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Abstract

Known dynamic implementations of the Vickrey-Clarke-Groves mech-
anism in general private-value auction settings utilize non-linear (not
additively-separable over goods) and non-anonymous (bidder-specific)
prices. The need for non-linear and non-anonymous prices — a complica-
tion that is often difficult to implement in practice — arises from limiting
attention to elicitation processes based on demand queries (i.e., asking
bidders to report their demands at posted prices). In this paper, we relax
this restriction and allow the auctioneer to supplement demand queries
with marginal value queries (i.e., requests to report value differences
between pairs of commodity bundles) as needed. This added flexibility
enables an iterative ascending auction design that achieves efficiency
despite using linear and anonymous prices.
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1 Introduction

Auction design is tasked with developing market mechanisms for allocating
scarce resources. In many applications, the primary goal for an auctioneer is ef-
ficiency — allocating resources to bidders with the highest intrinsic values. The
famous Vickrey-Clarke-Groves (VCG) mechanism is essentially the unique mech-
anism that achieves efficiency in dominant strategies without requiring money
transfers by losing bidders.1 Furthermore, recent studies have shown that the
VCG mechanism has some compelling properties in broader settings. For exam-
ple, the VCG mechanism induces efficient ex-ante investments that predetermine
bidders’ values and can be the revenue-maximizing choice for auctioneers com-
peting for bidders.2

Motivated by virtues of the VCG mechanism and general benefits of dynamic
auctions, researchers devoted major efforts to designing dynamic implementa-
tions of the VCG mechanism in various settings.3 The list of benefits associated
with dynamic auctions includes avoiding disclosure of winning values (privacy
preservation), reducing the total amount of revelation of values by focusing elic-
itation on relevant bundles (bidding complexity), reducing the winner’s curse
through auction feedback, providing opportunities to manage budget constraints
and reducing bidders’ cognitive burden for placing bids.4

In simple settings, like selling or buying a single item, the main elements of a
dynamic VCG auction are well-understood (e.g., the English auction). For more
general settings, the auction literature has repeatedly attempted to characterize
the main attributes of efficient dynamic auctions. For example, Gul and Stac-
chetti (2000) started their paper by putting forward the following definition of a
dynamic auction:

“A dynamic auction can be described as a rule for adjusting prices given
the observed history of demand (i.e., bids) and a rule for terminating the
price adjustment procedure and specifying an allocation (i.e., determining
who gets the good(s) and at what price(s)). The English auction is also
identified with the property that prices are non-decreasing. More specifically,
the English auction is typically identified with the procedure of increasing

1VCG is due to Vickrey (1961), Clarke (1971) and Groves (1973). For the uniqueness result,
see Green and Laffont (1979) and Holmstrom (1979).

2See Hatfield, Kojima and Kominers (2017) and Jehiel and Lamy (2017).
3 See Demange et al. (1986), Gul and Stacchetti (2000), Parkes and Ungar (2000 and 2002),

Ausubel and Milgrom (2002), Bikhchandani and Ostroy (2002 and 2006), Ausubel (2004 and
2006), de Vries et al. (2007), Mishra and Parkes (2007) and Lamy (2012). A comprehensive
survey of this literature is provided by Parkes (2006).

4Reduction in cognitive burden is captured by the notion of obvious strategy-proofness by
Li (2017).
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the prices as long as there is excess demand.”

The task of formally defining the class of dynamic auctions is challenging
since their benefits, such as improved privacy preservation or reduced bidding
complexity, are defined informally. Not surprisingly, the definition from Gul and
Stacchetti (2000) was found to be rather restrictive and was relaxed in subsequent
work. Ausubel (2006) allowed the auctioneer to collect bidders’ demands along
multiple price paths, while de Vries et al. (2007) let the auctioneer to solicit
demands along a non-linear (i.e., not additively-separable over goods) and non-
anonymous (i.e., specific for every bidder) price path. While these relaxations
present theoretical interest, they are hardly practical since they involve rather
awkward bidding procedures.

Despite many attempts to characterize dynamic auctions, one element of the
original definition from Gul and Stacchetti (2000) has not been challenged —
the auctioneer is restricted to quoting prices and collecting bidders’ demands at
these prices (i.e., the auctioneer is limited to demand queries). In this paper,
we investigate whether relaxing this restriction enables new practical auction
designs.

The motivation for our inquiry comes from the field where several modern
auction designs have already adopted flexible ways for eliciting bidders’ prefer-
ences. The Combinatorial Clock Auction (CCA) has been recently utilized for
many spectrum auctions worldwide (Ausubel and Baranov (2017)). This auction
format uses standard demand queries during the initial phase of the auction, and
it allows additional sealed bids in the last round to supplement the previously
revealed information. In 2016, the Combinatorial Multi-Round Ascending Auc-
tion (CMRA) was used to allocate 1800 MHz spectrum in Denmark. The CMRA
uses standard demand queries, but it also allows bidders to place additional bids
in each round. While not yet implemented in practice, Baranov et al. (2017)
develop a new elicitation procedure suitable for settings with increasing returns:
the auctioneer quotes a price and ask bidders to list all quantities they are willing
to buy instead of asking them to report their demand.

For the general setting with private values, an ascending price auction that
implements the VCG outcome was proposed by Mishra and Parkes (2007). Their
design uses demand queries and requires a non-linear and non-anonymous price
path, a limitation that handicaps the design’s practical appeal.

We adopt several insights from Mishra and Parkes (2007) as our starting
point. Our first contribution is a general class of iterative Vickrey auctions. We
refer to an auction as iterative if it uses an iterative process to elicit bidders’
preferences (i.e., bidders reveal their preferences in a step-by-step manner).5 The
class of iterative Vickrey auctions generalizes the class of ascending price auctions

5We intentionally distinguish between iterative auctions and dynamic auctions to avoid
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introduced by Mishra and Parkes (2007) since it does not limit the auctioneer to
a particular elicitation process. Instead, our class admits any elicitation process
as long as it satisfies two technical properties. We prove that any auction in
this class implements the VCG outcome as an ex-post equilibrium.6 Thus, the
problem of designing an iterative Vickrey auction can be simplified to designing
an appropriate elicitation process that can take full advantage of application-
specific details and objectives (e.g., relying only on linear and anonymous prices
for preference elicitation).

Our main contribution is a characterization of an iterative ascending auction
for general private valuations that implements the VCG outcome as an ex-post
equilibrium while using a single linear and anonymous price path for elicitation.
The insufficiency of linear and anonymous prices is circumvented by allowing the
auctioneer to make additional marginal value queries in situations where standard
demand queries miss critical information.7

We illustrate our approach with the following example. Consider a homoge-
neous good setting with three identical items and a bidder with values v(1) = 20,
v(2) = 25, v(3) = 40. Suppose that the auctioneer quotes a per unit price p and
asks the bidder to report its demand. Then the bidder reports 3 when p < 10
and 1 when p ≥ 10. As a result, the auctioneer has no way to elicit v(2) since the
bidder never demands this quantity and cannot implement the VCG outcome in
case it requires information about v(2). Now suppose that the auctioneer also
asks the bidder to report its marginal value for any “missed” quantity when its
demand drops by more than one unit. Then, when bidder’s demand drops from
3 to 1 at p = 10, the bidder would report that its marginal value for 2 units is
mv(2) = v(2) − v(1) = 5. We show that this simple addition to the auction-
eer’s elicitation capabilities suffices to produce an iterative Vickrey auction for
general private-value settings despite using linear and anonymous prices.

The paper is organized as follows. Section 2 presents the model, and Section
3 introduces a general class of iterative Vickrey auctions. The iterative ascending
auction and main results are presented in Section 4. Section 5 discusses several
implementation issues and Section 6 concludes. A discrete-price implementation

dealing with the problem of formally defining dynamic auctions. A dynamic auction has to be
iterative since bidders must have multiple opportunities to communicate their preferences, but
iterative auctions that do not have any benefits associated with dynamic auctions should not
be classified as dynamic.

6 This is a common result that appears in Gul and Stacchetti (2000), Ausubel (2004 and
2006), Bikhchandani and Ostroy (2006), de Vries et al. (2007) and Mishra and Parkes (2007)
for their respective settings and auction designs. It is also related to results in the literature
on preference elicitation in combinatorial auctions (see Conen and Sandholm (2001); for a
comprehensive survey of this literature, see Sandholm and Boutilier (2006)).

7For the insufficiency of linear and anonymous prices, see Gul and Stacchetti (2000),
Bikhchandani and Ostroy (2002), and Mishra and Parkes (2007).

3



of the auction and technical proofs can be found in Appendices A and B.

2 Model

A seller offers multiple units of K heterogeneous indivisible goods, denoted
by vector S = {s1, ..., sK} ∈ ZK

++, to a set of bidders N = {1, ..., n}. The set of all
possible bundles of goods is denoted by Ω = {(z1, ..., zK) : 0 ≤ zk ≤ sk ∀ k =
1, ..., K }. For every bidder i ∈ N , and every bundle z ∈ Ω, the valuation of bidder
i is given by vi(z), and the bidder’s value for the null bundle ∅ is normalized to
zero. We make the following standard assumptions:

(A1) Pure Private Values: Each bidder i knows its own valuation for any bundle
z, and this valuation does not depend on valuations of other bidders;

(A2) Quasilinear Values: The payoff of bidder i from winning bundle z in ex-
change for a payment y is given by vi(z) − y;

Another standard assumption made in the literature is monotonicity of value
functions (i.e., free disposal). This assumption is not needed for our results.

An allocation x = (x1, ..., xn) is called feasible if xi ∈ Ω for all i ∈ N and∑
N xj ≤ S. The set of all feasible allocations is denoted by X.
We denote E(M) an economy that only includes bidders in M ⊆ N . The

coalitional value function for bidders in coalition M ⊆ N is given by:

w(M) = max
x∈X

∑
M vj(xj). (2.1)

A feasible allocation x = (x1, ..., xn) ∈ X is efficient(optimal) for economy
E(M) if ∑

M vj(xj) = w(M). (2.2)

A Vickrey outcome consists of an efficient allocation x∗ = (x∗1, ..., x
∗
n) for the

main economy and a corresponding payment vector yV = (yV1 , ..., y
V
n ) such that

yVi = w(N−i) −
∑

N−i
vj(x

∗
j) for all i ∈ N, (2.3)

where N−i denotes the coalition of all bidders in N excluding bidder i.

3 Iterative Vickrey Auctions

In this section, we describe a general class of iterative auctions that implement
the Vickrey outcome.
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3.1 Preliminaries

An auction must obtain sufficient amount of information about bidders’ val-
ues to prove the efficiency of a candidate allocation. The essential part of this
task is a process for preference elicitation. Most elicitation processes in practice
are designed after the famous “Walrasian auctioneer” by Walras (1874) — the
auctioneer quotes prices and asks bidders to report their demand at these prices
(i.e., demand queries). However, demand queries can be too limiting in some
settings and the auctioneer must use other types of queries to elicit all necessary
information.

A general framework for an iterative auction can be described as follows. At
each time t ≥ 0 (where t = 0 is the starting time), the auctioneer asks bidders to
provide some information about their preferences and for each bidder i constructs
an approximation of its value function v̂i(., t) using bidder i’s responses received
on the time interval [0, t]. Here we assume that the auctioneer always generates
a unique v̂i(z, t) for each bundle z ∈ Ω, and that v̂i(∅, t) = 0 at any time t.

For each bidder i, denote the approximation error for bundle z at time t as

δi(z, t) = vi(z) − v̂i(z, t), (3.1)

and let ∆i(t) denote the set that contains all bundles with the highest approxi-
mation error at time t, i.e.,

∆i(t) = arg max
z ∈Ω

δi(z, t). (3.2)

By construction, δi(z, t) ≥ 0 for any bundle z ∈ ∆i(t) since ∅ ∈ Ω. Note that set
∆i(t) contains bundles for which true marginal values relative to each other can
be recovered using v̂i(., t) instead of the true value function vi(.).

Using the current approximations of value functions, the auctioneer finds
x∗(M, t), a tentative value-maximizing allocation for economy E(M) at time t,
by solving the following winner determination problem:

x∗(M, t) ∈ X∗(M, t) = arg max
x∈X

∑
M v̂j(xj, t) (3.3)

If allocation x∗(M, t) is not unique, the auctioneer can pick one of the allocations
from X∗(M, t) using some criteria.

Proposition 1 below is a partial restatement of the result obtained by Parkes
(2002) and Nisan and Segal (2006) using our notation.8 It provides a sufficient
condition for proving the efficiency of a tentative allocation x∗(M, t) for economy
E(M).

8Parkes (2002) and Nisan and Segal (2006) provide the necessary and sufficient conditions.
In our case, only the sufficiency part can be established. Note that Proposition 1 corresponds
to the First Fundamental Welfare Theorem with non-linear and non-anonymous prices.

5



Proposition 1. [Parkes (2002), Nisan and Segal (2006)] A tentative allocation
x∗(M, t) = (x1, ..., xn) is efficient for economy E(M) if

xi ∈ ∆i(t) ∀i ∈M. (3.4)

Proposition 2, due to Parkes and Ungar (2002) and Lahaie and Parkes (2004),
provides the necessary and sufficient condition for recovering the Vickrey out-
come.

Proposition 2. [Parkes and Ungar (2002), Lahaie and Parkes (2004)] Suppose
that at time t, condition (3.4) is satisfied for the main economy E(N). Then
the Vickrey outcome can be identified from {v̂j(., t)}j∈N if and only if condition
(3.4) is also satisfied for all marginal economies {E(N−1), E(N−2), ..., E(N−n})
at time t.

Propositions 1 and 2 establish the important role of condition (3.4). The
only way to recover the Vickrey outcome using approximations of value functions
{v̂j(., t)}j∈N instead of true value functions is to uncover enough information to
satisfy condition (3.4) in all relevant economies. However, this condition cannot
be verified directly since set ∆i(t) depends on true vi(.). Thus, to implement the
Vickrey outcome, the auctioneer has to construct both an approximation of the
value function v̂i(., t) and a feasible replacement for the set ∆i(t) that can be
used to validate condition (3.4).

3.2 Elicitation Process

In this section, we propose several properties for elicitation processes that
are useful for designing iterative auctions. We make two technical assumptions.
First, we assume that the auctioneer is limited to posing queries for which a
well-defined truthful answer exists given bidder’s true value function. Second, we
limit our attention to fully expressive elicitation processes: an elicitation process
is called fully expressive if the types of queries that the auctioneer is allowed to
use are sufficient to elicit any value function that satisfies assumptions (A1) –
(A2) from a bidder who responds truthfully.9

First, we provide a formal definition for an elicitation process. The definition
highlights the equally important role of its two main elements: an approximation
of the value function v̂i(., t) and a feasible replacement for set ∆i(t), denoted by

∆̂i(t).

Definition 1. An elicitation process is a procedure that for each time t ≥
0 specifies queries addressed to each bidder i and converts bidder i’s responses
received on [0, t] into a single-valued function v̂i(., t) and a set of bundles ∆̂i(t).

9 The term “fully expressive” comes from the literature on bidding languages (see Nisan
(2006)).
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This definition is less innocent than it sounds. It implies that an elicita-
tion process is sophisticated enough to resolve any inconsistencies in bidder i’s
responses to always produce a single-valued function v̂i(., t) and set ∆̂i(t).

The first property that we propose links an elicitation process with the true
value function — all responses received from a truthful bidder should be treated
as such; otherwise, a bidder wishing to communicate its true values would have
to respond untruthfully.

Definition 2. An elicitation process is called straightforward if it converts
truthful responses of each bidder i made on the interval [0, t] into a function

v̂i(., t) and set ∆̂i(t) such that

∆̂i(t) ⊆ ∆i(t), (3.5)

where ∆i(t) is defined by (3.2) for v̂i(., t) and true vi(.).

This property is a key for testing condition (3.4) as it allows the auctioneer

to replace ∆i(t) with ∆̂i(t).
The second property that we propose requires that an elicitation process is

capable, if needed, to fully elicit bidder i’s value function, and the complete
elicitation of vi(.) implies that ∆i(t) = Ω. To guarantee this property, we require

that an elicitation process weakly expands set ∆̂i(t) over time. In other words,
the auctioneer progressively builds up the set of bundles that can be awarded to
bidder i while never discarding bundles that have been already added to ∆̂i(t).

Definition 3. An elicitation process is called iterative if the set ∆̂i(t) for each
bidder i is weakly increasing in time, i.e.,

∆̂i(t
′) ⊆ ∆̂i(t) for all t′ ≤ t. (3.6)

Next, we define several monotonicity restrictions that can be imposed on an
elicitation process. These restrictions are not required for our main results, but
they are frequently used in practice to yield a monotonic discovery of an auction
outcome.

One of the most popular restrictions utilized in practice is a restriction on a
direction for adjustments to approximations of value functions. These restrictions
ensure that the approximation monotonically approaches the true value function
from below or from above.

Definition 4. An iterative elicitation process is called ascending (descending)

if for each bidder i and any bundle z ∈ ∆̂i(t) (z /∈ ∆̂i(t)), v̂i(z, t) is non-decreasing
(non-increasing) in time.10

10This definition is weaker than the one provided by Mishra and Parkes (2007) where the
direction for adjustments is constrained for all bundles z ∈ Ω.
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Another desirable form of monotonicity in iterative auctions is a guarantee
that once a tentative allocation has been proven optimal for economy E(M), it
continues to be optimal in the future. We say that economy E(M) is cleared at
time t if there exists a tentative allocation x∗(M, t) = (x1, ..., xn) that solves (3.3)
such that

xi ∈ ∆̂i(t) ∀ i ∈ M. (3.7)

It is easy to verify that the next property guarantees that a cleared economy
stays cleared at a later time by ensuring that value adjustments for all bundles
in ∆̂i(t) are at least as high as for bundles outside of ∆̂i(t).

Definition 5. An iterative elicitation process is monotonic if for each bidder
i, any time t′ ≤ t and any pair of bundles z ∈ Ω and y ∈ ∆̂i(t

′), v̂i satisfies

v̂i(z, t) − v̂i(z, t
′) ≤ v̂i(y, t) − v̂i(y, t

′). (3.8)

3.3 Iterative Vickrey Auctions

In this section, we define a general class of iterative Vickrey auctions and
show that they implement the Vickrey outcome as an ex-post equilibrium. First,
we specify an adjustment rule that moves the elicitation process along by forcing
bidders to successively reveal more competitive values. To facilitate greater gen-
erality, we only require that at any time at least one bidder is asked to revise its
values to guarantee the termination of the auction in a finite time. The termina-
tion time is denoted T and specified later as part of the definition of an iterative
Vickrey auction (see Definition 7).

Definition 6. An iterative elicitation process satisfies the adjustment rule if
there exist ε > 0 and λ > 0 such that for any t, t′ where t′ + λ ≤ t ≤ T ,
there exists bidder i ∈ N for whom either

v̂i(z, t) − v̂i(z, t
′) ≥ ε for all z ∈ ∆̂i(t

′) or (3.9)

v̂i(z, t
′) − v̂i(z, t) ≥ ε for some z /∈ ∆̂i(t

′). (3.10)

Intuitively, condition (3.9) forces bidder i to increase values for all bundles in

∆̂i(t
′), an adjustment typical for an ascending auction in which bidders increase

the implicit values for their current demands (like in the English auction). Al-
ternatively, condition (3.10) forces bidder i to decrease values for some bundles

outside of ∆̂i(t
′), an adjustment typical for a descending auction where the im-

plicit values for bundles decrease until bidders start demanding them (like in the
Dutch auction). Now we define a general class of iterative Vickrey auctions.

Definition 7. An iterative Vickrey auction is an auction procedure that:

8



(1) uses a straightforward and iterative elicitation process that satisfies the ad-
justment rule;

(2) terminates at the first time t such that all economies in
{E(N), E(N−1), ..., E(N−n)} are cleared at the same time (termina-
tion time T := t);

(3) awards bundle x∗i (N, T ) to bidder i in exchange for a payment

yVi =
∑

j ∈N−i

[
v̂j(x

∗
j(N−i, T )) − v̂j(x

∗
j(N, T ))

]
. (3.11)

Our class of iterative Vickrey auctions is intentionally very permissive due to a
flexible adjustment rule. For example, the class admits iterative implementations
that are essentially sealed-bid.11 In practice, the auctioneer should use elicitation
processes and adjustment rules that deliver advantages of dynamic auctions.

Theorem 1. If each bidder i bids truthfully according to vi(.), an iterative Vickrey
auction implements the Vickrey outcome, and truthful bidding by all bidders is
an ex-post equilibrium.

Theorem 1 generalizes the standard result in the literature that was previously
established for specific elicitation processes and specific auction settings. More
generally, this result allows us to simplify the problem of designing an iterative
Vickrey auction to an easier problem of designing straightforward and iterative
elicitation processes that are tailored to application-specific objectives such as
speed, privacy, feedback, bidding convenience, and etc. In the next section, we
adopt this approach to construct an iterative ascending auction for the general
private-value setting that implements the Vickrey outcome and uses a single linear
and anonymous ascending price path for preference elicitation.

4 Iterative Ascending Auction

This section contains our main results. We construct an efficient iterative
ascending auction with an elicitation process that is driven by a single linear and
anonymous price path.

11 Consider an iterative auction where an auctioneer uncovers value functions sequentially
(first, for bidder 1, then bidder 2, then bidder 3, and etc.) without providing feedback to
bidders. This iterative auction is equivalent to a sealed-bid auction since it does not deliver
any benefits associated with true dynamic auction designs.
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4.1 Elicitation Process

The auctioneer initializes K clock prices, one for each good, at zero. At any
time t ≥ 0, the auctioneer announces current clock prices p(t), and each bidder
i replies with a single bundle xi(t) ∈ Ω that is treated as bidder i’s demand
at current prices. The price trajectory p(.) is assumed to be non-decreasing,
continuous and piecewise linear on [0,+∞). The demand function xi(.) for each
bidder i is assumed to be a right-continuous piecewise constant function.12

It is well known that demand queries in combination with a linear and anony-
mous price path do not produce a fully expressive elicitation process, so the
auctioneer has to use different types of queries to elicit extra information when
needed. With non-decreasing clock prices, a truthful bidder would never demand
a bundle that is a superset of its demand at an earlier time due to the “law of
demand” — a requirement that demand and prices move in opposite directions.
Since values for such bundles cannot be elicited with any feasible demand queries,
they must be recovered in some other way. One possible approach is to ask bid-
ders to report their marginal values for such bundles relative to their current
demand.

Denote ∆̂i(t) the set of revealed bundles that includes any bundle z ∈ Ω that
is a superset of bidder i’s demand for some time t′ ∈ [0, t], i.e.,

∆̂i(t) =
{
z ∈ Ω : ∃ t′ ∈ [0, t] such that z ≥ xi(t

′)
}
. (4.1)

By construction, the set of revealed bundles ∆̂i(t) only expands when bidder i
demands a new bundle at time t. At this time, bidder i is required to report its
marginal values relative to its demand xi(t) for all bundles that are newly added

to the set ∆̂i(t). For any newly added bundle z, denote m̃vi(z) the reported
marginal value of bundle z relative to xi(t); and denote t(z) the time when

bundle z is added to ∆̂i(t). Note that in some scenarios, the number of bundles
that are added to the set of revealed bundles at one time can be exponential and
lead to practical challenges (for example, if bidder i drops its demand from S to

the null bundle ∅ at time t, then all bundles in Ω are added to ∆̂i(t) at the same
time). A detailed discussion of this issue can be found in Section 5.3.

We say that bidder i bids truthfully according to its value function vi(.) on
[0, t] if at any time s ∈ [0, t]:

(a) bidder i truthfully reports its demand xi(s) given p(s), i.e.,

xi(s) ∈ arg max
z ∈Ω

[
vi(z) − p(s) z

]
; and (4.2)

12This assumption is without loss of generality. It can be shown that a piecewise constant
demand function exists for any function v(.) satisfying assumptions (A1) – (A2) provided that
the price path p(.) is continuous and piecewise linear on [0,+∞).
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(b) bidder i truthfully reports its marginal value for all bundles that are added
to the set of revealed bundles at time s, i.e., for any bundle z that is added
to ∆̂i(s) at time s,

m̃vi(z) = vi(z) − vi(xi(s)). (4.3)

To ensure that each bidder bids according to some value function, the elic-
itation process needs activity rules that are based on the Generalized Axiom of
Revealed Preference (GARP). The most famous result in the literature on re-
vealed preferences is the Afriat’s Theorem due to Afriat (1967). It establishes a
direct connection between GARP and existence of a value function that rational-
izes demand xi(.) given price path p(.). Using our notation, the Afriat’s theorem
is stated as follows.

Afriat’s Theorem (1967). Given price path p(.), bidder i’s demand xi(.) is
rationalized by a value function satisfying assumptions (A1) and (A2) if and only
if its demand xi(.) satisfies GARP on [0, t], i.e.,13

p(s)[xi(s) − xi(s
′)] +

∫ s′

s

p(u)dxi(u) ≤ 0 ∀ s, s′ ∈ [0, t]. (4.4)

Ausubel and Baranov (2018) introduced the following notion of violating GARP.
Suppose that bidder i’s demand satisfies GARP on interval [0, t]. Then we can
hypothetically ask whether bidder i would have violated GARP by demanding
bundle z instead of xi(t) at time t by calculating gvi(z, t) defined as

gvi(t, z) = max
s∈ [0,t]

{
p(s)[xi(s)− z] +

∫ t

s

p(u)dxi(u) + p(t)[z − xi(t)]
}
. (4.5)

Intuitively, gvi(t, z) is the maximum net amount that can be extracted from
bidder i in a series of transactions that starts and ends with the same bundle
z. By construction, gvi(t, z) ≥ 0 for all z ∈ Ω and gvi(t, z) > 0 indicates that
bidding for bundle z at time t violates rationality (i.e., proves the existence of a
“money pump”).14 Furthermore, when bidder i bids truthfully according to vi(.),
the upper bound on the marginal value of bundle z relative to xi(t) is given by

vi(z) − vi(xi(t)) ≤ p(t) [z − xi(t)] − gvi(t, z). (4.6)

13The integral term in (4.4) and all similar formulas in the paper is a Stieltjes integral. A
definition of the Stieltjes integral can be found in Apostol (1957, Definition 9-1). See Ausubel
(2006, pp. 609–610) for a short discussion.

14For a piecewise linear price path p(.) and piecewise constant demand xi(.), the optimization
problem (4.5) has a linear programming formulation that can be used to calculate gvi(t, z) in
applications.
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For our purposes, we need two activity rules: one to restrict changes in de-
mand; and another one to limit the reported marginal values for bundles that are
added to the set of revealed bundles.

AR1: At time t, bundle z ∈ Ω is unacceptable as demand of bidder i if either
gvi(t, z) > 0 or z ≥ xi(s) for some time s < t (when validating AR1,
gvi(t, z) is calculated using (4.5) by setting xi(t) := z);

AR2: For bundle z that is added to ∆̂i(t) at time t, the reported marginal value
m̃vi(z) has to satisfy the following inequality

m̃vi(z) ≤ p(t) [z − xi(t)] − gvi(t, z). (4.7)

AR1 forces bidder i to submit demands that can be rationalized by some value
function and also precludes bids for any supersets of bundles that were demanded
before. AR2 restricts the marginal value report by the highest possible value for
bundle z that is consistent with the fact that bidder i has never demanded bundle
z before.15 Proposition 3 proves that a bidder must bid according to some value
function when limited by these activity rules.16

Proposition 3. Given non-decreasing price path p(.), bidder i bids truthfully
according to some value function on [0, t] if and only if its bids are constrained
by activity rules AR1 and AR2.

Now we construct the approximation of value function v̂i(., t) to complement

the set of revealed bundles ∆̂i(t). For any bundle z ∈ ∆̂i(t), denote its revealed
marginal value relative to bidder i’s current demand xi(t) as:

mvi(z, t) =


t′∫
t

p(u)dxi(u) if ∃ t′ ∈ [0, t] : xi(t
′) = z

t(z)∫
t

p(u)dxi(u) + m̃vi(z) otherwise

(4.8)

Intuitively, the marginal value for bundle z is elicited either by following the
changes in demand if the bundle was previously demanded by bidder i, or its

15 For a homogeneous setting with K = 1, AR1 simplifies to demand monotonicity (i.e.,
xi(t) ≤ xi(s) for any s ≤ t) and AR2 simplifies to m̃vi(z) ≤ p(t) [z − xi(t)] (since any

bundle z that is added to ∆̂i(t) via a marginal value report at time t corresponds to a “missed”
quantity, xi(t) < z < xi(t− 0), for which gvi(t, z) = 0).

16 Surprisingly, constraining reported marginal values with AR2 at time t turns out to be
sufficient for the existence of a value function that rationalizes bidding at later times. To put
it differently, with a non-decreasing price path, the upper bound for m̃vi(z) from (4.7) derived
at time t does not change later.
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marginal value was elicited with an additional marginal value query at time t(z)

when bundle z was added to ∆̂i(t). Using revealed marginal values, the auctioneer
constructs the current approximation of the value function as follows:

v̂i(z, t) =

{
p(t)xi(t) + mvi(z, t) if z ∈ ∆̂i(t)

p(t) z − gvi(t, z) if z /∈ ∆̂i(t)
(4.9)

For any revealed bundle z ∈ ∆̂i(t), formula (4.9) uses the revealed marginal value
between bundle z and the current demand xi(t) imputing the current clock price

for the current demand xi(t). For any non-revealed bundle z /∈ ∆̂i(t), the formula
imputes the maximum possible value for bundle z that is consistent with the
current bidding history of bidder i to ensure that these bundles create maximum
competition for bundles in ∆̂i(t). The latter part guarantees that the elicitation
process is straightforward and monotonic.17 Properties of the elicitation process
are summarized by Proposition 4.

Proposition 4. If bidder i is constrained by activity rules AR1 and AR2, then
v̂i(., t) as defined in (4.9) and ∆̂i(t) as defined in (4.1) constitute an elicitation
process that is straightforward, iterative, ascending and monotonic.

Clock auctions traditionally use the excess demand to adjust clock prices and
determine whether the auction reached its end. In the next section, we define an
appropriate notion of excess demand for our auction and propose a simple clock
price adjustment process.

4.2 Excess Demand and Clock Increments

The last ingredient for our iterative ascending auction is a rule to adjust clock
prices. Such rule has to be linked to the closing rule to guarantee that prices
are incremented in a meaningful way until the closing rule is met. We adopt
a standard approach of specifying a notion of excess demand with a property
that the closing rule is satisfied if and only if there is no excess demand for any
goods. When the closing rule is not satisfied, the excess demand is positive for
at least one good and increasing the clock prices for goods with excess demand
puts pressure on bidders to reveal more competitive values.18

17 If the auctioneer imputes 0 for z /∈ ∆̂i(t), the resulting elicitation process is not straight-

forward, and imputing p(t) z for z /∈ ∆̂i(t) leads to a straightforward elicitation process that
is not monotonic.

18The classic notion of excess demand does not work in this environment since (1) it does not
match the closing rule that has to account for marginal economies; and (2) there is a possibility
that an efficient allocation does not allocate all goods to bidders.
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By definition, economy E(M) is cleared at time t if there exists a tentative
assignment x∗(M, t) that assigns each bidder in M a bundle from its correspond-

ing set of revealed bundles ∆̂i(t). The failure to clear economy E(M) is traced
to bidders whose tentative winnings are not in their sets of revealed bundles and
motivates the following construction of the excess demand. When bidder i is
assigned a bundle from ∆̂i(t), bidder i does not prevent economy E(M) from
clearing, and its contribution towards the excess demand is zero. When bidder
i is assigned a bundle outside of ∆̂i(t), bidder i does prevent economy E(M)
from clearing, and its contribution towards the excess demand must account for
its current demand for goods that are not awarded to the bidder in its tentative
assignment. This construction has two sources of multiplicity. First, there can be
multiple tentative value-maximizing allocations for economy E(M), and second,
some bidders might be implicitly demanding multiple bundles at p(t).

Formally, define Di(t) the revealed demand correspondence of bidder i at time
t as

Di(t) = arg max
z ∈ ∆̂i(t)

[ v̂i(z, t) − p(t) z ]. (4.10)

The set of excess demands (excess demand correspondence) for economy E(M)
at time t is defined as

Z(M, t) = {
∑

M zj } (4.11)

such that there exists allocation x∗ ∈ X∗(M, t) and for each bidder i ∈ M ,

zi = 0 if x∗i ∈ ∆̂i(t) and zi = max{ 0, d − x∗i } if x∗i /∈ ∆̂i(t) where d ∈ Di(t).
The next proposition shows that the clearing of economy E(M) at time t is

equivalent to a familiar “zero excess demand” condition.

Proposition 5. If all bidders are constrained by activity rules AR1 and AR2,
economy E(M) is cleared at time t if and only if 0 ∈ Z(M, t).

When economy E(M) is not cleared at time t, any excess demand vector
z ∈ Z(M, t) is positive for at least one good. The auctioneer can direct the
auction process towards clearing economy E(M) by picking one of the excess
demand vectors from Z(M, t) and increasing clock prices for goods with excess
demand. While there are many potential ways to pick one of the excess demand
vectors from Z(M, t), the simplest approach is to choose the one that minimizes
the current price value of excess demand, i.e.,

z(M, t) ∈ arg min
z ∈Z(M,t)

p(t) z . (4.12)

To recover the Vickrey outcome, the auctioneer needs to clear the main econ-
omy and all marginal economies. An important consideration for the auctioneer
is the order in which these economies are targeted. For ascending auctions, it
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is natural for marginal economies to clear ahead of the main economy due to
weaker competition. Clearing marginal economies before the main economy is a
desirable property since an unnatural order can lead to incentive problems (see
Section 5.2 for a discussion of this issue).

For simplicity, we assume that the auctioneer simultaneously targets all rel-
evant economies. For each good k ∈ {1, ..., K}, define a “cumulative” excess
demand at time t as the maximum of excess demands for the good among all
relevant economies M ∈ {N,N−1, ..., N−n}, i.e.,

Zk(t) = max
M∈{N,N−1,...,N−n}

zk(M, t). (4.13)

A naive price adjustment process based on the excess demand (which in turn
depends on individual demands) can cause a known technical problem with in-
finitive price oscillations (see Gul and Stacchetti (2000) and Ausubel (2006)).
To avoid this problem and to provide a way for a practical implementation, we
adopt a price adjustment process that regulates the speed of price clocks at dis-
crete times. This approach is known as intra-round bidding and to the best of our
knowledge, is the only way of implementing continuous price clocks in practice.

Formally, the auctioneer initializes price clocks at zero p(0) = 0 and asks for

initial reports to construct ∆̂i(0) for each bidder i ∈ N . Then, at any time t ≥ 0,
the auctioneer sets the clock price for good k ∈ {1, ..., K} using

pk(t) =

{
pk(t′) [1 + ε (t − t′)] if Zk(t′) > 0

pk(t′) if Zk(t′) = 0
, (4.14)

where t′ is the highest integer such that t′ < t and ε > 0. Intuitively, the price
adjustment in (4.14) uses the excess demand at integer time t′ to determine which
clock prices will be increased on the time interval (t′, t′ + 1] and then increases
them at a constant speed ε (for example, ε = 0.05 corresponds to a 5% increment
on the time interval [t′, t′+ 1] for goods with positive excess demand). This price
adjustment process produces a continuous piecewise linear non-decreasing price
path.

It is important to emphasize that the price adjustment process (specified
by formulas (4.10) – (4.14)) is just one possible alternative. Designing price
adjustment processes that offer some advantages in terms of reducing the number
of queries in various settings is an interesting direction for future research.

4.3 Iterative Ascending Auction

In this section, we specify our iterative ascending auction and prove that it
implements the Vickrey outcome as an ex-post equilibrium (Theorem 2).
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Iterative Ascending Auction: The iterative ascending auction consists of the
following components:

(1) The auctioneer initializes clock prices at zero p(0) = 0. At each time t ≥ 0,
the auctioneer quotes clock prices p(t) and asks each bidder i to report (1)
its demand xi(t); and (2) its marginal value for any bundle that is added

to the set of revealed bundles ∆̂i(t) at time t. All responses are subject to
activity rules AR1 and AR2;

(2) At each time t ≥ 0 and for each bidder i, the auctioneer constructs ∆̂i(t) and
v̂i(., t) using formulas (4.1) and (4.9). In addition, the auctioneer calculates
excess demand Z(t) according to formula (4.13);

(3) If Z(t) 6= 0 at time t, the clock prices are adjusted using the price adjust-
ment process (4.14) and the process goes back to step (2). If Z(t) = 0, then
the process terminates (T := t) and bidder i is awarded bundle x∗i (N, T ) in
exchange for a payment

yVi =
∑
j∈N−i

[
v̂j(x

∗
j(N−i, T )) − v̂j(x

∗
j(N, T ))

]
. (4.15)

Theorem 2. If each bidder i bids truthfully according to vi(.), the iterative as-
cending auction implements the Vickrey outcome, and truthful bidding by all bid-
ders is an ex-post equilibrium.

4.4 An Illustrative Example

To illustrate the iterative ascending auction, we use an example with two
unique goods, A and B, and three bidders. Bidder 1 values good A at 3 and has
no value for good B. Bidder 2 values good B at 10 and has no value for good A.
Bidder 3 values bundle AB at 8, and her value for any standalone good, either
A or B, is only 1. The auctioneer initializes price clocks at p(0) = (0, 0) and
increments the clock price for any good with excess demand at a constant speed.
For convenience, we assume that all bidders demand the smallest bundle when
indifferent. All necessary details for this example are provided in Table 1.

In this example, the development of the iterative ascending auction can be
decomposed into three stages. In stage one, clock prices rise from p(0) = (0, 0) to
p(3) = (3, 3). At p(3), Bidder 1 stops demanding good A and drops to ∅ which
allows the auctioneer to elicit Bidder 1’s value for A and AB. However, the value
for good B is still missing, and the auctioneer asks Bidder 1 to report its marginal
value for B relative to its current demand.
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Table 1: An Illustrative Example of the Iterative Ascending Auction

Bidder 1 Bidder 2 Bidder 3

Values (A, B, AB): v1 = (3, 0, 3) v2 = (0, 10, 10) v3 = (1, 1, 8)

Efficient Allocation: A B ∅
Vickrey Payments: 1 5 0

Clock Prices Bidding Information Z(t) Z(N, t)

t : 0→ 3 x1 = A x2 = B x3 = AB (1, 1) (1, 1)

p(t) = (t, t) ∆̂1 = {A,AB} ∆̂2 = {B,AB} ∆̂3 = {AB}
v̂1 = (t, t, t) v̂2 = (t, t, t) v̂3 = (t, t, 2t)

t : 3→ 5 x1 = ∅ x2 = B x3 = AB (0, 1) (0, 1)

p(t) = (3, t) ∆̂1 = Ω ∆̂2 = {B,AB} ∆̂3 = {AB}
v̂1 = (3, 0, 3) v̂2 = (3, t, t) v̂3 = (3, t, 3 + t)

t : 5→ 7 x1 = ∅ x2 = B x3 = ∅ (0, 1) (0, 0)

p(t) = (3, t) ∆̂1 = Ω ∆̂2 = {B,AB} ∆̂3 = Ω
v̂1 = (3, 0, 3) v̂2 = (3, t, t) v̂3 = (1, 1, 8)

At termination: x1 = ∅ x2 = B x3 = ∅ (0, 0) (0, 0)

T = 7 ∆̂1 = Ω ∆̂2 = {B,AB} ∆̂3 = Ω
p(T ) = (3, 7) v̂1 = (3, 0, 3) v̂2 = (3, 7, 7) v̂3 = (1, 1, 8)

Notes: Given the bidding history, for any time t ∈ [0, T ] and any bidder i ∈ N , gvi(t, z) = 0

for any z /∈ ∆̂i(t) (i.e., for any time t and each bidder i, it would be consistent with AR1 to

demand bundle z /∈ ∆̂i(t) instead of xi(t)).

At p(3), there is no excess demand for good A and only the clock price for
good B is rising in stage two. At p(5) = (3, 5), Bidder 3 reduces its demand to ∅.
At this time, the auctioneer knows that the value of Bidder 3 for AB is 8, but does
not know its values for goods A and B. The auctioneer asks Bidder 3 to report
its marginal value for both goods A and B relative to its current demand, and
the value function of Bidder 3 is fully revealed. There are three observations that
should be made at this point. First, the standard Walrasian aggregate demand at
p(5) is (0, 1), already below the supply. The excess demand for the main economy
is Z(N, 5) = (0, 0) indicating that the main economy is cleared. However, the
cumulative excess demand that accounts for the main economy and all marginal
economies is still positive since the marginal economy for Bidder 1 is not yet
cleared and the auction must continue.

In the last stage, clock prices rise from p(5) = (3, 5) to p(7) = (3, 7). At
p(7), the marginal economy E(N−1) is finally cleared, and the cumulative excess
demand turns zero. Bidder 1 is awarded good A and charged yV1 = v̂3(AB) −
v̂2(B) = 1. Bidder 2 gets good B and pays yV2 = v̂3(AB)− v̂1(A) = 5.
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5 Implementation Issues

In this section, we discuss several issues related to the implementation of the
iterative ascending auction from Section 4. Topics include providing bidders with
feedback during the auction, the problem of indifferent bidders and reducing the
number of elicitation queries.

Another implementation issue is an adaptation of our auction design to dis-
crete prices. It is of general interest since most dynamic auctions in practice use
discrete prices (with large increments) for elicitation. The complete specification
of an iterative ascending auction for a discrete non-decreasing price path can be
found in Appendix A.1.

5.1 Providing Feedback

One of the most important advantages of dynamic auctions is the ability to
inform bidders about their prospective winnings/payments and the current level
of competition in the midst of the auction process. For our auction, the relevant
feedback can be as follows.

For winnings and payments, the auctioneer can inform bidder i about its
current tentative assignment x∗i (N, t) and its current tentative payment calculated
using (4.15). However, such feedback might be frustrating for bidder i when

x∗i (N, t) /∈ ∆̂i(t). A more sophisticated approach is to inform bidder i about its
winning allocation and payment in a constrained winner determination problem
in which bidder i is restricted to win a bundle from ∆̂i(t).

19

For the current level of competition, dynamic auctions traditionally disclose
some measure of excess demand. For our design, excess demand Z(t) defined
in (4.13) is suitable for this purpose as it matches the closing condition and the
rule for incrementing clock prices (note that Z(t) is already partially revealed to
bidders via price increments).

When providing bidders with feedback, the auctioneer should proceed with
caution. Detailed feedback, such as reporting excess demand for the main econ-
omy z(N, t) or providing bidders with their likely winnings and payments, can
sometimes leak information about the cleared/uncleared status of the main econ-
omy and create incentive problems. We discuss this issue in the next section.

19A constrained winner determination problem is (3.3) with an additional constraint re-

quiring xi ∈ ∆̂i(t). The corresponding Vickrey payment for bidder i is calculated as∑
j∈N−i

[
v̂j(x

∗
j (N−i, t))− v̂j(x̃j(N, t))

]
where x̃(N, t) = (x̃1(N, t), ..., x̃n(N, t)) solves the con-

strained optimization problem.
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5.2 Indifferent Bidders

To implement the Vickrey outcome, the auction must clear the main economy
and all marginal economies. Due to stronger competition, it is natural for the
main economy to be the last one to clear, but it is possible that it clears prema-
turely before the closing condition is trigged (as in the example in Section 4.4).
Once the main economy is cleared and the winning allocation is determined, bid-
ders become indifferent among all feasible bids since their Vickrey payments do
not depend on their own bids. Therefore, if bidders are somehow aware that the
main economy is cleared, incentives for truthful bidding might be compromised.
An indifferent bidder might decide to completely cease its bidding (a problem
known as “quiet bidding”) or, alternatively, bid in a way that inflates payments
of other bidders (a problem known as “predatory bidding” or “spiteful bidding”).

The main trigger for the problem of indifferent bidders is leaking information
about the status of the main economy. The Combinatorial Clock Auction (CCA)
is a good example of an auction design that can prematurely disclose such infor-
mation. Levin and Skrzypacz (2016) show that the problem of indifference can
lead to the existence of inefficient equilibria in CCA. The same critique would
apply to our iterative ascending auction if bidders are informed about the status
of the main economy. To avoid premature disclosure, the auctioneer can use a
“cumulative version” of excess demand (like the one defined by (4.13)) for deter-
mining clock price increments to hide the status of the main economy until the
end. Another partial remedy for this problem is replacing formula (4.13) with
an alternative that targets marginal economies first and switches to targeting the
main economy only after all marginal economies have been cleared.

Mishra and Parkes (2007) showed that restricting the preferences domain
solves the indifferent bidders problem for their auction design. In particular,
the buyers are substitutes (BAS) condition guarantees that marginal economies
always clear before the main economy in their auction; and the BAS condition is
satisfied when the preferences domain is limited to gross substitutes.

Unfortunately, this result does not extend to our auction due to a difference
between two elicitation processes. Mishra and Parkes (2007) use a semi-truthful

elicitation process where v̂i(z, t) = vi(z) − αi(t) for all z ∈ ∆̂i(t) and v̂i(z, t) = 0

for all z /∈ ∆̂i(t). In contrast, formula (4.9) imputes a more aggressive estimate

p(t) z − gvi(t, z) ≥ 0 for bundles z /∈ ∆̂i(t) to compensate for linear prices. As
a result, the BAS condition no longer guarantees the natural clearing order.

To illustrate the difference, consider an example with three items (one unit
of good A and two units of good B) and three bidders who have values for at
most two units. Bidder 1 values good A at 2 and has no value for good B, while
Bidder 2 has no value for good A and values each unit of good B at 5. Bidder
3 has values v3(A) = 7, v3(B) = 6, v3(AB) = 10 and v3(BB) = 9. Note that all

19



these value functions satisfy the gross substitutes.
The partial progress of the ascending auction for this example is provided in

Table 2. The main economy clears at p(3) = (3, 3) when approximations of the
value functions are v̂1 = (2, 0, 2, 0), v̂2 = (3, 3, 6, 6) and v̂3 = (3, 3, 6, 6). Note that
both v̂2 and v̂3 are not semi-truthful, and the payment calculation for Bidder 2
based on these approximations is 5 while her true Vickrey payment is only 4.
The auction has to continue since economy E(N−2) has not yet been cleared.

Intuitively, the elicitation process must uncover the efficient allocation in the
marginal economy E(N−2) which includes Bidder 3 winning both units of good B.
To elicit Bidder 3’s value for this bundle, the auction should increment the clock
price for good A at a faster rate than the one for good B. But the auctioneer
has no apparent way of knowing this since the main economy and the marginal
economy E(N−1) have excess demand for good B while only economy E(N−2)
has excess demand for good A.

Table 2: An Illustrative Example with Substitutes

Bidder 1 Bidder 2 Bidder 3

Values for (A, B, AB, BB): (2, 0, 2, 0) (0, 5, 5, 10) (7, 6, 10, 9)

Efficient Allocation: ∅ BB A

Vickrey Payments: 0 4 2

Clock Prices x1(t) x2(t) x3(t) z(N−1, t) z(N−2, t) z(N−3, t) z(N, t) Z(t)

t : 0→ 2 A BB AB (0, 1) (1, 0) (0, 0) (1, 1) (1, 1)
p(t) = (t, t)

t : 2→ 3 ∅ BB AB (0, 1) (1, 0) (0, 0) (0, 1) (1, 1)
p(t) = (t, t)

p(3) = (3, 3) ∅ BB A (0, 0) (1, 0) (0, 0) (0, 0) (1, 0)

Another trigger for the problem of indifferent bidders is specific to our auc-
tion design where bidders communicate their preferences via two classes of bids:
demand bids and marginal value bids.20 When it is very likely that winning
bids will come from the demand bids, bidders might be indifferent when placing
their marginal value bids. Surprisingly, the gross substitutes preference domain
is subject to this critique due to the guaranteed existence of linear market clear-
ing prices. With clock prices being partially driven by the excess demand in the
main economy, there is a nontrivial chance that the price path will pass through

20I thank the anonymous referee for pointing out this interesting feature of the design.
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the market clearing prices in which case winning bids necessarily come from the
demand bids.

5.3 Reducing Elicitation Burden

Another important implementation concern for dynamic auctions is the num-
ber of queries needed to elicit sufficient amount of information to implement
the desired outcome. For general settings, ascending price auctions proposed by
Mishra and Parkes (2007) provide a comparative benchmark for testing the auc-
tion design proposed in Section 4. The comparative analysis can be carried out
using simulations which would need to consider multiple variations of auction
designs and an array of different value environments.

Without conducting simulations, it is still possible to identify environments
in which our auction design performs well. For example, in a homogeneous good
environment and bidders with decreasing marginal values, our ascending auction
simplifies to the ascending auction with “clinching” developed by Ausubel (2004)
and delivers all advantages associated with using linear prices for elicitation. For
another example, consider an environment with two goods, A and B, available in
multiple quantities and bidders who view these goods as close substitutes but also
put some premium on symmetric bundles (i.e., bundles where the total quantity
is more equally distributed between both goods).21 In our design, the elicitation
process reveals mostly symmetric bundles and avoids asymmetric bundles, such
as the ones containing only A goods or only B goods. In contrast, the elicita-
tion process in Mishra and Parkes (2007) uncovers the relative values of bundles
strictly in the descending order of their value, and the revelation of valuable but
asymmetric bundles cannot be avoided.22

In general, the elicitation process from Section 4 can require bidders to report
their marginal values for a large number of bundles at a time. In practice, the
auctioneer should invite bidders to submit marginal values only for bundles of
their interest and use zero incremental values for bundles that do not receive
bids. In addition, the auctioneer can avoid unnecessary elicitation by eliminating
bundles that can be proven irrelevant by the time their values have to be reported.
A bundle is irrelevant for a given bidder if it can be shown that assigning it to the
bidder leads to inefficient allocations in all relevant economies. The inefficiency
of allocation x for economy E(M) can be proved as follows:

21This setting appears to fit with the Ireland Multi-Band Spectrum Auction held in 2012
where bidders valued symmetric holdings in 800 MHz and 900 MHz bands.

22In order to infer the relative value of its 10th most preferred bundle, the bidder would have
to reveal relative values for its 1st-9th most preferred bundles.

21



Proposition 6. A feasible allocation x = (x1, ..., xn) is inefficient for economy
E(M) if there exists a feasible allocation y = (y1, ..., yn) and time t such that

yi ∈ ∆i(t) ∀ i ∈M and
∑

M v̂j(xj, t) <
∑

M v̂j(yj, t). (5.1)

Proposition 6 provides a direct way to test bundles for irrelevance during the
auction by replacing ∆i(t) with ∆̂i(t). The full description of a test for irrelevance
is provided in Appendix A.2. Providing bidders with irrelevant bundles should
be done with care since it can potentially leak information about bids of other
bidders.

6 Conclusion

The virtues of the VCG mechanism create a strong interest in dynamic auc-
tions that can implement the Vickrey outcome. For limited settings, practical
designs that implement this outcome are well known. For the general private-
value setting, Mishra and Parkes (2007) developed an ascending price Vickrey
auction that relies on non-linear and non-anonymous clock prices — a complica-
tion that is often difficult to implement in practice.

In this paper, we demonstrate that flexible elicitation tools can avoid complex
prices and facilitate a simpler auction process. The key idea is using a combi-
nation of demand queries and marginal value queries to ensure that all required
information is properly captured. We design an efficient iterative ascending auc-
tion based on the elicitation process that uses linear and anonymous prices. To
the best of our knowledge, it is the first iterative auction that uses simple and
practical elicitation methods to implement the Vickrey outcome in the general
private-value setting.
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A Appendix – Discrete Prices and Irrelevant

Bundles

A.1 Discrete Version of the Ascending Auction

In the iterative ascending auction described in Section 4, we used an intra-
round bidding approach to accommodate a continuous price path. However, most
dynamic auctions used in applications utilize discrete prices, generally with large
increments. Here we provide a description of our auction that works with any
discrete non-decreasing price path.

In Section 4, the continuity of the price path is used to ensure that bidder i,
when switching its demand at time t from xi(t−0) to xi(t), is indifferent between
the old and new demands given prices p(t), i.e.,

vi(xi(t− 0)) − p(t)xi(t− 0) = vi(xi(t)) − p(t)xi(t). (A.1)

With discrete prices, this property is lost. However, the auctioneer can collect
an extra piece of information from a switching bidder to restore its equivalent.

Suppose that the auctioneer announces a price vector p(t) and bidder i replies
with its demand xi(t) at each time t ∈ {0, 1, 2, ... }. In addition, at each time
t ≥ 1, the auctioneer asks bidder i to report the smallest discount on the price
of bundle xi(t − 1), denoted di(t), that bidder i commands to demand bundle
xi(t− 1) at p(t) instead of its current demand xi(t).

23

The discrete version of the iterative ascending auction can be constructed as
follows. The procedure for constructing the set of revealed bundles ∆̂i(t) does not
change, and all formulas that are not mentioned below carry over from Section
4. The modified definition of truthful bidding is as follows. Bidder i is said to
bid truthfully according to its value function vi(.) at time t ∈ {0, 1, 2, ... } if:

(a) Bidder i truthfully reports its demand-discount pair (xi(t), di(t)) given p(t):

xi(t) ∈ arg max
z ∈Ω

[
vi(z) − p(t) z

]
;

di(t) =
[
vi(xi(t)) − p(t)xi(t)

]
−
[
vi(xi(t− 1)) − p(t)xi(t− 1)

]
.

(A.2)

(b) (same as in Section 4)

For bidder i, denote dxi(t) = xi(t) − xi(t− 1) a change in demand at time t,
and dvi(t) = p(t) dxi(t) + di(t) an implied change in value at time t. Note that
dvi(t) = vi(xi(t)) − vi(xi(t− 1)) when bidder i bids truthfully.

23Note that in practice, the auctioneer needs to ask for di(t) only when bidder i demands

bundle z /∈ ∆̂i(t−1). For z ∈ ∆̂i(t−1), activity rule AR1 would limit di(t) to a single number.
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The discrete analog of the GARP condition is stated as:

(GARP ) p(s)[xi(s) − xi(s
′)] +

s+1∑
u= s′

dvi(u) ≤ 0 ∀ s < s′ ∈ {0, ..., t},

and the discrete analog of the GARP violation is given by:

gvi(t, z) = max
s∈{0,...,t}

{
p(s)[xi(s)− z] +

s+1∑
u= t

dvi(u) + p(t)[z − xi(t)]

}
. (A.3)

The modified activity rules are as follows:

AR1: At any time t, a bundle-discount pair (z, d) ∈ Ω × R is unacceptable if
either gvi(t, z) > 0 or z ≥ xi(s) for some time s < t (when validating
AR1, gvi(t, z) is calculated using (A.3) by setting xi(t) := z and di(t) := d).

AR2: (same as in Section 4)

The discrete analog of formula (4.8) is given by:

mvi(z, t) =


−

t′+1∑
u= t

dvi(u) if ∃ t′ ∈ {0, ..., t} : xi(t
′) = z

−
t(z)+1∑
u= t

dvi(u) + m̃vi(z) otherwise

. (A.4)

Finally, the price adjustment process is modified as follows:

pk(t) =

{
pk(t− 1) [1 + ε] if Zk(t− 1) > 0

pk(t− 1) if Zk(t− 1) = 0
. (A.5)

A.2 Test for Irrelevant Bundles

For economy E(M) and bidder i ∈M , the following steps have to be carried
out to test bundle z for irrelevance at time t:

1. Find the maximal value that can be obtained by giving each bidder in M
a bundle from its set of revealed bundles ∆̂i(t) by solving the following
problem:

H1 = max
y ∈X

∑
j∈M v̂j(yj, t) s.t. yj ∈ ∆̂j(t) ∀j ∈M (A.6)

If solution does not exist, the test cannot proceed to step 2.
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2. Find the maximal value that can be obtained by allocating bundle z to
bidder i by solving the following problem:

H2 = max
x∈X

∑
j∈M/{i} v̂j(xj, t) s.t. xi = z (A.7)

If p(t) z − gvi(z, t) ≤ H1 − H2, then bundle z is irrelevant for bidder i
in economy E(M).

B Appendix B: Proofs

PROOF OF THEOREM 1. Suppose that all bidders bid truthfully. Given the
adjustment rule and an iterative elicitation process, the procedure would even-
tually force each bidder to fully reveal its v(.) at which point ∆̂i(t) = Ω for all
i ∈ N and the closing condition is satisfied. Therefore, the procedure has to end
in finite time T . For a straightforward elicitation process, x∗(N, T ) is efficient
by Proposition 1 and pVi = yVi by Proposition 2. Now suppose that bidder i de-
viates from truthful bidding. First, note that bidder i cannot block the auction
from closing. Second, denote ṽi(z) = v̂i(z, T ) which is well-defined. Due to a

straightforward elicitation process, ∆̂j(T ) ⊆ ∆j(T ) for all bidders in N−i, and

∆̂i(T ) ⊆ ∆̃i(T ) where ∆̃i(T ) is the analog of ∆i(T ) for ṽi(.). By Propositions
1 and 2, the auction outcome corresponds to a Vickrey outcome for the value
profile (ṽi, v−i) which is weakly dominated for bidder i.

PROOF OF PROPOSITION 3. (Necessity) For AR1, suppose that bidder i bids
truthfully according to ṽi(.) and z is her true demand at time t. Then gvi(t, z) = 0
by the Afriat’s theorem. If z ≥ xi(s) for some time s < t, then it must be the
case that z and xi(s) are both optimal demands at time t. For AR2, by revealed
preference,

ṽi(z) ≤ min
s∈[0,t]

{ṽi(xi(s)) + p(s)[z − xi(s)]}

= min
s∈[0,t]

{
ṽi(xi(t))−

∫ t

s
p(u)dxi(u) + p(s)[z − xi(s)]

}
= ṽi(xi(t)) + p(t)[z − xi(t)]− gvi(t, z)

and the marginal value between bundles z and xi(t) is given by ṽi(z)− ṽi(xi(t)) ≤
p(t)[z−xi(t)]− gvi(t, z) = m̃vi(z). Then AR2 never overconstrains a bidder who
bids according to some value function ṽi(.). (Sufficiency) Suppose that both AR1
and AR2 hold on [0, t]. Construct ṽi(.) as

ṽi(z) =

{
p(t)xi(t)−

∫ t

t(z)
p(u)dxi(u) + m̃vi(z) z ∈ ∆̂i(t)

0 z /∈ ∆̂i(t)
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where t(z) = s′ and m̃vi(z) = 0 if bundle z was demanded by bidder i at time
s′ ≤ t. Now we show that ṽi(.) rationalizes bidding of bidder i at any time s ∈
[0, t]. For bundle z that was demanded at some time s′ ∈ [0, t] (i.e., xi(s

′) = z),
the bidding on [0, t] is rationalized since ṽi(z)− p(s) z ≤ ṽi(xi(s))− p(s)xi(s) is

equivalent to p(s)[xi(s) − z] +
∫ s′

s
p(u)dxi(u) ≤ 0 which is satisfied due to AR1.

For bundle z ∈ ∆̂i(t) that was never demanded explicitly but was added to the
set of revealed bundles at time t(z) (so z ≥ xi(t(z))):

• For s ≤ t(z), the bidding on [0, t] is rationalized since ṽi(z) − p(s) z ≤
ṽi(xi(s)) − p(s)xi(s) is equivalent to m̃vi(z) ≤ −p(s)[xi(s) − z] −∫ t(z)

s
p(u)dxi(u) ≤ p(t(z))[z − xi(t(z))] − gvi(t(z), z) which is satisfied due

to AR2.

• For s > t(z), we show that gvi(t(z), z) = gvi(s, z) (i.e., the GARP viola-
tion for bundle z is not going to increase over time). Then the bidding
is rationalized by the same argument as for the case s ≤ t(z). Suppose
that there exist s′ ∈ (t(z), s] such that the GARP violation for bundle z is
strictly higher for s′ than for t(z) (i.e., p(s′)[xi(s

′) − z] +
∫ s

s′
p(u)dxi(u) >

p(t(z))[xi(t(z)) − z] +
∫ s

t(z)
p(u)dxi(u)) But then p(s′)[xi(s

′) − xi(t(z))] +∫ t(z)

s′
p(u)dxi(u) > [p(s′)− p(t(z))][z− xi(t(z))] ≥ 0 where the last inequali-

ty implies violation of AR1 at time s′. Hence, gvi(t(z), z) = gvi(s, z).

Lemma 1. If bidder i bids truthfully according to vi(.) on [0, t], then for all

z ∈ ∆̂i(t), the revealed marginal value of bundle z relative to bundle xi(t) is the
true marginal value, i.e., mvi(z, t) = vi(z)− vi(xi(t)).

Proof. First, suppose that there exists t′ ∈ [0, t) such that xi(t
′) = z. Denote

t1, ..., tm all times in the interval [t′, t] when bidder i changed its demand. Given
the continuous price path p(.), bidder i who bids truthfully is indifferent at all
switch points, i.e.,

vi(z)− p(t1) z = vi(xi(t1))− p(t1)xi(t1)
... ... ...

vi(xi(tm−1))− p(tm)xi(tm−1) = vi(xi(t))− p(tm)xi(t)

Then by (4.8) vi(z) = vi(xi(t))−
∫ t

t′
p(u)dxi(u) = vi(xi(t)) +mvi(z, t). Second, if

z ∈ ∆̂i(t), but it was never explicitly demanded by bidder i, then by (4.8) and

the definition of truthful bidding, we have mvi(z, t) =
∫ t(z)

t
p(u)dxi(u)+m̃vi(z) =

vi(z)− vi(xi(t)).

PROOF OF PROPOSITION 4. Formulas in (4.1) and (4.9) indeed represent an

elicitation process since they uniquely define ∆̂i(t) and v̂i(., t) at each time t and
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each bidder i. By construction, the elicitation process is iterative and ascending
since p(.) is nondecreasing. (Straightforward) Bidder i bids truthfully according

to v(.) on [0, t]. For any bundle z ∈ ∆̂i(t), δi(z, t) = δi(xi(t), t) by Lemma 1.

For any bundle z /∈ ∆̂i(t), δi(z, t) ≤ δi(xi(t), t) by (4.6). Then if z ∈ ∆̂i(t),

then z ∈ ∆i(t). (Monotonic) Consider time t′ < t and bundle z /∈ ∆̂i(t). Then
v̂i(z, t)−v̂i(z, t′) = [p(t)−p(t′)] z−[gvi(t, z)−gvi(t′, z)] ≤ v̂i(xi(t

′), t)−v̂i(xi(t′), t′).
But then v̂i(z, t)− v̂i(z, t′) ≤ v̂i(y, t)− v̂i(y, t′) for any y ∈ ∆̂i(t

′).

PROOF OF PROPOSITION 5. If economy E(M) is cleared at time t, then 0 ∈
Z(M, t) by the definition of Z(M, t). For the converse, suppose that 0 ∈ Z(M, t),
but E(M) is not cleared at t. Then for any tentative assignment x∗(M, t), there

is at least one bidder i ∈ M such that x∗i /∈ ∆̂i(t). For such bidder i, there is at
least one good for which demand d ∈ Di(t) strictly exceeds the tentative award

x∗i since otherwise, x∗i ≥ d implying that x∗i ∈ ∆̂i(t). But then 0 /∈ Z(M, t).

PROOF OF THEOREM 2. By Proposition 4, the elicitation process is straight-
forward and iterative. For each economy E(M) that is not cleared at integer time
t, Zk(t) > 0 if good k is overdemanded in at least one relevant economy, and its
price will be increased by ε pk(t) > 0 on the time interval (t, t + 1]. Increasing
clock prices for overdemanded goods cause an increase in v̂i(z, t) for all bundles

z ∈ ∆̂i(t) for bidder i who demands overdemanded item at time t (satisfies the
adjustment rule (3.9) on a sufficiently long time interval). Then the Vickrey
outcome is implemented by Theorem 1.

PROOF OF PROPOSITION 6. A feasible allocation x is inefficient since:∑
j∈M

vj(xj) =
∑
j∈M

[v̂j(xj, t) + δj(xj, t)] <
∑
j∈M

[v̂j(yj, t) + δj(yj, t)] =
∑
j∈M

vj(yj)

30


	Introduction
	Model
	Iterative Vickrey Auctions
	Preliminaries
	Elicitation Process
	Iterative Vickrey Auctions

	Iterative Ascending Auction
	Elicitation Process
	Excess Demand and Clock Increments
	Iterative Ascending Auction
	An Illustrative Example

	Implementation Issues
	Providing Feedback
	Indifferent Bidders
	Reducing Elicitation Burden

	Conclusion
	Appendix – Discrete Prices and Irrelevant Bundles
	Discrete Version of the Ascending Auction
	Test for Irrelevant Bundles

	Appendix B: Proofs

