A89D5CF15A2B87Es1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bibBC82319E859F0AD53B91D6182B31D73Cs1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bibBC82319E859F0AD53B91D6182B31D73Cs1

A. Sadiev et al. / EURO Journal on Computational Optimization 10 (2022) 100041 41
[4] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, Devavrat Shah, Randomized gossip algorithms,
IEEE Trans. Inf. Theory 52 (6) (2006) 2508–2530.

[5] Chih-Chung Chang, LIBSVM: a library for support vector machines, ACM Trans. Intell. Syst.
Technol. 2 (3) (2011) 27, http://www .csie .ntu .edu .tw /~cjlin /libsvm, 27 pp.

[6] Alexander Gasnikov, Darina Dvinskikh, Pavel Dvurechensky, Dmitry Kamzolov, Vladislav
Matykhin, Dmitry Pasechnyk, Nazarii Tupitsa, Alexei Chernov, Accelerated meta-algorithm for
convex optimization, arXiv preprint, arXiv :2004 .08691, 2020.

[7] Eduard Gorbunov, Darina Dvinskikh, Alexander Gasnikov, Optimal decentralized distributed algo-
rithms for stochastic convex optimization, arXiv preprint, arXiv :1911 .07363, 2019.

[8] Filip Hanzely, Slavomír Hanzely, Samuel Horváth, Peter Richtárik, Lower bounds and optimal al-
gorithms for personalized federated learning, arXiv preprint, arXiv :2010 .02372, 2020.

[9] Filip Hanzely, Dmitry Kovalev, Peter Richtarik, Variance reduced coordinate descent with ac-
celeration: new method with a surprising application to finite-sum problems, arXiv preprint,
arXiv :2002 .04670, Feb 2020.

[10] Filip Hanzely, Peter Richtárik, Federated learning of a mixture of global and local models, arXiv
preprint, arXiv :2002 .05516, 2020.

[11] Filip Hanzely, Boxin Zhao, Mladen Kolar, Personalized federated learning: a unified framework and
universal optimization techniques, 2021.

[12] Hadrien Hendrikx, Francis Bach, Laurent Massoulie, An optimal algorithm for decentralized finite
sum optimization, arXiv preprint, arXiv :2005 .10675, 2020.

[13] Rie Johnson, Tong Zhang, Accelerating stochastic gradient descent using predictive variance reduc-
tion, in: C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, K.Q. Weinberger (Eds.), Advances in
Neural Information Processing Systems, vol. 26, Curran Associates, Inc., 2013.

[14] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al., Advances
and open problems in federated learning, Found. Trends Mach. Learn. 14 (1–2) (2021) 1–210.

[15] Jakub Konečnỳ, H. Brendan McMahan, Daniel Ramage, Peter Richtárik, Federated optimization:
distributed machine learning for on-device intelligence, arXiv preprint, arXiv :1610 .02527, 2016.

[16] Viraj Kulkarni, Milind Kulkarni, Aniruddha Pant, Survey of personalization techniques for federated
learning, in: 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability
(WorldS4), IEEE, 2020, pp. 794–797.

[17] Huan Li, Cong Fang, Wotao Yin, Zhouchen Lin, Decentralized accelerated gradient methods with
increasing penalty parameters, IEEE Trans. Signal Process. 68 (2020) 4855–4870.

[18] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Aguera y Arcas,
Communication-efficient learning of deep networks from decentralized data, in: Artificial Intelli-
gence and Statistics, PMLR, 2017, pp. 1273–1282.

[19] Angelia Nedic, Asuman Ozdaglar, Distributed subgradient methods for multi-agent optimization,
IEEE Trans. Autom. Control 54 (1) (2009) 48–61.

[20] Yurii Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, vol. 87, Springer
Science & Business Media, 2003.

[21] Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, Laurent Massoulié, Optimal al-
gorithms for smooth and strongly convex distributed optimization in networks, arXiv preprint,
arXiv :1702 .08704, 2017.

[22] Shai Shalev-Shwartz, Shai Ben-David, Understanding Machine Learning: From Theory to Algo-
rithms, Cambridge University Press, 2014.

[23] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, Ameet Talwalkar, Federated multi-task learning,
arXiv preprint, arXiv :1705 .10467, 2017.

[24] Vladislav Tominin, Yaroslav Tominin, Ekaterina Borodich, Dmitry Kovalev, Alexander Gasnikov,
Pavel Dvurechensky, On accelerated methods for saddle-point problems with composite structure,
arXiv preprint, arXiv :2103 .09344, 2021.

[25] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H. Brendan McMahan, Maruan Al-Shedivat,
Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al., A field guide to federated
optimization, arXiv preprint, arXiv :2107 .06917, 2021.

[26] Weiran Wang, Jialei Wang, Mladen Kolar, Nathan Srebro, Distributed stochastic multi-task learning
with graph regularization, arXiv preprint, arXiv :1802 .03830, 2018.

http://refhub.elsevier.com/S2192-4406(22)00017-X/bib57E6E5825A8B5153CE60F7150546F529s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib57E6E5825A8B5153CE60F7150546F529s1
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib4C2616DAEB55B70D580F64E0DE7D6756s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib4C2616DAEB55B70D580F64E0DE7D6756s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib4C2616DAEB55B70D580F64E0DE7D6756s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib8FA095B718767171ADAE8BD87E1308FFs1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib8FA095B718767171ADAE8BD87E1308FFs1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib3A41F140D1A30C6286CD18DA3A3192EDs1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib3A41F140D1A30C6286CD18DA3A3192EDs1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib7329A64FD41BB15322F243D84B850097s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib7329A64FD41BB15322F243D84B850097s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib7329A64FD41BB15322F243D84B850097s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib5DE884C00B8C096E7951BA8B62B6A48Ds1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib5DE884C00B8C096E7951BA8B62B6A48Ds1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib8F17F00965214FAA2089DC1497FA5CC9s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib8F17F00965214FAA2089DC1497FA5CC9s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib95CC3ABDA7C08252D714AE6AA40949EBs1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib95CC3ABDA7C08252D714AE6AA40949EBs1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib19C17821F417F0E548DD89411C6B8035s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib19C17821F417F0E548DD89411C6B8035s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib19C17821F417F0E548DD89411C6B8035s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bibDF2D010A47771820572868CB2B03A1D9s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bibDF2D010A47771820572868CB2B03A1D9s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bibDF2D010A47771820572868CB2B03A1D9s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib026CAFB9CD827A2449A8946136656BC4s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib026CAFB9CD827A2449A8946136656BC4s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bibAB6AA2DE0FE8E08D16521591A9379B5As1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bibAB6AA2DE0FE8E08D16521591A9379B5As1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bibAB6AA2DE0FE8E08D16521591A9379B5As1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib0D3EDC7F6E98AD20A22ABD19EA5708D0s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib0D3EDC7F6E98AD20A22ABD19EA5708D0s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bibFDCD0F94C379CA43194A30B3211B48D3s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bibFDCD0F94C379CA43194A30B3211B48D3s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bibFDCD0F94C379CA43194A30B3211B48D3s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bibB477CC8F11A0999E0E551353827BD26Cs1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bibB477CC8F11A0999E0E551353827BD26Cs1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib8614B4240281B67FBBDA98EDA51128FAs1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib8614B4240281B67FBBDA98EDA51128FAs1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib6C52772E7D4EFF5BB1E81DC58FDB6028s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib6C52772E7D4EFF5BB1E81DC58FDB6028s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib6C52772E7D4EFF5BB1E81DC58FDB6028s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bibACDB3458F18ECB92E5037975D277D0FBs1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bibACDB3458F18ECB92E5037975D277D0FBs1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib4E6875A780B19508067D74D154EF8A8Ds1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib4E6875A780B19508067D74D154EF8A8Ds1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib569CE0F0F1C6838D22D12BF840DBB2E4s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib569CE0F0F1C6838D22D12BF840DBB2E4s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib569CE0F0F1C6838D22D12BF840DBB2E4s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib4F4B880388FB51D18E80F595831AB3F5s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib4F4B880388FB51D18E80F595831AB3F5s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib4F4B880388FB51D18E80F595831AB3F5s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib5E563E39BF76C9897C5D7DC701C2AE25s1
http://refhub.elsevier.com/S2192-4406(22)00017-X/bib5E563E39BF76C9897C5D7DC701C2AE25s1

	Decentralized personalized federated learning: Lower bounds and optimal algorithm for all personalization modes
	1 Introduction
	1.1 Preliminaries
	1.2 Communication

	2 Contributions
	3 Lower bounds
	4 Algorithms
	4.1 Accelerated meta-algorithm
	4.2 Convergence analysis -- near-optimal algorithm
	4.3 Stochastic case
	Accelerated meta-algorithm + L-Katyusha
	Accelerated randomized algorithm for decentralized minimization

	5 Numerical experiments
	5.1 Solving the sub-problem
	5.2 Effect of the regularization parameter
	5.3 Local training accuracy
	5.4 Partial worker participation
	5.5 The benefit of personalized training

	6 Conclusion
	Declaration of competing interest
	Acknowledgements
	Appendix A Versions of Algorithms 1 and 3 for problem (4)
	Appendix B Proof of Theorem 1
	Appendix C Proof of Theorem 4
	Appendix D Proof of Theorem 5
	References

