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1. INTRODUCTION

Structure preserving integrators have been employed with
remarkably success in a broad class of dynamic systems.
An important subclass of these systems are the Hamilto-
nian systems. The general formalism of Hamiltonian prob-
lems has enabled the development of general structural
preserving method to different problems, such as molecular
dynamics, Euler equations of fluid flow, nonlinear mechan-
ics of solids, etc.

However, Hamiltonian systems fail when trying to model
dissipative systems, such as thermomechanic problems. In
this case, the only class of structure preserving meth-
ods, to the authors’ knowledge, is the Energy-Entropy-
Momentum (EEM) integrators presented in Romero (2009),
Romero (2010a), Romero (2010b), Portillo et al. (2017)
for general thermomechanical systems. These methods are
based on two main ingredients: formulatting the problem
as a metriplectic system and using discrete derivatives to
approximate the driven forces (see Romero (2009) for a
complete description). As a consequence the main diffi-
culty of these methods is obtaining the metriplectic struc-
ture of the problem, which is not obvious in general, as we
will see in section 2.

Methods such as machine learning and data driven have
attracted much interest to obtain knowledge from data. In
the case of Hamiltonian systems, studies in this area have
been presented, e.g. Schmidt and Lipson (2009), Ahmadi
et al. (2018). In Schmidt and Lipson (2009), a method to
extract all the physics of the problem is presented, but
it is computationally expensvie. On the other hand, the
approach in Ahmadi et al. (2018) provides a method based
on quadratic programming to approximate the Hamilton-
inan from data. In the case of solid mechanics recent
works Kirchdoerfer and Ortiz (2016) have taken advantage
of some fundamental physics of the system to substitute
material law modelling with experimental data. Also, in
González et al. (2018) and Hernández et al. (2021) the
metriplectic structure has been taken into consideration
to develop a data-driven method and neural networks

that preserve the two laws of thermodynamics for general
dissipative systems. However, in these works a non convex
optimization problem is used and some structure of the
metriplectic operators might be used a priori to reduce
computational cost.

We propose here a data driven method to extract the
metriplectic structure of smooth thermomechanical prob-
lems in entropy variables. We extend the method in Ah-
madi et al. (2018) to metriplectic systems in entropy vari-
ables to approximate the Hamiltonian and also the friction
operator from data. The proposed method is based on
quadratic programming and preserve the two laws of ther-
modynamics, i.e. energy conservation and non-decreased
entropy. Also, other a priori known simmetries can be
added.

The article is organized as follows. A brief summary of
the GENERIC formalism for thermomecanical systems
is presented in section 2. In section 3, we propose
the data driven method based on quadratic programming
for approximating both the Hamiltonian and the friciton
operator. In section 4 we show an example to illustrate
the proposed method. Finally, section 5 closes the article
with the most relevant results and the future work.

2. THE GENERIC FORMALISM FOR
THERMOMECHANICS

GENERIC was introduced by Grmela and Öttinger
Grmela and Öttinger (1997); Öttinger and Grmela (1997)
for describing thermodynamical systems away from equi-
librum. It provides a complete framework for the math-
ematical description of metriplectic systems Morrison
(1986), including very general thermomechanical models

(see Öttinger (2005) for a complete account of the theory).
Next, we summarize the main ingredients of GENERIC,
defining the notation for the remainder of the article.
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2.1 Thermodynamic state and governing equations

The thermodynamic state of an isolated system is de-
scribed by a variable x ∈ Σ, where Σ is the state space, a
set which we assume has the structure of a differentiable
manifold, and whose tangent and cotangent bundles are
denoted, respectively, TΣ and T ∗Σ. The system must also
possess energy and entropy densities, which are described
by differentiable functions E,S ∈ F , the space of differ-
entiable functions defined on Σ. According to GENERIC,
the thermodynamic description of an arbitrary system is
completed with two algebraic or differential operators

L : T ∗Σ → TΣ , M : T ∗Σ → TΣ, (2.1)

that determine the evolution in time of this system by a
differential equation of the form:

ẋ = L(x) dE(x) +M(x) dS(x), (2.2)

where d : F → T ∗Σ denotes the exterior derivative and
ẋ : Σ → TΣ is the vector field of time derivatives of the
state variables.

The operators L,M : T ∗Σ → TΣ cannot be arbitrary,
since the system is constrained to verify the two laws of
thermodynamics. First, for every x ∈ Σ, L(x) must define
a bilinear operation {·, ·} : F × F → R, through the
relation:

{f, g}(x) = df(x) · L(x)dg(x) , (2.3)

where f, g ∈ F , and this operation must be a Poisson
bracket. On the other hand, the operator M(x) defines
another bilinear operation [·, ·] : F × F → R through

[f, g](x) = df(x) ·M(x)dg(x) , (2.4)

for every f, g in F . This second operation must be symmet-
ric, positive semidefinite and is referred to as a dissipative
bracket.

The evolution equations can be written as

ḟ = {f,E}+ [f, S], (2.5)

for every f ∈ F . In addition to the previously stated prop-
erties, the Poisson and dissipative brackets must satisfy the
orthogonality conditions:

0 = {S, f}, 0 ∈ [E, f ], (2.6)

for every f ∈ F . In terms of the operator L, the Poisson
orthogonality of the entropy can be reformulated as

L(x)dS(x) = 0 . (2.7)

The orthogonality of the energy is expressed by the rela-
tion

M(x)dE(x) = 0 . (2.8)

Since the part of the vector field ẋ associated with L
is orthogonal to the entropy, we call this the reversible
contribution to the dynamics of the system; likewise,
the part generated by M is the irreversible part of the
vector field ẋ. Combining Eqs. (2.5) and (2.6), it is
straightforward to show that energy E and the entropy
S are, respectively, preserved and non-decreased by the
flow.

2.2 GENERIC systems for thermomechanics solids in
entropy variables

From now on we consider thermodynamic systems of a
restricted class for which their state can be described by

the variables x = (q, p, s), where q denotes the position,
p the momentum, and the entropy density s. We note

here that all these variables are arrays, z = {zi}Nz

i=1 z =
q, p, s. This class of systems encompasses, for example,
standard models for thermoelastic solids (see, e.g., Maugin
(1992)). With this description, the exterior derivative of an
arbitrary function f ∈ F can be expressed as

df(x) =
∂f

∂q
(x)dq +

∂f

∂p
(x)dp+

∂f

∂s
(x)ds, (2.9)

where {dq,dp,ds} form a basis of the cotangent space T ∗
xΣ.

As a result of this choice of coordinates, the linear oper-
ators L(x) and M(x) must have a block structure and we
can write the Poisson and friction operators as

L =

[
Lqq Lqp Lqs

Lpq Lpp Lps

Lsq Lsp Lss

]

M =

[
Mqq Mqp Mqs

Mpq Mpp Mps

Msq Msp Mss

] (2.10)

where the dependency on x has been omitted for simplicity.
We omit it in the rest of the article.

For some particular systems and entropy variables, further
simplifications in these block structures are possible. For
the case of the Poisson operator, the symplectic stratifica-
tion theorem Marsden and Ratiu (1994) assures that it can
be written as the cosymplectic form for some local coordi-
nate system. Assuming (q, p, s) form this local coordinate
system, we can write L as

L =

[
0 I 0
−I 0 0
0 0 0

]
(2.11)

This form of the Poisson operator is physically justified
by the fact that any dissipative effect is only related to
the friction operator. This is the case for the entopies (by
definition) and the internal variables, which are associated
with dissipative effects.

On the other hand, since the dynamics of (q, p) are fully
described by the reversible part, only the blocks of the
friction operator M associated with irreversible processes
are not zero. So, we can write M as

M =

[
0 0 0
0 0 0
0 0 Mss

]
(2.12)

Finally, the exterior derivatives of the energy and the
entropy take the following form

dE =

(
∂E

∂q
,
∂E

∂p
,
∂E

∂s

)T

, dS = (0, 0, 1)
T

(2.13)

It is worth to note that with these simplifications, S
trivially satisfies the orthogonality condition (2.8)

To sum up, the main goal of this work is finding ap-

proximated expressions of E, Ê, and M , M̂ , for systems
that can be written as explained in this section. These
expressions should preserve some structural properties of

a metriplectic system. In particular, we impose M̂ to be

skewsymmetric and Ê to satisfy the orthogonality condi-

tion M̂dÊ = 0. These properties, as well as a relaxation

on M̂ to be positive semidefinite which will be explained
in the next section, are the necessary conditions for pre-
serving the two laws of thermodynamics.

3. OPTIMIZATION PROBLEM

In this section, we propose a method based on convex
optimization for approximating the metriplectic structure
of the class of dissipative systems explained in the previous

section. That is, given {tk, x (tk) , ẋ (tk)}Nk=1, find approx-

imatios of the friction operator, M̂ and the Hamiltonian

Ê.

For that purpose, we define F
ê
, F

M̂SS
functional spaces

with basis
{
ΦE(q, p, s)

}dE

i=1
,
{
ΦMSS (q, p, s)

}dMSS

i=1
. Then,

the approximated Hamiltonian Ê is defined to belong to
F

Ê
and every nonzero entry of M , mlm

ss l,m ∈ {S} is

approximated by a function in F
M̂ss

, denoted m̂lm
ss .

The requirements on the functional spaces depend on the
nature of the dynamics, as well as on numerical reasons.
For example, for the case of the Hamiltonian, the basis
should be a set of differenciable functions because the
driven force of the reversible part of the process is the
derivative of the Hamiltonian. On the other hand, avoiding
numerical oscilations can justify the choice of a polynomial
basis with lower order.

Then, the approximated Hamiltonian has the form

Ê(q, p, s) =

dE∑
i=1

αE
i Φ

E
i (q, p, s) (3.1)

where {αi}dE

i=1 is a set of constants. And the approximated
entries of the friction operator can be written as

m̂lm
ss (q, p, s) =

dMss∑
i=1

β
M lm

ss
i ΦMss

i (q, p, s) (3.2)

where
{
β
M lm

ss
i

}dMss

i=1
is a set of constants. Therefore, obtain-

ing the approximated functions is equivalent to obtaining

the set of variables

{{
αE
i

}dE

i=1
,
{
β
M lm

ss
i

}dMss

i=1

}

Taking into accout the metriplectic structure of the system
we can now define an optimization problem for approxi-
mating the dynamics. First, the reversible part is driven
by the derivative of the Hamiltonian and the Poisson
operator, so substituting (3.1) into (2.2) we have

q̇ =
∑dE

i=1 α
E
i

∂ΦE
i

∂p

ṗ = −
∑dE

i=1 α
E
i

∂ΦE
i

∂q

(3.3)

Using the given data, {(tk, xk, ẋk)}Nk=1 , we can define the
following functions

ηqk = q̇k −
∑dH

i=1 α
E
i

∂ΦE
i (q,p,s)k
∂p

ηpk
= ṗk +

∑dH

i=1 α
E
i

∂ΦE
i (q,p,s)k

∂q
(3.4)

These functions allow us to define a cost function that
measures the deviation of the approximated Hamiltonian
from the reversible dynamics driven force

ηL =
1

N

N∑
k=1

(
ηq · ηq

¯̇q
+

ηp · ηp
¯̇p

)
(3.5)

where ¯̇q and ¯̇p are some characteristic value of the position
and the momentum velocities respectively. In this work we
take the mean plus the standard deviation.

On the other hand, if we look at the irreversible part of
the system and we substitute (3.2) into (2.2), we get the
following evolution equations

Ṡ =
∑dMss

i=1 β
M lm

ss
i Φ

M lm
ss

i (q, p, s)k (3.6)

Similar to (3.4) we can define the function

ηsk = ṡk −
dMss∑
i=1

β
M lm

ss
i Φ

M lm
ss

i (q, p, s)k (3.7)

And the corresponding cost function that measures the er-
rror on the approximated friction operator can be defined
as

ηM =
1

N

N∑
k=1

(ηs · ηs
¯̇s

)
(3.8)

where ¯̇s is defined analogously to ¯̇q and ¯̇p.

Once we have defined (3.5) and (3.8), we need to minimize
those functions subject to some constraints. In particular
we want the Hamiltonian to be orthogonal to the friction
operator and also to ensure non-decreasing entropy in
the given data. We can define the following optimization
problem

min
αE ,βMss

ηL + ηM

s.t. dSM̂dS ≥ 0

M̂dÊ = 0

(3.9)

The above optimization problem presents the following
propperties:

• The objective function η = ηL + ηM is a convex
function because {η}i∈{x} are affine functions of α

and β, the square of an affine function is convex and
the sum of convex functions is convex.

• It is not a convex problem because the orthogonality
constraint is not linear and we cannot ensure that the
solution set is convex.

• M̂ is not forced to be positive semidefinite, but the

constraint dSM̂dS = (0, 0, 1)T M̂(0, 0, 1)T guarantees
the second law of thermodynamics

In order to obtain a convex optimization problem, we split
problem (3.9) into two separate convex problems. First,
we solve friction operator subject to entropy production
constraint

min
βMss

ηM

s.t. dSM̂dS ≥ 0
(3.10)

Once M̂ is known, we solve the Hamiltonian part subjecto
to orthogonality condition

min
αE

ηL

s.t. M̂dÊ = 0
(3.11)
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. Then,
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Ê
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approximated by a function in F
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, denoted m̂lm
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The requirements on the functional spaces depend on the
nature of the dynamics, as well as on numerical reasons.
For example, for the case of the Hamiltonian, the basis
should be a set of differenciable functions because the
driven force of the reversible part of the process is the
derivative of the Hamiltonian. On the other hand, avoiding
numerical oscilations can justify the choice of a polynomial
basis with lower order.

Then, the approximated Hamiltonian has the form

Ê(q, p, s) =

dE∑
i=1

αE
i Φ

E
i (q, p, s) (3.1)

where {αi}dE

i=1 is a set of constants. And the approximated
entries of the friction operator can be written as

m̂lm
ss (q, p, s) =

dMss∑
i=1

β
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i ΦMss

i (q, p, s) (3.2)

where
{
β
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ss
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}dMss

i=1
is a set of constants. Therefore, obtain-

ing the approximated functions is equivalent to obtaining

the set of variables
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αE
i

}dE

i=1
,
{
β
M lm

ss
i

}dMss

i=1

}

Taking into accout the metriplectic structure of the system
we can now define an optimization problem for approxi-
mating the dynamics. First, the reversible part is driven
by the derivative of the Hamiltonian and the Poisson
operator, so substituting (3.1) into (2.2) we have

q̇ =
∑dE

i=1 α
E
i

∂ΦE
i

∂p

ṗ = −
∑dE

i=1 α
E
i

∂ΦE
i

∂q

(3.3)

Using the given data, {(tk, xk, ẋk)}Nk=1 , we can define the
following functions

ηqk = q̇k −
∑dH

i=1 α
E
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i (q,p,s)k
∂p

ηpk
= ṗk +

∑dH

i=1 α
E
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∂ΦE
i (q,p,s)k

∂q
(3.4)

These functions allow us to define a cost function that
measures the deviation of the approximated Hamiltonian
from the reversible dynamics driven force

ηL =
1

N

N∑
k=1

(
ηq · ηq

¯̇q
+

ηp · ηp
¯̇p

)
(3.5)

where ¯̇q and ¯̇p are some characteristic value of the position
and the momentum velocities respectively. In this work we
take the mean plus the standard deviation.

On the other hand, if we look at the irreversible part of
the system and we substitute (3.2) into (2.2), we get the
following evolution equations

Ṡ =
∑dMss

i=1 β
M lm

ss
i Φ

M lm
ss

i (q, p, s)k (3.6)

Similar to (3.4) we can define the function

ηsk = ṡk −
dMss∑
i=1

β
M lm

ss
i Φ

M lm
ss

i (q, p, s)k (3.7)

And the corresponding cost function that measures the er-
rror on the approximated friction operator can be defined
as

ηM =
1

N

N∑
k=1

(ηs · ηs
¯̇s

)
(3.8)

where ¯̇s is defined analogously to ¯̇q and ¯̇p.

Once we have defined (3.5) and (3.8), we need to minimize
those functions subject to some constraints. In particular
we want the Hamiltonian to be orthogonal to the friction
operator and also to ensure non-decreasing entropy in
the given data. We can define the following optimization
problem

min
αE ,βMss

ηL + ηM

s.t. dSM̂dS ≥ 0

M̂dÊ = 0

(3.9)

The above optimization problem presents the following
propperties:

• The objective function η = ηL + ηM is a convex
function because {η}i∈{x} are affine functions of α

and β, the square of an affine function is convex and
the sum of convex functions is convex.

• It is not a convex problem because the orthogonality
constraint is not linear and we cannot ensure that the
solution set is convex.

• M̂ is not forced to be positive semidefinite, but the

constraint dSM̂dS = (0, 0, 1)T M̂(0, 0, 1)T guarantees
the second law of thermodynamics

In order to obtain a convex optimization problem, we split
problem (3.9) into two separate convex problems. First,
we solve friction operator subject to entropy production
constraint

min
βMss

ηM

s.t. dSM̂dS ≥ 0
(3.10)

Once M̂ is known, we solve the Hamiltonian part subjecto
to orthogonality condition

min
αE

ηL

s.t. M̂dÊ = 0
(3.11)



318 D. Ruiz  et al. / IFAC PapersOnLine 54-19 (2021) 315–320

Notation Description 1/a 2/b

q0 Initial position

(
5
√
2

2
, 5

√
2

2

)
(0, 5)

p0 Initial momentum (0, 1) (0, 0)

θ0 Initial temperature 380 360

m Mass 1 1

λref Reference length 0.1 0.1

H Stiffness 1 1

θref Reference temperature 320 320

k Conductivity 1
2

c Heat capacity 10 10

Table 1. Data for numerical examples

The constraints in problems (3.10) and (3.11) are linear

(note that M̂ is already known in problem (3.11)) so
these two problems are convex optimization problems and
optimality is then guaranteed. In fact, they are both
quadratic programs and specific solvers for these type of
problems can be used.

We note here that the order in the splitting is because of
the nature of the constraints. The orthogonality constraint
should be understood as a constraint on the Hamiltonian
and not on the friction operator. If we know both the
dynamics (the given data) and the irreversible driven
force (derivative of entropy), the structure of M should
be defined and problem (3.10) obtains the best entropy
producer fit of M . Then, the best fit of the reversible
dynamics is obtained subject to irreversible independency

(MdÊ = 0). If we would split it the other way around,
i.e. solving first the Hamiltonian part with no restrictions
and secondly the irreversible part with entropy production
and orthogonality constraints, we would overconstrain the
friction part and the irreversible part of the dynamics
might not be accurate.

4. NUMERICAL RESULTS

We apply the previously developed ideas to a symple prob-
lem. The system under consideration is an isolated, plane,
thermoelastic double pendulum. The model problem is
depicted in figure (4.1) and the problem conditions are
summarized in table (1). The metriplectic structure of this
problem is well known (see Romero (2009) for details). We
briefly summarize the main concepts.

The entropy variables for the problem are

x = (q, p, s) = (q1, q2, p1, p2, sa, sb) (4.1)

The total energy of the system is

E =
|p1|2

2m1
+

|p2|2

2m2
+ ea(x) + eb(x) (4.2)

where ea(x) and eb(x) are the internal energies of the
springs, which can be defined as

ei(x) = Hi
(λi − λref

i )2

2
+ ci(θi − θrefi ) i = a, b (4.3)

where λa = |q1|, λb = |q2 − q1| and the temperatures are
functions of the entropy

θi = θrefi exp
si
ci

i = a, b (4.4)

We solve the optimization problems (3.10) and (3.11) to
obtain the dynamics of the system. The given data is a set

Fig. 4.1. Themoelastic double pendulum problem

of 160 points equally spaced in time with ∆t = 1
20

2π√
H
m

.

We use polynomial basis for both problems and we take
the minimum order within acceptable errors: in this case
nMss

= 1 and nE = 2.

Figures (4.2), (4.3), (4.4) illustrate the results for the
state evolution of the system for the given data (in dashed
line) and for future times (solid line). Figure (4.5) shows
the maximum error with sign, defined as the maximum

of |ẋk−̂̇xk|
¯̇xk

x = q, p, s with the corresponding sign of the

difference, in each time step. The error remains small even
for times greater than twice the maximum of the given
data. The energy orthogonality constraint is satisfied up
to numerical error (10−16) and the non-decreased entropy
constraint remains within acceptable margins, obtaining
small fluctuations for almost stationary entropy.

However it should be noted that this excellent global
agreement is because of the problem conditions. In this
case, the Hamiltonian is almost quadratic due to the large
initial springs elongation and the entropy changes are
small. For other problems or conditions, the order of the
polynomial basis might be higher and it might generate
spurious oscillations and/or less accurate global results.

5. CONCLUDING REMARKS

We have presented a novel approach for aproximating a
limited class of dissipative systems from data. This class
of systems encompasses, for example, standard models
for thermoelastic solids. The method we introduced takes
advantage of the metriplectic structure of the system to
generate convex optimization problems that guarantees
optimality of the solution, in contrast to González et al.
(2018). In addition, these convex problems are quadratic
programs that can be solved in an efficient manner and
there is no need of neural networks as in Hernández et al.
(2021).

The presented approach can be used in conjunction with
the preserving numerical methods described in Romero
(2009) to obtain thermodynamically consistent numerical
schemes directly from data, avoiding the modeling step.

Future work will focus on extending this method to other
dissipative systems with smooth or non-smooth dissipa-
tive mechanisms. Moreover, experimental data is always

Fig. 4.2. Position velocities (orange) and their approxi-
mations (blue). In dashed line, the given data and
its approximation. In solid line, the evolution and its
approximation in future times

corrupted by noise and it should be taken into account in
future research.

REFERENCES

Ahmadi, M., Topcu, U., and Rowley, C. (2018). Control-
Oriented Learning of Lagrangian and Hamiltonian Sys-
tems. 2018 Annual American Control Conference.
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