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Abstract

There are many problems in physics, biology,
and other natural sciences in which symbolic re-
gression can provide valuable insights and dis-
cover new laws of nature. A widespread Deep
Neural Networks do not provide interpretable so-
lutions. Meanwhile, symbolic expressions give
us a clear relation between observations and the
target variable. However, at the moment, there is
no dominant solution for the symbolic regression
task, and we aim to reduce this gap with our al-
gorithm. In this work, we propose a novel deep
learning framework for symbolic expression gen-
eration via variational autoencoder (VAE). In
a nutshell, we suggest using a VAE to gener-
ate mathematical expressions, and our training
strategy forces generated formulas to fit a given
dataset. Our framework allows encoding apriori
knowledge of the formulas into fast-check predi-
cates that speed up the optimization process. We
compare our method to modern symbolic regres-
sion benchmarks and show that our method out-
performs the competitors on most of the tasks.

1. Introduction

The Discovery of new laws from experimental observations
may seem to be an old and long-forgotten topic at first sight.
Indeed, in the age of data-driven science, neural networks
can easily fit a pretty complicated dependency. However,
generalization and interpretation of those networks usu-
ally leave much to be desired. For such phenomena as a
biotech reaction or molecular dynamics potentials or epi-
demic spread, a learning algorithm that represent the de-
pendency between target property and dependent character-
istic in a simplistic and human-conceivable, such as usual
formulas, is invaluable. Such examples are everywhere.
Also, several methods enhancing the so-called symbolic re-
gression approach have been developed recently (Udrescu
& Tegmark, [2020). Symbolic regression is akin to a sim-
ple regression, as it fits experimental data. However, sym-
bolic regression tries to find suitable and functional fea-
ture transformations represented by a computational graph
over the original feature vector. Such graphs impose addi-

tional complications while optimizing those using gradient
descent-based approaches. Another difficulty such meth-
ods are regularly facing is due to the inherent noisiness of
experimental measurements. Hence, each algorithm should
ideally provide theoretical or empirical guarantees to the
noise level robustness.

One of your key contribution is the design of a novel pro-
cess of the symbolic regression training SEGVAEﬂ that dif-
fers from the current state-of-the-art approaches: higher
noise stability, higher data efficiency, and adjustability of
the priors for the symbolic expression to the physics intu-
ition of the user. Often scientists do know the frame of
the searching formula (i.g limits and approximations) and
laws that data have to follow. We introduce a predicate
mechanism for formula search and the ability to implement
known conversation laws. These features are essential for
processing experimental data.

The structure of this paper is the following: section 2 con-
tains an overview of prior art methods, section 3 contains
a description of our method. All experiments with com-
paring performance are presented in section 4. Section 5
concludes the paper.

2. Related work

The goal of using artificial intelligence to help with dis-
covering the scientific laws underlying experimental data
has been pursued in several works. Some of these works
assume prior knowledge of the mystery environments of
interest. However, the ones most relevant to our study are
the ones that minimize any assumptions.

The majority of traditional approaches generally exploit ge-
netic programming (Searson et al., [2010). The most suc-
cessful one of these is the commercial software Eureqa
((Schmidt & Lipson, |2009)), which was developed more
than ten years ago and still holds one of the leading posi-
tions in the field.

There are several recent works dedicated to recovering
physical laws in symbolic form. (Udrescu & Tegmarkl,
2020) introduce an Al Feynman algorithm and further im-
proved in (Udrescu et al., 2020) Al Feynman 2.0, which
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uses a) physics-inspired deep learning strategies, b) dimen-
sional analysis like search for symmetries, separability and
alike, c) brute forces the simplified equation that recovers
physical equations from experimental data. While this al-
gorithm does a good job simplifying expressions, it strug-
gles to recover expressions that could not be simplified
enough.

Interesting and intuitively easy approach was demonstrated
in (Martius & Lampert, 2016) later method have been up-
dated in (Sahoo et al. 2018) and in it’s latest version
(Werner et al., [2021). The authors proposed architecture
similar to multilayer perceptron (MLP) but the key differ-
ence is addition layer of set predefined functions from vo-
cabulary. The authors claim the efficiency of such an ap-
proach over MPL neural network in out of domain region,
thus good extrapolation capabilities have been demon-
strated. But unfortunately, the authors did not present re-
sults of comparison with other existing methods on com-
mon datasets.

Another deep learning approach to symbolic regression is
introduced by (Petersen et al.,2021). The authors present
a gradient-based approach for symbolic regression based
on reinforcement learning, which they call deep symbolic
regression (DSR). DSR consists of a recurrent neural net-
work that outputs a distribution over mathematical formu-
las. This network is used to sample equations, which after-
ward will be evaluated based on the given dataset, and then
the evaluation result will be used to further improve the
distribution over mathematical formulas making the better
expressions more probable. Recently, the DSR method has
been updated by introducing a genetic programming com-
ponent, which gave significant improvements on several
benchmark tests. The latest algorithm version performs
better than others to the best of our knowledge. Thus, we
are using it ((Mundhenk et al., |2021))) as a baseline known
as DSO.

SciNet ((Iten et al.l [2020)) approach is inspired by human
thinking along a physical modeling process. Just like hu-
man physicists do not rely on actual observations but rather
on their compressed representation to make some theoret-
ical conclusions, SciNet encodes the experimental data to
a latent representation that stores different physical param-
eters and uses this representation to answer specific ques-
tions about the underlying physical system. Undoubtedly
SciNet is successful at learning relevant physical concepts.
However, its goals are very different from ours: it does not
recover the laws in symbolic form but uses a neural net-
work to model them.

In paper on Neural-Symbolic Regression that Scales (Big-
gio et al., |2021) authors propose to use pre-trained trans-
formers (Vaswani et al., 2017) to predict symbolic ex-
pression. The network consists of transformer encoder

Algorithm 1 SEGVAE: Overall algorithm
Input: data (X, y), library of operators £, Nepochs > 0
Epre—train = GeneratePretrainFormulas(£)
Fpreftrain = [ f ifpredicate(f) for f in Fpreftrain ]
vae.train(Fy,.c_irqin)

for i = 1to Nepochs do
Firain = vae.sample(batch_size);
Firain = [ f if predicate(f) for fin Fy.pip, ]
mse = ‘71| Zj (Ftrain(Xj) - y)2
if Firain(z) = NaN or out of Y domain discard
Ftrain (-13)
if simplify F},.q5n = simpli fy(Firain);
bbf = bbf.update(F;,q;n, Ms€)
vae.train(bb f)
end for
Result: bbf.pareto_front

and transformer decoder trained on generated formulas and
BFGS algorithm for constants optimization. They compare
transformer results to DSR (previous version of DSO) as a
baseline. Despite good evaluation time, results quality is
lower than DSR on the Nguyen dataset.

Our method is akin to the work (Bowman et al., 2016). It
adapts the variational autoencoder by using LSTM RNNs
for both encoder and decoder. Thus, forming a sequence
autoencoder with the Gaussian prior acting as a regularizer
on the hidden code. The proposed generative model in-
corporates distributed latent representations of entire sen-
tences. By examining paths through this latent space, it is
possible to generate coherent novel sentences that interpo-
late between known sentences.

3. SEGVAE

This section introduces the Symbolic expression genera-
tion via Variational Auto-Encoder (SEGVAE) algorithm.
In a nutshell, our architecture is a Variational Auto-
encoder (Kingma & Welling} 2013) in which the encoder
and decoder are based on recurrent neural networks. We
describe our implementation of this architecture in section

and the training procedures in

3.1. Architecture

SEGVAE generates formulas in a sequential manner. It is
possible due to the one-to-one correspondence between se-
quences of tokens and formulas. Each token can be one of
three types: input variables, constants, and operators. In
this paper our typical library of operators is ["add’, *sub’,
‘mul’, “div’, *sin’, *cos’, 'log’, ’exp’]. The number of
variables X and constants depends on a task. We discuss
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Figure 1. The SEGVAE algorithm training scheme. Pre-training
stage and main training cycle.

the way to deal with constants in the subsection below. In
order to represent formulas as sequences, we use normal
Polish notation in which operators precede their operands.
The main advantage of Polish notation over the conven-
tional one is that Polish representation is unambiguous and
does not require brackets.

Variational autoencoder. VAE is a generative encoder-
decoder based latent variable model. Given an observation
space X’ with a distribution p(x) the model’s encoder maps
it into a latent space Z with a distribution p(z), and the
model’s decoder maps Z back into the observation space
X. Let m - dimensionality of the latent space, ji;, o7 - the
i'" components of vectors u(z), o?(x). If p(z) = N(0,1)
and gy, (2|r) = N(u(z),0?(x)), then the objective takes
the following form:

—K L(q0 (2|7)[|p(2)) + Eqy,, (]2 l0g Po, (2]2)

This approach allows the model to decode plausible equa-
tions from every point in the latent space that has a reason-
able probability under the prior.

3.2. Training

Here we summarize the details of our training protocol,
which consists of two steps pre-training and actual train-
ing.

Pre-training. This step allows the model to memorize the
general formula structure and generate valid formulas af-
terward. Firstly, we randomly sample sequences of tokens
from given library £. However, uniformly sampling ex-
pressions with n internal nodes is not a simple task. Naive

algorithms tend to favor specific kinds of expressions. So,
we follow the data generator technique introduced in (Lam-
ple & Charton, 2020). Secondly, we choose only state-
ments that meet our predicate conditions and thus create
a pre-train dataset. Also, we add to the pre-train dataset a
set of generalized formulas that commonly appear in natu-
ral science. Then the variational autoencoder is trained on
these formulas. As a result of training, the vast majority
of generated formulas in the next steps of the algorithm are
valid formulas, so for the sake of simplicity, we can safely
ignore invalid formulas in the following stages. Note that
this step does not depend on the target task at all, so we do
the pre-training once for each library L.

Training. When the model can generate valid formulas, it
is time to teach it to generate valid formulas which describe
a given environment or system under exploration. Firstly, a
batch of formulas is sampled using the variational autoen-
coder for each epoch. Then all the duplicates and invalid
formulas are removed. Secondly, each formula f is evalu-
ated on the dataset D = (X, yq) in terms of mean squared
error between f(X,) and Yy:
error(f) = = 32 (@)~ y)’

Dl 2=

Then the P percent of the formulas with the smallest mean
squared error are candidates to be saved to the bank of
the best formulas (BBF). First, those candidates needs to
be checked on correct domain of definition and values,
by default X domain is (X,in, Ximaz) and Y domain is
(Yonin, Yinae) presented in the dataset. To do this we eval-
uate function f results on points sampled from uniform dis-
tribution on X domain, if the result is NaN or Y value is
out of domain region we discard this formula. Second, if
needed, formulas can be simplified using sympy library
prior to save it in BBF. This bank keeps formulas from the
last N epochs. Our typical value for both hyperparameters
P and N is 20 and 5. Finally, the VAE is fine-tuned on
formulas from the BBF.

Constants. There are two ways of dealing with constants in
resulting formulae. The first method supposes that all con-
stants are incorporated in a library £. In this case, constants
are regular tokens, and we do not need any modifications to
our algorithm. The main drawback of this approach is the
lack of expressiveness. However, this significantly helps
the algorithm to avoid overfitting to noisy data.

The second method is generating placeholders for future
constants by including token ’const’ to the library £. Then,
after the sampling stage, each placeholder is replaced by a
parameter which we minimize the mean squared error be-
tween f(Xg4, consts) and Y; by BFGS optimization algo-
rithm ((Fletcher, |1987)).

Predicates. It is relatively straightforward to incorporate
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some prior knowledge about the target formula in the pro-
posed algorithm framework. At the training stage, while
we choose the best-sampled formulas by VAE, we ignore
formulas that do not meet prior conditions regardless of
their metrics. This technique reduces the search space,
which significantly helps SEGVAE find correct equations,
as demonstrated in the experiment section below.

Imagine we know that our physical system is described by
the relation of polynomials, and the task is to determine
that exact dependency. One way of helping the model is to
reduce search space by shrinking the library of operators,
e.g., excluding trigonometrical operations. However, one
can go further, creating a condition on possible positions
for remaining tokens. In our case ['div’] operator should
be located only in the first place. Eventually model will
learn not to generate formulas that violate prior conditions.
We will demonstrate algorithm work results on chosen list
of formulas and predicates in this paper below. The list of
formulas and related predicates are listed in table 3.

3.3. Inference

Once the VAE model is trained, one can sample a batch
of candidate expressions that are supposed to fit the given
dataset. Overwhelmed formulas that describe the dataset
best in terms of mean squared error could be overfitted to
the noise in the data. So, there is a trade-off between error
and complexity. In order to choose final expressions, we
evaluate the complexity of each equation as:

T

o) = el)

K2

where c is complexity of given token, which is equal to
one for all input variables, constants and operators [*add’,
*mul’, *sub’], ¢ is two for [’div’], three for [*sin’, *cos’]
and finally four for [’log’, ’exp’]. Then we use this C' and
error values to identify Pareto-front and allow user to pick
those formulas that satisfy her needs.

4. Results and discussion

This section reports comparison results between our ap-
proach and state-of-the-art symbolic regression packages.
We took the bests of our knowledge algorithms, namely
Deep Symbolic Optimization (DSO We have used
Nguyen 1-12 formulas (table 1) and formulas listed in table
3 to generate datasets. We compare SEGVAE results with
outputs of DSO algorithm as available from github reposi-
tory.

Datasets. Each symbolic regression task corresponds to a

lhtt]os ://github.com/brendenpetersen/
deep-symbolic-optimization

table of numbers, those rows are of the form x4, ..., x,, vy,
where y = f(x1, ..., x,). The task is to discover the correct
symbolic expression f.

* Nguyen. Nguyen benchmark is commonly used as
symbolic regression benchmark. Nguyen dataset con-
sists of 12 formulas. We used the same dataset as in
Deep Symbolic Regression (DSR) paper and its up-
dates, in two variations of 20 and 200 points (see table
1). To check the method’s robustness, we add Gaus-
sian noise proportional to y.

e Livermore. New benchmark dataset from the same
group of authors (DSR). Livermore consists of 22 for-
mulas, but we do not take all of them as a benchmark.
The reason is the large formulas’ fraction similarity in
this dataset to the Nguyen dataset.

Ablation studies. As was described above, SEGVAE has
many parameters such as number of layers, sampled formu-
las in pretrained step, number of an epoch, and a maximum
length of generated expression. To find optimal parameters,
we have performed ablation study. As a baseline to tune
SEGVAE parameters, we have used a subset of the Ngyuen
dataset, namely Ngyuen-4,5,9,10. First, we concluded that
a maximum expression length of 30 is perfectly balanced
in terms of model expressibility and model stability. Sec-
ondly, we found that hidden dimensionality in the range of
64 to 256 does not affect the recovery rate of 50%. By re-
covery here, we mean exact symbolic equivalence of the
suggested expression to the original formula. For example,
we initialize the algorithm 100 times with different random
seeds for a given dataset generated by some formula. Out
of 100 runs, 80 correctly represented the initial formula. In
this case recovery rate is 80%. Nevertheless, the recovery
rate depends on latent space, as presented in table 2. We
have found that latent configuration space of size 128 with
128 hidden units to be optimal for this study. Another criti-
cal observation is the SEGVAE’s recovery rate dependence
on the Library selection. We checked the dependence of
the recovery rate on the number of tokens in the library
for the DSO and SEGVAE algorithms. Small library size
may be why the algorithm cannot find a correct formula.
It is simply because not enough tokens are available to de-
scribe a formula. On the other hand, an over-inflated library
exponentially increases algorithm search space for limited
search iteration numbers. Thus, choosing excessive library
contents may be a reason for a miserable formula recon-
struction. A scientist has some prior knowledge about un-
known yet dependency in an actual research process. Thus,
we can use both predicates and a task-related library to sim-
ulate an actual searching formula situation.

Noise in data. Noisy data were created by adding Gaus-
sian noise with zero mean and standard deviation propor-
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Name Expression Dataset I Dataset I1 Library
Nguyen-1 3+ a7 + a1 U(-1,1,20) | U(-1,1,200) Lo+10.5,1,-1,2]
Nguyen-2 o]+ + ol + U(-1,1,20) | U(-1,1,200) Lo +1[0.5,1,—1,2]
Nguyen-3 P R Ry N U(-1,1,20) | U(-1,1,200) Lo +1[0.5,1,—1,2]
Nguyen-4 | 2§ + 27 +2f + 23 + 27+ 21 | U(-1,1,20) | U(-1,1,200) Lo +1[0.5,1,—1,2]
Nguyen-5 sin(z?)cos(x1) — 1 U(-1,1,20) | U(-1,1,200) Lo +1[0.5,1,—1,2]
Nguyen-6 sin(z1) + sin(zry + 29) U(-1,1,20) | U(-1,1,200) Lo+10.5,1,—-1,2]
Nguyen-7 log(z1 + 1) + log(zf + 1) U (0,2,20) U(0,2,200) Lo+10.5,1,-1,2]
Nguyen-8 sqri(xy) U (0,4,20) U (0, 4,200) Ly +10.5,1,-1,2]
Nguyen-9 sin(z1) + sin(z3) U(0,1,20) U(0,1,200) Lo+1[0.5,1,—1,2
Nguyen-10 2sin(x1)cos(z2) U(0,1,20) U(0,1,200) Lo+10.5,1,-1,2
Nguyen-11 xy? U(0,1,20) U(0,1,200) Ly +10.5,1,-1,2]
Nguyen-12 r} — 2 +0.525 — 29 U(0,1,20) U(0,1,200) | Lo+ [pow(z, N),0.5, N, e, pi]

Table 1. Nguyen Dataset. Variables are denoted as x; and x». Variables are uniformly sampled, U(a, b, ¢) denotes c times sampling
between a and b for each input variable, N natural numbers, Lo = [add, sub, mul, div, exp, In, sin, cos].

Latent space dimension | 8

16 | 32 | 64 | 128 | 256

Mean recovery rate 50

58 | 60 | 65 | 75 | 75

Table 2. Mean recovery rate dependence from latent space dimension with fixed hidden dimensions on sub Nguyen Dataset.
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Figure 2. Average recovery rates of SEGVAE (blue) and DSO
(red) algorithms on Ngyuen dataset (dataset I) with error bars.

tional to the root-mean-square of the dependent variable y.
To check models’ robustness, we present averaged recov-
ery rates as a function of the noise from 0% (noiseless) to
the maximum 10%. The main difficulty of regression with
noise is that the model tendency to overfit the data. Some-
times increasing the number of points in a dataset may help.

Experiments. We have evaluated the SEGVAE algorithm
on the most commonly used Nguyen benchmark, consist-
ing of 12 formulas. We compare and evaluate our models
on two variants of Nguyen datasets. For the first (Dataset
I)) variant, we sample only 20 uniformly distributed points,
as shown in table 1. For the second (Dataset I1) variant,
we sample 200 uniformly distributed points. We have used
the same hyperparameters in SEGVAE for all runs. The
number of examined expressions is set to 2 million per run,
the same as in the DSR paper ((Petersen et al., 2021)).

Comparison of DSO and SEGVAE on Dataset I is pre-
sented in Figure 1 as the dependence of averaged recovery
rates over noise level. Red and blue colors denote outputs
of DSO and SEGVAE algorithms correspondingly. Essen-
tial to reiterate that by recovery, we mean at least one exact
match with the wanted formula in Pareto front output.

SEGVAE and DSO show similar average recovery rates
(ARR) with small noise levels. We average the recov-
ery rate overall Nguyen formulas at a given nose level to
compute ARR. With increasing noise levels, DSO recov-
ery rates slowly go down. On the other hand, SEGVAE
demonstrates good recovery rates stability until the largest
noise level of 10% with a recovery rate of 70%. The dif-
ference becomes visible at high noise levels where SEG-
VAE slightly outperforms DSO, 70% vs. 45% at maximum
noise level. SEGVAE algorithm demonstrates higher noise
stability on this dataset even without prior knowledge.

In general, recovery rates improve with increasing dataset
size. Both algorithms demonstrate great Evaluation results
on “large” Dataset II. DSO shows on the first 11 Nguyen
formulas but still can not solve Nguyen 12 while SEGVAE
demonstrates recovery rare of 50%. We went further in al-
gorithms comparison and selected formulas from the orig-
inal DSO paper, where the DSO algorithm shows daunt-
ing results. These formulas are presented in table 3. This
time we used specific predicates and token libraries to re-
veal these formulas and, at the same time to demonstrate
the power of our approach. The results of this comparison
are summarised in the same way through the ARR in Fig-
ure 3. The detailed results on noiseless data are presented
in table 4.



Symbolic expression generation via VAE

Formula name Formula Predicate Dataset Library
Nguyen-12 rf— :1:‘;’ +0.525 — a9 f(z1) + g(x2) U(0,10,200) | Lo+ [pow(x, N),O0. 5 N, e, pi]
Neat-8 exp(—(z1 —1)2 )/(1.2 + (z2 — 2.5)%) | exp(f(x1))/(g(x2)) | U(0.3,4,100) Lo+10.5,1,-1,2]
Neat-9 1/(1 +x1 1/(1+ 23) 1/f(z1) +1/g(x2) U(-5,5,21) Lo +10.5,1,— 1,2]
Livermore-5 i — 23 + 23 — 19 f(z1) + g(z2) U(0,1,20) Ly +0.5,1,—-1,2]
Livermore-7 0.5exp(x1) — 0.5exp(—x1) flz1) —1/g(zq) U(-1,1,20) Lo+10.5,1,-1,2]
Livermore-8 0.5exp(x1) + 0.5exp(—x1) flx1) +1/g(x1) U(-1,1,20) Ly +10.5,1,-1,2]
Livermore-10 6sin(xy)cos(x2) const * f(x1) * g(a2) U(0,1,20) Lo + [pow(z, N),0.5, N, e, pi]
Livermore-17 4sin(xq)cos(zs) const * f(x1) * g(x2) U(0,1,20) Ly + [pow(x,N),0.5, N, e, pi]
Livermore-22 exp(—0.5z7) exp(f(xy)) U(0,1,20) Lo+1[0.5,1,—-1,2
R-2% (r1+1)3/(2F — 21 + 1) f(z1)/g9(z1) U(-10,10,20) Ly+0.5,1,-1,2

Table 3. List of formulas and used predicates. Variables are denoted as x and y. Variables are uniformly sampled, U(a, b, c) denotes ¢
times sampling between a and b for each input variable, N natural numbers, Lo = [add, sub, mul, div, exp,In, sin, cos].

Formulaname | N —12 | Neat —8 | Neat —9 | L —5

L-7|L-8|L—-10|L—-17 | L—-22| R—2%

SEGVAE 100% 0% 0% 60%

20% 0% 100% 100% 100% 0%

DSR 0% 0% 0% 80%

0% 0% 63% 57% 84% 4%

Table 4. SEGVAE and DSO algorithms recovery rates comparison on selected noiseless dataset.

is MSE and formula shape or predicates that carry common
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Figure 3. Average recovery rates of SEGVAE (blue) and DSO
(red) algorithms base on formulas listed in table 3 with error bars.

It often appears that scientists already know the general
form of the object of interest. Thus, it would be natural to
add predicates to let SEGVAE search formulas in a specific
domain. We have seen that our VAE based algorithm gives
a similar result to the recent DSO results on the Nguyen
dataset without any prior knowledge. However, there are
many equations in which DSO is not accurate enough. To
demonstrate the power of predicates in SEGVAE, we took
predicates as listed in Table 3 and compared our results to
DSO. The comparison results on noiseless data are pre-
sented in Table 4. We see that the SEGVAE approach
with predicates demonstrates a superior recovery rate than
DSO, especially on noiseless data. More detailed results
on noiseless are presented in table 4. The proper predicates
and optimal library play a crucial role in this case. In re-
ality, scientists do not know the exact functional form of
the studied effect. We can not use the recovery rate as a
benchmark in this case. The only benchmark we can trust

in the DSO paper, namely the Nguyen and the Livermore
datasets. Our approach has the flexibility of formulating
a priory physical knowledge in the form of a) library of
functions, b) pre-training functions, and c) selection pred-
icates used for pruning incorrectly generated expressions.
Besides the sole accuracy of the method, we have focused
on the algorithm’s performance in realistic noisy environ-
ments. Symbolic regression approaches excel significantly
compared to deep learning models where interpretability
is paramount. Thus, the DSO - already a successful ap-
proach, can be easily applied for many cases in such sci-
entific branches as material sciences, biotechnologies, and
astrophysics, to mention a few.

We have systematically compared SEGVAE with DSO and
shown superior performance of our approach, thus outper-
forming Eureqa, Wolfram, and alike, which DSO has dom-
inated before. For the scarce-data regime and high-noise
regimes, the SEGVAE significantly outperforms the com-
petitors.

We have pointed out the importance of the library size and
showed that SEGVAE discovered formulas unreachable for
DSO thanks to using predicates. Since experimental data
usually contains noise and some prior knowledge on the
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functional dependency is usually available, the SEGVAE
benefits can be easily seen from an application point of
view. Therefore, our model can come in handy in practi-
cal cases where interpretable symbolic solutions are needed
to understand processes underlying experimental observa-
tions.
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