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By using the notion of quantum double we introduce analogs of partial derivatives on a 
reflection equation algebra, associated with a Hecke symmetry of GLN type. We construct 
the matrix L = M D , where M is the generating matrix of the reflection equation algebra 
and D is the matrix composed of the quantum partial derivatives and prove that the 
matrices M , D and L satisfy a matrix identity, called the matrix Capelli one. Upon applying 
quantum trace, it becomes a scalar relation, which is a far-reaching generalization of the 
classical Capelli identity. Also, we get a generalization of the some higher Capelli identities 
proved by A. Okounkov in [6].
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1. Introduction

Let M = ‖m j
i ‖1≤i, j≤N be a matrix with commutative entries and D = ‖∂ j

i ‖1≤i, j≤N be the matrix composed of the partial 
derivatives1 ∂

j
i = ∂/∂mi

j . The famous Capelli identity reads

cdet(M D + K ) = det M det D, (1.1)

where cdet is the so-called column-determinant and K is a diagonal matrix of the form: K = diag(N − 1, N − 2, . . . , 1, 0).
There are known many generalizations of this identity. We only mention the paper [5], where a quantum version of the 

Capelli identity was established, related to the Quantum Group (QG) Uq(slN ) and its dual algebra.
In the present note we exhibit another quantum version of the Capelli identity, which by contrast with [5] is related to 

Reflection Equation (RE) algebras. By definition, an RE algebra is a unital associative algebra M(R) generated by entries of 
the matrix M = ‖m j

i ‖1≤i, j≤N subject to the following relation:

R M1 R M1 − M1 R M1 R = 0, M1 = M ⊗ I, (1.2)

where I is the unit matrix and R is a Hecke symmetry. The matrix M is called the generating matrix of the algebra M(R).

* Corresponding author.
E-mail addresses: dimitri.gurevich@gmail.com (D. Gurevich), Pavel.Saponov@ihep.ru (P. Saponov).

1 Note that ∂ j
i ms

k = δs
i δ

j
k . Usually, in the Capelli identity one employs the matrix, transposed to our D .
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Let us precise that by a Hecke symmetry we mean a braiding, meeting the Hecke condition:

(q I ⊗ I − R)(q−1 I ⊗ I + R) = 0, q /∈ {0,±1},
whereas by a braiding we mean a solution of the braid relation:

R12 R23 R12 = R23 R12 R23, R12 = R ⊗ I, R23 = I ⊗ R.

Hereafter, R is treated to be an N2 × N2 numerical matrix.
The best known examples of the Hecke symmetries are those coming from the QG Uq(slN ). These Hecke symmetries are 

deformations of the usual flips P . Nevertheless, there exist other Hecke symmetries possessing this property (for instance, 
the Crammer-Gervais symmetries) as well as those which are not deformations of the usual (or super-)flips.

We impose two additional requirements on the Hecke symmetry R: it should be skew-invertible and even (see [2]). 
In such a case R will be called the GLN type Hecke symmetry. Note that if R is a GLN type Hecke symmetry, then for 
generating matrix M of the RE algebra M(R) one can define the quantum (or R-)trace TrR M and the quantum determinant 
detR M .

Besides, for any GLN type Hecke symmetry R we define analogs of the partial derivatives ∂ j
i in such a way that the 

matrix L = M D , where D = ‖∂ j
i ‖1≤i, j≤N , meets the relation:

R L1 R L1 − L1 R L1 R = R L1 − L1 R. (1.3)

An algebra L̂(R), generated by entrees of the matrix L = ‖l j
i ‖1≤i, j≤N is called a modified RE algebra. Note that as R → P , the 

algebra M(R) tends to Sym(glN ), whereas the algebra L̂(R) tends to U (glN ). This is one of the reasons why we consider the 
algebras M(R) (resp., L̂(R)) for any GLN type Hecke symmetry R as a quantum (or q-)analog of Sym(glN ) (resp., U (glN )).

Note that for the generating matrix L of the algebra L̂(R) the quantum trace TrR L and the quantum determinant detR L
are defined in the same way as for the matrix M . Namely, the quantum determinant of L = M D with a proper shift enters 
our quantum Capelli identity. It should be emphasized that this identity is valid for the whole class of RE algebras M(R), 
associated with GLN type Hecke symmetries R . Note that if R → P in the limit q → 1 our quantum Capelli identity turns 
into the classical one expressed as in [6].

The note is organized as follows. In section 2 we exhibit the quantum double (QD) construction enabling us to introduce 
q-analogs of the partial derivatives in the entries of the matrix M . In Theorem 3 we present the matrix factorization 
identities which are called the matrix Capelli identities. Upon applying the R-trace, they turn into a quantum version of 
the Capelli identity and some its generalizations which are the quantum counterparts of the higher Capelli identities (see 
Theorem in [6]), corresponding to one-column and one-row Young diagrams. In section 3 we give a proof of these identities. 
In section 4 we reduce the Capelli identity to a more conventional form, based on the use of quantum determinants. Also, 
we compare our version of the Capelli identity with that from the article [5].

2. Quantum partial derivatives and matrix Capelli identities

In this section we deal with a skew-invertible Hecke symmetry R without assuming it to be even.
Consider two unital associative algebras A and B equipped with an invertible linear map σ : A ⊗ B → B ⊗ A which 

satisfies the following relations:

σ ◦ (μA ⊗ idB) = (idB ⊗ μA) ◦ σ12 ◦ σ23 on A ⊗ A ⊗ B,

σ ◦ (idA ⊗ μB) = (μB ⊗ idA) ◦ σ23 ◦ σ12 on A ⊗ B ⊗ B,

σ (1A ⊗ b) = b ⊗ 1A, σ (a ⊗ 1B) = 1B ⊗ a ∀a ∈ A, ∀b ∈ B,

where μA : A ⊗ A → A is the product in the algebra A, 1A is its unit, and similarly for B . We call the data (A, B, σ) a 
quantum double, if the map σ is defined in terms of a braiding R (see [3] for more detail).

Also, the map σ defines permutation relations a ⊗ b = σ(a ⊗ b), a ∈ A, b ∈ B and due to this fact σ is referred to as the 
permutation map. If the algebra A is equipped with a counit ε : A → C , then it becomes possible to define an action of the 
algebra A onto B .

Below we deal with the QD (A, B, σ), where B = M(R) with the generating matrix M obeying (1.2), the algebra A =
D(R−1) is the RE algebra with the generating matrix D = ‖∂ j

i ‖ satisfying the relation2

R−1 D1 R−1 D1 − D1 R−1 D1 R−1 = 0 (2.1)

and the permutation map is

2 The matrix R−1 is also a Hecke symmetry but with q replaced by q−1.
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σ : D1 R M1 R → R M1 R−1 D1 + R 1B 1A .

Below we omit the factors 1A and 1B . The corresponding permutation relations can be written in the form:

D1 R M1 = R M1 R−1 D1 R−1 + I. (2.2)

Remark 1. The quantum double (D(R−1), M(R), σ) with the permuttation relations (2.2) was obtained in [1] from the 
representation theory of the RE algebra.

The permutation relations (2.2) are compatible with the associative structures of the both algebras M(R) and D(R−1). 
To prove this we introduce the matrix notation:

M1 = M1 = M1, Mi+1 = Ri Mi R−1
i , Mi+1 = R−1

i Mi Ri, i ≥ 1,

where Ri := Ri i+1 := I⊗(i−1) ⊗ R ⊗ I⊗(p−i−1) is an embedding of R into the space of N p × N p matrices for any p ≥ i + 1. 
Then the braid relation on R allows one to prove the equivalence of two forms of defining relations of RE algebra M(R):

R M1 R M1 − M1 R M1 R = 0 ⇔ R M1M2 − M1M2 R = 0.

Note that the defining relations of RE algebra can be also written in terms of any higher copies of matrix M:

R p Mp Mp+1 − Mp Mp+1 R p = 0, ∀ p ≥ 1. (2.3)

By a straightforward calculation with the use of (2.2) we find:

D1
(

R2M2M3 − M2M3 R2
) = (

R2M2M3 − M2M3 R2
)

D1 R−1
1 R−2

2 R−1
1 . (2.4)

The relation (2.4) entails that the defining ideal of the algebra M(R) is preserved by the permutation relations. In a similar 
way it is possible to check that the defining ideal of the algebra D(R−1) is also preserved by the permutation relations.

In order to get an action of the algebra D(R−1) onto M(R) we introduce a counit in the algebra A = D(R−1) in the 
classical way:

ε(1A) = 1C , ε(∂
j

i ) = 0 ∀ i, j, ε(a1a2) = ε(a1) ε(a2) ∀a1,a2 ∈ A.

With this counit the action of ∂ j
i on the generators mk

s reads:

D1 � M2 = R−1
12 .

The permutation relations (2.2) together with the counit map allow one to extend this action on the whole algebra M(R). 
The elements ∂ j

i with the above action are treated as the quantum analogs of the usual partial derivatives in the commu-

tative variables m j
i . As was mentioned above, this action is compatible with the algebraic structure of M(R) (see (2.4)). 

However, below we do not use the operator treatment of the quantum partial derivatives ∂ j
i .

Remark 2. If R is a Hecke symmetry coming from Uq(slN) (the so-called Drinfeld-Jimbo R-matrix) then at the classical limit 
q → 1 the permutation relations (2.2) turns into the usual Leinbniz rule for the commutative partial derivatives ∂ j

i = ∂/∂mi
j .

With any Hecke symmetry R we associate the idempotents A(k) and S(k) called the R-skew-symmetrizers and R-
symmetrizers respectively. They are defined by the following recursion:

A(1) = I, A(k)

1...k = 1

kq
A(k−1)

1...k−1

(
q(k−1) I⊗k − (k − 1)q Rk−1

)
A(k−1)

1...k−1, k ≥ 2. (2.5)

S(1) = I, S(k)

1...k = 1

kq
S(k−1)

1...k−1

(
q−(k−1) I⊗k + (k − 1)q Rk−1

)
S(k−1)

1...k−1, k ≥ 2.

If R is a GLN type Hecke symmetry, then dim Im A(N) = 1 and A(N+1) ≡ 0.
Now we are ready to formulate the main result of the paper. We establish a series of matrix factorization identities 

which leads to the quantum versions of the Capelli identity and some its generalizations called by A. Okounkov the “higher 
Capelli identities” in [6].
3
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Theorem 3. Let L = M D, where M and D are the generating matrices of the algebras M(R) and D(R−1) from the quantum double 
defined by (1.2), (2.1) and (2.2). Then the following matrix factoriazation identities take place for ∀ k ≥ 1:

A(k)L1 (L2 + qI) . . . (Lk + qk−1(k − 1)q I ) A(k) = qk(k−1) A(k)M1 . . . Mk Dk . . . D1 (2.6)

S(k)L1

(
L2 − 1

q
I

)
. . .

(
Lk − (k − 1)q

qk−1
I

)
S(k) = q−k(k−1)S(k)M1 . . . Mk Dk . . . D1. (2.7)

Observe that Theorem 3 is valid for any skew-invertible Hecke symmetry R . In the case when R is a GLN type symmetry, 
the right hand side of (2.6) for k = N can be presented as the product of quantum determinants of the matrices M and D
(see the last section).

Definition 4. Let M be the generating matrix of an RE algebra M(R). The quantities3

ek(M) = 〈A(k) M1M2 . . . Mk〉1...k

are called the elementary (q-)symmetric polynomials in the matrix M .

By definition, the quantum determinants of the matrices M and D are proportional to the highest elementary symmetric 
polynomials eN (similarly to the classical matrix analysis):

detR M := qN2〈A(N)M1M2 . . . MN〉1...N , detR−1 D := qN2〈A(N) D N . . . D1〉1...N . (2.8)

The normalizing factior qN2
is introduced to simplify the formulae below. Note that in the definition of detR−1 D the inverse 

order of the matrix copies Dk is used. This is motivated by the relations (2.1) imposed on D .
So, as a corollary of Theorem 3, we have the following version of the generalized quantum Capelli identities.

Corollary 5. Under the assumption of Theorem 3 the following identities hold for ∀ k ≥ 1:

〈A(k)L1 (L2 + qI) . . . (Lk + qk−1(k − 1)q I )〉1...k = qk(k−1)〈A(k)M1 . . . Mk Dk . . . D1〉1...k (2.9)

〈S(k)L1

(
L2 − 1

q
I

)
. . .

(
Lk − (k − 1)q

qk−1
I

)
〉1...k = q−k(k−1)〈S(k)M1 . . . Mk Dk . . . D1〉1...k. (2.10)

Formulae (2.9) and (2.10) are generalizations of the higher Capelli identities from [6], corresponding to one-column and 
one-row Young diagrams respectively.

Corollary 6. Under the assumption of Theorem 3 the following quantum Capelli identity holds true:

〈A(N)L1 (L2 + qI) . . . (LN + qN−1(N − 1)q I)〉1...N = q−N detR M detR−1 D. (2.11)

In the last section we consider the quantum determinants in more detail and complete the proof of this Capelli identity.

3. Proof of Theorem 3

We only prove the identity (2.6). The identity (2.7) can be proven in the same way.
Let us apply the induction in k. The base of induction for k = 1 is tautological. We assume the identity (2.6) to be true 

up to k − 1 for some integer k ≥ 2. Consider the matrix:

F (α) = A(k)L1(L2 + q I)(L3 + q2 2q I) . . . (Lk−1 + qk−2 (k − 2)q I)(Lk + α I)A(k),

where α is a numerical parameter.
Since A(k−1) is a polynomial in Ri for i ≤ k − 2, then Lk A(k−1) = A(k−1) Lk as a consequence of the braid relation on R . 

Using this fact as well as the identity A(k) = A(k) A(k−1) = A(k−1) A(k) , we can rewrite F (α) in the form:

F (α) = A(k) A(k−1)L1(L2 + q I) . . . (Lk−1 + qk−2(k − 2)q I)A(k−1)(Lk + α I) A(k).

3 Hereafter, we use the notation 〈X〉1...k := TrR(1...k) X := TrR(1) . . .TrR(k) X , where X is an Nk × Nk matrix.
4
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We transform the underlined expression in accordance with the induction hypothesis and get:

F (α) = q(k−1)(k−2) A(k)M1 . . . Mk−1 Dk−1 . . . D1(Lk + α I)A(k). (3.1)

It remains to check that for α = qk−1(k − 1)q the expression F (α) turns into the right hand side of (2.6). Expanding the 
brackets in (3.1) we obtain:

q−(k−1)(k−2)F (α) = A(k)M1 . . . Mk−1 Dk−1 . . . D1Lk A(k) + αA(k)M1 . . . Mk−1 Dk−1 . . . D1 A(k).

Now, in the first summand we permute step by step all factors Di with the element Lk . Taking into account that Lk =
Rk−1→1L1 R−1

1→k−1, where R±
1→m := R±

1 . . . R±
m (and similarly for R±

m→1), we find at the first step:

D1Lk = D1 Rk−1→1M1 D1 R−1
1→k−1 = Rk−1→2 D1 R1M1 D1 R−1

1→k−1.

In the last expression we replace the product D1 R1M1 with the use of (2.2):

Rk−1→2 D1 R1M1 D1 R−1
1→k−1 = Rk−1→1M1 R−1

1 D1 R−1
1 D1 R−1

1→k−1 + D1 Rk−1→2 R−1
1→k−1,

then we change R−1
1 D1 R−1

1 D1 for D1 R−1
1 D1 R−1

1 according to (2.1) and finally get:

D1Lk = Lk D1 Rk−1→2 R−2
1 R−1

2→k−1 + D1 Rk−1→2 R−1
1 R−1

2→k−1.

So, the first summand in the above expression for q−(k−1)(k−2) F (α) takes the form:

A(k)M1 . . . Mk−1 Dk−1 . . . D1Lk A(k) =
(−q)2 A(k) M1 . . . Mk−1 Dk−1 . . . D2Lk D1 A(k) + (−q) A(k)M1 . . . Mk−1 Dk−1 . . . D1 A(k).

To get this expression, we “evaluate” the chains of R-matrices on the rightmost R-skew-symmetrizer A(k) in accordance 
with the rules:

A(k)R±1
i = R±1

i A(k) = −q∓1 A(k), 1 ≤ ∀ i ≤ k − 1. (3.2)

At the second step we permute D2 and Lk . In the same way as above we find:

D2Lk = Lk D2 Rk−1→3 R−2
2 R−1

3→k−1 + D2 Rk−1→3 R−1
2 R−1

3→k−1.

Note that all R-matrices in this formula commute with D1 and therefore they can be moved to the right A(k) and converted 
to powers of q according to (3.2).

By induction in p one can prove the general formula:

D p Lk = Lk D p Rk−1→p+1 R−2
p R−1

p+1→k−1 + D p Rk−1→p+1 R−1
p R−1

p+1→k−1.

Here also all terms R±1
i i ≥ p commute with D p−1 . . . D1 and can be evaluated at the R-skew-symmetrizer A(k) .

Finally, we get the following formula:

q−(k−1)(k−2)F (α) = q2(k−1) A(k)M1 . . . Mk−1Mk Dk Dk−1 . . . D1 A(k)

+ (α − q − q3 − · · · − q2k−3)A(k)M1 . . . Mk−1 Dk−1 . . . D1 A(k),

where we substituted Lk = Mk Dk .
At last, by setting α = q + q3 + · · · + q2k−3 = qk−1(k − 1)q we kill the second term and get:

F (qk−1(k − 1)q) = qk(k−1) A(k)M1 . . . Mk−1Mk Dk Dk−1 . . . D1 A(k). (3.3)

To complete the proof it remains to note that due to algebraic relations (2.3) the R-skew-symmetrizer A(k) commute with 
the chain of M-matrices

A(k)M1M2 . . . Mk = M1M2 . . . Mk A(k),

and the same is true for the corresponding chain of D matrices. Since A(k) A(k) = A(k) , then in the right hand side of (3.3)
one can leave only one element A(k):

A(k)M1 . . . Mk Dk . . . D1 A(k) ≡ A(k)M1 . . . Mk Dk . . . D1 ≡ M1 . . . Mk Dk . . . D1 A(k).

This completes the inductive proof of (2.6).
5
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4. Some aspects of quantum determinants

It should be emphasized that the order m of the highest non-trivial skew-symmetrizer A(m) can be different from N , 
where N2 × N2 is the matrix size of R .

Definition 7. We say that a skew-invertible Hecke symmetry R is of rank m if the R-skew-symmetrizers (2.5) satisfy the 
condition:

dim Im A(m)(R) = 1, A(m+1)(R) ≡ 0.

Note that Corollary 6 remains valid, if in (2.11) we replace N by m assuming the initial GLN type Hecke symmetry R to 
be of rank m.

Since A(m) is an idempotent and dim Im A(m) = 1, there exist two tensors |u〉 = ‖ui1 i2... im ‖ and 〈v| = ‖vi1 i2... im ‖ such that

A(m) j1... jm
i1... im

= ui1... im v j1... jm and
∑

i

vi1... im ui1... im = 1.

Using the above “bra” and “ket” notations, we can present these formulae as follows:

A(m) = |u〉〈v| and 〈v|u〉 = 1. (4.1)

The quantum determinant is defined as in (2.8) but with N replaced by m:

detR M = qm2〈A(m)M1M2 . . . Mm〉1...m.

With the use of (4.1) we can prove the following matrix identity:

A(m)M1 . . . Mm = A(m)M1 . . . Mm A(m)

= |u〉〈v|M1 . . . Mm|u〉〈v| = A(m)〈v|M1 . . . Mm|u〉. (4.2)

Upon calculating the R-trace over all spaces and taking into account that 〈A(m)〉1...m = q−m2
(see [2]), we find that the 

quantum determinant is actually given by the usual trace of the form:

detR M = 〈v|M1M2 . . . Mm|u〉 := Tr(1...m)(A(m)M1M2 . . . Mm).

As for the quantum determinant of the matrix D we have:

detR−1 D := qm2〈A(m)Dm . . . D2 D1〉1...m = 〈v|Dm . . . D2 D1)|u〉.
Note that this quantum determinant is defined with the same tensors |u〉 and 〈v| though the matrix D is subject to the 
RE with R replaced by R−1. It can be explained by the fact that all skew-symmetrizers are invariant with respect to the 
replacement R → R−1 and q → q−1.

Consider now the identity (2.6) for the Hecke symmetry of rank m. With the use of (4.2) the matrix structure of the 
right hand side of (2.6) for k = m can be transformed as follows:

qm(m−1) A(m)M1 . . . Mm Dm . . . D1 = qm(m−1) A(m) detR M detR−1 D.

Finally, by calculating the R-trace over all spaces of the both sides of (2.6), we come to the desired form (2.11) of the right 
hand side of the quantum Capelli identity:

〈A(m)L1 (L2 + qI) . . . (Lm + qm−1(m − 1)q I)〉1...m = q−mdetR M detR−1 D.

This completes the proof of Corollary 6.
As follows from the results of [4], if a given Hecke symmetry R is a deformation of the usual flip P , each of the 

determinants entering the right hand side of the (2.11) can be written as column-determinant or row-determinant. We do 
not know whether it is possible to do the same with the left hand side of (2.11). Also observe, that if an involutive symmetry
R (i.e. such that R2 = I) is a limit of a Hecke symmetry R(q) as q → 1, the corresponding Capelli identity can be obtained 
from (2.11) by setting q = 1. Thus, it looks like the Capelli identity from [6], but the skew-symmetrizers and quantum 
determinants should be adapted to R = R(1).

At conclusion, we want to shortly compare our result for quantum Capelli identity with that of the paper [5]. The authors 
of that paper deal with another quantum version of the Capelli identity, related to the QG Uq(slN ) and the corresponding 
RTT algebra. As for our results, we are working with quite different quantum algebra — the RE algebra and different quantum 
derivatives. Besides, we do not restrict ourselves with the Uq(slN) R-matrix, our results are valid for the wide class of RE 
algebras defined via arbitrary skew-invertible Hecke symmetries.
6
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