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Abstract. In this paper, we formulate and present ample evidence towards the conjecture
that the partition function (i.e. the exponential of the generating series of intersection numbers
with monomials in psi classes) of the Pixton class on the moduli space of stable curves is
the topological tau function of the noncommutative KdV hierarchy, which we introduced in
a previous work. The specialization of this conjecture to the top degree part of Pixton’s
class states that the partition function of the double ramification cycle is the tau function of
the dispersionless limit of this hierarchy. In fact, we prove that this conjecture follows from
the Double Ramification/Dubrovin–Zhang equivalence conjecture. We also provide several
independent computational checks in support of it.
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1. Introduction

The Witten–Kontsevich theorem [Wit91, Kon92] states that the partition function exp
(
ε−2FW

)
of the trivial cohomological field theory on the moduli space Mg,n of stable curves of genus g
with n marked points,

FW(t0, t1, . . . , ε) :=
∑
g,n≥0

2g−2+n>0

ε2g

n!

∑
d1,...,dn≥0

(∫
Mg,n

n∏
i=1

ψdii

)
n∏
i=1

tdi ,

is the topological tau function of the Korteweg–de Vries hierarchy. In particular, this means
that u = uW = ∂2FW

(∂t0)2 satisfies the infinite system of compatible PDEs

∂u

∂t1
=∂x

(
u2

2
+
ε2

12
uxx

)
,

∂u

∂t2
= ∂x

(
u3

6
+
ε2

24
(2uuxx + u2

x) +
ε4

240
uxxxx

)
, . . . ,

where x = t0 and whose generic member is given in terms of a simple and well-known Lax
representation.
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In this paper, we propose a generalization of this result involving Pixton’s class
∑g

j=0 P
j
g (A),

a family of nonhomogeneous tautological classes on Mg,n depending on an n-tuple of integers
A = (a1, . . . , an) ∈ Zn with

∑
ai = 0, given explicitly in terms of a subtle combinatorial formula

introduced by A. Pixton, whose top degree term P g
g (A), in cohomological degree 2g, equals (up

to a constant) the double ramification cycle DRg(A), i.e. the cohomological representative of (a
compactification of) the locus of genus g curves whose marked points support a principal divi-
sor [JPPZ17]. This family of tautological classes forms a partial cohomological field theory cg,n
with an infinite dimensional phase space V = span({ea}a∈Z). Consider the generating series

FP(t∗∗, ε, µ) :=
∑
g,n≥0

2g−2+n>0

g∑
j=0

ε2gµ2j

n!

∑
A=(a1,...,an)∈Zn∑

ai=0

∑
d1,...,dn≥0

(∫
Mg,n

2−jP j
g (A)

n∏
i=1

ψdii

)
n∏
i=1

taidi ,

and let

(wP)a :=
∂2FP

∂t00∂t
−a
0

, a ∈ Z, wP :=
∑
a∈Z

(wP)aeiay, uP :=
S(εµ∂x)

S(iεµ∂x∂y)
wP,

where S(z) := ez/2−e−z/2
z

. Then our main Conjecture 2 states that u = uP satisfies the infinite
system of compatible PDEs

∂u

∂t1
=∂x

(
u ∗ u

2
+
ε2

12
uxx

)
,

∂u

∂t2
=∂x

(
u ∗ u ∗ u

6
+
ε2

24
(u ∗ uxx + ux ∗ ux + uxx ∗ u) +

ε4

240
uxxxx

)
,

...

where x = t00, which is a noncommutative analogue of the KdV hierarchy above, with respect
to the noncommutative Moyal product

f ∗ g := f exp

(
iεµ

2
(
←−
∂x
−→
∂y −

←−
∂y
−→
∂x)

)
g

for functions f, g on a 2-dimensional torus with coordinates x, y [BR21]. Notice that, together
with the string and dilaton equation, the above noncommutative KdV (ncKdV) equations de-
termine uniquely the generating series FP.

This conjecture specializes to

FDR(t∗∗, ε) :=
∑
g,n≥0

2g−2+n>0

ε2g

n!

∑
A=(a1,...,an)∈Zn∑

ai=0

∑
d1,...,dn≥0

(∫
Mg,n

DRg(A)
n∏
i=1

ψdii

)
n∏
i=1

taidi

and

(wDR)a :=
∂2FDR

∂t00∂t
−a
0

, a ∈ Z, wDR :=
∑
a∈Z

(wDR)aeiay, uDR :=
S(ε∂x)

S(iε∂x∂y)
wDR

with u = uDR|ε7→εµ satisfying the dispersionless ncKdV hierarchy

∂u

∂tn
= ∂x

(
u∗(n+1)

(n+ 1)!

)
, n ≥ 1,(1.1)

which is Conjecture 1.

In this paper, we provide a proof that the two above conjectures follow from the much
more general DR/DZ equivalence conjecture, which states that the double ramification hierar-
chy (introduced in [Bur15] and further studied in [BR16]) and the Dubrovin–Zhang hierarchy
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(introduced in [DZ01]) are equivalent up to a very specific change of coordinates in the corre-
sponding phase space [Bur15, BDGR18, BDGR20, BGR19], together with the results of [BR21],
where we proved that the double ramification hierarchy for the Pixton class is indeed the ncKdV
hierarchy. In particular, this proves our conjectures at the approximation up to ε2. Moreover,
we provide several independent computational checks for Conjectures 1 and 2 themselves.

Acknowledgements. The work of A. B. (Sections 2 and 4) was supported by the grant no. 20-
11-20214 of the Russian Science Foundation.

2. Double ramification cycles and the dispersionless ncKdV hierarchy

In this section, we recall the definition of the double ramification cycles on the moduli spaces
of stable curves and present Conjecture 1 describing an integrable system controlling the inter-
sections of monomials in psi classes with the double ramification cycles.

All the cohomology and homology groups of topological spaces will be taken with complex
coefficients.

2.1. Double ramification cycles. For a pair of nonnegative integers (g, n) in the stable range,
i.e. satisfying 2g+2−n > 0, letMg,n be the moduli space of stable algebraic curves of genus g
with n marked points labeled by the set [n] := {1, . . . , n}. Denote by ψi ∈ H2(Mg,n) the first
Chern class of the line bundle Li over Mg,n formed by the cotangent lines at the i-th marked
point on stable curves. The classes ψi are called the psi classes. Denote by E the rank g Hodge
vector bundle overMg,n whose fibers are the spaces of holomorphic one-forms on stable curves.
Let λj := cj(E) ∈ H2j(Mg,n). LetMg,n ⊂Mg,n be the moduli space of smooth pointed curves
and denote by Mct

g,n ⊂Mg,n the locus of stable curves with no non-separating nodes.

Consider an n-tuple of integers A = (a1, . . . , an) such that
∑
ai = 0, it will be called a vector

of double ramification data. Suppose first that not all the numbers ai are equal to zero. Let

Zg(A) ⊂Mg,n

be the locus parameterizing the isomorphism classes of pointed smooth curves (C; p1, . . . , pn)
satisfying the condition OC(

∑n
i=1 aipi)

∼= OC , which is algebraic and defines Zg(A) canonically
as a substack of Mg,n of dimension 2g − 3 + n. Naively, the double ramification cycle DRg(A)
is defined as the cohomology class onMg,n that is Poincaré dual to a compactification of Z(A)
in Mg,n. A rigorous definition is the following (see, e.g., [JPPZ17]).

The positive parts of A define a partition µ = (µ1, . . . , µl(µ)). The negative parts of A define
a second partition ν = (ν1, . . . , νl(ν)). Since the parts of A sum to 0, the partitions µ and ν
must be of the same size. We now allow the case |µ| = |ν| = 0. Let n0 := n− l(µ)− l(ν). The
moduli space

Mg,n0(P1, µ, ν)∼

parameterizes stable relative maps of connected algebraic curves of genus g to rubber P1 with
ramification profiles µ, ν over the points 0,∞ ∈ P1, respectively. There is a natural map

st : Mg,n0(P1, µ, ν)∼ →Mg,n

forgetting everything except the marked domain curve. The moduli space Mg,n0(P1, µ, ν)∼

possesses a virtual fundamental class
[
Mg,n0(P1, µ, ν)∼

]vir
, which is a homology class of degree

2(2g − 3 + n). The double ramification cycle

DRg(A) ∈ H2g(Mg,n)
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is defined as the Poincaré dual to the push-forward st∗
[
Mg,n0(P1, µ, ν)∼

]vir ∈ H2(2g−3+n)(Mg,n).

Let us list some properties of the double ramification cycles (see, e.g., [JPPZ17]). In genus 0,
we have

DR0(A) = 1 ∈ H0(Mg,n).

If all the numbers ai are equal to zero, then we have

DRg(0, . . . , 0) = (−1)gλg ∈ H2g(Mg,n).

There is a very simple explicit formula for the restriction of the double ramification cycle
to the moduli space Mct

g,n. For J ⊂ [n] and 0 ≤ h ≤ g in the stable range 2h − 1 + |J | > 0

and 2(g − h)− 1 + (n− |J |) > 0, denote by δJh ∈ H2(Mg,n) the Poincaré dual to the substack
ofMg,n formed by stable curves with a separating node at which two stable components meet,
one of genus h and with marked points labeled by |J |, and the other of genus g − h and with
marked points labeled by the complement [n]\J . We adopt the convention δJh := 0 if at least
one of the stability conditions 2h− 1 + |J | > 0 and 2(g− h)− 1 + (n− |J |) > 0 is not satisfied.
Let aJ :=

∑
j∈J aj. Introduce a degree 2 cohomology class θg(A) on Mg,n by

θg(A) :=
n∑
j=1

a2
jψj

2
− 1

4

g∑
h=0

∑
J⊂[n]

a2
Jδ

J
h ∈ H2(Mg,n).

Then we have the formula

DRg(A)|Mct
g,n

=
1

g!
θg(A)g

∣∣∣∣
Mct

g,n

,(2.1)

which is called Hain’s formula. More properties of the double ramification cycles will be pre-
sented in Section 3.

2.2. The noncommutative KdV hierarchy. The classical construction of the KdV hierar-
chy as the system of Lax equations (see, e.g., [Dic03])

∂L

∂tn
=

ε2n

(2n+ 1)!!

[(
Ln+1/2

)
+
, L
]
, n ≥ 1,

where L := ∂2
x + 2ε−2u, u is a function of x, t1, t2, . . ., ε is a formal parameter, and (2n+ 1)!! :=

(2n+1)·(2n−1) · · · 3·1, admits generalizations, called noncommutative KdV hierarchies, where
one doesn’t have the pairwise commutativity of the x-derivatives of the dependent variable u.
In what follows, we will work with a specific example from the class of noncommutative KdV
hierarchies.

Let uk1,k2 , k1, k2 ∈ Z≥0, ε, and µ be formal variables and consider the space Â := C[[u∗,∗, ε, µ]],
whose elements will be called differential polynomials in two space variables. Consider a gra-

dation on Â given by

deg uk1,k2 := (k1, k2), deg ε := (−1, 0), deg µ := (0,−1).

We will denote by Â[(d1,d2)] ⊂ Â the space of differential polynomials of degree (d1, d2). The

space Â is endowed with operators ∂x and ∂y of degrees (1, 0) and (0, 1), respectively, defined by

∂x :=
∑

k1,k2≥0

uk1+1,k2

∂

∂uk1,k2

, ∂y :=
∑

k1,k2≥0

uk1,k2+1
∂

∂uk1,k2

.

We see that uk1,k2 = ∂k1
x ∂

k2
y u. We will denote u0,0 simply by u.
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The algebra Â is also endowed with the Moyal star-product defined by

f ∗ g := f exp

(
iεµ

2
(
←−
∂x
−→
∂y −

←−
∂y
−→
∂x)

)
g =

∑
n≥0

∑
k1+k2=n

(−1)k2(iεµ)n

2nk1!k2!
(∂k1
x ∂

k2
y f)(∂k2

x ∂
k1
y g),(2.2)

where f, g ∈ C[[u∗,∗, ε, µ]]. The Moyal star-product is associative and it is graded: if deg f =
(i1, i2) and deg g = (j1, j2), then deg (f ∗ g) = (i1 + j1, i2 + j2). Note also that when µ = 0 the
Moyal star-product becomes the usual multiplication:

(f ∗ g)|µ=0 = f |µ=0 · g|µ=0.(2.3)

Let us now consider the algebra of pseudo-differential operators of the form

A =
∑
i≤n

ai ∗ ∂ix, n ∈ Z, ai ∈ C[[u∗,∗, µ]][[ε, ε−1],(2.4)

with the multiplication ◦ given by

(a ∗ ∂ix) ◦ (b ∗ ∂jx) :=
∑
k≥0

(
i

k

)
(a ∗ ∂kxb) ∗ ∂i+j−kx , a, b ∈ C[[u∗,∗, µ]][[ε, ε−1], i, j ∈ Z.

The positive part of a pseudo-differential operator (2.4) is defined by A+ :=
∑

0≤i≤n ai ∗∂ix and,
as in the classical theory of pseudo-differential operators, a pseudo-differential operator A of
the form ∂2

x +
∑

i<2 ai ∗ ∂ix has a unique square root of the form ∂x +
∑

i<1 bi ∗ ∂ix, which we

denote by A
1
2 .

Consider the operator L := ∂2
x + 2ε−2u. The noncommutative KdV (ncKdV) hierarchy with

respect to the Moyal star-product (2.2) is defined by (see, e.g., [Ham05, DM00])

∂L

∂tn
=

ε2n

(2n+ 1)!!

[(
Ln+1/2

)
+
, L
]
, n ≥ 1.(2.5)

The ncKdV hierarchy is integrable in the sense that its flows pairwise commute. Explicitly, the
first two equations of the hierarchy are

∂u

∂t1
=∂x

(
u ∗ u

2
+
ε2

12
uxx

)
,

∂u

∂t2
=∂x

(
u ∗ u ∗ u

6
+
ε2

24
(u ∗ uxx + ux ∗ ux + uxx ∗ u) +

ε4

240
uxxxx

)
.

For any n ≥ 1, the right-hand side of (2.5) has the form ∂xPn, where Pn ∈ Â[(0,0)]. Moreover,
Pn =

∑n
g=0 Pn,g, where Pn,g is a linear combination of the monomials ε2gud1 ∗ · · · ∗ udn+1−g with

d1 + · · ·+ dn+1−g = 2g. The leading term Pn,0 is equal to u∗(n+1)

(n+1)!
. The hierarchy

∂u

∂tn
= ∂x

(
u∗(n+1)

(n+ 1)!

)
, n ≥ 1,(2.6)

will be called the dispersionless noncommutative KdV (dncKdV) hierarchy.

Note that because of (2.3) the noncommutative KdV hierarchy becomes the classical KdV
hierarchy when µ = 0.
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We are now ready to present our first conjecture. Let us introduce formal variables tad, a ∈ Z,
d ≥ 0, and consider the generating function

FDR(t∗∗, ε) :=
∑
g,n≥0

2g−2+n>0

ε2g

n!

∑
A=(a1,...,an)∈Zn∑

ai=0

∑
d1,...,dn≥0

(∫
Mg,n

DRg(A)
n∏
i=1

ψdii

)
n∏
i=1

taidi ∈ C[[t∗∗, ε]].

Introduce a formal power series

S(z) :=
ez/2 − e−z/2

z
= 1 +

z2

24
+

z4

1920
+O(z6)

and let

(wDR)a :=
∂2FDR

∂t00∂t
−a
0

∈ C[[t∗∗, ε]], a ∈ Z,

wDR :=
∑
a∈Z

(wDR)aeiay ∈ C[[t∗∗, ε]][[e
iy, e−iy]],

uDR :=
S(ε∂x)

S(iε∂x∂y)
wDR ∈ C[[t∗∗, ε]][[e

iy, e−iy]].(2.7)

Conjecture 1. The function uDR
∣∣
ε 7→εµ satisfies the dispersionless noncommutative KdV hier-

archy (2.6), where we identify td = t0d and x = t00.

Let us analyze the system of equations that this conjecture gives for the generating series FDR

in a bit more detail. For any a ∈ Z, introduce a formal power series

T (a, z) :=
S(z)

S(az)
= 1 +

1− a2

24
z2 +

3− 10a2 + 7a4

5760
z4 +O(z6) =

∑
g≥0

Qg(a)z2g.(2.8)

Here, Qg(a) are polynomials in a. If we decompose

uDR =
∑
a∈Z

(uDR)aeiay,(2.9)

then the transformation (2.7) simply means that

(uDR)a = (wDR)a +
∑
g≥1

ε2gQg(a)∂2g
x (wDR)a, a ∈ Z.

Also, using the decomposition (2.9) we can rewrite the equations of the dncKdV hierarchy as
a system of evolutionary PDEs with one spatial variable x and infinitely many times td, d ≥ 1,
for the functions (uDR)a, a ∈ Z. For example, the first equation of the dncKdV hierarchy,
∂u
∂t1

= ∂x
(
u∗u

2

)
, via Conjecture 1, gives the following PDEs for the functions (uDR)a:

∂(uDR)a

∂t1
=
∑
g≥0

ε2g

22g

∑
a1,a2∈Z
a1+a2=a

∑
k1,k2≥0
k1+k2=2g

(−1)k1

k1!k2!
ak2

1 a
k1
2 ∂x

(
∂k1
x (uDR)a1∂k2

x (uDR)a2
)
, a ∈ Z.

3. The Pixton class and the full ncKdV hierarchy

Here, we recall Pixton’s very explicit construction of a nonhomogeneous cohomology class
onMg,n, with nontrivial terms in degree 0, 2, 4, . . . , 2g. By a result of [JPPZ17], the degree 2g
part of this class coincides with the double ramification cycle. We then present Conjecture 2,
which generalizes Conjecture 1 and says that the intersection numbers of Pixton’s class with
monomials in psi classes are controlled by the full noncommutative KdV hierarchy.
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Let us first recall a standard way to construct cohomology classes onMg,n in terms of stable
graphs. A stable graph is the following data:

Γ = (V,H, L, g : V → Z≥0, v : H → V, ι : H → H),

where

(1) V is a set of vertices with a genus function g : V → Z≥0,
(2) H is a set of half-edges equipped with a vertex assignment v : H → V and an involution ι,
(3) the set of edges E is defined as the set of orbits of ι of length 2,
(4) the set of legs L is defined as the set of fixed points of ι and is placed in bijective

correspondence with the set [n], the leg corresponding to the marking i ∈ [n] will be
denoted by li,

(5) the pair (V,E) defines a connected graph,
(6) the stability condition 2g(v)−2 +n(v) > 0 is satisfied at each vertex v ∈ V , where n(v)

is the valence of Γ at v including both half-edges and legs.

An automorphism of Γ consists of automorphisms of the sets V and H that leave invariant the
structures L, g, v, and ι. Denote by Aut(Γ) the authomorphism group of Γ. The genus of a
stable graph Γ is defined by g(Γ) :=

∑
v∈V g(v)+h1(Γ). Denote by Gg,n the set of isomorphism

classes of stable graphs of genus g with n legs.

For each stable graph Γ ∈ Gg,n, there is an associated moduli space

MΓ :=
∏
v∈V

Mg(v),n(v)

and a canonical map

ξΓ : MΓ →Mg,n

that is given by the gluing of the marked points corresponding to the two halves of each
edge in E(Γ). Each half-edge h ∈ H(Γ) determines a cotangent line bundle Lh → MΓ. If
h ∈ L(Γ), then Lh is the pull-back via ξΓ of the corresponding cotangent line bundle overMg,n.
Let ψh := c1(Lh) ∈ H2(MΓ). The Pixton class will be described as a linear combination of
cohomology classes of the form

ξΓ∗

(∏
h∈H

ψ
d(h)
h

)
,

where Γ ∈ Gg,n and d : H(Γ)→ Z≥0.

Let A = (a1, . . . , an) be a vector of double ramification data. Let Γ ∈ Gg,n and r ≥ 1. A
weighting mod r of Γ is a function

w : H(Γ)→ {0, . . . , r − 1}

that satisfies the following three properties:

(1) for any leg li ∈ L(Γ), we have w(li) = ai mod r;
(2) for any edge e = {h, h′} ∈ E(Γ), we have w(h) + w(h′) = 0 mod r;
(3) for any vertex v ∈ V (Γ), we have

∑
h∈H(Γ), v(h)=v w(h) = 0 mod r.

Denote by WΓ,r the set of weightings mod r of Γ. We have |WΓ,r| = rh
1(Γ).

We denote by P d,r
g (A) ∈ H2d(Mg,n) the degree 2d component of the cohomology class

(3.1)∑
Γ∈Gg,n

∑
w∈WΓ,r

1

|Aut(Γ)|
1

rh1(Γ)
ξΓ∗

 n∏
i=1

exp(a2
iψli)

∏
e={h,h′}∈E(Γ)

1− exp (−w(h)w(h′)(ψh + ψh′))

ψh + ψh′
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in H∗(Mg,n). Note that the factor
1−exp(−w(h)w(h′)(ψh+ψh′ ))

ψh+ψh′
is well defined since the denominator

formally divides the numerator. In [JPPZ17], the authors proved that for fixed g, A, and d the
class P d,r

g is polynomial in r for all sufficiently large r. Denote by P d
g (A) the constant term of

the associated polynomial in r.

The restriction of the class P j
g (A) to Mct

g,n is given by

P j
g (A)

∣∣
Mct

g,n
=

2j

j!
θg(A)j

∣∣∣∣
Mct

g,n

.

In [JPPZ17], the authors proved that

DRg(A) = 2−gP g
g (A).

In [CJ18], the authors proved that the class P d
g (A) vanishes for d > g. In [JPPZ17, page 10],

the authors remark “For d < g, the classes P d
g (A) do not yet have a geometric interpretation”.

Our next conjecture shows that the intersection numbers of these classes with monomials in
psi classes have an elegant structure from the point of view of integrable systems.

Let us introduce the following generating series:

FP(t∗∗, ε, µ) :=
∑
g,n≥0

2g−2+n>0

g∑
j=0

ε2gµ2j

n!

∑
A=(a1,...,an)∈Zn∑

ai=0

∑
d1,...,dn≥0

(∫
Mg,n

2−jP j
g (A)

n∏
i=1

ψdii

)
n∏
i=1

taidi ,

and let

(wP)a :=
∂2FP

∂t00∂t
−a
0

, a ∈ Z,

wP :=
∑
a∈Z

(wP)aeiay,

uP :=
S(εµ∂x)

S(iεµ∂x∂y)
wP.

Conjecture 2. The function uP satisfies the full noncommutative KdV hierarchy (2.5), where
we recall that we identify t0d = td and t00 = x.

Note that since (
FP
∣∣ ε 7→ετ
µ7→τ−1

)∣∣∣∣
τ=0

= FDR

Conjecture 1 immediately follows from Conjecture 2.

Note also that since P 0
g (A) = 1 we have

FP
∣∣
µ=t6=0

∗ =0
= FW,

where FW is the classical generating series of intersection numbers on Mg,n considered by
Witten in [Wit91]:

FW(t0, t1, . . . , ε) :=
∑
g,n≥0

2g−2+n>0

ε2g

n!

∑
d1,...,dn≥0

(∫
Mg,n

n∏
i=1

ψdii

)
n∏
i=1

tdi .

Clearly, we have

(wP)a
∣∣
µ=t6=0

∗ =0
= (uP)a

∣∣
µ=t6=0

∗ =0
=

{
∂2FW

(∂t0)2 , if a = 0,

0, otherwise.
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Thus, after the specialization µ = t6=0
∗ = 0, Conjecture 2 says that the function ∂2FW

∂t20
is a

solution of the classical KdV hierarchy, which is the celebrated conjecture of Witten [Wit91],
first proved by Kontsevich [Kon92].

4. A relation with the DR/DZ equivalence conjecture

The goal of this section is to show that Conjecture 2 follows from the so-called DR/DZ
equivalence conjecture proposed in [BDGR18] and a result of [BR21], where the authors proved
that the DR hierarchy corresponding to the partial cohomological field theory formed by the
classes exp(µ2θg(A)) coincides with the noncommutative KdV hierarchy. In particular, since the
DR/DZ equivalence conjecture is proved at the approximation up to genus 1 [BDGR18, BGR19],
this proves Conjecture 2 at the approximation up to genus 1.

4.1. Partial cohomological field theories. Recall the following definition, which is a gen-
eralization first considered in [LRZ15] of the notion of a cohomological field theory from [KM94].

Definition 4.1. A partial cohomological field theory (CohFT) is a system of linear maps

cg,n : V ⊗n → Heven(Mg,n)

for (g, n) in the stable range, where V is an arbitrary finite dimensional C-vector space, called
the phase space, together with a special element e ∈ V , called the unit, and a symmetric
nondegenerate bilinear form η ∈ (V ∗)⊗2, called the metric, such that, fixing a basis e1, . . . , edimV

in V , the following axioms are satisfied:

(i) The maps cg,n are equivariant with respect to the Sn-action permuting the n copies of V
in V ⊗n and the n marked points in Mg,n, respectively.

(ii) Let π : Mg,n+1 →Mg,n be the map that forgets the last marked point. Then

π∗cg,n(⊗ni=1eαi) = cg,n+1(⊗ni=1eαi ⊗ e), 1 ≤ α1, . . . , αn ≤ dimV.

Moreover, c0,3(eα ⊗ eβ ⊗ e) = η(eα ⊗ eβ) =: ηαβ for 1 ≤ α, β ≤ dimV .
(iii) For decompositions ItJ = [n], |I| = n1, |J | = n2, and g1 +g2 = g with 2g1−1+n1 > 0,

2g2 − 1 + n2 > 0, let

gl : Mg1,n1+1 ×Mg2,n2+1 →Mg1+g2,n1+n2(4.1)

be the corresponding gluing map. Then

gl∗cg,n(⊗ni=1eαi) = cg1,n1+1(⊗i∈Ieαi ⊗ eµ)ηµνcg2,n2+1(⊗j∈Jeαj ⊗ eν), 1 ≤ α1, . . . , αn ≤ dimV,
(4.2)

where ηαβ are the entries of the matrix (ηαβ)−1.

Definition 4.2. A CohFT is a partial CohFT cg,n : V ⊗n → Heven(Mg,n) such that the following
extra axiom is satisfied:

(iv) gl∗cg+1,n(⊗ni=1eαi) = cg,n+2(⊗ni=1eαi ⊗ eµ ⊗ eν)η
µν for 1 ≤ α1, . . . , αn ≤ dimV , where

gl : Mg,n+2 →Mg+1,n is the gluing map that increases the genus by identifying the last
two marked points.

Remark that a notion of infinite rank partial CohFT, i.e. a partial CohFT with an in-
finite dimensional phase space V , requires some care. One needs to clarify what is meant
by the matrix (ηαβ) and to make sense of the, a priori infinite, sum over µ and ν, both
appearing in Axiom (iii). One possibility is demanding that the image of the linear map
V ⊗(n−1) → H∗(Mg,n)⊗V ∗ induced by cg,n : V ⊗n → H∗(Mg,n) is contained in H∗(Mg,n)⊗η](V ),
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where η] : V → V ∗ is the injective map induced by the bilinear form η. Then in Axiom (iii),
instead of using an undefined bilinear form (ηαβ) on V ∗, one can use the bilinear form on η](V )
induced by η. This solves the problem with convergence.

A useful special case is the following. Consider a vector space V with a countable ba-
sis {eα}α∈Z and suppose that for any (g, n) in the stable range and each eα1 , . . . , eαn−1 ∈ V the
set {β ∈ Z | cg,n(⊗n−1

i=1 eαi ⊗ eβ) 6= 0} is finite. In particular, this implies that the matrix ηαβ
is row- and column-finite (each row and each column have a finite number of nonzero entries),
which is equivalent to η](V ) ⊆ span({eα}α∈Z), where {eα}α∈Z is the dual “basis”. Let us fur-
ther demand that the injective map η] : V → span({eα}α∈Z) is surjective too, i.e. that a unique
two-sided row- and column-finite matrix (ηαβ), inverse to (ηαβ), exists (it represents the inverse
map (η])−1 : span({eα}α∈Z) → V ). Then the equation appearing in Axiom (iii) is well defined
with the double sum only having a finite number of nonzero terms. Such a partial CohFT will
be called a tame partial CohFT of infinite rank.

4.2. The DR/DZ equivalence conjecture. Let us fix a positive integer N .

4.2.1. Differential polynomials. Let us introduce formal variables uαi , α = 1, . . . , N , i = 0, 1, . . ..
Following [DZ01] (see also [Ros17]), we define the ring of differential polynomials AN in the
variables u1, . . . , uN as the ring of polynomials f(u∗, u∗1, u

∗
2, . . .) in the variables uαi , i > 0, with

coefficients in the ring of formal power series in the variables uα = uα0 :

AN := C[[u∗]][u∗≥1].

Remark 4.3. This way, we define a model of the loop space of a vector space V of dimension N
by describing its ring of functions. In particular, it is useful to think of the variables uα := uα0
as the components uα(x) of a formal loop u : S1 → V in a fixed basis e1, . . . , eN of V . Then the
variables uα1 := uαx , u

α
2 := uαxx, . . . are the components of the iterated x-derivatives of a formal

loop.

A gradation on AN , which we denote by deg, is introduced by deg uαi := i. The homogeneous

component of AN of degree d is denoted by A[d]
N . The operator

∂x :=
∑
i≥0

uαi+1

∂

∂uαi

increases the degree by 1.

Differential polynomials can also be described using another set of formal variables, corre-
sponding heuristically to the Fourier components pαk , k ∈ Z, of the functions uα = uα(x). We
define a change of variables

uαj =
∑
k∈Z

(ik)jpαke
ikx,(4.3)

which allows us to express a differential polynomial f(u, ux, uxx, . . .) ∈ AN as a formal Fourier
series in x. In the latter expression, the coefficient of eikx is a power series in the variables pαj
with the sum of the subscripts in each monomial in pαj equal to k.

Consider the extension ÂN := AN [[ε]] of the space AN with a new variable ε of degree
deg ε := −1. Abusing the terminology, we still call its elements differential polynomials.

Let Â[k]
N ⊂ ÂN denote the subspace of differential polynomials of degree k.
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4.2.2. The DR hierarchy of a partial CohFT. Consider an arbitrary partial CohFT

cg,n : V ⊗n → Heven(Mg,n).

Following [Bur15, BDGR18], we will present the construction of the DR hierarchy and the
DR/DZ equivalence conjecture. Formally, the results presented here were obtained in [Bur15,
BDGR18] for a CohFT, but, as it was already remarked in [BDGR18, Section 9.1], the con-
struction of the DR hierarchy works without any change for an arbitrary partial CohFT, and
all the results that we discuss here are true for an arbitrary partial CohFT with the same proofs.

Let N := dimV and let us fix a basis e1, . . . , eN ∈ V . Introduce the following generating
series:

Pα
β,d :=

∑
g≥0
n≥1

(−ε2)g

n!

∑
a1,...,an∈Z

(∫
DRg(−

∑n
i=1 ai,0,a1,...,an)

λgψ
d
2η

αγcg,n+2(eγ ⊗ eβ ⊗ni=1 eαi)

)
n∏
i=1

pαiai e
i(
∑n
j=1 aj)x,

(4.4)

for α, β = 1, . . . , N and d = 0, 1, 2, . . .. The expression on the right-hand side of (4.4) can

be uniquely written as a differential polynomial from Â[0]
N using the change of variables (4.3).

Concretely, it can be done in the following way. From Hain’s formula (2.1) it follows that
the restriction DRg (−

∑n
i=1 ai, a1, . . . , an)

∣∣
Mct

g,n+1
is a homogeneous polynomial in a1, . . . , an of

degree 2g with the coefficients in H2g(Mct
g,n+1). This property together with the fact that λg

vanishes on Mg,n\Mct
g,n (see, e.g., [FP00a, Section 0.4]) implies that the integral∫
DRg(−

∑n
i=1 ai,0,a1,...,an)

λgψ
d
2η

αγcg,n+2(eγ ⊗ eβ ⊗ni=1 eαi)(4.5)

is a homogeneous polynomial in a1, . . . , an of degree 2g, which we denote by

Qα
β,d,g;α1,...,αn

(a1, . . . , an) =
∑

b1,...,bn≥0
b1+...+bn=2g

Qα;b1,...,bn
β,d,g;α1,...,αn

ab11 . . . abnn .

Then we have

Pα
β,d =

∑
g≥0
n≥1

ε2g

n!

∑
b1,...,bn≥0

b1+...+bn=2g

Qα;b1,...,bn
β,d,g;α1,...,αn

uα1
b1
. . . uαnbn .

The system of PDEs

∂uα

∂tβd
= ∂xP

α
β,d, 1 ≤ α, β ≤ N, d ≥ 0,(4.6)

is called the double ramification (DR) hierarchy. The flows of the hierarchy pairwise commute.
Let Aαeα := e ∈ V . The flow ∂

∂t11
:= Aα ∂

∂tα0
is given by

∂uα

∂t110
= uαx .(4.7)

Remark 4.4. The DR hierarchy is actually Hamiltonian, and in [Bur15, BDGR18] it is in-
troduced via a sequence of local functionals. However, since we don’t need the Hamiltonian
structure in this paper, we introduce directly the equations of the DR hierarchy.
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Because of (4.7), as a solution of the DR hierarchy we can consider an N -tuple of formal
power series uα(t∗∗, ε) ∈ C[[t∗∗, ε]], 1 ≤ α ≤ N , satisfying the system (4.6) after the identification
of the flows ∂x and ∂

∂t110
. The string solution (ustr)α(t∗∗, ε) ∈ C[[t∗∗, ε]] of the DR heirarchy is

defined as the unique solution satisfying the initial condition

(ustr)α
∣∣
tγn=δn,0Aγx

= Aαx.

The potential of our partial CohFT is defined by

F(t∗∗, ε) :=
∑
g,n≥0

2g−2+n>0

ε2g

n!

∑
1≤α1,...,αn≤N
d1,...,dn≥0

(∫
Mg,n

cg,n (⊗ni=1eαi)
n∏
i=1

ψdii

)
n∏
i=1

taidi ∈ C[[t∗∗, ε]].

The exponent exp (ε−2F) is traditionally called the partition function.

Define

(wtop)αn := ηαµ
∂n

(∂t110 )n
∂2F
∂tµ0∂t

11
0

, 1 ≤ α ≤ N.

In [BDGR18, Proposition 7.2], the authors proved that there exists a unique differential poly-

nomial P ∈ Â[−2]
N such that the power series F red ∈ C[[t∗∗, ε]] defined by

F red := F + P|uγn=(wtop)γn

satisfies the following vanishing property:

Coefε2g
∂nF red

∂tα1
d1
. . . ∂tαndn

∣∣∣∣
t∗∗=0

= 0, if
n∑
i=1

di ≤ 2g − 2.(4.8)

The power series F red is called the reduced potential of our partial CohFT.

The differential polynomials ũα ∈ Â[0]
N defined by

ũα := η11µP
µ
α,0

are called the normal coordinates of the DR hierarchy. The differential polynomials ũα := ηαν ũν
are also called the normal coordinates.

The following conjecture was presented in [BDGR18, Conjecture 7.5].

Conjecture 3. We have

∂2F red

∂t110 ∂t
α
0

= ũα|uγn=(ustr)γn
, 1 ≤ α ≤ N.(4.9)

Remark 4.5. To be precise, Conjecture 7.5 from [BDGR18] claims that

FDRH = F red,(4.10)

where FDRH is the potential of the DR hierarchy, see Section 4.2 in [BDGR18] for the con-
struction. Let us explain why it is equivalent to Conjecture 3. In one direction, equation (4.9)
immediately follows from (4.10) and the definition of FDRH. Conversely, equation (4.9) implies

that ∂2Fred

∂(t110 )2 = ∂2FDRH

∂(t110 )2 , which, using the string equations for F red [BDGR18, Proposition 7.2]

and FDRH [BDGR18, Proposition 6.3], gives that F red = FDRH (see [Get99, Lemma 3.1]).
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4.3. The Pixton class as a partial cohomological field theory.

Proposition 4.6. The classes

cg,n(⊗ni=1eai) :=

g∑
d=0

2−dµ2dP d
g (a1, . . . , an)(4.11)

form an infinite rank tame partial cohomological field theory with the phase space V = span({ea}a∈Z),
the unit e0, and the metric given by in the basis {ea}a∈Z by ηab = δa+b,0.

Proof. Since cg,n(⊗ni=1eai) = 0 unless
∑n

i=1 ai = 0, the tameness property is clear.

To prove the axioms from Definition 4.1, the crucial observation is that formula (3.1) is very
close the formula for the action of a Givental R-matrix on a topological field theory (see, e.g.,
[PPZ15, Section 2] for an introduction to these techniques). Let Vr := span({e0, . . . , er−1}) and
fix a bilinear form ηr(ea, eb) := 1

r
δa+b=0 mod r on Vr. Starting with the topological field theory

ωg,n : V ⊗nr → H0(Mg,n), where

ωg,n(ea1 ⊗ . . .⊗ ean) := r2g−1δa1+...+an=0 mod r,

and applying the Givental R-matrix

R(z) := exp
(
−diagr−1

a=0(a2)2−1µ2z
)
,

we obtain the CohFT

Ωr
g,n(ea1 ⊗ . . .⊗ ean) =

∑
Γ∈Gg,n

∑
w∈WΓ,r

r2g−1−h1(Γ)

|Aut(Γ)|
ξΓ∗

[
n∏
i=1

exp(a2
i 2
−1µ2ψli) ×

×
∏

e={h,h′}∈E(Γ)

2−1µ2 1− exp (2−1µ2 (w(h)2ψh + w(h′)2ψh′))

2−1µ2(ψh + ψh′)

 ,
whose unit is e0 and where WΓ,r are the same weightings appearing in formula (3.1). In

particular, the factor r2g−1−h1(Γ) comes from the product of the factors r2g(v)−1 appended to
each vertex v ∈ V (Γ) times the factors r appended to each edge (from the η−1

r in the edge
contributions), since∑
v∈V (Γ)

(2g(v)− 1) + |E| = |E|− |V |+ 2
∑

v∈V (Γ)

g(v) = (h1(Γ)− 1) + 2(g−h1(Γ)) = 2g− 1−h1(Γ).

Dividing the classes Ωr
g,n(⊗ni=1eai) by r2g−1 preserves the property of being a partial CohFT.

Therefore, the classes

Ω̃r
g,n(ea1 ⊗ . . .⊗ ean) :=

∑
Γ∈Gg,n

∑
w∈WΓ,r

1

|Aut(Γ)|
1

rh1(Γ)
ξΓ∗

[
n∏
i=1

exp(a2
i 2
−1µ2ψli) ×

×
∏

e={h,h′}∈E(Γ)

2−1µ2 1− exp (2−1µ2 (w(h)2ψh + w(h′)2ψh′))

2−1µ2(ψh + ψh′)



(4.12)

form a partial CohFT with the same phase space Vr, the metric η̃r(ea, eb) = δa+b=0 mod r, and
the unit e0. Note that in this formula we have

w(h)2 = −w(h)w(h′) + rw(h), w(h′)2 = −w(h)w(h′) + rw(h′).

Note also that the class Ω̃r
g,n(ea1 ⊗ . . .⊗ ean) is zero unless a1 + . . .+ an = 0 mod r.
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For an integer a, let us denote by ã ∈ {0, . . . , r − 1} the unique number such that a = ã
mod r. If r > |a|, then, clearly,

ã =

{
a, if a ≥ 0,

r + a, if a < 0.

Consider an n-tuple A = (a1, . . . , an) ∈ Zn satisfying a1 +. . .+an = 0, and let Ã := (ã1, . . . , ãn).
Comparing formulas (3.1) and (4.12), and using Proposition 3” in [JPPZ17], we conclude that

both classes Ω̃r
g,n(⊗ni=1eãi) and

∑
d≥0 2−dµ2dP d,r

g (A) are polynomials in r (for r sufficiently large)
having the same constant term, which is equal to the class cg,n(⊗ni=1eai) (one should notice that
the factors 2−1µ2 appended to each psi class and each edge of a stable graph in (4.12) globally
produce a factor 2−dµ2d). The proposition can now be easily derived from that.

To prove Axiom (iii) from Definition 4.1 for the classes cg,n(⊗ni=1eai), consider the gluing
map (4.1) with respect to the bilinear form η̃r. We have

gl∗Ω̃r
g,n(⊗ni=1eãi) = Ω̃r

g1,n1+1(⊗i∈Ieãi ⊗ e−̃aI )Ω̃
r
g2,n2+1(⊗j∈Jeãj ⊗ e−̃aJ ).

Considering both sides as polynomials in r (for r sufficiently large) and taking the constant
terms, we obtain

gl∗cg,n(⊗ni=1eai) = cg1,n1+1(⊗i∈Ieai ⊗ e−aI )cg2,n2+1(⊗j∈Jeaj ⊗ e−aJ ),

as required. Proofs of Axioms (i) and (ii) are the same, and we omit them. �

4.4. The DR/DZ equivalence conjecture implies Conjectures 1 and 2. Consider the
partial CohFT given by the Pixton class,

cg,n(⊗ni=1eai) :=

g∑
d=0

2−dµ2dP d
g (a1, . . . , an)

and the corresponding DR hierarchy.

Remark 4.7. Strictly speaking, we discussed the construction of the DR hierarchy only for
partial CohFTs with a finite dimensional phase space. However, it is not hard to understand
that, for a partial CohFT of infinite rank, tameness is a sufficient condition for all the construc-
tions and results to remain true. More precisely, while the definition of the Hamiltonians of
the DR hierarchy works even without the tameness hypothesis for any infinite rank CohFT (at
the cost of replacing the spaces of differential polynomials and local functionals with a space
of formal power series in all formal variables u∗∗ and ε), the construction of the equations of
the DR hierarchy (4.6) already requires dealing with the existence of the matrix (ηαβ) and
the convergence of the infinite sum appearing in formula (4.4). From there on, through the
proof of compatibility of the equations of the DR hierarchy (commutativity of Hamiltonians)
to the existence of the potential of the DR hierarchy FDRH featured in the DR/DZ equivalence
conjecture, several constructions and results present the very same problem. It is immediate
to see that the tameness hypothesis is always sufficient to ensure that (ηαβ) exists and that all
infinite sums always have only a finite number of nonzero terms.

Proposition 4.8. The normal coordinates of the DR hierarchy are given by

ũα = uα +
∑
g≥1

ε2g (µα)2g

22g(2g + 1)!
uα2g, α ∈ Z.(4.13)
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Proof. To compute the normal coordinates ũα, one has to compute the integrals∫
Mg,n+2

DRg

(
−

n∑
i=1

ai, 0, a1, . . . , an

)
λg2

−dP d
g (0,−α, α1, . . . , αn),

where n ≥ 1, a1, . . . , an, α1, . . . , αn ∈ Z, 0 ≤ d ≤ g, which by degree reasons can be nonzero
only if g − 1 + n = d. Therefore, only the integrals with n = 1 and d = g give a nontrivial
contribution, i.e., the integrals∫

Mg,3

DRg (−a, 0, a)λgDRg(0,−α, α)
[BR21, Theorem 2.1]

=============
(αa)2g

22g(2g + 1)!
,

which gives formula (4.13). �

Proposition 4.9. The reduced potential FP,red of our partial CohFT is equal to

FP,red = FP +
∑
g≥1

(εµ)2g

22g(2g + 1)!
(wtop)0

2g−2.

Proof. Equivalently, we have to check that

FP,red = S(εµ∂x)FP,

where we identify x = t00.

For d ∈ Z, denote by Sd ⊂ C[[t∗∗, ε]] the space of formal power series F satisfying the condition

Coefε2g
∂nF

∂tα1
d1
. . . ∂tαndn

∣∣∣∣
t∗∗=0

= 0, if
n∑
i=1

di ≤ 2g + d.

By degree reasons, we have

FP −
∑
g≥1

(εµ)2g

(
(−1)g

∫
Mg,1

λgψ
2g−2
1︸ ︷︷ ︸

=:bg

)
t02g−2 ∈ S−2.

Let b0 := 1. Using the string equation

∂FP

∂t00
=
∑
a≥0

tαa+1

∂FP

∂tαa
+

1

2

∑
α∈Z

tα0 t
−α
0 ,

we obtain

∂2h
x FP −

∑
g≥0

(εµ)2g(−1)gbgt
0
2g+2h−2 ∈ S2h−2 for h ≥ 1 ⇒

⇒ S(εµ∂x)FP −
∑
g≥1

(εµ)2gt02g−2

( ∑
g1+g2=g

(−1)g1bg1

22g2(2g2 + 1)!

)
∈ S−2.

By [FP00b, Theorem 2], the numbers bg are given by

1 +
∑
g≥1

bgz
2g =

iz

eiz/2 − e−iz/2
=

1

S(iz)
,

which implies that S(εµ∂x)F̂DR ∈ S−2, as required. �

Theorem 4.10. Suppose that Conjecture 3 is true for the partial CohFT given by the Pixton
class. Then Conjecture 2 is true.
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Proof. Conjecture 3 together with Proposition 4.8 implies that

∂2FP,red

∂t00∂t
−α
0

= S(µεα∂x)(u
str)α.

On the other hand, from Proposition 4.9 it follows that

∂2FP,red

∂t00∂t
−α
0

= S(εµ∂x)(w
P)α.

Therefore,

(ustr)α =
S(εµ∂x)

S(iεµα∂x)
(wP)α ⇒ uP =

∑
α∈Z

(ustr)αeiαy.

In [BR21, Theorem 4.1], the author proved that
∑

α∈Z(ustr)αeiαy satisfies the noncommutative
KdV hierarchy. This implies that uP satisfies the noncommutative KdV hierarchy, as required.

�

Corollary 4.11. Conjectures 1 and 2 are true at the approximation up to ε2.

Proof. In [BGR19], the authors proved that Conjecture 3 is true at the approximation up to ε2.
Together with Theorem 4.10, this gives the corollary. �

5. A prediction for the integrals
∫
Mg,2

2−jP j
g (a,−a)ψ3g−1−j

1

In this section, using Conjecture 2 we will present an explicit formula for the generating
series of integrals

∫
Mg,2

2−jP j
g (a,−a)ψ3g−1−j

1 . We will then check several special cases of this

formula.

Proposition 5.1. Suppose that Conjecture 2 is true. Then we have∑
1≤j≤g

(∫
Mg,2

2−jP j
g (a,−a)ψ3g−1−j

1

)
µ2jz3g−1−j =

1

z

(
S(aµz)

S(µz)
e
z3

24 − 1

)
.(5.1)

Proof. By the string equation

∂FP

∂t00
=
∑
a≥0

tαa+1

∂FP

∂tαa
+

1

2

∑
α∈Z

tα0 t
−α
0 ,(5.2)

equation (5.1) is equivalent to∑
0≤j≤g

(∫
Mg,3

2−jP j
g (a,−a, 0)ψ3g−j

1

)
︸ ︷︷ ︸

=:T jg (a)

µ2jz3g−j =
S(aµz)

S(µz)
e
z3

24 ⇔

⇔
∑

0≤j≤g

T jg (a)µ2jzg−j =
S(aµ)

S(µ)
e
z
24 .(5.3)

From (5.2), it also follows that

∂nx (wP)α = δα,0δn,1 +
∑

0≤j≤g

ε2gµ2jT jg (α)tα3g−j+n +O
(
(t∗∗)

2
)
.

Therefore, ∂nx (uP)α has the form

∂nx (uP)α = δα,0δn,1 +
∑

0≤j≤g

ε2gµ2jRj
g(α)tα3g−j+n +O

(
(t∗∗)

2
)
,(5.4)
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where Rj
g(α) =

∑j
h=0 T

j−h
g−h (α)Qh(α) (recall that Qh(α) was defined in (2.8)) or, equivalently,

∑
0≤j≤g

Rj
g(α)µ2jzg−j =

( ∑
0≤j≤g

T jg (α)µ2jzg−j

)(∑
h≥0

Qh(α)µ2h

)
.

Since
∑

h≥0Qh(α)µ2h = S(µ)
S(αµ)

, we see that (5.3) is equivalent to the equation

Rj
g(α) =

δj,0

24gg!
.(5.5)

Equation (5.5) is obvious for g = 0. The property (5.4) implies that

1

2
∂x(u

P ∗ uP) +
ε2

12
uP
xxx =

∑
α∈Z

∑
0≤j≤g

ε2gµ2j

(
Rj
g(α) +

1

12
Rj
g−1(α)

)
tα3g−je

iαy +O
(
(t∗∗)

2
)
,

where we adopt the convention Rj
g(α) := 0 for j > g or g < 0. On the other hand, the dilaton

equation

∂FP

∂t01
=
∑
a≥0

tαa
∂FP

∂tαa
+ ε

∂FP

∂ε
− 2FP +

1

24

implies that

∂(uP)

∂t01
=
∑
α∈Z

∑
0≤j≤g

ε2gµ2j(2g + 1)Rj
g(α)tα3g−je

iαy +O
(
(t∗∗)

2
)
.

Using now the first equation of the noncommutative KdV hierarchy

∂uP

∂t01
=

1

2
(uP ∗ uP) +

ε2

12
uP
xxx,

we obtain

Rj
g(α) =

1

24g
Rj
g−1 for g ≥ 1,

which gives (5.5) and proves the proposition. �

Let us now check several special cases of formula (5.1). First of all, note that the following
two specializations of (5.1) appeared in the literature before:

(1) If we put µ = 0 in (5.1), we obtain∑
g≥1

(∫
Mg,2

ψ3g−1
1

)
z3g−1 =

1

z

(
e
z3

24 − 1
)
⇔

∑
g≥1

(∫
Mg,1

ψ3g−2
1

)
z3g−2 =

1

z2

(
e
z3

24 − 1
)
,

which is a classical formula (see, e.g., [FP00a, equation (6)]).

(2) Multiplying both sides of (5.1) by z, substituting µ 7→ µz−1, and putting z = 0, we
obtain ∑

1≤j≤g

(∫
Mg,2

DRg(a,−a)ψ2g−1
1

)
µ2j =

S(aµ)

S(µ)
− 1,

which was proved in [BSSZ15, Theorem 1].
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The two special cases discussed above involved the integrals with the classes P j
g (A) where

j = 0 or j = g. Consider now an example with 0 < j < g. For a fixed integer a and r big
enough, we have

P 1,r
2 (a,−a) = a2(ψ1 + ψ2) + |a|(r − |a|) 1 21 1 +

r2 − 1

12
1 21 ,

which gives

P 1
2 (a,−a) = a2

(
ψ1 + ψ2 − 1 21 1

)
− 1

12
1 21 ,

where we refer a reader to [BGR19, Section 2.1] for our pictorial notation for the cohomology
classes on Mg,n. Therefore, ∫

M2,2

P 1
2 (a,−a)ψ4

1 =
a2 − 1

288
,

which agrees with formula (5.1).
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