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Critical phenomena in stock exchange are regularly occurring and difficult to predict events, often leading to disastrous con-
sequences. %e presented paper is devoted to the search and research of early warning signals of critical transitions in stock
exchange based on the results of a multifractal analysis of a series of transactions in shares of public companies. We have proposed
and justified the use of certain features of behavior of multifractal spectrum shape parameters such as signals. Asmodel time series,
on which methods of multifractal analysis were tested, we used a series of the number of unstable sites of the sandpile automaton
on the random Erdős–Rényi graph, self-organizing into critical and bistable states. It was found that the early warning signals for
both cellular automata and stock exchanges are an increase in the magnitude of the maximum position, a decrease in the width,
and a decrease, followed by a sharp increase, in the value of the spectrum asymmetry parameter.

1. Introduction

Most complex systems, regardless of their origin, are scale-
invariant, have heterogeneity and nonstationary behavior,
and contain internal mechanisms of self-organization.
%erefore, dynamic processes in such systems are usually
nonlinear. In such systems, abrupt changes in states can
occur; such changes are often called critical transitions. An
example is a phase transition accompanied by a radical
change in the properties of the system at the macro level. As
a result of a phase transition, the system acquires completely
new and unexpected properties that are not reducible to the
properties of individual parts.

Ordinary critical phenomena, such as phase transitions
of the second kind, are observed only when the control
parameter reaches a certain critical value. In other words, a
critical state is created artificially by tuning a control pa-
rameter to a critical value. For example, if a control pa-
rameter such as temperature is adjusted to a critical value,
then an order parameter such as magnetization will reach a

zero value, and the paramagnetic-ferromagnetic phase
transition will occur in the system. %e parameters of the
system at the critical point are characterized by power laws.

For most complex macroscopic systems and processes of
natural origin, it is impossible to adjust the value of a control
parameter to a critical value, but, despite this, such systems,
while in a critical state, are characterized by power laws.
Examples of such systems and processes are financial
markets with crashes and crises, seismic activity with cat-
astrophic earthquakes, social networks with information
cascading, and other systems (e.g., see papers [1–4]). %e
answer to the question of how critical transitions occur in
such systems was given by Per Bak, Chao Tang, and Kurt
Wiesenfeld only in the late 1980s. %ey discovered the
phenomenon of self-organized criticality (SOC) and pro-
posed a theory that explains how such systems reach a
critical state without tuning the control parameter (e.g., see
papers [5, 6]). It turned out that a critical state, in which even
a minor event can lead to a catastrophe, can not only be
created artificially (e.g., in laboratory conditions), but also
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arise as a result of the self-organization of the system. In such
a state, the system acquires properties that its elements did
not have, demonstrating complex holistic behavior.

%e basic model of the SOC theory is a sandpile into
which grains of sand fall from time to time (e.g., see papers
[2, 7]). At first, the pile simply grows, and in those places
where the local slope is greater than the stability threshold,
sand grains crumble down the slope to neighboring surface
areas. If the average surface slope (z) is small, the set of
chaotically directed microcurrents of sand grains is mutually
balanced and the macroscopic sand current J � 0. If z ex-
ceeds some critical value (zc), then there is a spontaneous
sand flow (J≠ 0) across the surface of the heap, which in-
creases as z increases.%e value of zc separates the subcritical
(z< zc) and supercritical (z> zc) phases, which are resistant
to small perturbations. If z � zc, then a single fallen grain of
sand can cause avalanches of any size. %us, the sandpile
self-organizes into a critical state at J � 0+, corresponding to
a phase transition of the second kind with a control pa-
rameter z and a parameter of order J. It should be noted that
the sandpile model also allows us to explain the self-orga-
nization in the bistable state, corresponding to a phase
transition of the first kind. For this purpose, a model of
facilitated sandpile was proposed (see the paper [8]), which
can demonstrate self-organized bistability (SOB) (e.g., see
papers [9, 10]).

%ere are many studies that substantiate the concept of
the similarity of the mechanisms of behavior of economic
systems, stock markets, and financial time series with the
behavior of the model variables (e.g., see papers [11–17]), as
well as studies on the search for early warning signals (EWS)
for critical transitions in financial and stock markets (e.g.,
see papers [18–24]). %e determination of the time interval
preceding the occurrence of a critical transition in the system
not only has important theoretical value, but also has im-
portant applied value. %e studies we know are mainly
focused on the detection of SOC mechanisms in financial
systems. Also, there are studies devoted to finding EWS for
financial crises using mainly measures of correlation theory
(autocorrelation function, skewness, kurtosis, variance, and
other measures) according to the results of the analysis of
financial series in the selected range. A significant limitation
in using such measures for the study of financial series
scaling is their applicability only to stationary and fractal
time series (e.g., see the paper [25]).

At themoment, we are not aware of any works that present
studies of the dynamics of stock exchange self-organization in
SOC and SOB states, based on the results of multifractal
analysis of the time series of the number of deals made on the
shares of companies (volume indicator), as well as multifractal
EWS for the corresponding critical transitions. To address this
gap, we investigated the possibilities and limitations of mul-
tifractal EWS for critical transitions using the results of mul-
tifractal stochastic dynamics analysis of volume indicators,
using the numbers of unstable cells of the sandpile cellular
automaton as the basic (in a sense reference) time series.
Research results are presented in this paper.

%e paper is structured as follows: Section 2 is devoted to
the description of mechanisms of functioning of sandpile

cellular automaton and substantiation of similarities in the
behavior of such automata and stock markets. Methods for
generating time series of the number of unstable automaton
nodes and methods for obtaining time series of the number
of deals made on shares of companies are also presented.%e
rationale for the necessity of application and methods of
calculation of parameters of a multifractal spectrum of time
series as measures of early detection of critical transitions is
presented; Section 3 presents and discusses the results of
calculations of parameters of multifractal spectra of time
series used as measures of early detection of critical tran-
sitions; and Section 4 presents the main conclusions, pos-
sible practical applications of the obtained results, and the
prospects for further research.

2. Data Set and Methods

2.1. Model and Real-Time Series. %e self-organized critical
sandpile behavior considered in Section 1 can be described
using sandpile cellular automata (e.g., see papers [7, 8, 26]).
Among the many sandpile cellular automata models, we
chose the Manna model (see the paper [27]) on the
Erdős–Rényi random graph (e.g., see papers [28, 29]) as the
most relevant model of avalanche-like changes in the
number of traded shares of companies.

We built three Erdős–Rényi random graphs with a
number of sites N equal to 500, 1500, and 2500 by con-
necting any two sites vi and vj with edge eij with probability
p independently of all other pairs of sites.

In this case, the Manna model is a random graph with
the number of sites N, the sites of which are assigned integer
non-negative numbers zi(vj). %ese numbers are tradi-
tionally interpreted as the number of sand grains. If zi(vj) is
not less than the set threshold zcvj

, then site vj is unstable and
“topples.”%is removes zc sand grains from it, each of which
is transferred to one of the randomly chosen neighboring
sites. If a site is on the edge of the graph, the sand grains
transferred for it are irreversibly lost. Each neighboring site
receives a random number of sand grains δk. If there are
several unstable sites, they “topple” simultaneously—during
one time step.

%e elementary event that causes the system to move
from one steady state to another is initiated by adding a grain
of sand to one of the sites. If the addition of a grain of sand
causes a site to lose stability, then the grains of sand
transferred to neighboring sites during its toppling may
violate their stability. %e chain reaction of toppling that
continues as long as unstable sites remain in the system will
be called an avalanche.

Regardless of the initial state of the system, after a certain
number of events, the system reaches a critical state (SOC
state), in which the processes occurring are scale-invariant,
and all characteristics of avalanches correspond to power
distributions.

%e rules of the standard Manna model on the
Erdős–Rényi random graph with the number of sites N,
which demonstrates the output of the system in the SOC
state, corresponding to the phase transition of the second
kind, have the following form:
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zi vj ≥ zcvj
> 1,

zi+1 vj ⟶ zi+1 vj  − zcvj
,

zi+1(Ne)⟶ zi+1(Ne) + δk, 

zcvj

k�1
δk � zcvj

, δk ≥ 0,

(1)

where Ne denotes the nearest neighboring site to the site vj.
As noted in Section 1, sandpile cellular automata are also

capable of self-organization into a bistable state (SOB state)

corresponding to a first-order phase transition. %e rules of
the automaton allowing to bring it into SOB state are known
as “facilitated rules” (see papers [8, 26]). A site vj of the
facilitated automaton is unstable when zi(vj)≥ zcvj

and
when fi−1(vj)≥ 2 (fi−1 is the number of hits to site vj at the
previous iteration). %is is the main difference between the
facilitated and the standard automaton.%us, the rules of the
facilitated Manna model have the following form:

zi vj ≥ zcvj
> 1∨fi vj ≥ 2,

zi vj ≥ zcvj
:

zi+1 vj ⟶ zi+1 vj  − zcvj
,

zi+1(Ne)⟶ zi+1(Ne) + δk, 

zcvj

k�1
δk � zc, δk ≥ 0,

fi+1(Ne)⟶ fi+1(Ne) + δk, δk > 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

zi vj < zcvj
:

zi+1(x, y)⟶ zi+1(x, y) − zi(x, y),

zi+1(Ne)⟶ zi+1(Ne) + δk, 

zcvj

k�1
δk � zi vj , δk ≥ 0,

fi+1(Ne)⟶ fi+1(Ne) + δk, δk > 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

%e avalanche-like propagation of sand grains between
sites of the considered sandpile cellular automata in the
critical state is a good qualitative econophysical model
demonstrating the general regularities of the origin of the
avalanche-like change in the number of deals made on the
stocks of companies. Indeed, the nodes of the graph can be
associated with the agents of the stock market; the edges of
the graph, along which the movement of sand grains from
unstable sites occurs, can be associated with the deals made
between agents; and the random addition of sand grains to
the sites can be associated with the market pumping (e.g.,
information pumping from media, quarterly reports, news
feeds, and others).%en, the change in time of the number of
unstable sites on the graph corresponds to the change in the
number of deals made on the shares of companies. %ere-
fore, we further use the time series of the number of unstable
sites with known critical transition times as test series to
determine the capabilities and limitations of a particular
method of multifractal analysis in the selection and evalu-
ation of EWS for the critical transitions.

We believe it is important to note that besides sandpile
cellular automata with Manna model rules, there are other
models of self-organized critical cellular automata that
cannot be adequate models of stock market transactions. For
example, the Bak–Tang–Wiesenfeld model and the Feder-
–Feder model assume that a nonrandom equal number of
sand grains are transferred from an unstable site; the
Dhar–Ramaswamy model (e.g., see the paper [30]) and the
Pastor-Satorras–Vespignani model (e.g., see the paper [31])
are directional models in which the unstable site has only
underlying neighboring sites. In addition, all models can also

be realized on square lattices, which implies that there are
only four nearest neighbors with an unstable site. Another
well-known model that demonstrates self-organized critical
behavior is the forest-fire model (e.g., see papers [32, 33]).
%is model is one of the most popular for simulating so-
ciopolitical and historical processes since it simulates the
spread of arousal in some environments.

Time series volume indicators were selected for com-
panies whose shares are listed on any of the stock exchanges.
In the stock trading volume data, information is available for
1-day intervals. %e exchanges where these companies are
traded represent four regions: Asia (Sony Group Corpora-
tion, Subaru Corporation); Russia (PJSC Aeroflot—Russian
Airlines, Sberbank of Russia); the USA (Apple Inc., Meta
Platforms, Inc., and Tesla, Inc.); and Europe (Airbus SE,
Allianz SE, Deutsche Lufthansa AG).

2.2. Multifractal Analysis of the Time Series. It is now gen-
erally accepted that many financial time series have a
complex fractal structure (e.g., see papers [34–37]). In
particular, fractal analysis is effectively used to predict
market crashes in financial series (e.g., see papers [38–40]).
In addition, the universality of multifractal analysis has
determined the success of its application to the analysis of
time series depicting the dynamics of critical transitions
(e.g., see papers [26, 41]).

%e features of time series scaling can be studied using
different approaches, starting with the classical correlation
(or spectral) analysis. Among the obvious drawbacks of such
approaches is their applicability only to stationary time
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series. Since most processes in nature are highly heteroge-
neous and nonstationary, the attractiveness of the choice of
one or another method of analysis is largely determined by
its universality and the possibility of its effective application
to real processes of any origin.

%e most popular methods for analyzing the multifractal
structure of nonstationary time series are multifractal
detrended fluctuation analysis (MF-DFA) (e.g., see papers
[42, 43]); wavelet transform modulus maxima (WTMM),
based on continuous wavelet transform (e.g., see papers
[44, 45]); and wavelet leaders (WL), based on discrete
wavelet transform (e.g., see the paper [46]).

%e MF-DFA is a variant of variance analysis of uni-
variate random walks. %e method algorithm analyzes the
root mean square error of linear approximation (F2(s)) of
the generalized random walk model from the size (s) of the
approximated area.%e analyzed time series is multifractal if
the scaling relation is observed for all s:

Fq(s) �
1

Ns



Ns

i�1
F
2
i (s) 

q/2⎧⎨

⎩

⎫⎬

⎭

1/q

∼ s
Hq , (3)

where Ns is the number of approximated sections, and Hq

are generalized Hurst exponents if q ∈ (−∞, +∞).
%e multifractal spectrum (D(H)) has the following form

(see the paper [41]):

Dq �
qHq − 1

q − 1
, (4)

where Dq are the generalized multifractal dimensions.
%e WTMM method assumes the existence of the fol-

lowing scaling relation for multifractal time series:

Z(q, s) � 
l∈L(s)

sup
s′≤ s

|W s′, tl s′( ( |⎛⎝ ⎞⎠

q

∼ s
τq . (5)

In equation (5), Z(q, s) is the structural function; L(s) is
the set of all lines l of maximum modules of wavelet co-
efficients existing at scale s; tl(s′) characterizes the location
of the maximum at scale s, relating to line l; W(·) are the
coefficients of the continuous wavelet transform; and τq are
the scaling exponents.

%emultifractal spectrum (D(h)) has the following form
(see the paper [44]):

Dq � qhq − τq, (6)

where Dq are the generalized multifractal dimensions, and
hq are the Hölder exponents.

%e WL method assumes the existence of the following
scaling relation for a multifractal time series:

Z(q, s) �
1
ns



ns

k�1
L(s, k)

q ∼ s
τq . (7)

In equation (6), L(k, s) � supλ′⊂3λs,k
|d(k, s)| are the

leaders of the wavelet coefficients in which the 2s scales are
translated into the 2sk time positions; d(k, s) are the

coefficients of the discrete wavelet transform; k is the time
shift; and s is the scale.

%e multifractal spectrum (D(h)) is defined by the
following decomposition:

D(h) � d +
c2

2!

h − c1

c2
 

2

+
−c3

3!

h − c1

c2
 

3

+ · · · , (8)

where c1, c2, and c3 are the log-cumulants. c1 corresponds to
the position of the spectrum maximum, c2 characterizes the
width of the spectrum, and c3 characterizes the asymmetry of
the spectrum. %e triplet c1, c2, c3 contains the basic infor-
mation about the multifractal structure of the studied time
series.

As will be shown in Section 3, the studied time series are
multifractal series, which require an infinite spectrum of
fractal dimensions for a complete description. %erefore, as
an EWS for critical transitions in the sandpile cellular
automata and stock markets, we use the features of changes
in the multifractal spectra (D(H) and D(h)) of the studied
time series as the systems approach critical points.

We used three main spectrum shape parameters as early
warning measures for critical transitions (·): the position of
the spectrum maximum (H0, h0 and c1); spectrum width
(W � Hmax − Hmin, W � hmax − hmin and c2); and spectrum
asymmetry (S � Hmax − H0/H0 − Hmin, S � hmax − h0/h0 −

hmin and c3). %e spectrum was calculated at q � −5, 5 in
increments of 0.1.

We calculated the time series of early warning measures
(mt) with a fixed left window boundary corresponding to the
first value (x1) of the studied time series xt, t � 1, n, and a
sliding right window boundary (τ) corresponding to some
selected value (xτ) of the studied time series. As a result, we
obtained series of early warning measures mt, t � τ, n, with
τ � 1000 for the time series of the number of toppled cells of
the sandpile cellular automata and τ � 50 for the time series
of the volume indicators.

3. Results and Their Discussion

3.1. Time Series of Unstable Sites. %e time series of the
number of unstable sites of automata with standard rules,
which lead to the output of the automaton in SOC state, and
with clothed rules, which lead to the output of the au-
tomaton in SOB state, of the Manna model are shown in
Figure 1. %e figure shows time series of automata whose
random graphs contain N � 2500 sites. Time series for
N � 500j N � 1500 have similar appearance. %e series
differ only in the time it takes for the system to enter the
critical state (subcritical time) and in the maximum values of
the number of unstable sites of cellular automata in the
critical state. %ese values are presented in Table 1.

%e time series demonstrate the presence of subcritical
phase (SubC phase) and critical state (SOC state and SOB
state) of the sandpile cellular automata (see Figure 1). %e
SubC phase corresponds to the noncatastrophic behavior.
%e sandpile cellular automaton, being in this chaotic phase,
is stable to small perturbations. Only at the critical point
(SOC state), catastrophes are possible (see Figure 1(a)) since
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a single added grain of sand in any site of the automaton can
cause an avalanche of grains of any size.%e SOB state is also
characterized by an avalanche of sand grains of any size with
the appearance of periodic bursts of activity (see
Figure 1(b)). So, Buendia and coauthors state in their paper
[9] that “the probability distributions for both avalanche size
and duration are bimodal”: small avalanches coexist with
extremely large ones that span the whole system.%ese latter
“anomalous” outbursts of activity, which are also called
“king” avalanches, occur in an almost periodic way. %e size
of avalanches (the maximum number of unstable sites)
increases with the total number of sites of the sandpile
cellular automata (see Table 1).

An important characteristic of the process of the system
reaching a critical state is the subcritical time (tSubC). It is
known (e.g., see papers [2, 5]) that different types of SOC
systems have different tSubC. %e greatest tSubC is charac-
teristic of the evolution of the Earth’s crust and of biological
evolution. For many other types of SOC systems, the tSubC is
much smaller.

In our opinion, the reason for such large differences in
tSubC values is the different levels of complexity of individual
SOC systems. Differences in the value of tSubC allow to
distinguish different levels of complexity in SOC systems.
%is extends the applicability of SOC theory, as well as SOB,
far beyond the characteristic power laws for the distribution
of avalanche size and power spectral density as 1/f noise.
Given that tSubC increases with the size of the cellular
automata (see Table 1), we can use tSubC as a measure of the
complexity of the system capable of a critical transition. Note

that we previously found a similar change in tSubC with
changes in the size of the cellular automata (see the paper
[26]). Besides, other things being equal, the value of tSubC for
SOB systems is lower than the value of tSubC, characteristic of
SOC systems.

Perhaps the formation of a more complex SOC system
initially requires a larger value of tSubC, but when such a
system is already formed, the corresponding tSubC at the next
level is already much smaller.

3.2. Multifractal Measures for Early Detection of Critical
Transitions in Sandpile Cellular Automata. %e scaling re-
lation (3) of theMF-DFAmethod is not met for any values of
the right boundary xτ of the sliding window. %erefore, this
method cannot be used as a method for calculating measures
of early detection of critical transitions in sandpile cellular
automata based on the results of multifractal analysis of the
number of unstable sites series.%e reason why theMF-DFA
method does not allow revealing the multifractal structure of
model time series is the presence of a large number of re-
peating values in such series.

In contrast, the scaling relations (see equations (5) and
(7)) of wavelet transform-based methods are satisfied for all
τ ∈ [1000, 10000]. %is is connected with the fact that these
methods do not require the extraction of local trends in
repeating values of the time series. %e time series of
multifractal early warning measures of critical transitions in
sandpile cellular automata with a number of 2500 tiles
obtained by the WTMM method are presented in Figure 2,
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Figure 1: Time series of the number of unstable sites of sand-cell automata. (a) Standard rules of theMannamodel and (b) facilitated rules of
the Manna model.

Table 1: Subcritical time (tSubC) and the maximum number of unstable sites (Amax) of cellular automata in the critical state.

Number of sites
Standard model Facilitated model

tSubC Amax tSubC Amax

500 2750 38 4320 196
1500 5050 62 4630 238
2500 5500 80 5100 280
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and those obtained by the WL method are presented in
Figure 3.%e conditional time corresponding to the iteration
step is used.

%e values h0 (see Figure 2) and c1 (see Figure 3), which
characterize the positions of the maximum of the multi-
fractal spectrum of unstable sandpile cellular automata,
increase as the automata approach the critical state. %is
increase is typical for both standard cellular automata and
facilitated cellular automata. Consequently, as the autom-
aton approaches the critical state, the time series of the
number of its unstable tiles becomes more “smooth” or less
“jagged.” Note that a sharp increase in the position of the
maximum of the singularity spectrum is also observed in the
vicinity of the critical point of the phase transition of the
second kind in the Ising model (e.g., see the paper [41]).

%e width of the multifractal spectrum (W) of the time
series of unstable sites computed by the WTMM method
decreases as the standard and facilitated automata approach
the critical state (see Figure 2). Also, the value of W cal-
culated by the WL method decreases or is equivalent to the
absolute value of the second log-cumulant |c2| (see Figure 3).
%e equivalence of W and |c2| follows from a simple analysis
of equation (8). %e increasing W value is observed in the
SOC state and SOB state. It follows from the decreasing
value of W that as automata approach the critical state, the
time series of unstable sites become more homogeneous
fractal series, with a more uniform distribution of series
values. A similar decrease in the width of the spectrum in the
vicinity of the critical point is characteristic of a second-
order phase transition in the Ising model (e.g., see papers
[41, 47]).

%e value of the spectrum asymmetry parameter S

calculated by the WTMM method first decreases, then
sharply increases as the automata approach the critical state
(see Figure 2). Consequently, large fluctuations (strong
singularities) in the number of unstable tiles of automata as
they approach the critical state prevail in the time series.
Similar behavior of the parameter S is also observed in the

Ising model (e.g., see the paper [41]). %e log-cumulant c3,
which characterizes the asymmetry of the spectrum, de-
creases not only in the vicinity of the time of the critical
transition, but also in some noncritical time interval (see
Figure 3). In our opinion, such behavior of parameter c3
contradicts the existence of one of the precursors of the
critical transition, known as the critical slowing down (e.g.,
see papers [19, 21, 24, 48]). Perhaps the incorrect estimation
of the asymmetry parameter is one of the drawbacks of the
expansion (8) or, moreover, a drawback of the WL method.

%e critical slowing down is the phenomenon that when
a system approaches a critical point, it relaxes more slowly
after small perturbations. It is known (e.g., see papers
[48, 49]) that time series showing a critical slowing down are
characterized by increases in autocorrelation (or increases in
h0 and decreases in W, as we found), dispersion (or increases
in S, as we found), kurtosis and skewness, and the β of the
power spectral density 1/fβ (or increases in h0, as we found).
Consequently, of the three multifractal analysis methods,
only the WTMM method allows us to obtain correct esti-
mates of the multifractal spectrum shape parameters, at least
for the time series of the number of unstable tiles of cellular
automata. Recall that the time-varying WL estimation (c3)
for the asymmetry parameter does not explain the critical
slowdown.

3.3. Multifractal Measures for Early Detection of Critical
Transitions in Stock Exchange. As shown in Subsection 3.2,
the multifractal early warning signals are an increase in the
magnitude of the maximum position (h0, c1) of the multi-
fractal spectrum D(h), a decrease in the spectrum width (W,
|c2|), and a decrease followed by a sharp increase in the
spectrum asymmetry parameter (S). We also remind that the
MF-DFA method did not reveal a multifractal structure in
the time series of the number of unstable tiles.

In this subsection, we demonstrate the results of cal-
culations of these three shape parameters of D(h) for the
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Figure 2: Time series of the maximum position (h0), width (W), and asymmetry (S) of the multifractal spectrum for the sandpile cellular
automata. (a) Standard rules of the Manna model and (b) lightweight rules of the Manna model.
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Figure 4: Financial time series and time series of multifractal spectrum shape parameters for Sony Group Corporation. %e symbol “C.S.”
denotes the critical state, and the symbol “Rel.” denotes the relaxation. (a) Volume indicator, (b) WTMMmethod, (c) WL method, and (d)
MF-DFA method.
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Figure 3: Time series of the log-cumulants (ci, i � 1, 2, 3) for the sandpile cellular automata. (a) Standard rules of the Manna model and (b)
facilitated rules of the Manna model.
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volume indicator series, using MF-DFA, WTMM, and WL
methods. As an illustrative example, Figure 4 shows the time
series of the spectrum shape parameters calculated for the
time series of the number of transactions on Sony Group
Corporation shares. %ese figures also show the subcritical
phase and the subcritical time (tc), and the possible critical
state and relaxation intervals of the segment of the stock
exchange whose agents are involved in Sony Group Cor-
poration stock transactions. Hereinafter, the term “stock
exchange segment” refers to a stock exchange with agents
involved in transactions in the stock of a particular public
company, such as Sony Group Corporation.

As shown by the results of the WTMM calculation of
changes in the shape parameters (see Figure 4(b)), the
corresponding market segment on May 25, 2012, self-or-
ganizes into a critical state. Accordingly, the time it takes for
a market segment to enter the critical state (subcritical time)
is 3035 days.

%e volume indicator series shown in this figure dem-
onstrates another interesting phenomenon, which in our
opinion cannot be determined by the multifractal early
warning signals. %is is a market segment relaxation that
begins around March 2, 2019 (see Figure 4(a)). In this time
interval, the number of transactions on shares decreases,
which is probably due to the loss of interest of market players
in the corresponding transactions.

%e results of the WL method are similar to those of the
WTMM method even for the spectrum asymmetry pa-
rameter, although the increase in c3 occurs at the moment of
critical transition (see Figure 4(c)). Recall that for time series
of the number of unstable tiles of automata, the behavior of
S(t) and c3(t) when approaching the critical point in time is
not consistent (see Figures 2 and 2b).

%e MF-DFA method made it possible to reveal the
multifractal structure in the volume indicator series and,
consequently, to give estimates of the spectrum shape pa-
rameters (see Figure 4(d)). %e behavior of the parameters
W and S when approaching the critical point is similarly
consistent with the behavior of the same parameters cal-
culated by the WTMM method, and this behavior is
characteristic of the critical deceleration. Yet, in spite of this,
the parameter H0 decreases when approaching the critical
point. %is contradicts with the results of calculations of
parameter H0 by methods based on wavelet transform.

Consequently, the critical transition of the exchange seg-
ment associated with the trades in Sony Group Corporation
shares cannot be detected in advance when calculating the
spectrum parameters using the MF-DFA method.

In order not to overload our paper with unnecessary
graphical information, for the remaining nine time series
studied, we presented the results of calculations of mul-
tifractal early warning signals and the most important
features of the time series in Table 2. %e symbol “+” means
that the change in time series values for the corresponding
measure when approaching the time of critical transition is
similar to the behavior of the time series for sandpile
cellular automata. %e symbol “–” means that there is no
such analogy.

%e results presented in Table 2 suggest that all of the
considered public companies self-organize into a critical
state. At the same time, the time for companies to reach a
critical state (tSubC) is different. Methods based on wavelet
transform give similar results and allow us to give estimates
of the values of the parameters of the shape spectra, ac-
ceptable for their application as early warning signals.

4. Conclusion

%e time series of the number of unstable tiles of sandpile
automata and the time series of the number of transactions
in shares of public companies with one-day increments are
multifractal. Such series admit decomposition into segments
with different local scaling properties, so their quantitative
description requires a whole spectrum of fractal dimensions,
such as a multifractal spectrum in the form of D(h),
sometimes called singularity spectrum.

For early detection of the time moment of the systems
reaching a critical state based on the results of analysis of
multifractal series generated by such systems, analysis of the
change in the shape of the multifractal spectrum as the
system approaches the point of critical transition is required.
A change in the shape of the spectrum with a good degree of
accuracy is determined by a change in its three parameters.
%ese parameters are the position of the spectrum maxi-
mum, spectrum width, and spectrum asymmetry.

As the sandpile cellular automata and stock exchange
volume approach the time point of critical transition, the
value of the maximum position increases, the width

Table 2: Multifractal early warning signals and the critical transition date (tC) of the stock exchange volumes.

Public company
WTMM method WL method MF-DFA method

tC
h0 W S c1 c2 c3 H0 W S

Sony Group Corporation + + + + + + – + + May 25, 2012
Subaru Corporation + + + + + + – + + February 20, 2016
Apple Inc. + + + + + + – + – September 20, 2014
PJSC Aeroflot—Russian Airlines + + + + + + – + + March 17, 2002
Airbus SE + + + + + + + – + July 25, 2007
Allianz SE April 19, 2004
Meta Platforms, Inc. + + + + + + – + + December 3, 2021
Deutsche Lufthansa AG + + + + + + – + + August 11, 2014
Sberbank of Russia + + + + + + – + + November 25, 2021
Tesla Inc. + + + + + + – + – January 8, 2020
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decreases, and the value of the spectrum asymmetry pa-
rameter decreases, followed by a sharp increase. Such be-
havior of the spectrum shape in the vicinity of the critical
transition point corresponds to the critical slowdown of the
system as it approaches the critical transition point. Indeed,
in the vicinity of a critical point, the time series becomes
more regular and homogeneous, with larger fluctuations
prevailing in the value of the number of unstable tiles and the
value of the number of stock transactions. %erefore, the
indicated behavior of the values of the spectrum shape
parameters calculated by the WTMM method is reliable
early warning signals for critical transitions.

%e sandpile cellular automaton is a very coarse model of
the stock exchange, but, despite this, its time series have
similar behavior, demonstrating subcritical phase and
critical state, and similar behavior of the values of spectrum
shape parameters when approaching the time moment of
critical transition. %erefore, the series of the number of
unstable tiles can be used as reference series for testing
various measures of early detection of critical transitions and
the method for their calculation. In our opinion, these
analogies of time series are caused by multifractality of
random graphs with colored (unstable) tiles and stock ex-
change transaction network-multifractal structures generate
multifractal series.

%ere are different types of self-organized criticality (in
particular, self-organized criticality and self-organized
bistability), which differ from each other in the level of
complexity depending on the characteristic value of sub-
critical time. %e more complex the system of self-organized
criticality, in particular, the more tiles the random graph
contains, the greater its subcritical time. Also, the subcritical
time is different for different public companies. Perhaps this
difference is not only due to the different number of market
players involved in transactions with the shares of a par-
ticular public company, but also due to the different
mechanisms of self-organized criticality. In any case, sub-
critical time can be viewed as one measure of system
complexity, along with power laws for the probability
density function and autocorrelation function of avalanche
size, as well as 1/f noise.

In conclusion, we note that not all segments of the stock
exchange are capable of self-organization into a critical state;
perhaps for some market segments, the time moment of
critical transition has not yet arrived. Yet despite this, the
possibility of early detection of critical transitions should not
be underestimated. In particular, this is due to the irre-
versibility of a segment of a stock exchange as it approaches a
critical point, which can have catastrophic consequences for
a company. Multifractal early warning signals will give
company managers information about the need to take
precritical measures if there is enough time to take such
measures.
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