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1. Introduction

1.1. Reminder on [BFGT]

Recall one of the results of [BFGT]. We consider the Lie superalgebra
gl(N − 1|N) of endomorphisms of a super vector space CN−1|N , and the
corresponding algebraic supergroup GL(N − 1|N) = Aut(CN−1|N ). We also
consider a degenerate version gl(N−1|N) where the supercommutator of the
even elements (with even or odd elements) is the same as in gl(N − 1|N),
while the supercommutator of any two odd elements is set to be zero. In
other words, the even part gl(N − 1|N)0̄ = glN−1 ⊕ glN acts naturally on

the odd part gl(N − 1|N)1̄ = Hom(CN−1,CN ) ⊕ Hom(CN ,CN−1), but the
supercommutator gl(N −1|N)1̄×gl(N −1|N)1̄ → gl(N −1|N)0̄ equals zero.

The category of finite dimensional representations of the corresponding
supergroup GL(N − 1|N) (in vector superspaces) is denoted Rep(GL(N −
1|N)), and its bounded derived category is denoted DbRep(GL(N − 1|N)).
In [BFGT] we construct an equivalence Ψ from DbRep(GL(N−1|N)) to the
bounded equivariant derived constructible category SDb

GL(N−1,O)(GrGLN
)

with coefficients in vector superspaces. Here O = C[[t]] ⊂ C((t)) = F, and
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GrGLN
= GL(N,F)/GL(N,O). This equivalence enjoys the following fa-

vorable properties, reminiscent of the classical geometric Satake equivalence
(e.g. Rep(GLN ) ∼−→ PervGL(N,O)(GrGLN

)):

(i) Ψ is exact with respect to the tautological t-structure on
DbRep(GL(N−1|N)) with the heart Rep(GL(N−1|N)) and the perverse t-
structure on SDb

GL(N−1,O)(GrGLN
) with the heart SPervGL(N−1,O)(GrGLN

).

(ii) Ψ takes the tensor product of GL(N − 1|N)-modules to the fusion
product � on SDb

GL(N−1,O)(GrGLN
).

As a corollary, we derive an equivalence SDb
GL(N−1,O)(GrGLN

) �
Db

(
SPervGL(N−1,O)(GrGLN

)
)
in sharp contrast with the classical geometric

Satake category, where e.g. PervGL(N,O)(GrGLN
) is semisimple, and its de-

rived category Db
(
PervGL(N,O)(GrGLN

)
)

is not equivalent to

Db
GL(N,O)(GrGLN

).

The equivalence Ψ was obtained in [BFGT] as a byproduct of a con-
struction of a similar equivalence for the mirabolic affine Grassmannian. In
case N = 2, the equivalence Ψ was constructed earlier in [BrF] in a much
more direct way.

1.2. Orthosymplectic Satake equivalence

One of the goals of the present paper is to generalize the direct approach
of [BrF] to the study of SDb

SO(N−1,O)(GrSON
) (note that SO2 � GL1, and

SO3 � PGL2).
1 The corresponding supergroup turns out to be a degenera-

tion G of an orthosymplectic algebraic supergroup G whose even part G0̄ is
the Langlands dual of SON−1 × SON . In order to describe it explicitly, we
will distinguish two cases, depending on parity of N . Throughout the paper,
we assume N ≥ 3.

(a) odd: If N = 2n+1, we set V0 = C2n equipped with a nondegenerate
symmetric bilinear form (, ), and V1 = C2n equipped with a nondegenerate
skew-symmetric bilinear form 〈, 〉.

(b) even: If N = 2n, we set V0 = C2n equipped with a nondegenerate
symmetric bilinear form (, ), and V1 = C2n−2 equipped with a nondegenerate
skew-symmetric bilinear form 〈, 〉.

We consider the Lie superalgebra gl(V0|V1) of endomorphisms of a su-
per vector space V0 ⊕ ΠV1, and the corresponding algebraic supergroup
GL(V0|V1). The super vector space V0 ⊕ ΠV1 is equipped with the bilinear

1In fact, this generalization works similarly for the original problem: for the
general linear group GL in place of the special orthogonal group SO.



698 Alexander Braverman et al.

form (, )⊕ 〈, 〉, and the orthosymplectic Lie superalgebra g := osp(V0|V1) ⊂
gl(V0|V1) is formed by all the endomorphisms preserving the above bilinear
form (in the Lie superalgebra sense). The corresponding algebraic super-
group G := SOSp(V0|V1) ⊂ GL(V0|V1), by definition, has the even part
G0̄ = SO(V0)×Sp(V1). Accordingly, the even part g0̄ = so(V0)⊕ sp(V1) acts
naturally on the odd part g1̄ = V0 ⊗ΠV1.

We also consider a degenerate version g = osp(V0|V1) where the super-
commutator of the even elements (with even or odd elements) is the same
as in osp(V0|V1), while the supercommutator of any two odd elements is set
to be zero. The corresponding Lie supergroup is denoted G = SOSp(V0|V1);
its even part is equal to G0̄ = G0̄ = SO(V0)× Sp(V1).

The category of finite dimensional representations of G (in super vector
spaces) is denoted Rep(G), and its bounded derived category is denoted
DbRep(G).

In our main Theorem 2.2.1, we construct an equivalence Ξ from
DbRep(SOSp(V0|V1)) to the bounded equivariant derived constructible cat-

egory SDb
SO(N−1,O)(GrSON

) with coefficients in vector superspaces. This
equivalence enjoys the favorable properties similar to the properties of the
equivalence Ψ of §1.1:

(i) Ξ is exact with respect to the tautological t-structure on
DbRep(SOSp(V0|V1)) with the heart Rep(SOSp(V0|V1)) and the perverse t-

structure on SDb
SO(N−1,O)(GrSON

) with the heart SPervSO(N−1,O)(GrSON
).

(ii) Ξ takes the tensor product of SOSp(V0|V1)-modules to the fusion

product � on SDb
SO(N−1,O)(GrSON

).

Remark 1.2.1. One of the key ingredients in the proof of Theorem 2.2.1
is Ginzburg’s theorem [G2] identifying the (equivariant) Exts between IC-
sheaves on a variety X with the homomorphisms over the (equivariant)
cohomology ring of X between the (equivariant) cohomology of X with
coefficients in the above IC-sheaves. One of the necessary conditions for
Ginzburg’s theorem is the existence of a cellular decomposition of X such
that the IC-sheaves in question are smooth along cells. A standard applica-
tion of Ginzburg’s theorem is to SO(N,O)-equivariant IC-sheaves onGrSON

.
But in our situation there is no cellular decomposition of GrSON

such that
all the SO(N−1,O)-equivariant IC-sheaves are smooth along cells. However,
our proof of Theorem 2.2.1 establishes along the way Ginzburg’s theorem a
posteriori.

1.3. Conjectures of Ben-Zvi, Sakellaridis and Venkatesh

By definition of the degenerate orthosymplectic algebra g = osp(V0|V1),
its odd part g1̄ is a Lie superalgebra with trivial supercommutator, so
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that its universal enveloping algebra is a (finite-dimensional) exterior al-
gebra Λ. The derived category DRep(G) is nothing but the derived cate-
gory SDG0̄

fd (Λ) of finite dimensional G0̄-equivariant super dg-modules over Λ
(viewed as a dg-algebra with trivial differential). There is a Koszul equiva-
lence SDG0̄

perf(G
•) ∼−→ SDG0̄

fd (Λ)
∼= DbRep(G) where G• = Sym(g1̄[−1]) (we

use the trace paring to identify g1̄ with g∗
1̄
) is a dg-algebra with trivial differ-

ential, and SDG0̄

perf(G
•) stands for the derived category of G0̄-equivariant per-

fect dg-modules over G•. Precomposing the equivalence
Ξ: DbRep(SOSp(V0|V1))

∼−→SDb
SO(N−1,O)(GrSON

) with the Koszul equiva-

lence, we obtain an equivalence Φ: SDG0̄

perf(G
•) ∼−→ SDb

SO(N−1,O)(GrSON
).

One advantage of Φ (over Ξ) is that it admits a straightforward quantiza-
tion Φ� describing the category SDb

SO(N−1,O)�C×(GrSON
) with equivariance

extended by the loop rotations; see Theorem 3.1.1.
Another advantage is that the subcategory of SDb

SO(N−1,O)�C×(GrSON
)

formed by all the objects that are compact as the objects of unbounded
category SDSO(N−1,O)�C×(GrSON

) is obtained by applying Φ to the sub-

category of SDG0̄

perf(G
•) formed by all the objects with the nilpotent support

condition; see Theorem 2.2.1.
In yet another direction, as explained in [BFGT, §1.7], this equivalence

is an instance of the Periods—L-functions duality conjectures of D. Ben-
Zvi, Y. Sakellaridis and A. Venkatesh. Their conjectures predict, among
other things, that given a reductive group G and its spherical homogeneous
variety X = G /H, there is a subgroup G∨

X ⊂ G∨, its graded representation
V ∨
X =

⊕
i∈Z V

∨
X,i[i], and an equivalence DCoh(V ∨

X/G∨
X) =

DCoh
(
(
⊕

i∈Z V
∨
X,i[i])/G

∨
X

)
� DG(O)(X(F)). For a partial list of examples,

see the table at the end of [S]. The relevant representations V ∨
X (constructed

in terms of the Luna diagram of X) can be read off from the fourth column
of the table.

It turns out that the case of Example 14 of [S] is the above equiva-
lence Φ, or rather its version with coefficients in usual vector spaces (as
opposed to super vector spaces) DG0̄

perf(G
•) ∼−→Db

SO(N−1,O)(GrSON
). To ex-

plain this, let G := SON−1 × SON and H := SON−1. We view H as a
block-diagonal subgroup of G and put X = G /H. Then, loosely speaking,
we have DSO(N−1,O)(GrSON

) � D
(
SO(N − 1,O)\SO(N,F)/SO(N,O)

)
�

D
(
G(O)\G(F)/H(F)

)
� D

(
G(O)\X(F)

)
� DG(O)(X(F)). On the other

hand, note that G∨ = SO(V0) × Sp(V1). We consider a graded G∨-module
V ∨
X := (V0⊗V1)[1] (we view V ∨

X as an odd vector space placed in cohomolog-
ical degree −1). Hence, the equivalence Φ takes the form DCoh(V ∨

X/G∨) �
DG(O)(X(F)).
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1.4. Conjectural Iwahori-equivariant version

Similarly to [BFGT, §1.4] we propose the following conjecture. Let F�1
denote the variety of complete self-orthogonal flags in V1, and let F�0 denote
a connected component of the variety of complete self-orthogonal flags in V0

(there are two canonically isomorphic connected components, and we choose
one). We consider a dg-scheme with trivial differential

Hosp := (V0 ⊗ V1)[1]×F�0 ×F�1.

Here we view V0 ⊗ V1 as an odd vector space, so that the functions on
(V0 ⊗ V1)[1] (with grading disregarded) form really a symmetric (infinite-
dimensional) algebra, not an exterior algebra. We will write A for an element
of V0 ⊗ V1

∼= Hom(V0, V1), and At for the adjoint operator in Hom(V1, V0).

We will also write Fi = (F
(1)
i ⊂ F

(2)
i ⊂ . . . ⊂ F

(dimVi)
i = Vi) for an element

of F�i, i = 0, 1.
We define the orthosymplectic Steinberg scheme to be a dg-subscheme

Stosp of Hosp cut out by the equations saying that the flag F0 is stable under
the composition AtA and the flag F1 is stable under the composition AAt.
Thus, the orthosymplectic Steinberg scheme is a shifted variety of triples:

Stosp = {(A,F0, F1) ∈ Hosp | AtA(F
(r)
0 ) ⊆ F

(r)
0 & AAt(F

(r)
1 ) ⊆ F

(r)
1 , ∀r}.

Let IN−1 ⊂ SO(N − 1,O) (resp. IN ⊂ SO(N,O)) be an Iwahori subgroup
and let FlSON

:= SO(N,F)/IN be the affine flag variety. Let Db
IN−1

(FlSON
)

be the bounded IN−1-equivariant constructible derived category of FlSON
.

We propose the following

Conjecture 1.4.1. There exists an equivalence of triangulated categories

DSO(V0)×Sp(V1)Coh(Stosp) ∼= Db
IN−1

(FlSON
).

This conjecture would give an alternative proof of Theorem 3.3.5 express-
ing the stalks of SO(N −1,O)-equivariant IC-sheaves on GrSON

in terms of
orthosymplectic Kostka polynomials introduced in §3.3 as a particular case
of general construction due to D. Panyushev [P].

1.5. Gaiotto conjectures

One may wonder if there is a geometric realization of representations of
nondegenerate orthosymplectic supergroups. It turns out that such a re-
alization exists (conjecturally) for the categories of integrable representa-
tions of quantized type D orthosymplectic algebras Uq(osp(2k|2l)). First of
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all, similarly to the classical Kazhdan-Lusztig equivalence, it is expected
that Uq(osp(2k|2l)) -mod ∼= KLc(ôsp(2k|2l)), where q = exp(π

√
−1/c), and

KLc(ôsp(2k|2l)) stands for the derived category of SO(2k,O) × Sp(2l,O)-
equivariant ôsp(2k|2l)-modules of the central charge corresponding to the
invariant bilinear form (X,Y ) = c · sTr(XY ) − 1

2 Killingosp(2k|2l)(X,Y ) on

osp(2k|2l). Second, it is expected that the category KLc(ôsp(2n|2n)) is
equivalent to the q-monodromic SO(2n,O)-equivariant derived constructible

category of the complement L•
2n+1 of the zero section of the determinant line

bundle on GrSO2n+1
, and this equivalence takes the standard t-structure of

KLc(ôsp(2n|2n)) to the perverse t-structure.

Further, it is expected that the category KLc(ôsp(2n|2n − 2)) is equiv-
alent to the q-monodromic SO(2n− 1,O)-equivariant derived constructible
category of the complement of the zero section L•

2n of the determinant line
bundle on GrSO2n

, and this equivalence takes the standard t-structure of

KLc(ôsp(2n|2n− 2)) to the perverse t-structure. For other values of (2k|2l)
the situation depends on the dichotomy 2k − 1 < 2l or 2k − 1 > 2l.
In case 2k − 1 < 2l it is expected that KLc(ôsp(2k|2l)) is equivalent to
the q-monodromic SO(2k,O)-equivariant derived constructible category of

L•
2l+1 with certain Whittaker conditions, cf. §3.2 for more details. In case

2k − 1 > 2l it is expected that KLc(ôsp(2k|2l)) is equivalent to the q-
monodromic SO(2l+1,O)-equivariant derived constructible category of L•

2k

with certain Whittaker conditions, cf. §3.2 for more details. In particular,
the special cases k = 0 or l = 0 of this conjecture follow from the Funda-
mental Local Equivalence of the geometric Langlands program; see [BFGT,
§2].

In the case (2k|2l) = (4|2), each connected component of GrSO4
is iso-

morphic to GrSL2
×GrSL2

, so that the Picard group of each connected com-
ponent is generated by two determinant line bundles, and we have one extra
degree of freedom in twisting parameters. It is expected that the correspond-

ing categories of equivariant monodromic perverse sheaves are equivalent to
the Kazhdan-Lusztig categories for the affine Lie superalgebras D(2, 1;α)(1),
cf. Remark 3.2.2.

2. A coherent realization of Db
SO(N−1,O)(GrSON

)

2.1. Orthogonal and symplectic Lie algebras

In both cases 1.2(a,b) the tensor product space V0 ⊗ V1 is equipped with
a nondegenerate skew-symmetric bilinear form (, ) ⊗ 〈, 〉. It is preserved by
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the action of the group SO(V0) × Sp(V1). The corresponding moment map
is described as follows.

Our nondegenerate bilinear forms on V0, V1 define identifications V0
∼=

V ∗
0 , V1

∼= V ∗
1 . In particular, V0⊗V1 is identified with V ∗

0 ⊗V1 = Hom(V0, V1).
Given A ∈ Hom(V0, V1) we have the adjoint operator A

t ∈ Hom(V1, V0). We
have the moment maps

q0 : V0 ⊗ V1 → so(V0)
∗, A �→ AtA, and q1 : V0 ⊗ V1 → sp(V1)

∗, A �→ AAt,

where we make use of the identification so(V0) ∼= so(V0)
∗ (resp. sp(V1) ∼=

sp(V1)
∗) via the trace form (resp. negative trace form) of the defining rep-

resentation. Note also that the complete moment map (q0,q1) coincides
with the “square” (half-self-supercommutator) map on the odd part g1̄ of
the orthosymplectic Lie superalgebra g. We define the odd nilpotent cone
N1̄ ⊂ V0⊗V1 as the reduced subscheme cut out by the condition of nilpotency
of AtA (equivalently, by the condition of nilpotency of AAt).

We choose Cartan subalgebras t0 ⊂ so(V0) and t1 ⊂ sp(V1). We choose a
basis ε1, . . . , εn in t∗0 such that the Weyl group W0 = W (so(V0), t0) acts by
permutations of basis elements and by the sign changes of an even number
of basis elements, and the roots of so(V0) are given by {±εi±εj , i �= j}. We
set Σ0 = t∗0//W0. We also choose a basis δ1, . . . , δn in t∗1 in the odd case (resp.
δ1, . . . , δn−1 in the even case) such that the Weyl group W1 = W (sp(V1), t1)
acts by permutations of basis elements and by the sign changes of basis
elements, and the roots of sp(V1) are given by {±δi ± δj , i �= j; ±2δi}. We
set Σ1 = t∗1//W1.

In the odd case, we identify t∗0
∼= t∗1, εi �→ δi, and this identification

gives rise to a two-fold cover Π01 : Σ0 → Σ1. Similarly, in the even case we
identify t∗1 with a hyperplane in t∗0, δi �→ εi, and this identification gives rise
to a closed embedding Π10 : Σ1 ↪→ Σ0.

Recall (see e.g. [BF, §§2.1,2.6]) that Σ0 is embedded as a Kostant slice
into the open set of regular elements (so(V0)

∗)reg ⊂ so(V0)
∗, and Σ1 is em-

bedded into (sp(V1)
∗)reg. Furthermore, these slices Σ0,Σ1 carry the universal

centralizer sheaves of abelian Lie algebras z0, z1. Given an SO(V0)-module V
(resp. an Sp(V1)-module V ′), we have the corresponding graded Γ(Σ0, z0)-
module κ0(V ) (resp. the Γ(Σ1, z1)-module κ1(V

′)) (the Kostant functor of
loc. cit.). Since the universal enveloping algebra U(z0) (resp. U(z1)) is iden-
tified in loc. cit. with the sheaf of functions on the tangent bundle TΣ0

(resp. TΣ1), we will use the same notation κ0(V ), κ1(V
′) for the corre-

sponding coherent sheaves on TΣ0, TΣ1. Finally, according to the previous
paragraph, we have the morphisms dΠ01 : TΣ0 → TΣ1 in the odd case and
dΠ10 : TΣ1 → TΣ0 in the even case.
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We choose Borel subalgebras t0 ⊂ b0 ⊂ so(V0) corresponding to the

choice of positive roots R+
0 = {εi ± εj , i < j} and t1 ⊂ b1 ⊂ sp(V1)

corresponding to the choice of positive roots R+
1 = {δi ± δj , i < j; 2δi}.

We set ρ0 = 1
2

∑
α∈R+

0
α and ρ1 = 1

2

∑
α∈R+

1
α. We denote by Λ0 (resp. Λ1)

the weight lattice of SO(V0) (resp. of Sp(V1)). We denote by Λ+
0 ⊂ Λ0 (resp.

Λ+
1 ⊂ Λ1) the monoids of dominant weights. For λ ∈ Λ+

0 (resp. λ ∈ Λ+
1 ) we

denote by Vλ the irreducible representation of SO(V0) (resp. of Sp(V1)) with

highest weight λ.

In what follows SO(V0) will play the role of the Langlands dual group of

SON−1 (resp. of SON ) in the odd (resp. even) case, while Sp(V1) will play the

role of the Langlands dual group of SON (resp. of SON−1) in the odd (resp.

even) case. For this reason, we will need various claims that are formulated

and even proved similarly in the odd/even cases up to replacing symplectic

groups with special orthogonal groups (especially in §2.8). In order to save

space and not to duplicate numerous claims, we introduce the following

‘blinking’ notation. We set G1 = Sp(V1), G0 = SO(V0) (not to be confused

with G0̄!), and let (b, s) = (1, 0) (resp. (b, s) = (0, 1)) in the odd (resp. even)

case. Then Gb = SO∨
N is the group of bigger dimension, and Gs = SO∨

N−1 is

the group of smaller dimension. Accordingly, we set g1 = sp(V1), g0 = so(V0)

(not to be confused with g1̄,g0̄!), and get dim gb > dim gs. Similarly, we have

dimVb ≥ dimVs and Πsb : Σs → Σb (but we do not have Πbs), etc.

2.2. The main theorem

Recall the orthosymplectic Lie superalgebra g = osp(V0|V1) of §1.2. We

consider the dg-algebra2 G• = Sym(g1̄[−1]) with trivial differential, and

the triangulated category DG0̄

perf(G
•) obtained by localization (with respect

to quasi-isomorphisms) of the category of perfect G0̄-equivariant dg-G•-
modules. We also consider the corresponding category SDG0̄

perf(G
•) with co-

efficients in super vector spaces. Since G• is super-commutative, we have a

symmetric monoidal structure ⊗G• on the category SDG0̄

perf(G
•).

The action of the central element (IdV0
,−IdV1

) ∈ G0̄ on an object of

DG0̄

perf(G
•) equips this object with an extra Z/2Z-grading, and thus defines a

fully faithful functor DG0̄

perf(G
•) → SDG0̄

perf(G
•) of “superization”, such that

its essential image is closed under the monoidal structure ⊗G• . This defines

the monoidal structure ⊗G• on the category DG0̄

perf(G
•).

2We view g1̄ as an odd vector space, so that Sym(g1̄[−1]) (with grading disre-
garded) is really a symmetric (infinite-dimensional) algebra, not an exterior algebra.
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We consider the following complex H• of odd vector spaces living in

degrees 0, 1: g1̄
Id−→ g1̄. We define the Koszul complex K• as the symmetric

algebra Sym(H•). The degree zero part

K0 = Λ(V0 ⊗ V1) =: Λ

(as a vector space, with a super-structure disregarded). We turn K• into a

dg-G• −Λ-bimodule by letting G• act by multiplication, and Λ by differen-

tiation. Note that K• is quasi-isomorphic to C in degree 0 as a complex of

vector spaces, but not as a dg-G• − Λ-bimodule.

We consider the derived categoryDG0̄

fd (Λ) of finite dimensional complexes

of G0̄ � Λ-modules. If we remember the super-structure of Λ, we obtain the

corresponding category of super dg-modules SDG0̄

fd (Λ) = DbRep(G). We have

the Koszul equivalence functors

κ : DG0̄

fd (Λ)
∼−→DG0̄

perf(G
•), DRep(G) = SDG0̄

fd (Λ)
∼−→ SDG0̄

perf(G
•),

M �→ K• ⊗Λ M.

The Koszul equivalence κ : DbRep(G) ∼−→ SDG0̄

perf(G
•) is monoidal with re-

spect to the usual tensor structure on the LHS and ⊗G• on the RHS.

The action of (IdV0
,−IdV1

) ∈ G0̄ gives rise to a fully faithful “super-

ization” functor DG0̄

fd (Λ) → SDG0̄

fd (Λ) = DbRep(G) with the essential im-

age closed under the tensor structure. This defines the tensor structure

on DG0̄

fd (Λ) such that the Koszul equivalence κ : DG0̄

fd (Λ)
∼−→ DG0̄

perf(G
•) is

monoidal.

Recall the quadratic moment maps so(V0)
∗ q0←− V0 ⊗ V1

q1−→ sp(V1)
∗

of §2.1. They give rise to homomorphisms

Sym
(
so(V0)[−2]

) q∗
0−→ G• = Sym

(
Π(V0 ⊗ V1)[−1]

) q∗
1←− Sym

(
sp(V1)[−2]

)

and to the corresponding induction functors

D
SO(V0)
perf

(
Sym

(
so(V0)[−2]

)) q∗
0−→ DG0̄

perf(G
•)

q∗
1←− D

Sp(V1)
perf

(
Sym

(
sp(V1)[−2]

))
.

Thus the category DG0̄

perf(G
•) acquires a module structure over the monoidal

category D
SO(V0)
perf

(
Sym

(
so(V0)[−2]

))
⊗ D

Sp(V1)
perf

(
Sym

(
sp(V1)[−2]

))
. Recall

the ‘blinking’ notation of §2.1, so that the latter monoidal category is de-
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noted DGs

perf

(
Sym(gs[−2])

)
⊗ DGb

perf

(
Sym(gb[−2])

)
. Also recall the equiva-

lences

DGs

perf

(
Sym(gs[−2])

) ∼−→
β

Db
SO(N−1,O)(GrSON−1

),

DGb

perf

(
Sym(gb[−2])

) ∼−→
β

Db
SO(N,O)(GrSON

)

of [BF, Theorem 5].

Finally recall the odd nilpotent cone N1̄ ⊂ V0 ⊗ V1 of §2.1. We de-

note by DG0̄

perf(G
•)N1̄

the full subcategory of DG0̄

perf(G
•) formed by com-

plexes with cohomology set-theoretically supported atN1̄. We also denote by

Dcomp
SO(N−1,O)(GrSON

) the full subcategory of Db
SO(N−1,O)(GrSON

) formed by

the objects compact as the objects of the unbounded category

DSO(N−1,O)(GrSON
).

Our goal is the following

Theorem 2.2.1. (a) There exists an equivalence of triangulated categories

Φ: DG0̄

perf(G
•) ∼−→Db

SO(N−1,O)(GrSON
) commuting with the left convolution

action of the monoidal spherical Hecke category DGs

perf

(
Sym(gs[−2])

) ∼=
Db

SO(N−1,O)(GrSON−1
) and with the right convolution action of the monoidal

spherical Hecke category DGb

perf

(
Sym(gb[−2])

) ∼= Db
SO(N,O)(GrSON

).

(b) The composed equivalence

Φ ◦ κ : DG0̄

fd (Λ)
∼−→Db

SO(N−1,O)(GrSON
)

is exact with respect to the tautological t-structure on DG0̄

fd (Λ) and the per-

verse t-structure on Db
SO(N−1,O)(GrSON

).

(c) This equivalence is monoidal with respect to the tensor structure on

DG0̄

fd (Λ) and the fusion � on Db
SO(N−1,O)(GrSON

).

(d) The equivalence of (b) extends to a monoidal equivalence from

SDG0̄

fd (Λ) = DbRep(G) to the equivariant derived constructible category with

coefficients in super vector spaces SDb
SO(N−1,O)(GrSON

).

(e) The equivariant derived category Db
SO(N−1,O)(GrSON

) is equivalent to

the bounded derived category of the abelian category PervSO(N−1,O)(GrSON
).

(f) Φ induces an equivalence DG0̄

perf(G
•)N1̄

∼−→ Dcomp
SO(N−1,O)(GrSON

). In

particular, Φ extends to an equivalence

QCohN1̄

(
Π(V0 ⊗ V1)[1]/G0̄

) ∼−→DSO(N−1,O)(GrSON
).



706 Alexander Braverman et al.

Also, a sheaf F ∈ Db
SO(N−1,O)(GrSON

) lies in Dcomp
SO(N−1,O)(GrSON

) iff

dimH•
SO(N−1,O)(GrSON

,F) < ∞.

The proof will be given in §2.10 after some preparations in §§2.4–2.9.

2.3. SO(N − 1,O)-orbits in GrSON

The following lemma is well known to the experts; we learned it from
Y. Sakellaridis.

Lemma 2.3.1. There is a natural bijection between the set of SO(N−1,O)-
orbits on GrSON

and the monoid of dominant coweights of SON−1 × SON .

Proof. We consider the block-diagonal embedding SON−1 ↪→ SON−1×SON .
Then the set of orbits of SO(N −1,O) in GrSON

is in natural bijection with
the set of orbits of SO(N −1,F) in GrSO(N−1,O)×GrSO(N,O). Furthermore,
X = (SON−1 × SON )/SON−1 is a homogeneous spherical variety of G :=
SON−1 × SON , and the latter set of orbits is identified with the monoid
Λ+
X of G-invariant valuations on C(X). The proof goes back to [LV, §8];

for a modern exposition see e.g. [GN, Theorem 8.2.9]. Furthermore, the
monoid Λ+

X coincides with the monoid of dominant weights of the Gaitsgory-
Nadler group G∨

X . In our case, G∨
X coincides with the Langlands dual group

G∨ = SO∨
N−1 × SO∨

N .
Indeed, the corresponding rational cone Λ+

X,Q can be computed from the
Luna diagram (aka Luna spherical system) of our spherical variety. In our
case, the Luna diagram is described e.g. in [BP, (46),(50)], and it follows
that all the simple roots of G are spherical roots for X, i.e. the little Weyl
group WX coincides with the Weyl group W0×W1 of SON−1×SON . Hence
Λ+
X,Q = Λ+

0,Q × Λ+
1,Q (notation of §2.1). In order to identify the monoid

of dominant weights inside the rational cone it suffices to check that the
stabilizer in SON−1 of a general point in the flag variety of G is trivial.

In the odd case 1.2(a), we choose a basis v1, v2, . . . , v2n, v2n+1 in a vector
space V equipped with symmetric bilinear form such that v2n+1, v2n, . . . ,
v2, v1 is the dual basis, and SO2n ⊂ SO2n+1 is the stabilizer of vn+1. We
define a complete isotropic flag U1 ⊂ U2 ⊂ . . . ⊂ Un ⊂ (Cvn+1)

⊥ and a
complete isotropic flag U ′

1 ⊂ U ′
2 ⊂ . . . ⊂ U ′

n ⊂ V as follows:

Ui := Cv1 ⊕ . . .⊕ Cvi, U ′
i := Cv′2n+1 ⊕ . . .⊕ Cv′2n+2−i,

where v′2n+2−i = v2n+2−i − vn+1 − 1
2(v1 + v2 + . . .+ vn). It is immediate to

see that StabSON−1
(U•, U ′

•) is trivial. In the even case 1.2(b), the argument
is similar.
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Note that in the odd case 1.2(a), SO∨
N−1

∼= SO(V0), SO∨
N

∼= Sp(V1),
while in the even case 1.2(b), SO∨

N−1
∼= Sp(V1), SO∨

N
∼= SO(V0). We will

use another construction of bijection Λ+
0 × Λ+

1
∼= SO(N − 1,O)\GrSON

(presumably it coincides with the bijection of Lemma 2.3.1, but we did not
check this). In the blinking notation of §2.1, given dominant coweights λs ∈
Λ+
s , λb ∈ Λ+

b we denote by Grλs

SON−1
×̃Grλb

SON

m−→ GrSON
the convolution

diagram of spherical Schubert varieties. The convolution morphism m is
clearly SO(N − 1,O)-equivariant, so there is a well defined SO(N − 1,O)-
orbit in GrSON

open in the image of m. We will denote this orbit Oλs

λb
⊂

GrSON
.

Lemma 2.3.2. The map (λs, λb) �→ Oλs

λb
is a bijection

Λ+
s × Λ+

b
∼−→ SO(N − 1,O)\GrSON

.

Proof. We start with a similar parametrization of the set of GL(N − 1,O)-
orbits in GrGLN

or equivalently, of the set of GL(N − 1,F)-orbits in
GrGLN−1

×GrGLN
. We choose a basis e1, . . . , eN in the defining representa-

tion CN of GLN , so that the defining representation of GLN−1 is spanned
by e1, . . . , eN−1. Then one can choose the following set of representatives of
GL(N−1,F)-orbits in GrGLN−1

×GrGLN
, as follows from the proof of [FGT,

Proposition 8]. Recall that GrGLN−1
(resp. GrGLN

) is the moduli space of
lattices in F ⊗ CN−1 (resp. in F ⊗ CN ). Given signatures (non-increasing
sequences of integers)

μ = (μ1 ≥ μ2 ≥ . . . ≥ μN−1), ν = (ν1 ≥ ν2 ≥ . . . ≥ νN )

we consider the lattices

L′
μ := Otμ1e1 ⊕ . . .⊕OtμN−1eN−1 ⊂ F⊗ CN−1,

Lν := Ot−ν1(e1 + eN )⊕ . . .⊕Ot−νN−1(eN−1 + eN )⊕Ot−νNeN ⊂ F⊗ CN .

Such pairs form a complete set of representatives of GL(N − 1,F)-orbits on
GrGLN−1

×GrGLN
as μ (resp. ν) runs through the set of all length N − 1

(resp. length N) signatures. Hence the following set of lattices in F⊗ CN

{Lμ,ν := O(t−μ1−ν1e1 + t−ν1eN )⊕ . . .⊕O(t−μN−1−νN−1eN−1 + t−νN−1eN )

⊕Ot−νN eN}

is a complete set of representatives of GL(N−1,O)-orbits inGrGLN
. Clearly,

Lμ,ν lies in the image of the convolution morphism m : GrμGLN−1
×̃GrνGLN

→
GrGLN

, and the orbit Oμ,ν := GL(N−1,O)·Lμ,ν is open in the image of m.
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We return back to special orthogonal groups, and realize SOM as the

connected component of invariants of an involution of GLM . Accordingly,

GrSOM
is a union of connected components of the fixed point set of the

corresponding involution ς of GrGLM
. It follows that any SO(N − 1,O)-

orbit in GrSON
is a connected component of the fixed point set Oς

μ,ν of an

appropriate GL(N − 1,O)-orbit in GrGLN
. Recall that the convolution dia-

gram GrμGLN−1
×̃GrνGLN

is a fibre bundle over GrμGLN−1
with fibers isomor-

phic to GrνGLN
, and the convolution morphism m : GrμGLN−1

×̃ GrνGLN
→

Oμ,ν is a birational isomorphism (more precisely, m is an isomorphism

over Oμ,ν ⊂ Oμ,ν). It follows that for a connected component O
ς,0
μ,ν of

Oς
μ,ν there are appropriate irreducible components of the fixed point sets

(GrμGLN−1
)ς,0 ⊂ (GrμGLN−1

)ς , (GrνGLN
)ς,0 ⊂ (GrνGLN

)ς such that m induces

a birational isomorphism to the closure O
ς,0
μ,ν from the fibre bundle over

(GrμGLN−1
)ς,0 with fibers isomorphic to (GrνGLN

)ς,0. However, any irreducible

component (GrμGLN−1
)ς,0 (resp. (GrνGLN

)ς,0) coincides with Grλs

SON−1
(resp.

with Grλb

SON
) for appropriate coweights λs, λb.

The lemma is proved.

We denote by ICλs

λb
∈ PervSO(N−1,O)(GrSON

) the intermediate extension

of the constant local system on Oλs

λb
. We will denote IC0

0 by E0 for short.

Lemma 2.3.3. Any SO(N −1,O)-equivariant irreducible perverse sheaf on

GrSON
is of the form ICλs

λb
.

Proof. We have to check that the stabilizer in SO(N − 1,O) of a point in

GrSON
is connected. Equivalently, we have to check that the stabilizer in

SO(N − 1,F) of a point in GrSON−1
×GrSON

is connected. It follows from

the proof of Lemma 2.3.2 that the following list of pairs (L′
μ, Lν) forms a

complete set of representatives of SO(N − 1,F)-orbits in GrSON−1
×GrSON

(for an appropriate choice of an involution of GLM producing SOM as the

connected component of the fixed point set):

In the odd case 1.2(a)

ν = (ν1 ≥ ν2 ≥ . . . ≥ νn ≥ 0 ≥ −νn ≥ −νn−1 . . . ≥ −ν1),

μ = (μ1 ≥ μ2 ≥ . . . ≥ μn−1 ≥ μn ≥ −μn ≥ −μn−1 ≥ . . . ≥ −μ1),

also we allow sequences (not signatures) μ such that

μ = (μ1 ≥ μ2 ≥ . . . ≥ μn−1 ≥ −μn ≤ μn ≥ −μn−1 ≥ . . . ≥ −μ1),
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where (μ1 ≥ μ2 ≥ . . . ≥ μn > 0) is a partition. In the even case 1.2(b)

μ = (μ1 ≥ μ2 ≥ . . . ≥ μn−1 ≥ 0 ≥ −μn−1 ≥ . . . ≥ −μ1),

ν = (ν1 ≥ ν2 ≥ . . . ≥ νn−1 ≥ νn ≥ −νn ≥ −νn−1 ≥ . . . ≥ −ν1),

also we allow sequences (not signatures) ν such that

ν = (ν1 ≥ ν2 ≥ . . . ≥ νn−1 ≥ −νn ≤ νn ≥ −νn−1 ≥ . . . ≥ −ν1),

where (ν1 ≥ ν2 ≥ . . . ≥ νn > 0) is a partition.
Note that in the odd case the pair (L′

μ, Lν) lies in the GL(N,F)-orbit in
the ambient product GrGLN

×GrGLN
⊃ GrGLN−1

×GrGLN
corresponding

to a signature η, where

η := (μ1 + ν1 ≥ . . . ≥ μn−1 + νn−1 ≥ |μn|+ νn ≥ 0

≥ −|μn| − νn ≥ . . . ≥ −μ1 − ν1),

and in the even case the pair (L′
μ, Lν) lies in the GL(N,F)-orbit in the

ambient product GrGLN
×GrGLN

⊃ GrGLN−1
×GrGLN

corresponding to a
signature η, where

η := (μ1 + ν1 ≥ . . . ≥ μn−1 + νn−1 ≥ |νn|
≥ −|νn| ≥ −μn−1 − νn−1 ≥ . . . ≥ −μ1 − ν1).

In all the cases listed, L′
μ corresponds to a dominant coweight of SON−1,

while Lν corresponds to an antidominant coweight of SON . It follows that
StabSO(N−1,F)(L

′
μ, Lν) ⊂ SO(N−1,O). Similarly, StabGL(N−1,F)(L

′
μ, Lν) ⊂

GL(N −1,O). The latter stabilizer has the connected unipotent radical and
the reductive quotient StabredGL(N−1,F)(L

′
μ, Lν) �

∏
i∈Z GLmi

, where mi is
defined as follows. We consider a sequence α of length 2N − 1 obtained as
a shuffle of ν and μ, i.e. in the odd case

α = (ν1, μ1, ν2, μ2, . . . , νn, |μn|, 0,−|μn|,−νn, . . . ,−μ1,−ν1),

while in the even case

α = (ν1, μ1, . . . , νn−1, μn−1, |νn|, 0,−|νn|,−μn−1,−νn−1, . . . ,−μ1,−ν1).

Now we consider a signature β of length 2N − 2 formed by the sums of two
consecutive terms of α:

(β1 = ν1 + μ1, β2 = μ1 + ν2, β3 = ν2 + μ2, . . . , β2N−2 = −μ1 − ν1).
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Let ni be the multiplicity of an integer i in the sequence β. Finally, mi :=
�ni/2�.

We see in particular that the groups StabredGL(N−1,F)(L
′
μ, Lν) and

StabGL(N−1,F)(L
′
μ, Lν) are both connected. Viewing SOM as the connected

component of an involution of GLM , we see that StabSO(N−1,F)(L
′
μ, Lν) has

the connected unipotent radical and the reductive quotient
StabredSO(N−1,F)(L

′
μ, Lν) � SOm0

×
∏

i>0GLmi
that is connected as well.

2.4. Deequivariantized Ext algebra

In the blinking notation of §2.1 let ICλs
(resp. ICλb

) stand for the IC-sheaf
of the orbit closure IC(Grλs

SON−1
) (resp. IC(Grλb

SON
)). Then the convolution

ICλs
∗ ICλb

= ICλs

0 � IC0
λb

(the fusion) is the direct sum of ICλs

λb
and some

sheaves with support in the boundary of Oλs

λb
. Actually, we will see in Corol-

lary 2.6.3 below that ICλs
∗ ICλb

= ICλs

0 � IC0
λb

= ICλs

λb
.

We restrict the left action of Db
SO(N−1,O)(GrSON−1

) (resp. the right

action of Db
SO(N,O)(GrSON

)) on Db
SO(N−1,O)(GrSON

) to the left action of

PervSO(N−1,O)(GrSON−1
) ∼= Rep(SO∨

N−1) (resp. to the right action of

PervSO(N,O)(GrSON
) ∼= Rep(SO∨

N )). Let Ddeeq
SO(N−1,O)(GrSON

) denote the

corresponding deequivariantized category (see [AG] in the setting of abelian
categories and [Ga] in the setting of dg-categories). We have

(2.4.1) RHomDdeeq
SO(N−1,O)(GrSON

)(F ,G)

=
⊕

λs∈Λ+
s , λb∈Λ+

b

RHomDb
SO(N−1,O)(GrSON

)(F , ICλs
∗ G ∗ ICλb

)⊗ V ∗
λs
⊗ V ∗

λb

(recall that the geometric Satake equivalence takes ICλs
to Vλs

, and ICλb
to

Vλb
, notations of §2.1).

Lemma 2.4.1. The dg-algebra RHomDdeeq
SO(N−1,O)(GrSON

)(E0, E0) is formal,

i.e. it is quasiisomorphic to the graded algebra Ext•
Ddeeq

SO(N−1,O)(GrSON
)
(E0, E0)

with trivial differential.

Proof. The argument essentially repeats the one in the proof of [BFGT,
Lemma 3.9.1]. The desired result follows from the purity of
ExtDb

SO(N−1,O)(GrSON
)(E0, IC

λs

λb
). We know that ICλs

λb
is a direct summand in

ICλs
∗ ICλb

, and it suffices to prove the purity of i!0(ICλs
∗ ICλb

) where i0
stands for the closed embedding of the base point 0 into GrSON

.
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Assume first that N ≥ 4. Let �N−1 (resp. �N ) denote the minus-
cule fundamental coweight of SON−1 (resp. of SON ). The corresponding
closed SO(N − 1,O)-orbit Gr

�N−1

SON−1
⊂ GrSON−1

(resp. closed SO(N,O)-

orbit Gr�N

SON
⊂ GrSON

) is isomorphic to a smooth (N − 3)-dimensional

quadric QN−3 (resp. to a smooth (N − 2)-dimensional quadric QN−2). It
is well known that for any λs ∈ Λ+

s (resp. λb ∈ Λ+
b ), ICλs

is a direct sum-
mand in a suitable convolution power IC�N−1

∗ · · · ∗ IC�N−1
(resp. ICλb

is a
direct summand in IC�N

∗ · · · ∗ IC�N
) (equivalently, by the geometric Sa-

take equivalence, the defining representation of a symplectic group (resp.
of a special orthogonal group) generates its representations’ category with
respect to tensor products and direct summands [W]). Thus it suffices to
prove the purity of

i!0(IC�N−1
∗ · · · ∗ IC�N−1

∗ IC�N
∗ · · · ∗ IC�N

).

The latter convolution is the direct image of the constant sheaf on the
smooth convolution diagram Gr

�N−1

SON−1
×̃ · · · ×̃ Gr

�N−1

SON−1
×̃ Gr�N

SON
×̃ · · · ×̃

Gr�N

SON

m−→ GrSON
. Hence it suffices to check that the fiber m−1(0) over

the base point is a union of cells. Now under the action of the loop rotation
Gm, every point in an open neighbourhood of 0 ∈ GrSON

flows away from
0. It follows that m−1(0) coincides with the Gm-attractor to the union F0

of the Gm-fixed point components in the above convolution diagram lying
over 0 ∈ GrSON

. By the classical Bialynicki-Birula argument, this attractor
is a union of cells if F0 itself is a union of cells. Finally, a Cartan subgroup
of SON−1 has finitely many fixed points in the above convolution diagram,
and the same Bialynicki-Birula argument implies that F0 is a union of cells.

The proof for N = 3 is essentially the same. The only difference is that
the standard (2-dimensional) representation of Gs = SO2

∼= Gm corresponds
to IC(Q0) which is the sum of two skyscrapers of the two points of the “0-
dimensional quadric” Q0. After replacing IC�N−1

with IC(Q0), the same
argument goes through. Alternatively, since SO2

∼= GL1, and SO3
∼= PGL2,

our lemma in case N = 3 directly follows from [BFGT, Lemma 3.9.1].

We denote the dg-algebra Ext•
Ddeeq

SO(N−1,O)(GrSON
)
(E0, E0) (with trivial dif-

ferential) by E•. Since it is an Ext-algebra in the deequivariantized cate-
gory between objects induced from the original category, it is automatically
equipped with an action of SO(V0) × Sp(V1) = G0̄ (notations of §2.2), and
we can consider the corresponding triangulated category DG0̄

perf(E
•).

Lemma 2.4.2. There is a canonical equivalence DG0̄

perf(E
•) ∼−→

Db
SO(N−1,O)(GrSON

).
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Proof. Same as the one of [BFGT, Lemma 3.9.2].

2.5. Equivariant cohomology

The affine Grassmannian GrSON
has two connected components GroddSON

and

GrevenSON
(recall that N > 2). In the blinking notation of §2.1, the equivariant

cohomology ring H•
SO(N,O)(GroddSON

) = H•
SO(N,O)(GrevenSON

) ∼= C[TΣb]. This

is a theorem of V. Ginzburg [G1] (for a published account see e.g. [BF,

Theorem 1]). It follows that

H•
SO(N−1,O)(GroddSON

) = H•
SO(N−1,O)(GrevenSON

) ∼= C[Σs ×Σb
TΣb]

(with respect to the morphism Πsb : Σs → Σb, notations of §2.1).

Lemma 2.5.1. For any λs ∈ Λ+
s , λb ∈ Λ+

b , the natural morphism

ExtDb
SO(N−1,O)(GrSON

)(E0, IC
λs

λb
) →

HomH•
SO(N−1,O)(GrSON

)

(
H•

SO(N−1,O)(GrSON
, E0), H

•
SO(N−1,O)(GrSON

, ICλs

λb
)
)

is injective.

Proof. It suffices to prove that the natural morphism

ExtDb
SO(N−1,O)(GrSON

)(E0, IC
λs

λb
)

→ HomH•
SO(N−1,O)(pt)

(
H•

SO(N−1,O)(GrSON
, E0), H

•
SO(N−1,O)(GrSON

, ICλs

λb
)
)

(in the RHS we take Hom over the equivariant cohomology of the point)

is injective. As in the proof of Lemma 2.4.1, it suffices to check the in-

jectivity for the iterated convolution IC�N−1
∗ · · · ∗ IC�N−1

∗ IC�N
∗ · · · ∗

IC�N
in place of ICλs

λb
. Due to purity established in loc. cit. (= the proof

of Lemma 2.4.1), the LHS is a free H•
SO(N−1,O)(pt)-module with the space

of generators isomorphic to the costalk of the above convolution at the

base point 0 ∈ GrSON
, that is to H•(m−1(0)) (notations of loc. cit.). The

RHS is also a free H•
SO(N−1,O)(pt)-module with the space of generators

isomorphic to H•
(
Gr

�N−1

SON−1
×̃ · · · ×̃Gr

�N−1

SON−1
×̃Gr�N

SON
×̃ · · · ×̃Gr�N

SON

)
. It

containsH•(m−1(0)) as a direct summand since the convolution diagram has

a cellular decomposition compatible with the one form−1(0), see loc. cit.
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2.6. Calculation of the Ext algebra

Recall that

C[TΣs] ∼= H•
SO(N−1,O)(GroddSON−1

) ∼= H•
SO(N−1,O)(GrevenSON−1

),

and

C[TΣb] ∼= H•
SO(N,O)(GroddSON

) ∼= H•
SO(N,O)(GrevenSON

).

Moreover, for λs ∈ Λ+
s (resp. λb ∈ Λ+

b ) we have canonical isomorphisms
of C[TΣs]-modules (resp. C[TΣb]-modules) κs(Vλs

) ∼= H•
SO(N−1,O)(GrSON−1

,

ICλs
) (resp. κb(Vλb

) ∼= H•
SO(N,O)(GrSON

, ICλb
)) (for Kostant functors κ

see §2.1). This is also a theorem of V. Ginzburg [G1] (for a published account
see e.g. [BF, Theorem 6 and Lemma 9]). It follows that we have a canonical
isomorphism of C[Σs ×Σb

TΣb]-modules dΠ∗
sbκb(Vλb

) ∼= H•
SO(N−1,O)(GrSON

,

ICλb
).

Lemma 2.6.1. For λs ∈ Λ+
s , λb ∈ Λ+

b we have a canonical isomorphism of
C[Σs ×Σb

TΣb]-modules

κs(Vλs
)⊗C[Σs] dΠ

∗
sbκb(Vλb

)
) ∼−→H•

SO(N−1,O)(GrSON
, ICλs

∗ ICλb
).

Proof. By the classical argument going back to Drinfeld, ICλs
∗ ICλb

∼=
ICλs

� ICλb
, where the fusion � is defined by taking nearby cycles in the

Beilinson-Drinfeld Grassmannian GrBD
π−→ A1. The fiber π−1(0) is GrSON

,
and for x �= 0, the fiber π−1(x) is GrSON−1

×GrSON
. We have a tautologi-

cal closed embedding GrBD ↪→ GrSON ,BD into the usual Beilinson-Drinfeld
Grassmannian of SON . The cospecialization morphism to the cohomology
of a nearby fiber

H•
SO(N−1,O)(GrSON

, ICλs
� ICλb

) = H•
SON−1

(GrSON
, ICλs

� ICλb
)

→ H•
SON−1

(GrSON−1
×GrSON

, ICλs
� ICλb

)

is an isomorphism (due to properness), and is compatible with the cospecial-
ization morphism of the cohomology of ambient spaces H•

SON−1
(GrSON

) →
H•

SON−1
(GrSON−1

×GrSON
), and the diagram formed by the cospecialization

morphisms and restriction with respect to the above closed embedding of
Beilinson-Drinfeld Grassmannians commutes:

H•
SON−1

(GrSON
) −−−−→ H•

SON−1
(GrSON−1

×GrSON
)�⏐⏐ �⏐⏐

H•
SON

(GrSON
) −−−−→ H•

SON
(GrSON

×GrSON
).
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Finally, the following diagram commutes as well:

C[TΣb]
add∗

−−−−→ C[TΣb ×Σb
TΣb]⏐⏐��

⏐⏐��

H•
SON

(GrSON
) −−−−→ H•

SON
(GrSON

×GrSON
),

where add: TΣb×Σb
TΣb → TΣb stands for the fiberwise addition morphism.

The lemma follows.

Now recall the minuscule closed orbits QN−3 ∼= Gr
�N−1

SON−1
⊂ Gr�N

SON

∼=
QN−2 (smooth quadrics). For N > 3 we have

Ext•Db
SO(N−1,O)(GrSON

)(E0, IC�N−1
∗E0 ∗ IC�N

)

= Ext•Db
SO(N−1,O)(GrSON

)(IC�N−1
∗ E0, E0 ∗ IC�N

)

= Ext•Db
SO(N−1,O)(GrSON

)(IC(Q
N−3), IC(QN−2)).

(In case N = 3 we replace IC�N−1
with IC(Q0) the same way as in the last

paragraph of the proof of Lemma 2.4.1.) Since QN−3 ⊂ QN−2 is a smooth

divisor, we have a canonical element

h ∈ Ext1Db
SO(N−1,O)(GrSON

)(IC(Q
N−3), IC(QN−2)).

Hence we obtain the subspace

h⊗ V ∗
0 ⊗ V ∗

1
∼= h⊗ V0 ⊗ V1 ⊂ E1 := Ext1

Ddeeq
SO(N−1,O)(GrSON

)
(E0, E0),

cf. (2.4.1). We will denote this subspace simply by V0⊗V1. Thus, we obtain

a homomorphism from the free tensor algebra

φ• : T (Π(V0 ⊗ V1)[−1]) → E• := Ext•
Ddeeq

SO(N−1,O)(GrSON
)
(E0, E0).

Lemma 2.6.2. The homomorphism φ• factors through the projection

T (Π(V0 ⊗ V1)[−1]) � Sym(Π(V0 ⊗ V1)[−1]) = G•,

and induces an isomorphism G• ∼−→ E•.
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Proof. We have a tautological isomorphism

G• ∼= Ext•
D

G0̄,deeq

perf (G•)
(G•,G•)

=
⊕

λs∈Λ+
s , λb∈Λ+

b

Ext•
D

G0̄
perf(G

•)
(G•, Vλs

⊗G• ⊗ Vλb
)⊗ V ∗

λs
⊗ V ∗

λb
.

By Proposition 2.8.3 below, the Kostant functors induce an isomorphism

G• ∼=
⊕

λs∈Λ+
s , λb∈Λ+

b

Ext•
D

G0̄
perf(G

•)
(G•, Vλs

⊗G• ⊗ Vλb
)⊗ V ∗

λs
⊗ V ∗

λb

∼−→
⊕

λs∈Λ+
s , λb∈Λ+

b

HomC[TΣs]

(
C[Σs], κs(Vλs

)⊗C[Σs] dΠ
∗
sbκb(Vλb

)
)
⊗ V ∗

λs
⊗ V ∗

λb
.

Here we view Σs as the zero section of the tangent bundle TΣs, so that
C[Σs] acquires a structure of C[TΣs]-module. Comparing with Lemma 2.6.1,
by Lemma 2.5.1 we obtain an injective homomorphism from the topologi-
cal Ext-algebra to the algebraic one: E• ↪→ G•. Since G• is commutative,
we conclude that E• is commutative as well, i.e. φ• does factor through

φ̄• : Sym(Π(V0⊗V1)[−1]) = G• → E•. Finally, since the composition G• φ̄•

−→
E• ↪→ G• is identity on the generators Π(V0 ⊗ V1) of G

•, we conclude that
φ̄• is an isomorphism.

Now the existence of the desired equivalence Φ of Theorem 2.2.1(a) fol-
lows from Lemma 2.4.2 and Lemma 2.6.2. Furthermore, the claims of The-
orem 2.2.1(b,e) are proved exactly as [BFGT, Corollary 3.8.1(a,c)].

Corollary 2.6.3. We have ICλs
∗ ICλb

= ICλs

0 � IC0
λb

= ICλs

λb
.

Proof. By construction, Φ(Vλs
⊗G•⊗Vλb

) = ICλs
∗ ICλb

. But Vλs
⊗G•⊗Vλb

is an indecomposable object of DG0̄

perf(G
•), hence ICλs

∗ ICλb
= ICλs

0 � IC0
λb

must be indecomposable as well, i.e. it must coincide with ICλs

λb
.

2.7. Compatibility with the spherical Hecke actions

To finish the proof of Theorem 2.2.1(a) it remains to check the compati-
bility with the left and right convolution actions of the monoidal spherical
Hecke categories. We check the compatibility for the left action; the veri-
fication for the right action is similar. Our argument is similar to the one
in the proof of [BFGT, Lemma 3.11.1]. Namely, we already know the com-
patibility with the convolution action of the semisimple abelian category
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PervSO(N−1,O)(GrSON−1
). Hence we obtain a homomorphism from the dee-

quivariantized Ext-algebra of the unit object of Db
SO(N−1,O)(GrSON−1

) to

the deequivariantized Ext-algebra of the unit object of Db
SO(N−1,O)(GrSON

).

The corresponding RHom-algebras are formal, and by [BF, Proposition 7,

Remarks 2,3] it suffices to check that the above homomorphism of graded

commutative algebras coincides with q∗
s . We proceed to check the desired

equality on generators.

Recall the element h ∈ Ext1Db
SO(N−1,O)(GrSON

)(IC(Q
N−3), IC(QN−2))

of §2.6. Dually, we have a canonical element

h∗ ∈ Ext1Db
SO(N−1,O)(GrSON

)(IC(Q
N−2), IC(QN−3)).

The composition h∗ ◦ h ∈ Ext2Db
SO(N−1,O)(GrSON

)(IC(Q
N−3), IC(QN−3)) is the

multiplication by the first Chern class of the normal line bundleNQN−3/QN−2 .

This normal bundle is isomorphic to the line bundle O(1) restricted from

PN−1 under the tautological embedding QN−3 ⊂ QN−2 ⊂ PN−1.

If N �= 4, the Picard group of the connected component GroddSON
contain-

ing QN−3 is isomorphic to Z. Its ample generator is denoted LN , the deter-

minant line bundle. The restriction LN |QN−3 is also isomorphic to O(1) �
NQN−3/QN−2 . We conclude that h∗ ◦h = c1(LN ) (when N �= 4). On the other

hand, in the equivariant derived Satake category Db
SO(N−1,O)(GrSON−1

) ∼=
DGs

perf

(
Sym(gs[−2])

)
the first Chern class

c1(LN−1) ∈ Ext2Db
SO(N−1,O)(GrSON−1

)(IC�N−1
, IC�N−1

) ⊂ gs ⊗ End(Vs)

corresponds to the canonical ‘action’ element g∗s ∼= gs ↪→ End(Vs). This

completes the verification of the desired compatibility with the left action

in case N �= 4. The case N = 4 is left as an exercise to the interested reader.

Theorem 2.2.1(a) is proved.

2.8. Some Invariant Theory

Recall the blinking notation of §2.1.

Lemma 2.8.1. (a) The morphism qs induces an isomorphism of categorical

quotients

(Vs ⊗ Vb)//(Gs ×Gb)
∼−→ g∗s//Gs

∼= Σs.
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(b) The following diagram commutes:

(Vs ⊗ Vb)//(Gs ×Gb)
qb−−−−→ g∗b//Gb

qs

⏐⏐��
∥∥∥

Σs
Πsb−−−−→ Σb.

Thus the image of the complete moment map

(qs,qb) : (Vs ⊗ Vb)//(Gs ×Gb) → g∗s//Gs × g∗b//Gb
∼= Σs × Σb

identifies (Vs ⊗ Vb)//(Gs ×Gb) with the graph of Πsb.

Proof. (a) In the odd case, the morphism q0 is clearly dominant, so

q∗
0 : C[so(V0)

∗]SO(V0) → C[V0 ⊗ V1]
SO(V0)×Sp(V1)

is injective. It remains to prove the surjectivity of q∗
0. It is enough to prove

the surjectivity of q∗
0 : C[so(V0)

∗] → C[V0 ⊗ V1]
Sp(V1). According to the first

fundamental theorem of the invariant theory for Sp(V1) [W], the algebra
C[V0 ⊗ V1]

Sp(V1) is generated by the quadratic expressions Qij , 1 ≤ i < j ≤
2n, of the following sort. We choose an orthonormal basis e1, . . . , e2n in V0

and denote by pi, 1 ≤ i ≤ 2n, the corresponding projections V0 ⊗ V1 → V1.
Then

Qij(v0 ⊗ v1, v
′
0 ⊗ v′1) := 〈pi(v0 ⊗ v1), pj(v

′
0 ⊗ v′1)〉.

Now so(V0) is formed by all the skew-symmetric matrices in the above basis.
We denote by Eij ∈ so(V0)

∗, 1 ≤ i < j ≤ 2n, the corresponding matrix
element. Then q∗

0(Eij) = Qij . This proves the desired surjectivity claim.
The argument in the even case is entirely similar. Note only that accord-

ing to the first fundamental theorem of the invariant theory for SO(V0) [W],
the algebra C[V0 ⊗ V1]

SO(V0) is generated by certain quadratic expressions
along with degree 2n expressions (coming from determinants). But since
dimV1 = 2n − 2 < 2n, these determinants vanish identically (so that
C[V0 ⊗ V1]

SO(V0) = C[V0 ⊗ V1]
O(V0)).

(b) The ring of invariant functions on so(V0) ∼= so(V0)
∗ is generated by

the coefficients of the characteristic polynomial CharD(z) = z2n +∑n
i=1 ai(D)z2n−2i, D ∈ so(V0), along with the Pfaffian Pfaff(D). In terms of

the identification C[so(V0)]
SO(V0) ∼= C[t0]

W0 , ai is the i-th elementary sym-
metric polynomial in ε21, . . . , ε

2
n (see §2.1), and Pfaff = ε1 · · · εn. The ring of

invariant functions on sp(V1) ∼= sp(V1)
∗ is generated by the coefficients of



718 Alexander Braverman et al.

the characteristic polynomial CharC(z) = zdimV1+
∑dimV1/2

i=1 bi(C)zdimV1−2i,
C ∈ sp(V1). In terms of the identification C[sp(V1)]

Sp(V1) ∼= C[t1]
W1 , bi is

the i-th elementary symmetric polynomial in δ21 , . . . , δ
2
dimV1/2

. In the odd

(resp. even) case, for A ∈ Hom(V0, V1) we have CharAtA(z) = CharAAt(z)
(resp. CharAtA(z) = z2CharAAt(z)). Also, in the even case Pfaff(AtA) =√

det(AtA) = 0. The claim (b) follows.
This completes the proof of the lemma.

We will call A ∈ V0⊗V1 regular if the Lie algebra stabso(V0)⊕sp(V1)(A) of
its stabilizer StabSO(V0)×Sp(V1)(A) has minimal possible dimension n (both
in even and odd cases). Such elements form an open subset (V0 ⊗ V1)

reg ⊂
V0 ⊗ V1.

Lemma 2.8.2. (a) For A ∈ Vs ⊗ Vb the following implications hold true:

qb(A) ∈ g
∗reg
b =⇒ A ∈ (Vs ⊗ Vb)

reg =⇒ qs(A) ∈ g∗regs .

(b) For A ∈ (Vs ⊗ Vb)
reg such that qb(A) is regular, we have

stabgs
(qs(A)) ←−−

prs
stabgs⊕gb

(A)
∼−−→
prb

stabgb
(qb(A)).

Thus in view of Lemma 2.8.1, passing to the images in categorical quotients
we obtain a morphism prspr

−1
b : Π∗

sbzb → zs of abelian Lie algebras bundles
over Σs.

(c) In view of identifications zs ∼= T ∗Σs, zb ∼= T ∗Σb of §2.1, the following
diagram commutes:

Π∗
sbzb

prspr
−1
b−−−−→ zs∥∥∥ ∥∥∥

Π∗
sbT

∗Σb
d∗Πsb−−−−→ T ∗Σs.

Proof. (a) The first implication follows from the classification of Gs × Gb-
orbits in Vs⊗Vb, see [KP, Theorem 6.5] and [GL, Proposition 4].3 The second
implication follows from the existence of a Weierstraß section [PV, §8.8]; see
e.g. [Mo, Proposition 3.1.1],

(Vs ⊗ Vb)//(Gs ×Gb) = Σs ↪→ (Vs ⊗ Vb)
reg.

Further, if a symplectic variety X is equipped with a hamiltonian action
of a Lie group G with Lie algebra g and with a moment map μ : X → g∗,

3We learned the argument from A. Berezhnoy, cf. [B, Theorems 1,2,7].
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then for a point x ∈ X, the cokernel of the differential dμ : TxX → g∗ is dual
to stabg(x). For (b) we may assume that A lies in the image of a Weierstraß
section Σs ↪→ (Vs ⊗ Vb)

reg. Then we have an exact sequence

0 → stabgs⊕gb
(A) → gs ⊕ gb → TA(Vs ⊗ Vb) → TAΣs → 0,

and (b) follows from Lemma 2.8.1(b) since the differential dqs identifies
TAΣs with Tqs(A)Σs.

(c) again follows from stabg(x)
∗ = Coker(dμ) and the last claim of Lem-

ma 2.8.1.

Proposition 2.8.3. Given a Gs-module V and a Gb-module V ′, the Kostant
functors of restriction to Kostant slices (notation of §2.1) induce an isomor-
phism

HomGs×Gb�C[Vs⊗Vb](C[Vs ⊗ Vb], V ⊗ C[Vs ⊗ Vb]⊗ V ′)
∼−→HomTΣs

(OΣs
, κs(V )⊗C[Σs] dΠ

∗
sbκb(V

′)).

Here we view Σs as the zero section of the tangent bundle TΣs, so that OΣs

acquires a structure of OTΣs
-module.

Proof. Since the codimension of the complement (Vs ⊗ Vb)� (Vs ⊗ Vb)
reg in

Vs⊗Vb is at least 2, the LHS can be computed after restriction to (Vs⊗Vb)
reg,

and then it coincides with the RHS by Lemma 2.8.2(c).

2.9. Nilpotent support and compactness

We prove Theorem 2.2.1(f). The argument repeats the proof of [AGa, Theo-
rem12.5.3]. Namely,Dcomp

SON−1
(GrSON

) is generated byDb
SO(N−1,O)(GrSON−1

)∗
Ẽ0∗Db

SO(N,O)(GrSON
) by the argument of loc. cit. Here Ẽ0 stands for the av-

eraging AvSO(N−1,O),!E0. Again by loc. cit. Ẽ0 is isomorphic (up to a shift)
to Φ(G• ⊗Sym(gs[−2])Gs C) (we use the homomorphism q∗

s : Sym(gs[−2]) →
G•). Also, Lemma 2.8.1(a) implies C[Vs ⊗ Vb] ⊗C[gs]Gs C = C[N1̄]. Now the
desired equivalence follows by the compatibility with the spherical Hecke
actions.

Recall the Weierstraß section Σs ↪→ Vs⊗Vb of the proof of Lemma2.8.2(a).
For A ∈ DG0̄

perf(G
•) we have a canonical isomorphism Γ(Σs,A|Σs

) ∼=
H•

SO(N−1,O)(GrSON
,Φ(A)). The intersection Σs ∩ N1̄ is just one point (a

regular nilpotent element A ∈ Hom(V0, V1)), so the nilpotent support con-
dition implies dimΓ(Σs,A|Σs

) < ∞. Conversely, since the support of A is
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invariant with respect to dilations, the condition dimΓ(Σs,A|Σs
) < ∞ im-

plies suppA ⊂ N1̄.

This completes the proof of Theorem 2.2.1(f).

2.10. The monoidal property of Φ

The argument is similar to that of [BFGT, §3.16]. The monoidal struc-
ture ⊗G• on DG0̄

perf(G
•) is defined via the kernel C[Δ]•: the diagonal G0̄-

equivariant dg-G•-trimodule. The fusion monoidal structure � on
Db

SON−1
(GrSON

) transferred to DG0̄

perf(G
•) via the equivalence Φ is also de-

fined via a kernel K• (a G0̄-equivariant dg-G•-trimodule). We have to con-
struct an isomorphism of G0̄-equivariant dg-G

•-trimodules C[Δ]• ∼−→ K•.
The purity of � implies the formality of K•, and it suffices to iden-

tify C[Δ]• ∼−→ K• as trimodules over the commutative graded algebra G•.

We know that the deequivariantized category Ddeeq
SON−1

(GrSON
) is generated

by E0. Furthermore, in the induced monoidal structure � of Ddeeq
SON−1

(GrSON
)

we have E0 �E0 = E0, and finally, ExtDdeeq
SON−1

(GrSON
)(E0, E0) = G•. The de-

sired isomorphism follows.

This completes the proof of the monoidal property of Φ along with The-
orem 2.2.1.

3. Complements

3.1. Loop rotation and quantization

We have H•
Gm

(pt) = C[�]. We consider the “graded Weyl algebra” D• of
V0 ⊗ V1: a C[�]-algebra generated by V0 ⊗ V1 with relations [v0 ⊗ v1, v

′
0 ⊗

v′1] = (v0, v
′
0) · 〈v1, v′1〉 · � (notation of §2.1). It is equipped with the grading

deg(v0 ⊗ v1) = 1, deg � = 2. We will view it as a dg-algebra with trivial
differential, equipped with a natural action of G0̄ = SO(V0)× Sp(V1).

Theorem 3.1.1. There exists an equivalence of triangulated categories
Φ� : D

G0̄

perf(D
•) ∼−→ Db

SO(N−1,O)�Gm
(GrSON

) commuting with the actions of

the monoidal spherical Hecke categories PervSO(N−1,O)�Gm
(GrSON−1

) and
PervSO(N,O)�Gm

(GrSON
) by the left and right convolutions.

Proof. We essentially repeat the argument of [BFGT, §5.2]. We set E•
� :=

Ext•
Ddeeq

SO(N−1,O)�Gm
(GrSON

)
(E0, E0). Since it is an Ext-algebra in the deequiv-

ariantized category, it is automatically equipped with an action of SO(V0)×
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Sp(V1) = G0̄, and we can consider the corresponding triangulated cate-
gory DG0̄(E•

�). Similarly to Lemma 2.4.2, there is a canonical equivalence
DG0̄(E•

�)
∼−→ Db

SO(N−1,O)�Gm
(GrSON

). It remains to construct an isomor-

phism φ•
� : D

• ∼−→ E•
�.

Note that E•
� is a C[�]-algebra, and

E•
�/(� = 0) = E• ∼= G• = Sym(Π(V0 ⊗ V1)[−1]),

so that E• acquires a Poisson bracket from this deformation. We claim that
this Poisson bracket arises from the symplectic form (, ) ⊗ 〈, 〉 on V0 ⊗ V1.
Indeed, by construction, this Poisson bracket is SO(V0) × Sp(V1)-invariant
of degree −1. There is a unique such bracket up to a multiplicative con-
stant, and we just have to determine this constant. We may and will forget
the grading. The desired constant is determined by the condition that the
moment map

q∗
0 : C[so(V0)

∗] → C[V0 ⊗ V1] ∼= Sym(V0 ⊗ V1) ∼= E

is Poisson (where E stands for E• with grading forgotten). The verification
of this condition is identical in the odd and even cases, and we consider the
odd case only. We have functors

Υ� : D
b
SO(N−1,O)�Gm

(GrSON−1
) → Db

SO(N−1,O)�Gm
(GrSON

), F �→ F ∗ E0;

Υ: Db
SO(N−1,O)(GrSON−1

) → Db
SO(N−1,O)(GrSON

), F �→ F ∗ E0.

By the argument of §2.7, the diagram

(3.1.1)

D
SON−1

perf

(
Sym(so(V0)[−2])

) q∗
0−−−−→ DG0̄

perf

(
Sym(Π(V0 ⊗ V1)[−1])

)
β

⏐⏐�� Φ

⏐⏐��

Db
SO(N−1,O)(GrSON−1

)
Υ−−−−→ Db

SO(N−1,O)(GrSON
)

commutes, where β stands for the second equivalence of [BF, Theorem 5].
But by the same [BF, Theorem5], the deformationDb

SO(N−1,O)�Gm
(GrSON−1

)

of Db
SO(N−1,O)(GrSON−1

) induces the standard Poisson structure on so(V0)
∗.

It follows that q∗
0 : C[so(V0)

∗] → E is Poisson.
Finally, D• is a unique graded C[�]-algebra with D•/(� = 0) =

Sym(Π(V0 ⊗ V1)[−1]) such that the corresponding Poisson bracket on
Sym(Π(V0 ⊗ V1)[−1]) is the standard one. Thus the desired isomorphism
φ� is constructed along with equivalence Φ�.
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3.2. Gaiotto conjectures

We recall the setup and notation of [BFGT, §2]. Given a nonnegative integer
m such that 2m+1 ≤ N we set M = N−1−2m and consider an orthogonal
decomposition CN = C2m ⊕ CM+1. Furthermore, we choose an anisotropic
vector v ∈ CM+1, and set CM = (Cv)⊥. It gives rise to an embedding
SOM ↪→ SOM+1 ↪→ SON . We choose a complete self-orthogonal flag

0 ⊂ L1 ⊂ L2 ⊂ . . . ⊂ L2m−1 ⊂ C2m, Li = (L2m−i)⊥.

We consider the following partial flag in CN :

0 ⊂ L1 ⊂ . . . ⊂ Lm ⊂ Lm ⊕ CM+1

⊂ Lm+1 ⊕ CM+1 ⊂ . . . ⊂ L2m−1 ⊕ CM+1 ⊂ CN .

We consider a unipotent subgroup UM,N ⊂ SON with Lie algebra uM,N ⊂
soN formed by all the endomorphisms preserving the above partial flag
and inducing the zero endomorphism of the associated graded space. The
composition with orthogonal projection CN � C2m gives rise to a mor-
phism UM,N � U2m onto the upper triangular unipotent subgroup of SO2m.
Note that this morphism is not a homomorphism. Nevertheless, composing
this morphism with a regular character U2m → Ga we obtain a character
χ′
M,N : UM,N → Ga. Furthermore, we choose a vector � ∈ Lm � Lm−1. Then

the matrix coefficient u �→ (uv, �) defines a character uM,N → C. The cor-
responding character UM,N → Ga will be denoted χ′′

M,N . Finally, we set

χ0
M,N := χ′

M,N + χ′′
M,N : UM,N → Ga. Note that the pair (UM,N , χ0

M,N ) is
invariant under the conjugation action of SOM ⊂ SON .

We extend scalars to the Laurent series field F to obtain the same named
character of UM,N (F). We define

χM,N := Rest=0 χ
0
M,N : UM,N (F) → Ga.

Let κN stand for the bilinear form 1
2 Tr(X ·Y ) on soN . It corresponds to the

determinant line bundle on GrSON
(the ample generator of the

Picard group). Given c ∈ C× we consider the derived category

D
SO(M,O)�UM,N (F),χM,N

c−1 (GrSON
) of (SO(M,O)�UM,N (F), χM,N )-equivariant

D-modules on GrSON
twisted by c−1κN .

On the dual side, in the odd case §1.2(a), we consider the Lie superal-
gebra osp(2n − 2m|2n). In the even case §1.2(b), we consider the Lie su-
peralgebra osp(2n|2n − 2m − 2). The Killing form Killing2n−2m|2n (resp.
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Killing2n|2n−2m−2) is proportional to the supertrace form of the defining
representation κ2n−2m|2n(X,Y ) = sTr(X · Y ):

Killing2n−2m|2n = (−2m− 2)κ2n−2m|2n

(resp. Killing2n|2n−2m−2 = 2mκ2n|2n−2m−2),

see [Mu, 2.7.7.(c)]. For c ∈ C we consider the derived Kazhdan-Lusztig cat-
egory KLc(ôsp(2n−2m|2n)) of SO(2n−2m,O)×Sp(2n,O)-equivariant ob-
jects in ôsp(2n−2m|2n)-mod at central charge c·κ2n−2m|2n−1

2 Killing2n−2m|2n
(resp. the derived category KLc(ôsp(2n|2n−2m−2)) of SO(2n,O)×Sp(2n−
2m−2,O)-equivariant objects in ôsp(2n|2n−2m−2)-mod at central charge
c · κ2n|2n−2m−2 − 1

2 Killing2n|2n−2m−2).

Conjecture 3.2.1. (a) In the odd case 1.2(a), for c ∈ C× the categories

D
SO(M,O)�UM,N (F),χM,N

c−1 (GrSON
) and KLc(ôsp(2n − 2m|2n)) are equivalent

as factorization categories.
(b) In the even case 1.2(b), for c ∈ C× the categories

D
SO(M,O)�UM,N (F),χM,N

c−1 (GrSON
) and KLc(ôsp(2n|2n − 2m − 2)) are equiv-

alent as factorization categories.

Remark 3.2.2. Let N = 4, M = 3. Then SO4
∼= (SL2× SL2)/{±1} (quo-

tient by the diagonal central subgroup), so each connected component of
GrSO4

is isomorphic to GrSL2
×GrSL2

. Hence the Picard group of each con-
nected component has rank 2, and we have a 2-parametric family of twist-
ings of D-modules on GrSO4

. On the dual side, we have a family D(2, 1;α)
of deformations of osp(4|2). It is expected that the categories of twisted
SO3-equivariant D-modules on GrSO4

are equivalent to the corresponding
Kazhdan-Lusztig categories for the affine Lie superalgebras D(2, 1;α)(1).

3.3. Orthosymplectic Kostka polynomials

We will use notation and results of [Mu, Chapter 3]. Recall that Borel subal-
gebras of osp(V0|V1) containing b0 ⊕ b1 ⊂ so(V0)⊕ sp(V1) (notation of §2.1)
are parametrized by shuffles [Mu, §3.3] (certain permutations of the set
{1, 2, . . . , 2n} in the odd case 1.2(a) (resp. of the set {1, 2, . . . , 2n−1} in the
even case 1.2(b))). We will need a shuffle

σN = (n+ 1, 1, n+ 2, 2, . . . , 2n− 1, n− 1, 2n, n)

in the odd case and

σN = (1, n+ 1, 2, n+ 2, . . . , n− 1, 2n− 1, n)
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in the even case. Note that σN is of type D [Mu, page 35]. The corresponding
Borel subalgebra of osp(V0|V1) will be denoted bN . This is the so calledmixed
Borel subalgebra of [GL, §4]. Its radical will be denoted by nN . According
to [Mu, Lemma 3.3.7(c)], the odd part nN

1̄
has Cartan eigenvalues

(3.3.1) RN+
1̄

= {εi + δj}1≤i,j≤n ∪ {εi − δj}1≤i<j≤n ∪ {δi − εj}1≤i≤j≤n

in the odd case, and

(3.3.2) RN+
1̄

= {εi + δj}1≤j<n
1≤i≤n ∪ {εi − δj}1≤i≤j<n ∪ {δi − εj}1≤i<j≤n

in the even case. Thus nN
1̄

is a Lagrangian subspace in V0 ⊗ V1. The set of

simple roots of nN
1̄

is

{δ1 − ε1, ε1 − δ2, δ2 − ε2, . . . , δn−1 − εn−1, εn−1 − δn, δn − εn, δn + εn},

in the odd case, and

{ε1 − δ1, δ1 − ε2, ε2 − δ2, . . . , δn−2 − εn−1, εn−1 − δn−1, δn−1 − εn, δn−1 + εn},

in the even case, cf. [Mu, Lemma 3.4.3(e)]. All the simple roots are odd
isotropic.

Given α ∈ t∗0 ⊕ t∗1 we define a polynomial LN
α (q) as follows: LN

α (q) :=∑
pNd qd where pNd is the number of (unordered) partitions of α into a sum

of d elements of RN+
1̄

.

Definition 3.3.1. (a) Given λ0, μ0 ∈ Λ+
0 , λ1, μ1 ∈ Λ+

1 , we define the or-
thosymplectic Kostka polynomial KN

(λ0,λ1),(μ0,μ1)
(q) by the following Lusztig-

Kato formula (cf. [Lus, (9.4)], [K, Theorem 1.3] and [P, (2.1)]):

KN
(λ0,λ1),(μ0,μ1)

(q)

=
∑

w0∈W0, w1∈W1

(−1)w0(−1)w1LN
(w0(λ0+ρ0)−ρ0−μ0,w1(λ1+ρ1)−ρ1−μ1)

(q),

notation of §2.1.
(b) We say that (λ0, λ1) ≥ (μ0, μ1) if (λ0, λ1)− (μ0, μ1) ∈ N〈RN+

1̄
〉.

In more concrete terms, recall that λ0 is a collection of integers

(λ
(1)
0 , . . . , λ

(n)
0 ) such that λ

(1)
0 ≥ λ

(2)
0 ≥ . . . ≥ λ

(n−1)
0 ≥ |λ(n)

0 |, while λ1 is

a partition of length n λ
(1)
1 ≥ λ

(2)
1 ≥ . . . ≥ λ

(n)
1 in the odd case (resp. of

length n− 1 in the even case). In the odd case (λ0, λ1) ≥ (μ0, μ1) if
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(3.3.3) λ
(1)
1 ≥ μ

(1)
1 , λ

(1)
1 + λ

(1)
0 ≥ μ

(1)
1 + μ

(1)
0 , . . . ,

λ
(1)
1 + λ

(1)
0 + . . .+ λ

(n−1)
0 + λ

(n)
1 ≥ μ

(1)
1 + μ

(1)
0 + . . .+ μ

(n−1)
0 + μ

(n)
1 ,

λ
(1)
1 + λ

(1)
0 + . . .+ λ

(n)
1 + λ

(n)
0 ∈ 2N+ μ

(1)
1 + μ

(1)
0 + . . .+ μ

(n)
1 + μ

(n)
0 ,

λ
(1)
1 + λ

(1)
0 + . . .+ λ

(n)
1 − λ

(n)
0 ≥ μ

(1)
1 + μ

(1)
0 + . . .+ μ

(n)
1 − μ

(n)
0 .

In the even case (λ0, λ1) ≥ (μ0, μ1) if

(3.3.4) λ
(1)
0 ≥ μ

(1)
0 , λ

(1)
0 + λ

(1)
1 ≥ μ

(1)
0 + μ

(1)
1 , . . . ,

λ
(1)
0 + λ

(1)
1 + . . .+ λ

(n−1)
0 + λ

(n−1)
1 ≥ μ

(1)
0 + μ

(1)
1 + . . .+ μ

(n−1)
0 + μ

(n−1)
1 ,

λ
(1)
0 + λ

(1)
1 + . . .+ λ

(n−1)
1 + λ

(n)
0 ∈ 2N+ μ

(1)
0 + μ

(1)
1 + . . .+ μ

(n−1)
1 + μ

(n)
0 ,

λ
(1)
0 + λ

(1)
1 + . . .+ λ

(n−1)
1 − λ

(n)
0 ≥ μ

(1)
0 + μ

(1)
1 + . . .+ μ

(n)
1 − μ

(n)
0 .

(In both cases, the first three lines compare partial sums of the shuffled

sequences (λ
(1)
1 , λ

(1)
0 , . . . , λ

(n)
1 , λ

(n)
0 ) and (μ

(1)
1 , μ

(1)
0 , . . . , μ

(n)
1 , μ

(n)
0 ) in the odd

case, resp. (λ
(1)
0 , λ

(1)
1 , . . . , λ

(n−1)
0 , λ

(n−1)
1 , λ

(n)
0 ) and (μ

(1)
0 , μ

(1)
1 , . . . , μ

(n−1)
0 ,

μ
(n−1)
1 , μ

(n)
0 ) in the even case.)

Recall that nN
1̄

is a B0 × B1-module for the adjoint action (here B0 ⊂
SO(V0) and B1 ⊂ Sp(V1) are the Borel subgroups with Lie algebras b0 ⊂
so(V0), b1 ⊂ sp(V1) respectively, see §2.1). We denote by ÑN

1̄
the associated

vector bundle over the flag variety B0 × B1 := SO(V0)/B0 × Sp(V1)/B1.

To a pair (μ0, μ1) ∈ Λ+
0 ⊕Λ+

1 we associate the SO(V0)×Sp(V1)-equivariant
line bundle O(μ0, μ1) on the flag variety B0 × B1: the action of B0 × B1 on
its fiber over the point (B0, B1) ∈ B0 × B1 is via the character (−μ0,−μ1).
Its global sections Γ(B0 ×B1,O(μ0, μ1)) is the irreducible SO(V0)× Sp(V1)-
module Vμ∗

0
⊗Vμ∗

1
with lowest weight (−μ0,−μ1). The character of Vμ∗

0
⊗Vμ∗

1

will be denoted by χ(μ∗
0 ,μ

∗
1)
.

The pullback of O(μ0, μ1) to ÑN
1̄

will be also denoted O(μ0, μ1). We
consider the graded equivariant Euler characteristics

χ(ÑN
1̄ ,O(μ0, μ1)) = χ(B0 × B1, Sym

•nN∨
1̄ ⊗O(μ0, μ1)) :

formal Taylor power series in q with coefficients in the character ring of
SO(V0) × Sp(V1). Here nN

1̄
is the sheaf of sections of the SO(V0) × Sp(V1)-

equivariant vector bundle over B0 × B1 associated to the B0 × B1-module
nN
1̄
. In other words, nN

1̄
is the sheaf of sections of ÑN

1̄
viewed as a vector

bundle over B0 × B1.
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Proposition 3.3.2 (D. Panyushev). We have

χ(B0 × B1, Sym
•nN∨

1̄ ⊗O(μ0, μ1)) =
∑

(λ0,λ1)≥(μ0,μ1)

KN
(λ0,λ1),(μ0,μ1)

(q)χ(λ∗
0 ,λ

∗
1)
.

Proof. This is a particular case of [P, Theorem 3.8].

Corollary 3.3.3. For any (λ0, λ1) ≥ (μ0, μ1) we have

KN
(λ0,λ1),(μ0,μ1)

(q) ∈ N[q].

Proof. The desired positivity follows from the higher cohomology vanish-
ing R>0Γ(ÑN

1̄
,O(μ0, μ1)) = 0. Note that the canonical class of ÑN

1̄
is

SO(V0)× Sp(V1)-equivariantly trivial. Indeed, a straightforward calculation
shows that the sum of all elements of RN+

1̄
equals 2ρ0 + 2ρ1. But the set of

Cartan eigenvalues in the fiber of the tangent bundle T(B0,B1)B0 × B1 coin-
cides with the set of negative roots, and they sum up to −2ρ0 − 2ρ1. Note
that in the language of Lie superalgebras, the canonical class vanishing is
equivalent to the equality 2ρ = 0, where 2ρ is the sum of all even roots in
a mixed Borel subgroup minus the sum of all odd roots in this Borel sub-
group. The equality 2ρ = 0 follows from the fact that all the simple roots of
a mixed Borel subgroup are odd isotropic [Mu, Corollary 8.5.4].

We have a proper projection

ÑN
1̄ → V0 ⊗ V1 = Πosp(V0|V1)1̄

birational onto its image (odd nilpotent cone NN
1̄
, see [GL, Théorème 1]

and [Mo, Theorem 2.3.5]4). Now the desired cohomology vanishing follows
by the Kempf collapsing as in the proof of [P, Theorem 3.1.(ii)].

Remark 3.3.4. In [GL, Définition 5.1)] Gruson and Leidwanger define a
mixed Borel subalgebra in osp(2n+ 1|2n) (in fact, they define mixed Borel
subalgebras in arbitrary orthosymplectic Lie superalgebras). An obvious
modification of Definition 3.3.1 produces Kostka polynomials in this case
(and for mixed Borel subalgebras in arbitrary orthosymplectic Lie superal-
gebras). However, the proof of positivity Corollary 3.3.3 fails since ρ �= 0
(not all the simple roots are isotropic), cf. [Mo, Proposition 4.0.1]. It would
be interesting to know if the positivity still holds true in this case.

4In fact, this resolution of the orthosymplectic odd nilpotent cone is a partic-
ular case of a general construction [H]. We are grateful to A. Elashvili for this
observation.
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Theorem 3.3.5. (a) In the odd case 1.2(a), an SO(N − 1,O)-orbit Oμ0
μ1 ⊂

GrSON
lies in the closure of Oλ0

λ1
iff (λ0, λ1) ≥ (μ0, μ1).

(b) In the even case 1.2(b), an SO(N − 1,O)-orbit Oμ1
μ0 ⊂ GrSON

lies in
the closure of Oλ1

λ0
iff (λ0, λ1) ≥ (μ0, μ1).

(c) In the odd case, we have

q−dimO
μ0
μ1KN

(λ0,λ1),(μ0,μ1)
(q−1) =

∑
i

dim(ICλ0

λ1
)−i
O

μ0
μ1

q−i.

(d) In the even case, we have

q−dimO
μ1
μ0KN

(λ0,λ1),(μ0,μ1)
(q−1) =

∑
i

dim(ICλ1

λ0
)−i
O

μ1
μ0

q−i,

(the Poincaré polynomials of the ICλs

λb
-stalks at the orbit Oμs

μb).

Proof. (a) We first prove that if Oμ0
μ1 ⊂ Oλ0

λ1
then (λ0, λ1) ≥ (μ0, μ1). We

view O
μ0
μ1 ,O

λ0

λ1
as connected components of the fixed point sets of involu-

tion ς of the corresponding GL(N − 1,O)-orbits in GrGLN
as in the proofs

of Lemmas 2.3.2, 2.3.3. Recall that the set of GL(N−1,O)-orbits in GrGLN

is parametrized by bisignatures

(θ0,θ1) = (θ
(1)
0 ≥ . . . ≥ θ

(N−1)
0 , θ

(1)
1 ≥ . . . ≥ θ

(N)
1 ),

and the adjacency order on orbits is given on bisignatures by (θ0,θ1) ≥
(ζ0, ζ1) if

θ
(1)
1 ≥ζ

(1)
1 , θ

(1)
1 + θ

(1)
0 ≥ζ

(1)
1 + ζ

(1)
0 , θ

(1)
1 + θ

(1)
0 + θ

(2)
1 ≥ζ

(1)
1 + ζ

(1)
0 + ζ

(2)
1 , . . . ,

θ
(1)
1 + θ

(1)
0 + . . .+ θ

(N−1)
1 + θ

(N−1)
0 ≥ ζ

(1)
1 + ζ

(1)
0 + . . .+ ζ

(N−1)
1 + ζ

(N−1)
0 ,

θ
(1)
1 + θ

(1)
0 + . . .+ θ

(N−1)
0 + θ

(N)
1 = ζ

(1)
1 + ζ

(1)
0 + . . .+ ζ

(N−1)
0 + ζ

(N)
1 .

Indeed, the similar description of the adjacency order on the set of GL(N,O)-
orbits in the mirabolic Grassmannian is given in [FGT, Proposition 12] as
a corollary of [AH, Theorem 3.9]. The desired description of the adjacency
order on the set of GL(N − 1,O)-orbits in GrGLN

follows by the arguments
of [BFGT, §4.4].

Now if Oμ0
μ1 ⊂ Oλ0

λ1
, then the GL(N−1,O)-orbit inGrGLN

containing Oμ0
μ1

(note that it depends only on the bipartition (|μ0| := (μ
(1)
0 ≥ . . . ≥ μ

(n−1)
0 ≥

|μ(n)
0 |), μ1)) lies in the closure of the GL(N−1,O)-orbit inGrGLN

containing
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Oλ0

λ1
. This implies the first three lines of inequalities (3.3.3) for (|λ0|, λ1) and

(|μ0|, μ1). The following trick takes care of the last inequality of (3.3.3).

Take any dominant coweight ν0 = (ν
(1)
0 , . . . , ν

(n)
0 ) (such that ν

(1)
0 ≥ ν

(2)
0 ≥

. . . ≥ ν
(n−1)
0 ≥ |ν(n)0 |) of SON−1. Consider the corresponding convolution

m(Gr
ν0

SON−1
×̃ Oλ0

λ1
) = Oν0+λ0

λ1
. Since O

μ0
μ1 ⊂ Oλ0

λ1
, applying convolution with

Grν0

SON−1
to both sides, we deduce Oν0+μ0

μ1 ⊂ Oν0+λ0

λ1
. But the first three lines

of (3.3.3) for (|ν0 + λ0|, λ1), (|ν0 + μ0|, μ1) with arbitrary ν0 imply the last
two (and thus all) lines of (3.3.3) for (λ0, λ1), (μ0, μ1).

This completes the proof of the ‘only if’ direction of (a). The proof of
the ‘only if’ direction of (b) is entirely similar. We will return to the proof
of the ‘if’ directions of (a,b) after the proof of (c,d).

(c) We choose a base point in an orbit Oμ0
μ1 (e.g. the one supplied in the

proofs of Lemmas 2.3.2, 2.3.3) and denote by p : SO(N − 1,O) → O
μ0
μ1 the

corresponding action morphism. We denote by Cμ0
μ1 the direct image of the

constant sheaf p∗CSO(N−1,O). Note that the action of SO(N − 1,O) on O
μ0
μ1

factors through the quotient SO(N − 1,O)/U by a normal unipotent sub-
group of finite codimension, so that p factors through p′ : SO(N−1,O)/U →
O

μ0
μ1 , and the rigorous definition of Cμ0

μ1 is p′
∗CSO(N−1,O)/U . It is canonically

independent of the choice of U , hence our notation p∗CSO(N−1,O).

Now Hom•
Db

SO(N−1,O)(GrSON
)(IC

λ0

λ1
, Cμ0

μ1 ) is canonically dual to the stalk of

ICλ0

λ1
at the orbit O

μ0
μ1 . So it suffices to prove that under the equivalence

Φ of Theorem 2.2.1 we have Φ(Cμ0
μ1 ) � Cμ0

μ1 , where Cμ0
μ1 ∈ DG0̄

perf(G
•) is the

following dg-module. It is equal to the global sections Γ(ÑN
1̄
,O(μ0, μ1))

(cf. the proof of Corollary 3.3.3) equipped with the trivial differential and
the grading coming from the dilation action of C× on ÑN

1̄
and the natu-

ral C×-equivariant structure of the line bundle O(μ0, μ1) on ÑN
1̄
. The G•-

module structure comes from the natural C[V0 ⊗ V1]-module structure on
Γ(ÑN

1̄
,O(μ0, μ1)) and the above grading.

The isomorphism class of Cμ0
μ1 is uniquely characterized by the following

properties:

(i) If Hom•
Db

SO(N−1,O)(GrSON
)(IC

λ0

λ1
, Cμ0

μ1 ) �= 0, then O
μ0
μ1 ⊂ Oλ0

λ1
, and

Hom•
Db

SO(N−1,O)(GrSON
)(IC

μ0
μ1
, Cμ0

μ1 ) = C[− dimO
μ0
μ1 ];

(ii) Cμ0
μ1 lies in the triangulated subcategory of Db

SO(N−1,O)(GrSON
) gen-

erated by {ICν0
ν1
} for pairs (ν0, ν1) such that Oν0

ν1
⊂ O

μ0
μ1 .

So we have to check the corresponding properties of Cμ0
μ1 . Due to the ‘only

if’ direction of part (a) proved above, we may replace the closure relations by
the inequalities (λ0, λ1) ≥ (μ0, μ1) in (i) (resp. (ν0, ν1) ≤ (μ0, μ1) in (ii)). To
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check (ii) we consider the G0̄-module (Cμ0
μ1 )0 equal to TorG

•
(Cμ0

μ1 ,C), where C
is the quotient of G• modulo the augmentation ideal. We have to verify that
if an irreducible G0̄-module Vν0

⊗Vν1
enters (Cμ0

μ1 )0 with nonzero multiplicity,
then (ν0, ν1) ≤ (μ0, μ1). We apply the base change [Lur, Proposition 2.5.14]
for the Cartesian square

B̃0 × B1 −−−−→ ÑN
1̄⏐⏐� ⏐⏐�

0 −−−−→ V0 ⊗ V1.

Here B̃0 × B1 is a derived scheme supported at the zero section of ÑN
1̄

with

the structure sheaf Λ• ((V0 ⊗ V1)/n
N
1̄
[−1]

)∨
, where V0 ⊗ V1 is the trivial

vector bundle on B0 × B1 with fiber V0 ⊗ V1. It follows that the G0̄-module
(Cμ0

μ1 )0 equals RΓ(B0 ×B1,Λ
•(nN

1̄
[1])⊗O(μ0, μ1)) (here the exterior algebra

of the shifted vector bundle denotes a finite dimensional algebra as opposed
to the symmetric one). Indeed, the vector bundle nN

1̄
over B0 × B1 is by

construction embedded into the trivial vector bundle V0⊗V1 as a Lagrangian
subbundle, so the quotient (V0 ⊗ V1)/n

N
1̄

is canonically identified with the

dual vector bundle nN∨
1̄

.
Now the verification of (i,ii) is the same as the one for steps (i,ii) of the

proof of [P, Theorem 5.4]. This completes the proof of (c). The proof of
(d) is entirely similar. Finally, we return to the proof of the ‘if’ direction of
(a,b). The arguments in the odd and even cases being similar, we consider
the odd case only.

Since the stalks of ICλ0

λ1
do not vanish precisely at the orbits Oμ0

μ1 lying in

the closure of Oλ0

λ1
, and the stalks are known by (c), it remains to check that

KN
(λ0,λ1),(μ0,μ1)

�= 0 if (λ0, λ1) ≥ (μ0, μ1). From Definition 3.3.1 it is easy to

see that the summand of LN
(λ0−μ0,λ1−μ1)

of highest degree (corresponding to

the decomposition of (λ0, λ1)− (μ0, μ1) into the sum of simple roots) cannot
be cancelled by any other summands in the definition ofKN

(λ0,λ1),(μ0,μ1)
. Thus

we conclude that KN
(λ0,λ1),(μ0,μ1)

�= 0.
The theorem is proved.
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Math. Helv. 58 (1983), no. 2, 186–245. MR0705534

[Lur] J. Lurie, Derived Algebraic Geometry VIII: Quasi-Coherent
Sheaves and Tannaka Duality Theorems, https://www.math.ias.
edu/∼lurie/papers/DAG-VIII.pdf

[Lus] G. Lusztig, Singularities, character formulas, and a q-analogue
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