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Abstract: The waves on a free surface of 2D deep water can be split into two groups: the waves
moving to the right, and the waves moving to the left. A specific feature of the four-wave interactions
of water waves allows to describe the evolution of the two groups as a system of two equations.
The fundamental consequence of this decomposition is the conservation of the “number of waves” in
each particular group. The envelope approximation for the waves in each group of counter streaming
waves is obtained.
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NLSE approximation

1. Introduction

A potential flow of an ideal incompressible 2D fluid with a free surface is described by the
following classical system of equations:

φxx + φzz = 0 (φz → 0, z→ −∞),

ηt + ηxφx = φz

∣∣∣∣
z=η

φt +
1
2
(φ2

x + φ2
z) + η = 0

∣∣∣∣
z=η

,

where η(x, t) is the profile of the surface, φ(x, z, t) is the velocity potential. This system is hamiltonian
(see [1]), and the Hamiltonian variables are η(x, t), and ψ(x, t) = φ(x, η(x, t), t)—the potential at the
surface. The equations of motions are given by the following equations:

∂ψ

∂t
= − δH

δη

∂η

∂t
=

δH
δψ

, (1)

and the Hamiltonian truncated (to fourth order) is given by:

H =
1
2

∫
η2+ψk̂ψdx− 1

2

∫
{(k̂ψ)2− (ψx)

2}ηdx +
1
2

∫
{ψxxη2k̂ψ+ψk̂(ηk̂(ηk̂ψ))}dx, (2)

where the linear operator k̂ acts in Fourier–space as a multiplication by the modulus of wavenumber k:

k̂ f (x)⇒ |k| fk.
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This Hamiltonian is the starting point to derive the so-called Zakharov equation in 1968.
The evolution of the envelope, Ψ(x, t), of a modulated planar wave with a wavenumber k0,
and a frequency ω0 given by the formula:

η(x, t) =
1
2

exp(ik0x− iω0t)Ψ(x, t) + c.c.

is described by the well known Nonlinear Schrödiger (NLS) equation:

i(Ψ̇ + vgΨx) =
ω0

8k2
0

Ψxx +
ω0k2

0
2
|Ψ|2Ψ, (where vg is the group velocity, vg =

ω0

2k0
).

In 1994 a remarkable property of the interaction of water waves was discovered, namely,
the coefficient of the four-waves interaction in the Hamiltonian vanishes on the resonance manifold,
see [2]. This discovery allowed to greatly simplify the Zakharov equation, and the so-called
“compact equation” for unidirectional water waves was derived, see [3,4].

Recently, in the work [5], it has been discovered that the four–waves interaction coefficient
vanishes for more than just the wavenumbers on the resonance manifold, and this allowed to formulate
the water wave equations in a canonical way that is also referred to as the “super compact” way.
Moreover, we would like to emphasize that the NLS, the compact, and the super compact equations are
all valid for the unidirectional waves. In what follows we will present a new system of two equations
that describe the evolution of two almost planar counter streaming waves.

2. The Counter Streaming Waves

The Zakharov equation for water waves can be derived in two steps:

1. Firstly, the normal canonical variables, ak are introduced as follows:

ηk =

√
ωk
2g

(ak + a∗−k), ψk = −i
√

2ωk
(ak − a∗−k),

where ωk =
√

k, and ηk and ψk denote the Fourier transform that is defined as follows:

fk =
1√
2π

∫
f (x)e−ikxdx, f (x) =

1√
2π

∫
fkeikxdk.

2. Secondly, the canonical transformation from ak to bk is chosen to cancel all non resonant terms in
the Hamiltonian, both cubic and forth order. The details of this transformation can be found in
the reference [6].

As a result the Hamiltonian (2) acquires the form:

H =
∫

ωkbkb∗kdk +
1
2

∫
Tk2k3

kk1
b∗k b∗k1

bk2 bk3 δk+k1−k2−k3 dkdk1dk2dk3

where bk is a normal canonical complex variable, and the matrix element, Tk2k3
kk1

, satisfies the
symmetry conditions

Tk2k3
kk1

= Tk1k
k2k3

= Tk2k3
kk1

= Tk3k2
kk1

. (3)

The explicit (yet cumbersome) expression for Tk2k3
kk1

can be found in the reference [1,2], however

we will need the diagonal entries of Tk2k3
kk1

that are given by:

Tkk1
kk1

=
kk1

2π
min(|k|, |k1|). (4)



Fluids 2019, 4, 47 3 of 7

The equation of motion is given by the following relation:

∂bk
∂t

+ i
δH
δb∗k

= 0, (5)

and after the calculation of the variational derivative, we may write:

iḃk = ωkbk +
∫

Tk2k3
kk1

b∗k1
bk2 bk3 δk+k1−k2−k3 dk1dk2dk3. (6)

This equation takes into account the main nonlinear process, the four-waves interaction,
and neglects higher order wave interactions. Besides energy and momentum, this equation admits a
specific integral of motion, the “number of waves”, that can be introduced as follows::

N =
∫ ∞

−∞
|bk|2dk. (7)

For one-dimensional waves Tk2k3
kk1

has a very important property (see [5]):

Tk2k3
kk1
≡ 0 if kk1k2k3 < 0, (8)

that allows to simplify the equation of motion, and provides new integrals of motion. It is convenient
to write the function b(x, t) as a sum of two analytic functions in the complex pane z = x + iy:

b(x, t) = b+(x, t) + b−(x, t) or bk = b+k + b−k (9)

b+(x, t) is analytic in upper half-plane
b−(x, t) is analytic in lower half-plane.

b+(x, t) has only the positive Fourier modes b+k , while b−(x, t) has only the negative ones that are
denoted by b−k . Such a splitting is introduced for the first time, and it leads to an elegant system of two
equations. By plugging Equation (9) into the equation of motion (6) one finds that

iḃ+k + iḃ−k = ωkb+k + ωkb−k +

+
∫ [

b+
∗

k1
b+k2

b+k3
+ 2b−

∗
k1

b+k2
b−k3

+ b−
∗

k1
b−k2

b−k3
+ 2b+

∗
k1

b+k2
b−k3

]
Tk2k3

kk1
δk+k1−k2−k3 dk1dk2dk3+

+

(((((((((((((((((((((((hhhhhhhhhhhhhhhhhhhhhhh

∫ [
b−
∗

k1
b+k2

b+k3
+ b+

∗
k1

b−k2
b−k3

]
Tk2k3

kk1
δk+k1−k2−k3 dk1dk2dk3, (10)

and last term in Equation (10) vanishes. Indeed, let us consider the first crossed out term:

k1 < 0, k2 > 0, k3 > 0
k = −k1 + k2 + k3 > 0

kk1k2k3 < 0 ⇒ Tk2k3
kk1
≡ 0.

In a similar manner, one may show that the second crossed out term vanishes too.
Each remaining term in the Equation (10) consists of either the positive, or the negative Fourier

modes. This is another consequence of the property Equation (8), and hence this equation can be
splitted into two: one for the positive k, and the other for the negative k:

iḃ+k = ωkb+k +
∫ [

b+
∗

k1
b+k2

b+k3
+ 2b−

∗
k1

b+k2
b−k3

]
Tk2k3

kk1
δk+k1−k2−k3 dk1dk2dk3

iḃ−k = ωkb−k +
∫ [

b−
∗

k1
b−k2

b−k3
+ 2b+

∗
k1

b+k2
b−k3

]
Tk2k3

kk1
δk+k1−k2−k3 dk1dk2dk3 (11)
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This system of two equations describes interaction of two groups of waves propagating in opposite
direction, and include the standing waves. The Hamiltonian for this system may be written as follows:

H =
∫

ωk[|b+k |
2 + |b−k |

2]dk+

+
1
2

∫ [
b+
∗

k b+
∗

k1
b+k2

b+k3
+ b−

∗
k b−

∗
k1

b−k2
b−k3

]
Tk2k3

kk1
δk+k1−k2−k3 dk1dk2dk3+

+2
∫

b+
∗

k b−
∗

k1
b+k2

b−k3
Tk2k3

kk1
δk+k1−k2−k3 dk1dk2dk3, (12)

and the two equations of motion are given by:

∂b+k
∂t

+ i
δH

δb+
∗

k
= 0,

∂b−k
∂t

+ i
δH

δb−
∗

k
= 0. (13)

This system has two new integrals of motion, “number of waves” traveling to the right,
and “number of waves” traveling to the left, and each of them is conserved individually. Indeed,
consider the time derivative of the “number of waves” traveling to the right:

∂

∂t

∫
|b+|2dk = i

∫ [
b+
∗

k ωkb+k − b+k ωkb+
∗

k

]
dk+

+i
∫ [

b+
∗

k b+
∗

k1
b+k2

b+k3
− b+k b+k1

b+
∗

k2
b+
∗

k3

]
Tk2k3

kk1
δk+k1−k2−k3 dkdk1dk2dk3+

+2i
∫ [

b+
∗

k b−
∗

k1
b+k2

b−k3
− b+k b−k1

b+
∗

k2
b−
∗

k3

]
Tk2k3

kk1
δk+k1−k2−k3 dkdk1dk2dk3 ≡ 0

due to symmetry condition Equation (3). Thus, the system of equations for waves on the surface of 2D
deep water conserves two additional integrals given by:

N+ =
∫ ∞

0
|b+k |

2dk

N− =
∫ 0

−∞
|b−k |

2dk. (14)

A trivial calculation shows that the total momentum

M =
∫ ∞

−∞
k
[
|b+k |

2 − |b−k |
2
]
]dk

is also conserved.
It should be emphasized that the equations, and the existence of new integrals holds only if four

wave interactions are taken into account, and the higher order interactions are negligible. It is known
that the five wave interactions do not vanish, see [7]. In this case the “number of waves” is not
conserved. For example, in [8] a numerical simulation of waves dynamics was studied in the framework
of fully nonlinear equations and, of course, number of waves was not conserved.

It should mentioned that the system Equation (11) can be drastically simplified by applying a
canonical transformation similar to that in [3–5], and allows one to write this system in x-space, in a
super compact way. The set of super compact equations was first reported in [9] and will be the
subject of a separate article. In what follows, we consider the case of two almost monochromatic,
counter-streaming waves, and do a narrow band approximation.

3. Narrow Bands Approximation

System of Equation (11) has simple solution—two counter-streaming monochromatic waves:

b+(x, t) = B+ei(k+x−ω+t)

b−(x, t) = B−ei(k−x−ω−t). (15)
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Here

k+ > 0, k− < 0, ω+ > 0, ω− > 0

and B+ and B− are arbitrary complex constants. For ω+ and ω− the following relation are valid:

ω+ = ωk+ + Tk+k+
k+k+ |B

+|2 + 2Tk+k−
k+k− |B

−|2

ω− = ωk− + Tk−k−
k−k− |B

−|2 + 2Tk+k−
k+k− |B

+|2. (16)

From system of Equations (11) one can easily derive equations for two envelopes of two modulated
counter-streaming waves trains. B+ and B− are now slowly modulated functions of x so, that

b+(x, t) = B+(x, t)ei(k+x−ωk+ t)

b−(x, t) = B−(x, t)ei(k−x−ωk− t),

or

b+k = B+(k− k+)ei(k+x−ωk+ t), |k− k+| << |k+|
b−k = B−(k− k−)ei(k−x−ωk− t). |k− k−| << |k−|. (17)

These spectra are schematically shown in the Figure 1. One of them is located in the vicinity of
some positive wave number and the other—in the vicinity of negative one.
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Figure 1. Two narrow bands spectra for two counter-streaming waves.

Under the assumption Equation (17), one may treat the coefficients Tk2k3
kk1

as constants in the
vicinity of k+ and k−, and the following equations can be derived:

iḂ+
k =

[
k

∂ωk
∂k

∣∣∣∣
k=k+

+
k2

2
∂2ωk
∂k2

∣∣∣∣
k=k+

]
B+

k +∫ [
Tk+k+

k+k+ B+∗
k1

B+
k2

B+
k3
+ 2Tk+k−

k+k− B−
∗

k1
B+

k2
B−k3

]
δk+k1−k2−k3 dk1dk2dk3

iḂ−k =
[
k

∂ωk
∂k

∣∣∣∣
k=k−

+
k2

2
∂2ωk
∂k2

∣∣∣∣
k=k−

]
B−k +∫ [

Tk−k−
k−k− B−

∗
k1

B−k2
B−k3

+ 2Tk+k−
k+k− B+∗

k1
B+

k2
B−k3

]
δk+k1−k2−k3 dk1dk2dk3. (18)
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It x-space the two equations can be written as follows:

i(Ḃ+ + v+g B+ ′) =
ωk

+

8k+2 B+ ′′ +
[

Tk+k+
k+k+ |B

+|2 + 2Tk+k−
k+k− |B

−|2
]

B+

i(Ḃ− + v−g B−′) =
ωk
−

8k−2 B−′′ +
[

Tk−k−
k−k− |B

−|2 + 2Tk+k−
k+k− |B

+|2
]

B−, (19)

where

v+g =
1
2

√
g

k+
, v−g = −1

2

√
g
|k−| .

It should be noted that a similar system of equations was derived in [10] for polarized
light propagation.

4. The Nonlinear Standing Wave

The Equation (19) have a solution in the form of a standing wave. Given the following substitution

B+(x, t) = B(x)eiΩt, B−(x, t) = B∗(x)eiΩt, k− = −k+ = k

the two Equation (19) reduce to a single one:

iΩB + vgBx + i
ωk
8k2 Bxx − ik2|B|2B = 0.

One can look for the solution in the form

B = Reiφ.

Then the following equations for R and φ hold:

∂

∂x

[
R2 − 1

2k
R2φx

]
= 0 ⇒ φx = 2k

(
1−

r2
0

R2

)
vg

4k
Rxx +

[
Ω + vgk

]
R− vgk

r4
0

R3 − k2R3 = 0

and the solution can be found in terms of the elliptic functions. In particular, a solitary solution given
by the formula:

R2 = r2
0 −

a2

cosh2(λx)
.

exists. This solution depends on four independent constants: Ω, r0, a and λ.

5. Conclusions

1. A simple system of two Equations (11) was derived for waves on the surface of 2D deep water.
2. The special structure of the coefficient of four wave interaction Equation (8) allows to divide

waves into two groups: the one traveling to the left and the other traveling to the right. Each group
is described by the analytic function: one is analytic in the lower half-plane and the other is
analytic in the upper half-plane.

3. Due to the property of Equation (8), the system that describes water waves has two additional
constants of motion, the numbers of waves that travel in opposite directions.

4. An exact analytic solution for a nonlinear standing wave in the narrow-band approximation limit
has been derived.
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