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a b s t r a c t 

We consider wave propagation across an infinite waveguide of an arbitrary bounded cross- 

section, whose interior is blocked by two identical thick perforated barriers with holes. 

When the holes are small, the waves over a broad range of frequencies are almost fully 

reflected. However, we show the existence of a resonance frequency at which the wave 

is almost fully transmitted, even for very small holes. Counter-intuitively, this resonance 

effect occurs for barriers of arbitrary thickness. We also discuss another asymptotic limit, 

in which the thickness of barriers grows to infinity but the fixed diameter of the holes can 

be large and even arbitrarily close to the diameter of the waveguide. The resonance scat- 

tering, which is known as tunneling effect in quantum mechanics, is demonstrated in a 

constructive way by rather elementary tools such as separation of variables and matching 

of the resulting series, in contrast to commonly used abstract methods such as searching 

for complex-valued poles of the scattering matrix or non-stationary scattering theory. In 

particular, we derived an explicit equation that determines the resonance frequency. The 

employed basic tools make the paper accessible to non-experts and educationally appeal- 

ing. 

© 2021 Elsevier Inc. All rights reserved. 

 

 

1. Introduction 

Since classic works by Rayleigh [1] , scattering in waveguides is known to exhibit resonance features. The resonance 

character can be curvature-induced, be related to scattering near the waveguide cut-off frequency or to a resonance in the 

waveguide cross-section, or originate from obstacles forming a resonator that is weakly coupled to the waveguide [2–10] . 

In the latter case, the resonator can be either joint to the waveguide from outside, or made inside. The former setting is

used in mufflers: incoming waves at frequencies far from the resonance one are almost fully transmitted; in contrast, the 

waves near the resonance frequency are almost fully reflected. In the second setting, when barriers with small holes are 

inserted inside the waveguide, the situation is different. If there is a single barrier with Dirichlet boundary condition, the 

incoming wave cannot “squeeze” through a small hole and is thus almost fully reflected. Intuitively, putting more barriers 

might seem to help further blocking the wave transmission. However, if there are two barriers, they can form a resonator,
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Fig. 1. Infinite cylinder Q = � × R of a bounded cross-section � ⊂ R 
2 , with two identical thick barriers ofcross-section D and thickness w , separated by 

distance L − w .Each barrier has a hole of cross-section � = �\ D . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

which is coupled to the waveguide, so that an incoming wave at the resonance frequency can be almost fully transmitted.

This somewhat counter-intuitive effect in acoustics is known as tunneling effect in quantum mechanics [11] . 

In spite of a large amount of works on resonance scattering in physics literature, most of them were focused on ap-

proximate computations of the wave transmission coefficients (see, e.g., [12] ). In turn, mathematical aspects of resonance 

scattering of the last type have been less studied (see [3,6,7] and references therein). One can also mention several works by

Arsen’ev [13–15] who applied non-stationary scattering theory. While the geometric structure of the problem can be rather 

general, the derived results are typically formulated in the form of an alternative: either scattering is resonant at a given

frequency, or this frequency corresponds to a trapping mode. Another technique of asymptotic expansions was applied by 

Sarafanov and co-workers [16,17] in order to analyze the limiting behavior in planar waveguides when the size of a hole in

two barriers goes to zero. 

In the present paper, we provide a much simpler analysis of the resonance scattering problem for the case of a waveguide

of arbitrary constant bounded cross-section with two identical barriers that are perpendicular to the waveguide axis. This 

problem has two small parameters: the size of the hole and the difference between the wave frequency and the resonance

frequency. Our goal is to reveal how these two parameters should be related to ensure wave transmission. In particular, we

show that the width of barriers can be arbitrary large that may have interesting acoustic and electromagnetic applications 

(see Section 5 ). Moreover, we briefly discuss the limit of very trick barriers when the diameter of holes can be large and

even comparable to the diameter of the waveguide. While former studies of resonance transmission commonly relied on the 

notion of resonances (i.e., complex-valued poles of the scattering matrix), we do not use this notion that facilitates all the

proofs. In fact, our proofs are constructive and conceptually simple, even though some formulas are cumbersome. Showing 

a possibility of such mathematically simple proofs in resonance scattering problems is one of the educational goals of this 

paper. 

2. Formulation and main result 

Let us consider scattering in a waveguide Q 0 ⊂ R 

d+1 of a bounded cross-section � ⊂ R 

d , which contains two identical

barriers of thickness w separated by distance L − w : D × (0 , w ) and D × (L, L + w ) , with D ⊂ � ( Fig. 1 ): 

Q 0 = (� × R ) \ 
(
(D × (0 , w )) ∪ (D × (L, L + w )) 

)
. (1)

We study wave propagation through the waveguide Q 0 when the barriers are closing, i.e., the opening part of the barriers,

� = �\ D , is vanishing. As a similar problem for infinitely thin barriers was studied in [18] , the main focus and novelty of

the present paper is a finite arbitrary thickness w of barriers. The other limiting situation when w → ∞ for a fixed and

possibly large � will be discussed in Section 5 . 

We consider the stationary wave equation 

�u + k 2 u = 0 in Q 0 , (2) 

with Dirichlet boundary condition on the waveguide walls and on the barriers, 

u | ∂Q 0 = 0 , (3) 

and standard radiation conditions 

u ( x , z) = e iγ1 z ψ 1 ( x ) + r 1 e 
−iγ1 z ψ 1 ( x ) + 

∞ ∑ 

n =2 

r n e 
γn z ψ n ( x ) (z < 0) , (4a) 

u ( x , z) = t 1 e 
iγ1 z ψ 1 ( x ) + 

∞ ∑ 

n =2 

t n e 
−γn z ψ n ( x ) (z > L + w ) , (4b) 
2 



A. Delitsyn and D.S. Grebenkov Applied Mathematics and Computation 412 (2022) 126592 

 

 

 

 

 

 

 

where r n and t n are unknown reflection and transmission coefficients, points in Q 0 are written as ( x , z) (with x ∈ � being

the transverse coordinate and z ∈ R the longitudinal coordinate along the waveguide axis), ψ n ( x ) and λn are the L 2 (�) -

normalized eigenfunctions and eigenvalues of the Laplace operator in the cross-section �: 

−�ψ n = λn ψ n , ψ n | ∂� = 0 (n = 1 , 2 , 3 , . . . ) , (5)

and 

γ1 = 

√ 

k 2 − λ1 , γn = 

√ 

λn − k 2 (n ≥ 2) . (6) 

The reflection coefficients can be expressed by using the orthogonality of eigenfunctions { ψ n } : 
1 + r 1 = 

(
u | z=0 , ψ 1 

)
L 2 (�) 

, r n = 

(
u | z=0 , ψ n 

)
L 2 (�) 

. (7) 

In this paper, we prove the following result. 

Theorem 1. Let δ = diam { �} be the diameter of the opening part � of the barriers. For any fixed wavelength k between 
√ 

λ1 

and 
√ 

λ2 , we show that 

lim 

δ→ 0 
r 1 = −1 , (8) 

i.e., the wave is fully reflecting in the limit of closed barriers. In turn, for any non-empty � with δ > 0 small enough, there exists

a resonance wavelength k D at which 

r 1 ≈ 0 , (9) 

i.e., the wave is almost fully propagating across 2 almost closed barriers. In other words, for any ε > 0 there exists δ′ > 0 such

that for any � with diam { �} < δ′ , there exists k D such that | r 1 | < ε. 

Moreover, as our proof is constructive, we will derive an equation, from which the resonance wavelength k D can be

found. 

3. Derivation 

We consider weak solutions of Eq. (2) from H 

1 ,loc (Q 0 ) , i.e., the restriction of the solution to any finite subdomain Q 

′ 
of Q 0 should belong to H 

1 (Q 

′ ) . Moreover, the series determining the solution should converge in L 2 (�) . Under standard

conditions on the boundary ∂Q , these solutions are smooth up to regular parts of the boundary. 

3.1. Reduction to two single-barrier problems 

First, we show that the original problem can be reduced to two problems in a half cylinder with a single barrier: 

Q = (� × (−∞ , z 0 )) \ (D × (0 , w )) , (10) 

where z 0 = (w + L ) / 2 . 

(i) The first problem involves Dirichlet boundary condition on the cross-section at z = z 0 : 

�u 

D + k 2 u 

D = 0 in Q, (11a) 

u 

D 
∣∣
∂Q 

= 0 , (11b) 

u 

D ( x , z) = e iγ1 z ψ 1 ( x ) + r D 1 e 
−iγ1 z ψ 1 ( x ) + 

∞ ∑ 

n =2 

r D n e 
γn z ψ n ( x ) (z < 0) , (11c) 

u 

D 
∣∣

z= z 0 
= 0 . (11d) 

(ii) The second problem involves Neumann boundary condition on the cross-section at z = z 0 : 

�u 

N + k 2 u 

N = 0 in Q, (12a) 

u 

N 
∣∣
∂Q 

= 0 , (12b) 

u 

N ( x , z) = e iγ1 z ψ 1 ( x ) + r N 1 e 
−iγ1 z ψ 1 ( x ) + 

∞ ∑ 

n =2 

r N n e 
γn z ψ n ( x ) (z < 0) , (12c) 
3 
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∂u 

N 

∂z 

∣∣∣∣
z= z 0 

= 0 . (12d) 

From the solutions of these problems, we can construct the solution of the original scattering problem in Q 0 . Indeed, let

us extend the solution of u D antisymmetrically and the solution u N symmetrically onto Q 0 : 

u 

D ( x , z) = −u 

D ( x , 2 z 0 − z) (z > z 0 ) , (13a) 

u 

N ( x , z) = u 

N ( x , 2 z 0 − z) (z > z 0 ) . (13b) 

These extensions are the solutions of the Helmholtz equation (2) in Q 0 , subject to Dirichlet conditions on ∂Q 0 (i.e., on

the cylinder walls and on the barriers) and the following radiation conditions for z > L + w 

u 

D ( x , z) = −e i 2 γ1 z 0 e −iγ1 z ψ 1 ( x ) − r D 1 e 
−i 2 γ1 z 0 e iγ1 z ψ 1 ( x ) −

∑ 

n =2 

r D n e 
2 γn z 0 e −γn z ψ n ( x ) , (14a) 

u 

N ( x , z) = e i 2 γ1 z 0 e −iγ1 z ψ 1 ( x ) + r N 1 e 
−i 2 γ1 z 0 e iγ1 z ψ 1 ( x ) + 

∑ 

n =2 

r N n e 
2 γn z 0 e −γn z ψ n ( x ) . (14b) 

The half sum of u D and u N gives the solution of the original scattering problem, with 

r n = 

r N n + r D n 

2 

(n ≥ 1) , (15) 

t 1 = 

r N 1 − r D 1 

2 

e −2 iγ1 z 0 , t n = 

r N n − r D n 

2 

e 2 γn z 0 (n ≥ 2) . (16) 

3.2. Dirichlet problem solution u D 

To find the solution u D of the first problem in Q , let us also introduce the L 2 (�) -normalized eigenfunctions and eigen-

values of the Laplace operator in the cross-section of the hole, � = �\ D : 

−�χn = μn χn , χn | ∂� = 0 (n = 1 , 2 , 3 , . . . ) (17) 

and set 

βn = 

√ 

μn − k 2 (n ≥ 1) . (18) 

The eigenfunctions χn form an orthonormal basis in L 2 (�) . In the following, we consider that 

λ1 < k 2 < min { μ1 , λ2 } (19) 

so that the coefficients γn and βn are real for all n ≥ 1 . Moreover, if the hole � is small, μ1 is large so that k lies between√ 

λ1 and 

√ 

λ2 . 

We can consider a general solution of the Helmholtz equation in the domain � × (0 , w ) 

u 

D ( x , z) = 

∞ ∑ 

n =1 

(
e 1 n sinh (βn (z − w )) + e 2 n sinh (βn z) 

)
χn ( x ) , (20) 

where the cofficients e 1 n and e 2 n can be expressed as 

e 1 n = − (u 0 , χn ) L 2 (�) 

sinh (βn w ) 
, e 2 n = 

(u 1 , χn ) L 2 (�) 

sinh (βn w ) 
, (21) 

where 

u 0 = u 

D | z=0 , u 1 = u 

D | z= w 

. (22) 

Similarly, in the domain � × (w, z 0 ) , we have 

u 

D ( x , z) = e 1 sin (γ1 (z − z 0 )) ψ 1 ( x ) + 

∞ ∑ 

n =2 

e n sinh (γn (z − z 0 )) ψ n ( x ) , (23)

where the coefficients e n can be expressed as 

e 1 = − (u 1 , ψ 1 ) L 2 (�) 

sin (γ1 
 ) 
, e n = − (u 1 , ψ n ) L 2 (�) 

sinh (γn 
 ) 
, (24) 
4 
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and 


 = z 0 − w = 

L − w 

2 

. (25) 

Remark. At this moment, we do not discuss the convergence of the series. Moreover, we will differentiate formally 

the series without studying the validity of this operation up to the introduction of Eqs. (27) . These formal steps are just

needed as a background to establish these equations. The solution of these equations will solve the problem (3) . In fact,

if Eqs. (27) have a solution in the functional space W (introduced below in Eq. (30) ), it can be extended to the whole

waveguide Q with the aid of Eqs. ( 11c, 20, 23 ). Indeed, these series determine u D in the whole domain Q as an element

of H 

1 ,loc (Q ) that satisfies the Helmholtz equation, boundary and radiation conditions. The series determining the radiation 

condition converges in L 2 at any cross-section because u ∈ H 

1 ,loc (Q ) . 

Using formal representations 

∂u 

D 

∂z 

∣∣∣∣
z=0 −0 

= −iγ1 (u 0 , ψ 1 ) ψ 1 + 

∞ ∑ 

n =2 

γn (u 0 , ψ n ) ψ n + 2 iγ1 ψ 1 , (26a) 

∂u 

D 

∂z 

∣∣∣∣
z=0+0 

= −
∞ ∑ 

n =1 

βn 

(
ctanh (βn w )(u 0 , χn ) − 1 

sinh (βn w ) 
(u 1 , χn ) 

)
χn , (26b) 

∂u 

D 

∂z 

∣∣∣∣
z= w −0 

= −
∞ ∑ 

n =1 

βn 

(
1 

sinh (βn w ) 
(u 0 , χn ) − ctanh (βn w )(u 1 , χn ) 

)
χn , (26c) 

∂u 

D 

∂z 

∣∣∣∣
z= w +0 

= −γ1 ctan (γ1 
 )(u 1 , ψ 1 ) ψ 1 −
∞ ∑ 

n =2 

γn ctanh (γn 
 )(u 1 , ψ n ) ψ n , (26d) 

and imposing the continuity of ∂u 
∂z 

at z = 0 and z = w , we obtain two functional equations on u 0 and u 1 : 

−iγ1 (u 0 , ψ 1 ) ψ 1 + A 0 u 0 + Cu 1 = −2 iγ1 ψ 1 , (27a) 

Bu 0 + γ1 ctan (γ1 
 )(u 1 , ψ 1 ) ψ 1 + A 1 u 1 = 0 , (27b) 

where the operators A 0 , A 1 , B and C are defined as 

A 0 f = 

∞ ∑ 

n =2 

γn 

(
f, ψ n 

)
L 2 (�) 

ψ n + 

∞ ∑ 

n =1 

ˆ βn 

(
f, χn 

)
L 2 (�) 

χn , (28a) 

A 1 f = 

∞ ∑ 

n =2 

γn ctanh (γn 
 ) 
(

f, ψ n 

)
L 2 (�) 

ψ n + 

∞ ∑ 

n =1 

ˆ βn 

(
f, χn 

)
L 2 (�) 

χn , (28b) 

B f = −
∞ ∑ 

n =1 

βn 

sinh (βn w ) 

(
f, χn 

)
L 2 (�) 

χn , (28c) 

C f = −
∞ ∑ 

n =1 

βn 

sinh (βn w ) 

(
f, χn 

)
L 2 (�) 

χn , (28d) 

and 

ˆ βn = βn ctanh (βn w ) . (29) 

We understand Eqs. (27) and the operators A 0 , A 1 , B, C as follows. Let us consider two Hilbert spaces 

W i = 

{ 

v ∈ L 2 (�) : 

∞ ∑ 

n =2 

γ (i ) 
n 

(
v , ψ n 

)2 

L 2 (�) 
+ 

∞ ∑ 

n =1 

ˆ βn 

(
v , χn 

)2 

L 2 (�) 
< ∞ 

} 

, i = 0 , 1 , (30) 

with the inner products 

( f, g ) W i 
= 

∞ ∑ 

n =2 

γ ( i ) 
n ( f, ψ n ) L 2 ( �) ( g, ψ n ) L 2 ( �) + 

∞ ∑ 

n =1 

ˆ βn ( f, χn ) L 2 ( �) ( g, χn ) L 2 ( �) , (31) 

where γ (0) 
n = γn and γ (1) 

n = γn ctanh (γn 
 ) . Since ctanh (γn 
 ) rapidly tends to 1 as n → ∞ , these functional spaces are equiv-

alent, i.e., any function belonging to W , also belongs to W , and vice-versa. For this reason, we do not distinguish W and
0 1 0 

5 
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 1 and denote either of them as W . It is easy to see that these functional spaces are also equivalent to H 

1 
2 (�) but this

equivalence is not needed in the following. Note also that for any v ∈ W , 

|| v || W 

≥ c 0 || v || L 2 (�) , (32) 

with a strictly positive constant c 0 . 

The operators B and C are bounded in L 2 (�) and their norms are small if the diameter of the opening � is small, see

Section 4 . The operators A 0 and A 1 in Eqs. ( 28a, 28b ) can also be rigorously defined; however, for our purposes, it is sufficient

to understand these operators in terms of the associated quadratic forms, i.e. by setting (
A i f , g 

)
L 2 (�) 

= 

(
f , g 

)
W 

, i = 0 , 1 . (33) 

As the operators A 0 and A 1 are positive definite (in the sense of positive definite quadratic forms determined by A 0 and A 1 ),

their inverses A 

−1 
0 

and A 

−1 
1 

are well defined (see discussion in Section 4 ). 

Applying A 

−1 
0 

and A 

−1 
1 

to Eq. (27a) and Eq. (27b) respectively, we rewrite them in a matrix operator form (
I A 

−1 
0 

C 

A 

−1 
1 

B I 

)
︸ ︷︷ ︸ 

= M 

(
u 0 

u 1 

)
+ 

(
−iγ1 (u 0 , ψ 1 ) A 

−1 
0 

ψ 1 

γ1 ctan (γ1 
 )(u 1 , ψ 1 ) A 

−1 
1 

ψ 1 

)
= 

(
−2 iγ1 A 

−1 
0 

ψ 1 

0 

)
, (34) 

where I is the identity operator. We multiply Eq. (34) by the operator inverse to the operator M, 

M 

−1 = 

(
R 1 0 

0 R 2 

)(
I −A 

−1 
0 

C 

−A 

−1 
1 

B I 

)
, 

where 

R 1 = (I − A 

−1 
0 CA 

−1 
1 B ) −1 , R 2 = (I − A 

−1 
1 BA 

−1 
0 C) −1 . (35) 

We obtain the functional equations 

u 0 − iγ1 (u 0 , ψ 1 ) R 1 A 

−1 
0 ψ 1 − γ1 ctan (γ1 
 )(u 1 , ψ 1 ) R 1 A 

−1 
0 CA 

−1 
1 ψ 1 = −2 iγ1 R 1 A 

−1 
0 ψ 1 , (36a) 

u 1 + iγ1 (u 0 , ψ 1 ) R 2 A 

−1 
1 BA 

−1 
0 ψ 1 + γ1 ctan (γ1 
 )(u 1 , ψ 1 ) R 2 A 

−1 
1 ψ 1 = 2 iγ1 R 2 A 

−1 
1 BA 

−1 
0 ψ 1 . (36b) 

Multiplying each of these equations by ψ 1 and integrating over the hole �, we get two linear equations which can be

written in a matrix form as (
1 + a b ctan (γ1 
 ) 

c 1 + d ctan (γ1 
 ) 

)(
(u 0 , ψ 1 ) 
(u 1 , ψ 1 ) 

)
= 2 

(
a 
c 

)
, (37) 

where 

a = −iγ1 (R 1 A 

−1 
0 ψ 1 , ψ 1 ) L 2 (�) , (38a) 

b = −γ1 (R 1 A 

−1 
0 CA 

−1 
1 ψ 1 , ψ 1 ) L 2 (�) , (38b) 

c = iγ1 (R 2 A 

−1 
1 BA 

−1 
0 ψ 1 , ψ 1 ) L 2 (�) , (38c) 

d = γ1 (R 2 A 

−1 
1 ψ 1 , ψ 1 ) L 2 (�) . (38d) 

Since (u i , ψ 1 ) L 2 (�) = (u i , ψ 1 ) L 2 (�) for both i = 0 , 1 given that (u 0 ) | D = (u 1 ) | D = 0 according the boundary condition (3) ,

we did not specify the functional space for these two scalar products. Inverting the 2 × 2 matrix in Eq. (37) , one finds

(u 0 , ψ 1 ) and (u 1 , ψ 1 ) . 

Taking the limit z → 0 in the radiation condition (11c) , multiplying it by ψ 1 and integrating over �, the reflection coef-

ficient r D 
1 

can be expressed as 

r D 1 = (u 0 , ψ 1 ) L 2 (�) − 1 = 

a − 1 + (ad − bc − d) ctan (γ1 
 ) 

a + 1 + (ad − bc + d) ctan (γ1 
 ) 
. (39) 

This is the main technical result of this paper that determines resonance scattering properties. 
6 
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3.3. Neumann problem solution u N 

As the analysis for the Neumann problem (12) is almost identical, we just sketch the major steps and modifications. The

ansatz (20) for u N on � × (0 , w ) is the same, while Eq. (23) is modified to account for the Neumann condition at z = z 0 : 

u 

N ( x , z) = e 1 cos (γ1 (z − z 0 )) ψ 1 ( x ) + 

∞ ∑ 

n =2 

e n cosh (γn (z − z 0 )) ψ n ( x ) , (40)

where the coefficients e n are 

e 1 = 

(u 1 , ψ 1 ) L 2 (�) 

cos (γ1 
 ) 
, e n = 

(u 1 , ψ n ) L 2 (�) 

cosh (γn 
 ) 
. (41) 

The continuity conditions at z = 0 imply the same functional relation (27a) , with the same operators A 0 and C. In turn, the

ansatz (40) modifies the relation (27b) representing the continuity conditions at z = w as 

Bu 0 − γ1 tan (γ1 
 )(u 1 , ψ 1 ) + Ā 1 u 1 = 0 , (42) 

where the operator B remains unchanged, while A 1 is replaced by 

Ā 1 f = 

∞ ∑ 

n =2 

γn tanh (γn 
 ) 
(

f, ψ n 

)
L 2 (�) 

ψ n + 

∞ ∑ 

n =1 

ˆ βn 

(
f, χn 

)
L 2 (�) 

χn . (43) 

As both tanh (γn 
 ) and ctanh (γn 
 ) rapidly tend to 1 as n → ∞ , the former operator A 1 from Eq. (28b) and the new operator

Ā 1 are close and have similar properties. Repeating the analysis of Section 3.2 , we finally get 

r N 1 = 

(
u 

N | z=0 , ψ 1 

)
L 2 (�) 

− 1 = 

ā − 1 − ( ̄a d̄ − b̄ ̄c − d̄ ) tan (γ1 
 ) 

ā + 1 − ( ̄a d̄ − b̄ ̄c + d̄ ) tan (γ1 
 ) 
, (44) 

where the coefficients ā , b̄ , c̄ and d̄ are still given by Eqs. (38) , in which A 1 is replaced by Ā 1 . 

3.4. Resonance transmission 

It is important to emphasize that the reflection coefficient r D 1 in Eq. (39) depends on ctan (γ1 
 ) and on the coefficients

a, b, c, d. Here, ctan (γ1 
 ) is determined by the wavelength k , the resonator half-length 
 , and the shape of the cross-section

�, but does not depend on the hole �. In turn, the coefficients a, b, c, d depend on the hole diameter δ. As shown in

Section 4 below, the coefficients a, b, c, d vanish as the diameter δ of the hole � goes to 0. As a consequence, for a fixed

wavelength k , we obtain in the limit of the vanishing hole: 

r D 1 → −1 (δ → 0) . (45) 

Similarly, one deduces from the analysis of Eq. (44) : 

r N 1 → −1 (δ → 0) . (46) 

Substituting these expressions into Eq. (15) , we get 

r 1 → −1 (δ → 0) , (47) 

i.e., the wave is fully reflected in the limit of two closed barriers, as intuitively expected. 

Let us now consider the case of two almost closed barriers, i.e., δ is small but strictly positive. By continuity arguments,

one can argue that r 1 remains close to −1 for most wavelengths, except for the resonance one. Indeed, for a fixed hole �,

Eq. (39) implies 

r D 1 = 1 (48) 

under the condition on the wavelength k : 

1 + d ctan (γ1 
 ) = 0 . (49) 

The wavelength k D determined by this equation, is the resonance wavelength of the resonator with Dirichlet condition 

(11d) , and it cannot be the resonance frequency of the same resonator with Neumann condition (12d) . As a consequence,

Eq. (46) is still applicable at k D , and Eqs. ( 46,48 ) imply 

r 1 ≈ 0 , (50) 

i.e., the wave almost fully propagates across 2 almost closed barriers. In other words, we have shown that for the hole diam-

eter δ small enough, the waveguide is almost totally reflecting for most wavelengths, except for the resonance wavelength 

k , at which it is almost fully propagating. 
D 
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4. Estimates for operators 

4.1. Estimates for operators A 

−1 
0 

and A 

−1 
1 

As the operators A 0 and A 1 are positive definite (in the sense of positive definite quadratic forms determined by A 0 and

A 1 ), their inverses A 

−1 
0 

and A 

−1 
1 

are well defined and for all f ∈ L 2 (�) : 

|| A 

−1 
i 

f || L 2 (�) ≤ c 1 || f || L 2 (�) (i = 0 , 1) , (51) 

for some c 1 > 0 , and 

|| A 

−1 
i 

f || W 

≤ c 2 || f || L 2 (�) (i = 0 , 1) , (52) 

for some c 2 > 0 . 

Indeed, the inverse A 

−1 
0 

f is defined in a weak sense as the solution of the equation 

∞ ∑ 

n =2 

γn 

(
A 

−1 
0 f, ψ n 

)
L 2 (�) 

(
v , ψ n 

)
L 2 (�) 

+ 

∞ ∑ 

n =1 

ˆ βn 

(
A 

−1 
0 f, χn 

)
L 2 (�) 

(
v , χn 

)
L 2 (�) 

= ( f, v ) L 2 (�) 

for any v ∈ W 0 . Substituting v = A 

−1 
0 

f into this equation, we obtain 

|| A 

−1 
0 f || 2 W 

= 

∞ ∑ 

n =2 

γn 

(
A 

−1 
0 f, ψ n 

)
L 2 (�) 

(
A 

−1 
0 f, ψ n 

)
L 2 (�) 

+ 

∞ ∑ 

n =1 

ˆ βn 

(
A 

−1 
0 f, χn 

)
L 2 (�) 

(
A 

−1 
0 f, χn 

)
L 2 (�) 

= 

(
f, A 

−1 
0 f 

)
L 2 (�) 

, 

from which 

|| A 

−1 
0 f || 2 W 

≤ || f || L 2 (�) || A 

−1 
0 f || L 2 (�) ≤ c 3 || f || L 2 (�) || A 

−1 
0 f || W 

, 

with c 3 > 0 , where we used (32) . We conclude that 

|| A 

−1 
0 f || W 

≤ c 3 || f || L 2 (�) . 

A similar bound can be obtained for A 

−1 
1 

. 

4.2. Estimates for operators B and C

The estimates for operators B and C are much stronger. Indeed, 

|| B f || 2 L 2 (�) = 

∥∥∥∥∥
∞ ∑ 

n =1 

βn 

sinh βn 

(
f, χn 

)
L 2 (�) 

χn 

∥∥∥∥∥
2 

L 2 (�) 

≤ 2 

∞ ∑ 

n =1 

β2 
n 

sinh 

2 βn 

(
f, χn 

)2 

L 2 (�) 
|| χn || 2 L 2 (�) ︸ ︷︷ ︸ 

=1 

≤ 2 β2 
1 

sinh 

2 β1 

|| f || 2 L 2 (�) , 

given that βn monotonously grow with n , whereas the function z/ sinh (z) is monotonously decreasing. We get thus 

|| B || L 2 ≤ c 4 
β1 

sinh β1 

−→ 0 as δ → 0 , 

with c 4 > 0 . In fact, as the diameter δ = diam { �} of the hole � vanishes, the eigenvalue μ1 goes to infinity, implying very

fast decay of || B || L 2 . The same analysis holds for || C|| L 2 . 
From the above estimates we deduce that 

|| A 

−1 
0 CA 

−1 
1 B f || W 

→ 0 as δ → 0 

so that the operator R 1 defined in Eq. (35) , is bounded in W . The same is true for R 2 . 

From these estimates we finally obtain that (
R 1 A 

−1 
0 ψ 1 , ψ 1 

)
L 2 (�) 

≤ c 5 || ψ 1 || 2 L 2 (�) → 0 as δ → 0 , (53) 

implying that a , given by Eq. (38a) , also vanishes as δ → 0 . Similar estimates take place for b, c, and d. 
8 
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5. Extensions and applications 

In this paper, we studied wave propagation in an infinite waveguide of arbitrary but constant cross-section, which is the 

most common setting for acoustic and electromagnetic applications [19–22] . We have shown that the inclusion of two iden-

tical barriers with holes allows one to build a filter that blocks waves with a prescribed range of frequencies but transmits

the wave at some resonance frequency from that range. Most surprisingly, such a resonance scattering can be achieved for 

barriers of arbitrary thickness, which is a new and rather counter-intuitive result. Moreover, we derived the exact explicit 

expression for the reflection coefficient that allows us to elucidate the mechanisms of the resonance transmission and to 

construct a practically relevant asymptotic description of acoustic and electromagnetic filters. 

It is worth stressing that the diameter δ of the hole and the thickness w of barriers are two major parameters of the

problem. We mainly emphasized on the geometric setting, in which the hole is small but the thickness of two barriers

can be arbitrary. Such a narrow hole limit is convenient for applying various asymptotic tools developed for spectral and 

scattering problems [10,18,23–25] . Using these powerful tools, one can further generalize our results by considering, e.g., a 

junction of two waveguides of different cross-sections, holes of variable cross-section, or even of a waveguide of variable 

cross-section, for which the separation of variables is not applicable. However, industrial manufacturing of devices with 

small holes is sophisticated and thus expensive. For this reason, a common practical choice for the geometric setting is a

waveguide with barriers that possess relatively large holes. For instance, one can use a coaxial line as a barrier in electro-

magnetic filters, in which case the barrier is small while the size of the hole is actually comparable to that of the waveguide.

Keeping the requirement of the absence of propagating waves in these holes, one can achieve the resonance transmission by 

increasing the thickness of barriers. In mathematical terms, one should deal here with the other limit when the diameter of

the hole δ is arbitrary but fixed while the thickness w of the barriers goes to infinity. Conventional narrow-hole asymptotic 

tools have to be re-adjusted to be able to deal with this limit. In turn, the mathematical analysis presented in this paper is

still applicable to describe the resonance transmission in such devices. To illustrate this statement, we provide a sketch of 

the proof of the existence of a resonance frequency. 

At any fixed wavelength k , let us analyze the limit of Eq. (44) as the barriers thickness w goes to infinity. Reproducing

the arguments of Section 4 , one can show that || B || → 0 , || C|| → 0 , || R i || → 1 in the limit w → ∞ . As a consequence, we get

b̄ ̄c → 0 , while ā → a and thus Eq. (44) yields 

lim 

w →∞ 

r N 1 = 

a − 1 

a + 1 

. (54) 

In other words, for a fixed k , the reflection coefficient for the Neumann problem is 

r N 1 = 

a − 1 

a + 1 

+ ε(k ) , (55) 

where ε(k ) is arbitrarily small given that the barriers thickness w is large enough. Changing the wavelength k , one can make

the reflection coefficient of the Dirichlet problem, r D 
1 

, to be arbitrarily close to −r N 
1 

. For this purpose, setting 

r D 1 = −a − 1 

a + 1 

(56) 

and using Eq. (39) for r D 
1 

, we get an equation on the resonance wavelength 

1 + 

(
d − abc 

a 2 − 1 

)
ctan (γ1 
 ) = 0 , (57) 

which is an analog of our former Eq. (49) . Due to the definition of a and the properties of the involved operators, a 2 

remains separated from 1 in the limit w → ∞ for the considered range of wavelengths. Since b and c are arbitrarily small

in that range, the existence of a solution of Eq. (57) is equivalent to the existence of a solution of Eq. (49) , as we proved

in the paper. As a consequence, r 1 = r D 
1 

+ r N 
1 

= ε(k ) ≈ 0 , and the waveguide becomes fully transmitting at the wavelength

determined by Eq. (57) . 
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