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Abstract: The paper presents the long-time dynamics with multiple collisions of breathers in the
super compact Zakharov equation for unidirectional deep water waves. Solutions in the form of
breathers were found numerically by the Petviashvili method. In the terms of envelope and the
assumption of the narrow spectral width the super compact equation turns into the well known exact
integrable model—nonlinear Schrödinger equation, and the breather solution in this case turns into
envelope soliton. The results of numerical simulations show that two main scenarios of long-time
dynamics occur during numerous collisions of breathers. In the first case, one of the breathers
regularly takes a number of particles from the other one at each collision and in the second one
a structure resembling the bi-soliton solution of nonlinear Schrödinger equation arises during the
collision. Despite these scenarios, it is shown that after numerous collisions the only one breather
having initially a larger number of particles remains.

Keywords: soliton; breather; surface gravity waves; super compact Zakharov equation; nonlinear
Schrödinger equation

1. Introduction

Turbulence in nonlinear continuous media often accompanied by the appearance of localized
nonlinear structures. In those cases, when the equations describing the medium have stable soliton
solutions, the solitons are natural candidates for the role of such structures, and turbulence can be
called soliton turbulence.

The study of soliton turbulence in various nonlinear models is of considerable interest that can be
confirmed by numerous works. The problem of a statistical description of a large number of solitons in
the framework of the Korteweg-de Vries equation was first considered in [1]. The kinetic equation was
obtained that describes the distribution function of soliton parameters for the case of a low density
of solitons. The turbulence of rarified soliton gas plays the key role in the formation of wave field
statistics (see the works [2,3]). With the use of direct numerical simulations methods, the collective
behaviour of soliton ensembles was also studied in [4]. The general case of dense soliton gas was
considered in [5,6].

The nonlinear Schrödinger equation (NLSE) is a special case of such models and a universal model
for wave turbulence studying. However, it is an integrable equation, and turbulence in the framework
of the NLSE has essential peculiarities. Collisions of the NLS solitons are completely “elastic”, that is,
there are no energy exchanges between them and their basic parameters, amplitudes and velocities,
do not change. One of the main parameters that plays an important role in the dynamics of solitons
pairwise interactions is the relative phase of solitons at the moment of the collision. For example,
the maximum amplitude amplification of solitons in a collision is determined by the synchronization of
their phases. Phase synchronization also plays an important role in the formation of extreme amplitude
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waves or rogue waves. In recent works [7] and [8] phase synchronization in multisoliton ensembles
was studied analytically. Using the inverse scattering transform formalism, the authors of work [9]
show that the dense soliton gas is the model of the asymptotic stage of the noise-induced modulation
instability in the NLSE. Rarefied soliton gas was also reproduced experimentally in an optical fiber
ring resonator with the initial wavefield taken as arithmetic superposition of individual solitons [10]
and in water wave tank [11].

A completely different situation is observed in non-integrable systems. The interaction of solitons
is nontrivial, their number can change, as well as their energy, amplitude or velocity. In work [12]
it was studied the dynamics of soliton turbulence in nonintegrable, but NLSE-like, equations with
power-law nonlinearity. The restriction on the type of nonlinearity chosen in that work allowed the
authors to use the available analytical soliton solutions to obtain the analytical estimation for changing
in the number of particles of solitons during their pairwise interaction. Based on the balance of the
number of particles, momentum and energy, this relation shows that after numerous interactions
only one soliton remains at the end. A few numerical simulations confirmed this result in various
nonintegrable equations with simple power-law nonlinearity.

In our work we consider multiple interactions of breathers on the surface of deep water in the
super-compact Zakharov equation (SCZE). It is currently the simplest form for the 1D deep water
waves equation (see [13]) derived from the compact Zakharov equation [14,15]. The breathers were
obtained in [16] and the envelope of such a breather can be called the soliton. It is shown in [17] that
special solutions of the SCZE called breathers can exchange energy during their pairwise interactions.
The integrability of the 1D Zakharov equation, as well as the SCZE, is analyzed numerically and
analitically in [18]. It is found that the six-wave interaction amplitude is not zero for the equation.
Thus, it is not integrable. However, the integrable NLSE model can be derived from the SCZE model
as shown in [19] and the breather solution in this case corresponds to the NLSE envelope soliton,
as previously noted. In addition, the results of numerical experiments show that the radiation of
incoherent waves is small and it is clearly observed that the phases of breathers are synchronized at
the moment of collision [17,18]. This allows us, in a sense, to consider the SCZE very similar to the
NLSE or NLSE-like and call it “almost integrable”.

On the basis of the above, we believe that the use of the NLSE model for our further evaluations
is reasonable, despite its approximation. We can also expect that numerous breathers interactions in
the SCZE model will result in the formation of a single breather.

2. The Super Compact Zakharov Equation and the Nonlinear Schrödinger Equation

The super-compact Zakharov equation for unidirectional deep water waves has the following
form [13]:

∂c
∂t

+ iω̂kc− i∂+x

(
|c|2 ∂c

∂x

)
= ∂+x

(
k̂
(
|c|2
)

c
)

. (1)

here the operator ω̂k is Fourier multiplier by the
√

gk, where g is free fall acceleration. The operator
∂+x in the Fourier space is ikθ(k) where θ(k) is the Heaviside step function.

Physical variables of surface η(x, t) and potential ψ(x, t) can be recovered by canonical
transformation (see details in [13]):

η(x) =
k̂−

1
4

√
2g

1
4
(c(x) + c∗(x)) + . . . ,

ψ(x) = −i
g

1
4 k̂−

3
4

√
2

(c(x)− c∗(x)) + . . .

The operator k̂α corresponds to the multiplication by |k|α in Fourier space.
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The SCZE has a breather solution:

c(x, t) = cbr (x−V0t; δ) eik0x−iωk0
t−iδ2t, (2)

where V0 =
ωk0
2k0

is the breather group velocity. The breather solution can be found numerically only,
for example, by the Petviashvili method (see details in [13]). Introducing the envelope variable C(x, t)
such that c(x, t) = C(x, t)eik0x−iωk0

t and assuming the narrow spectral width, one can easily derive the
NLSE (see [19])):

∂C
∂t

+
iωk0

8k2
0

∂2C
∂x2 + ik2

0

[
|C|2C

]
= 0. (3)

Here the Equation (3) is written in the reference frame moving with the velocity V0. The NLSE is
a completely integrable model and an exact one-soliton and multisoliton solutions are well-known
(see [20,21]).

Cs(x, t) =
δ

k0

exp
[
−i 2k0U

V0
x + i U2k0

V0
t− i δ2

2 t
]

cosh
[

2δk0√
ωk0

(x−Ut)
] . (4)

The breather solution (2) corresponds to envelope solitons (4) in the NLSE approximation.

3. Numerical Simulations of Multiple Soliton Interactions

In this section, we discuss the long-time dynamics of breather (soliton) interactions in the SCZE.
To begin with, consider the numerous pairwise collisions of only two breathers. Their interaction
was studied in the periodic domain of length L in a reference frame moving at a velocity of V0.
The breathers had the same amplitudes and the following velocity values: V1 = V0 + δV and
V2 = V0 − δV, δV = 0.04V0. The initial conditions were chosen as in work [17]. The pseudo-spectral
Fourier method was used for the SCZE solving the fourth-order Runga-Kutta method was applied to
calculate time evolution. The FFTW3 library [22] was used for the fast Fourier transform procedure.
The multiplication of grid functions was carried out in x-space and to calculate derivatives and nonlocal
terms, the direct and inverse Fourier transform were used. One of the breathers having a higher velocity
also had a larger number of particles. In terms of Hamiltonian variable c(x) the expression for number
of particles has the following form:

N =
∫

n(x)dx =
∫

k̂−1c(x)c∗(x)dx (5)

Here n(x)—particle number density. For the sake of brevity, we label the soliton that initially had
a larger number of particles by the indices 1 while the soliton that initially had a smaller number of
particles by the indices 2.

In work [17], the dynamics of one pairwise breather collision were studied in details,
and the results were compared with well-known dynamics of the NLSE solitons pairwise interaction.
Unlike the NLSE, the SCZE breathers interacting for time, exchange their energy (number of particles
and momentum). Moreover, this exchange depends on the value of breather’s relative phase at the
moment of collision.

To make sure that the long-time interaction of breathers is independent of their initial phase,
we perform 32 experiments with different initial phase values of breather one evenly distributed over
an interval of 2π.

The initial state of breathers is shown in Figure 1a,b by the black dashed line. Cases a and
b correspond to different initial phases of soliton 1. The results showed that in all experiments,
only one soliton shown by the solid red curve in the same figure ultimately remained. Nevertheless,
the dynamics of their interaction were different, and two main scenarios were discovered.
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Figure 1. The number of particles densities n(x) for two different numerical experiments. Black dashed
curves 1 in panels (a) and (b) correspond to initial states and red solid curves 2 in panels (a) and (b) to
final states.

3.1. The First Scenario of Two Breathers Collision Dynamics

The first scenario is that soliton 1 takes the number of particles from soliton 2 in the result of each
interaction, and eventually, soliton 2 is absorbed. Such a scenario occurs in 19 of 32 experiments and
is well supported by Figure 2 panel (a) showing the time dependence of the number of particles for
each soliton N1 and N2 normalized by the total number of particles N. It can be clearly seen that N1

increases while N2 decreases until the absorption of soliton 2 shown by a vertical black line. After that,
N1 reaches a constant and N2 vanishes. A similar behaviour can be noticed with momentum P1 and
P2 normalized by full momentum P (see panel (b)). Panel (c) shows the values of P1

N1
and P2

N2
having

the dimension of wave numbers. The difference between them initially increases, which means an
increase in velocities difference. Hence, soliton 1 began to move slower and reaches a constant velocity.
As for Soliton 2, it first slowed down, then accelerated and finally was absorbed. The entire dynamics
can be found in the following link: http://kachulin.itp.ac.ru/MultSolInt/SolInt-2-scenario-1-n(x).avi.
The scenario dynamics fits in well with the results of [12].

Following [12], one can obtain relations for changing the number of particles of each breather
after their collision using the conservation laws for the number of particles, momentum, and energy.
Unfortunately, in the SCZE the relations for a single breather cannot be expressed explicitly in terms of
its parameters, the group velocity, and amplitude since the breather solution itself cannot be written
explicitly. On the other hand, a strong resemblance to the NLSE suggests that such a procedure can
also be performed in the SCZE.

The NLS Equation (3) is integrable via the inverse scattering transform in 1-D [20] and has the
infinite set of integral of motions. The expressions for them having the dimension of the number of
particles, the total momentum, and the total energy take the following form:

N =
1
k0

∫
|C|2dx,

P =
∫
|C|2dx +

i
2k0

∫ [
C

∂C∗

∂x
− C∗

∂C
∂x

]
dx,

E =
ωk0

k0

∫
|C|2dx + i

ωk0

4k2
0

∫ [
C

∂C∗

∂x
− C∗

∂C
∂x

]
dx−

ωk0

8k3
0

∫ ∣∣∣∂C
∂x

∣∣∣2dx +
k0

2

∫
|C|4dx (6)

http://kachulin.itp.ac.ru/MultSolInt/SolInt-2-scenario-1-n(x).avi
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Figure 2. Time dependence for number of particles (a), momentum (b) and wave number (c) in the
first scenario.

For a single soliton the full momentum P and the total energy E can be determined by number of

particles N =

√
ωk0
k4

0
δ and soliton velocity U:

P = k0N −
4Uk2

0
ωk0

N,

E = ωk0 N − 2Uk0N −
2U2k2

0
ωk0

N +
k8

0
6ωk0

N3. (7)

In the case of a weakly nonlinear wave ∼ eikwx−ωkw t with δN quanta the expressions for
momentum δP and energy δE can be written as:

δP = k0δN + kwδN,

δE = ωk0 δN +
ωk0 kw

2k0
δN −

ωk0 k2
w

8k2
0

δN (8)

Let us consider the pairwise interaction of two solitons initially having different number of
particles and velocities (N1, U1) and (N2, U2) with a formation of incoherent waves radiation δN > 0.
Initially two solitons located in x-space far from each other and the full number of particles, momentum
and energy is the sum of the corresponding values of each soliton. As a result of the collision the
parameters of solitons change slightly and incoherent waves radiation is observed. The parameters of
solitons interacted can be denoted now as (Ñ1, Ũ1), (Ñ2, Ũ2) when they are again far away from each
other, and δN and kw are denote the number of particles and the wave number of incoherent waves.

N1 + N2 = Ñ1 + Ñ2 + δN,
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U1N1 + U2N2 = Ũ1Ñ1 + Ũ2Ñ2 −
V0kw

2k0
δN,

U2
1 N1 −

k6
0

12
N3

1 + U2
2 N2 −

k6
0

12
N3

2 = Ũ1
2Ñ1 −

k6
0

12
Ñ1

3
+ Ũ2

2Ñ2 −
k6

0
12

Ñ2
3
+

V2
0 k2

w

4k2
0

δN (9)

Assuming that the changes in the number of particles and velocities are small, we can obtain the
following expressions for the number of particles changes ∆N1 = Ñ1 − N1 and ∆N2 = Ñ2 − N2 of
soliton 1 and 2 correspondingly:

∆N1 =

(
k6

0
4 N2

2 +
(

U2 +
V0kw
2k0

)2
)

δN + 2N1∆U1(U1 −U2)

k6
0

4 (N2
1 − N2

2 )− (U1 −U2)2
,

∆N2 = −

(
k6

0
4 N2

1 +
(

U1 +
V0kw
2k0

)2
)

δN − 2N2∆U2(U1 −U2)

k6
0

4 (N2
1 − N2

2 ) + (U1 −U2)2
. (10)

Here ∆U1 = Ũ1 − U1 and ∆U2 = Ũ2 − U2 are the velocities changes of soliton 1 and 2
correspondingly.

Let us consider the case when breathers have very close velocities U1 ≈ U2 and N1 > N2.
It will be recalled that δN > 0 and it cannot be less than at least 0.001 of N per collision, otherwise
we would not have seen that much radiation in our experiments after numerous breathers collisions.
The difference in breathers velocities initially is 2δV = 0.08V0 and we consider their velocities close.
Despite their velocities change after each collision, this change is not significant and it can be clearly
seen in Figure 2 (panel c). According to the figure the maximum change in the wave number ∆k
can be observed for soliton 2. In the beggining its wave number is increasing which means that
its velocity becomes even less than the initial one, and ∆U2 < 0. In this case according to the
Equation (10) ∆N2 < 0. At some point the velocity starts to increase. Let us estimate its maximum
change. The evaluation of the maximum velocity change can be done using expression (7) for P.
Indeed, the value of P2

N2k0
= (1− 2U2

V0
) changed from ≈ 1.3 to ≈ 1.15. Therefore, the maximum change

in the relative velocity of the second soliton in more than 25 collisions is |∆U(25)
2 | ≈ 0.075V0, and in

one collision it can be roughly estimated as |∆U2| ≈ 0.075δV. Based on our estimates we believe that
the effect of velocity changing in expressions (10) can be significant only when |∆U2| > 0.1δV, and this
is in the “worst” case. Even in this case the change does not exceed the estimated one, although it is
very close. However, these “worst” cases either occur very rarely or do not occur at all. Therefore,
it is assumed that the value of ∆N1 will be positive, and the value of ∆N2 will be negative. It means
that soliton 1 will constantly increase the number of particles during the collision, and soliton 2, in turn,
will constantly lose it. This is exactly what is observed in the experiment.

3.2. The Second Scenario of Two Breathers Collision Dynamics

Another scenario is less common. It can be observed in remaining 13 of 32 experiments and
related to the bi-soliton solution in the NLSE. When the breathers velocities become even closer to each
other, U1−U2 . 0.01V0, they bind for a while into one periodically oscillating structure resembling the
NLSE bi-soliton. In contrast to the NLSE, the structure is unstable in the SCZE. The dynamics of this
scenario can no longer be described by expressions (10) due to the complex and intense interactions
between breathers. Interacting in this way for some time, they significantly exchange their number of
particles, that goes against our assumptions about a small change in the number of particles. The end
result in scenario 2 remains the same – one of the breathers absorbs the another one that can be seen in
panel (a) of Figure 3. The momentum dependence is the same again (panel (b)). Dimensionless wave
numbers (panel (c)) tend to certain values throughout the interaction process of solitons, indicating that
their velocities become closer up to the moment when one soliton remains. The entire dynamics can be
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found in http://kachulin.itp.ac.ru/MultSolInt/SolInt-2-scenario-2-n(x).avi. The detailed dynamics of
“bi-breather” structure is presented in http://kachulin.itp.ac.ru/MultSolInt/SolInt-2-scenario-2-BS-
|c(x)|.mp4.
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Figure 3. Time dependence for number of particles (a), momentum (b) and wave number (c) in the
second scenario.

The exact bound bi-soliton solution of NLSE (3) can be written as:

Cbs(x, t) =
2 C1−C2

C1+C2

(
C1 cosh

[
2C2k2

0√
ωk0

(x−x2)

]
e−

1
2 ik2

0C2
1 t−C2 cosh

[
2C1k2

0√
ωk0

(x−x1)

]
e−

1
2 ik2

0C2
2 t
)

(
C1−C2
C1+C2

)2
cosh

[
2k2

0√
ωk0

(C1(x−x1)+C2(x−x2))

]
+cosh

[
2k2

0√
ωk0

(C1(x−x1)−C2(x−x2))

]
− 4C1C2

(C1+C2)
2 cos

[
(C2

1−C2
2)

k2
0
2 t
] (11)

This solution is periodic in time with period T = 4π
k2

0(C
2
1−C2

2)
. An interesting fact is that if the

bi-soliton solution (11) is set as the initial condition in the SCZE, then it will exist for a large number of
periods. Therefore, it is expected this «bi-breather» to be the solution of the SCZE. Figure 4 presents
the bi-breather dynamics: the top panel (a) shows the initial state (11) and the bottom panel illustrate
the state at time t ≈ 4.5× 105T0. Here T0 = 2π

ωk0
—the characteristic period of the wave. The entire

evolution of bi-soliton solution in the SCZE is presented in http://kachulin.itp.ac.ru/MultSolInt/
BSNLSE-SCZE-|c(x)|.mp4.

 0

 1

 2

a)

|c
(x

)|

 0

 1

 2

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

b)

|c
(x

)|

x, [km]

Figure 4. Bi-breather evolution in the SCZE. Initial state (t = 0) is shown on the top panel (a). State at
time t ≈ 4.5× 105T0 is shown on the bottom panel (b).
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3.3. The Interaction of a Larger Number of Breathers

An increasing number of solitons in the domain will not lead to any drastic changes. They still
interact according to two previously discovered scenarios, and still, the only one remains. The cases
of three and five solitons with arbitrarily phases are performed in Figures 5 and 6. Video with three
soliton dynamics can be found in http://kachulin.itp.ac.ru/MultSolInt/SolInt-3-|c(x)|.mp4 and with
five soliton dynamics in http://kachulin.itp.ac.ru/MultSolInt/SolInt-5-|c(x)|.mp4. To increase the
number of solitons causes difficulties in calculations. Since one soliton is always taking the particle
number from all the others, this will inevitably lead to the wave breaking and the calculation end.
Such a case, for instance, can be seen in Figure 6d, corresponding to the time moment immediately
before wave breaks. On the other hand, the initial n(x) can be decreased to avoid the wave breaking,
but in this case, the steepness of the waves also decreases. It will result in a significant weakening of the
energy exchanging effects, and thus much longer calculation time will be required to observe any result.
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Figure 5. The evolution of three interacting breathers. The ordinate shows the particles number density
n(x). The top panel (a) presents the initial state (t = 0 s). Panels (b) and (c) correspond to the states
with t = 5.48× 105 s. and t = 1.55× 106 s. The lower panel (d) presents the state where the only
one soliton remained (t = 2× 106 s.)
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Figure 6. The evolution of five interacting breathers. The ordinate shows the particles number density
n(x). The top panel (a) presents the initial state (t = 0 s.). Panels (b) and (c) correspond to the states
with t = 3.49× 105 s. and t = 6.5× 105 s. The lower panel (d) presents the state of pre-breaking wave.
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Nevertheless, despite the difficulties considered above, one cannot but to see that in all cases the
tendency is the same. Namely, regardless of the number of solitons, there will always be the only one
in the end.

4. Conclusions

We studied long-time dynamics in the SCZE for unidirectional deep water waves. We showed
that after numerous collisions of breathers, only one soliton having a larger number of particles initially
remains. Despite one outcome, two different scenarios of soliton dynamics were observed. In the first
scenario, the “strong” soliton, which initially has a larger number of particles, increases after each
interaction, while the “weak” soliton decreases. In the second scenario, the breathers velocities become
very close after a certain number of pair interactions, due to the energy, momentum, and the number of
particles exchanging. It leads to the formation of a bound soliton or “molecule” from a pair of solitons,
which is similar to the well-known exact bound bi-soliton solution of the NLSE. After a certain number
of time periods, this bound pair of solitons turns into one large soliton. The first scenario can be
analytically described by the NLSE estimations, in contrast to the second one, where there is a complex
and incomprehensible interaction of breathers. The initial conditions in all experiments differed only
in the relative phase which means that phases play an essential role in the formation of the necessary
conditions for two scenarios considered and dynamics in general. In addition, it was revealed that
the NLSE bi-soliton solution taken as a initial condition for the SCZE for a hundred thousand wave
periods. It gives hope that there is a “bi-breather” solution in the non-integrable SCZE similar with the
bi-soliton solution of the integrable NLSE and perhaps it can be found analytically or numerically.
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