Journal of Geometry and Physics 179 (2022) 104606

Contents lists available at ScienceDirect

Journal of Geometry and Physics

www.elsevier.com/locate/geomphys

Matrix Capelli identities related to reflection equation algebra n

Check for
updates

Dimitri Gurevich®P, Varvara Petrova ¢, Pavel Saponov c.dx

@ Université Polytechnique Hauts-de-France, F-59313 Valenciennes, France

b Interdisciplinary Scientific Center J.-V.Poncelet, Moscow 119002, Russian Federation

€ National Research University Higher School of Economics, 20 Myasnitskaya Ulitsa, Moscow 101000, Russian Federation
d Institute for High Energy Physics, NRC “Kurchatov Institute”, Protvino 142281, Russian Federation

ARTICLE INFO ABSTRACT

Article history: By using the notion of quantum double we introduce analogs of partial derivatives on a
Received 3 May 2022 reflection equation algebra, associated with a Hecke symmetry of GLy type. We construct
Accepted 9 June 2022 the matrix L = MD, where M is the generating matrix of the reflection equation algebra

Available online 20 june 2022 and D is the matrix composed of the quantum partial derivatives and prove that the

matrices M, D and L satisfy a matrix identity, called the matrix Capelli one. Upon applying

gSRCéo quantum trace, it becomes a scalar relation, which is a far-reaching generalization of the
classical Capelli identity. Also, we get a generalization of the some higher Capelli identities

Keywords: proved by A. Okounkov in [6].

Quantum double © 2022 Elsevier B.V. All rights reserved.

Quantum partial derivatives
Quantum elementary symmetric
polynomials

Quantum determinant

1. Introduction

Let M = ||m{||15,-,j§N be a matrix with commutative entries and D = ||8ij||15i,j5N be the matrix composed of the partial
derivatives' ag =d/ Bm;. The famous Capelli identity reads

cdet(MD + K) =detMdet D, (1.1)

where cdet is the so-called column-determinant and K is a diagonal matrix of the form: K = diag(N—-1,N—2,...,1,0).
There are known many generalizations of this identity. We only mention the paper [5], where a quantum version of the
Capelli identity was established, related to the Quantum Group (QG) Uq(sly) and its dual algebra.
In the present note we exhibit another quantum version of the Capelli identity, which by contrast with [5] is related to
Reflection Equation (RE) algebras. By definition, an RE algebra is a unital associative algebra M (R) generated by entries of
the matrix M = ||m{||15,-,j5N subject to the following relation:

RMiRMi1 —M{RM1R=0, Mi=M®I, (1.2)

where [ is the unit matrix and R is a Hecke symmetry. The matrix M is called the generating matrix of the algebra M (R).
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Let us precise that by a Hecke symmetry we mean a braiding, meeting the Hecke condition:

@I®I—R)(@ 'I®I+R)=0, q¢{0,£1},

whereas by a braiding we mean a solution of the braid relation:

R12R23R12=R23R12R23, R12=R®]I, Ry;3=I®R.

Hereafter, R is treated to be an N2 x N2 numerical matrix.

The best known examples of the Hecke symmetries are those coming from the QG Uq(sly). These Hecke symmetries are
deformations of the usual flips P. Nevertheless, there exist other Hecke symmetries possessing this property (for instance,
the Crammer-Gervais symmetries) as well as those which are not deformations of the usual (or super-)flips.

We impose two additional requirements on the Hecke symmetry R: it should be skew-invertible and even (see [2]).
In such a case R will be called the GLy type Hecke symmetry. Note that if R is a GLy type Hecke symmetry, then for
generating matrix M of the RE algebra M(R) one can define the quantum (or R-)trace TrgM and the quantum determinant
detg M. )

Besides, for any GLy type Hecke symmetry R we define analogs of the partial derivatives 31.] in such a way that the

matrix L = MD, where D = ||8ij||151-,]-5N, meets the relation:
RLiRL1 —L{RLiR=RLy—L{R. (1.3)

An algebra E(R), generated by entrees of the matrix L = ||l{||15,-,j5N is called a modified RE algebra. Note that as R — P, the

algebra M(R) tends to Sym(gly), whereas the algebra ﬁ(R) tends to U(gly). This is one of the reasons why we consider the
algebras M(R) (resp., L(R)) for any GLy type Hecke symmetry R as a quantum (or g-)analog of Sym(gly) (resp., U(gIn)).

Note that for the generating matrix L of the algebra £(R) the quantum trace TrgL and the quantum determinant detgL
are defined in the same way as for the matrix M. Namely, the quantum determinant of L = MD with a proper shift enters
our quantum Capelli identity. It should be emphasized that this identity is valid for the whole class of RE algebras M (R),
associated with GLy type Hecke symmetries R. Note that if R — P in the limit ¢ — 1 our quantum Capelli identity turns
into the classical one expressed as in [6].

The note is organized as follows. In section 2 we exhibit the quantum double (QD) construction enabling us to introduce
g-analogs of the partial derivatives in the entries of the matrix M. In Theorem 3 we present the matrix factorization
identities which are called the matrix Capelli identities. Upon applying the R-trace, they turn into a quantum version of
the Capelli identity and some its generalizations which are the quantum counterparts of the higher Capelli identities (see
Theorem in [6]), corresponding to one-column and one-row Young diagrams. In section 3 we give a proof of these identities.
In section 4 we reduce the Capelli identity to a more conventional form, based on the use of quantum determinants. Also,
we compare our version of the Capelli identity with that from the article [5].

2. Quantum partial derivatives and matrix Capelli identities

In this section we deal with a skew-invertible Hecke symmetry R without assuming it to be even.
Consider two unital associative algebras A and B equipped with an invertible linear map 0 : A® B — B ® A which
satisfies the following relations:

oo(ua®idpg) =(idp ® ua)oo1p0023 on AR A®B,
oo(ida®up)=(up®idg)oor300, on AR BQB,
0(1a®b)=b®14, o0c(@®1g)=15Ra Yae A, VbeB,

where pua: A® A — A is the product in the algebra A, 14 is its unit, and similarly for B. We call the data (A,B,0) a
quantum double, if the map o is defined in terms of a braiding R (see [3] for more detail).

Also, the map o defines permutation relations a® b=o0(a®b), a€ A, b € B and due to this fact o is referred to as the
permutation map. If the algebra A is equipped with a counit ¢ : A — C, then it becomes possible to define an action of the
algebra A onto B.

Below we deal with the QD (A, B, o), where B = M(R) with the generating matrix M obeying (1.2), the algebra A =
D(R™1) is the RE algebra with the generating matrix D = ||a,.f || satisfying the relation?

R7'DiR™'D; —=D1R7'D1R7T=0 (21)

and the permutation map is

2 The matrix R~ is also a Hecke symmetry but with q replaced by g—'.
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0: D{RM{R— RM{R7'D; +R1g14.

Below we omit the factors 14 and 1p. The corresponding permutation relations can be written in the form:
D1RM;=RM{R'DiR ' +1I. (2.2)

Remark 1. The quantum double (D(R™'), M(R), o) with the permuttation relations (2.2) was obtained in [1] from the
representation theory of the RE algebra.

The permutation relations (2.2) are compatible with the associative structures of the both algebras M(R) and D(R™1).
To prove this we introduce the matrix notation:
Mi=Mi=Mi, Mg7=RMR ', Mg =R 'MjR;, i>1,
where R; := Rjj11 :=I1®0-D @ R @ I®P~i-D is an embedding of R into the space of NP x NP matrices for any p > i+ 1.
Then the braid relation on R allows one to prove the equivalence of two forms of defining relations of RE algebra M(R):
RMiRM;—-M{RM1R=0 <& RM;M3;—M{M5R=0.

Note that the defining relations of RE algebra can be also written in terms of any higher copies of matrix M:
RpMﬁMm—MﬁMme:O, VpZ] (23)

By a straightforward calculation with the use of (2.2) we find:

D1 (R2M5Mz — M5M3R2) = (RaM3M3 — MzM3R2) D1Ry 'Ry 2R7 1. (2.4)

The relation (2.4) entails that the defining ideal of the algebra M(R) is preserved by the permutation relations. In a similar
way it is possible to check that the defining ideal of the algebra D(R~!) is also preserved by the permutation relations.

In order to get an action of the algebra D(R~!) onto M (R) we introduce a counit in the algebra A= D(R™!) in the
classical way:

e(1p) =1¢, 8(8{') =0 Vi, j, e(@ma)=¢e(@)e(@) VYay,az €A.
With this counit the action of 817 on the generators m¥ reads:
Di>M5=Ry,.

The permutation relations (2.2) together with the counit map allow one to extend this action on the whole algebra M(R).
The elements Bij with the above action are treated as the quantum analogs of the usual partial derivatives in the commu-
tative variables m{ . As was mentioned above, this action is compatible with the algebraic structure of M(R) (see (2.4)).
However, below we do not use the operator treatment of the quantum partial derivatives 8ij .

Remark 2. If R is a Hecke symmetry coming from Ug(sly) (the so-called Drinfeld-Jimbo R-matrix) then at the classical limit
q — 1 the permutation relations (2.2) turns into the usual Leinbniz rule for the commutative partial derivatives a{ =9/ Bm;.

With any Hecke symmetry R we associate the idempotents A% and S® called the R-skew-symmetrizers and R-
symmetrizers respectively. They are defined by the following recursion:

1 _ w _ 1 a1 (k—1) &k (k—1)
AT=1 A= kg Al k1 (q %8 — (k= 1) kal) Al ki k=2 (2.5)

M _ o _ 1 ot (—t-1) ok (k—1)
SO =1, 51...k—E51...k71(q DI k=1 Rt ) SV, k=2

If R is a GLy type Hecke symmetry, then dim ImA®™ =1 and AN+D =0,

Now we are ready to formulate the main result of the paper. We establish a series of matrix factorization identities
which leads to the quantum versions of the Capelli identity and some its generalizations called by A. Okounkov the “higher
Capelli identities” in [6].
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Theorem 3. Let L = MD, where M and D are the generating matrices of the algebras M(R) and D(R™") from the quantum double
defined by (1.2), (2.1) and (2.2). Then the following matrix factoriazation identities take place for Vk > 1:

APz (L +qD) ... (L + ¢ k= D)D) AW =gV AOML . M D... DT (2.6)
1 k—1
sz <L7 - a1) o (LE . qH)q 1) s® = gD s® N M Df... D (2.7)

Observe that Theorem 3 is valid for any skew-invertible Hecke symmetry R. In the case when R is a GLy type symmetry,
the right hand side of (2.6) for k= N can be presented as the product of quantum determinants of the matrices M and D
(see the last section).

Definition 4. Let M be the generating matrix of an RE algebra M(R). The quantities®
ek (M) = (A% MiM5... Mp)1_k

are called the elementary (g-)symmetric polynomials in the matrix M.

By definition, the quantum determinants of the matrices M and D are proportional to the highest elementary symmetric
polynomials ey (similarly to the classical matrix analysis):

2 2
detpM := qN <A(N)MTM§. .. Mﬁth, detp-1D := qN (A(N) Dy... DT)lmN' (2.8)

The normalizing factior qu is introduced to simplify the formulae below. Note that in the definition of detz-1D the inverse
order of the matrix copies Dy is used. This is motivated by the relations (2.1) imposed on D.
So, as a corollary of Theorem 3, we have the following version of the generalized quantum Capelli identities.

Corollary 5. Under the assumption of Theorem 3 the following identities hold for Vk > 1:

(AL Ly +qD) ... L+ ¢ k= DgD)1 g ="V (A®M;.. .M Dr... D1k (2.9)
1 k—1) et
(s®Lg <L§— al> (LE— qki_]qI))l,._k =q k=D sk M. ..M Dg... D)1k (2.10)

Formulae (2.9) and (2.10) are generalizations of the higher Capelli identities from [6], corresponding to one-column and
one-row Young diagrams respectively.

Corollary 6. Under the assumption of Theorem 3 the following quantum Capelli identity holds true:
(AN L= (Ls+qD) ... (Lg+q " (N = 1)gD))1.n =q VdetgM detg 1 D. (2.11)
In the last section we consider the quantum determinants in more detail and complete the proof of this Capelli identity.
3. Proof of Theorem 3

We only prove the identity (2.6). The identity (2.7) can be proven in the same way.
Let us apply the induction in k. The base of induction for k =1 is tautological. We assume the identity (2.6) to be true
up to k — 1 for some integer k > 2. Consider the matrix:

F@)=APLi(Lz+aDU5+a*2¢D) ... L+ 72 (k—2)g DL+ DA®,

where « is a numerical parameter.
Since A®~V is a polynomial in R; for i <k — 2, then Ly A~ = A®=D [ as a consequence of the braid relation on R.
Using this fact as well as the identity A® = A AK=D = A&=D A®) '\we can rewrite F(«) in the form:

Fo) = AVAN DL Lz +qD)... (L5 + 02k = 2)g DA D (L +a 1) AD,

3 Hereafter, we use the notation (X); = Trr. 1 X :=Trray ... Trrgo X, where X is an NK x N* matrix.

4
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We transform the underlined expression in accordance with the induction hypothesis and get:

Fla) =q* V=240, M—=Di—...Di(Lg +a DAY, (3.1)

It remains to check that for o = g~ 1(k — 1)q the expression F(«) turns into the right hand side of (2.6). Expanding the
brackets in (3.1) we obtain:

q_(k_l)(k_2)F(()l) = A(k)M1 - MmDm. .. D]LEA(k) + O[A(k)IVh - MmDm. .. D]A(k).

Now, in the first summand we permute step by step all factors D; with the element L;. Taking into account that Lj =
Ry_ 151LRT! , where R = Ri Ri (and similarly for R we find at the first step:

1—>k— 1>m* ITl*)‘l)

DL = D1Rg-1-1M1D1R7. = Rk-1-2D1R1M1D1R

1—>k 1 1—>k 1

In the last expression we replace the product D1R{M; with the use of (2.2):

Rk—1-2D1Ri1M1D1Ry", | = Ri_11MiRy'D1Ry'D1R} | + D1 Rec1ma R, 5.

then we change Rl_lDlRl_]D1 for D1Rl_1D1R]_l according to (2.1) and finally get:

DlLE:L D1Ry_ 1_)2R R + D1Ry— 1—>2R R

ZHk 1 2%k 1

So, the first summand in the above expression for g~* D% -2 F(x) takes the form:

(k) S _al) _
AYMy ... MiDi= ... D1LgA™ =
(—@)* A My ... M=Dg= ... D2L; D1AY + (=) A¥M; ... My=Di— ... D1AY.
To get this expression, we “evaluate” the chains of R-matrices on the rightmost R-skew-symmetrizer A% in accordance
with the rules:
AWRE = RFIAD = —¢F1A0 1 <vi<k-1. (3.2)

At the second step we permute D5 and Lg. In the same way as above we find:

DELE=LED§R]<_1_,3R2_ R3—>k ]—{-D Ry 1_>3R2 R

3—>k

Note that all R-matrices in this formula commute with D; and therefore they can be moved to the right A% and converted
to powers of q according to (3.2).
By induction in p one can prove the general formula:

Dyl = LgDpRi-1-p 1R, *R;) 1+ DpRi-15p 1Ry 'R

p+1—>k p+1—>k 1

Here also all terms R,.il i > p commute with Dy=g...D1 and can be evaluated at the R-skew-symmetrizer A®.

Finally, we get the following formula:
g ®VE2DE @) = g* kD AOM; . MM DiDi— ... D1A®
+@—q-q - —g*HAOM; ... M= Di=... DAY,

where we substituted Ly = MgDz.
At last, by setting @ =q +¢> +--- +q*3 =g~ 1(k — 1)q we kill the second term and get:

F(@ 1k —1)g) =¢** VAOM; ... MM D;Di— ... D1AY. (3.3)

To complete the proof it remains to note that due to algebraic relations (2.3) the R-skew-symmetrizer A®) commute with
the chain of M-matrices

AOM M5 ... Mz =MM5... Mz A®,

and the same is true for the corresponding chain of D matrices. Since A® A® = A® | then in the right hand side of (3.3)
one can leave only one element A®:

AOM; .. M Dg...D1A® = A®M; .. .M D;...D1=M;...M;Dg...D1 AW,

This completes the inductive proof of (2.6).
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4. Some aspects of quantum determinants

It should be emphasized that the order m of the highest non-trivial skew-symmetrizer A™ can be different from N,
where N2 x N2 is the matrix size of R.

Definition 7. We say that a skew-invertible Hecke symmetry R is of rank m if the R-skew-symmetrizers (2.5) satisfy the
condition:

dimImA™@®) =1, A™Dr®R)=0.

Note that Corollary 6 remains valid, if in (2.11) we replace N by m assuming the initial GLy type Hecke symmetry R to
be of rank m.

Since A™ is an idempotent and dim Im A™ =1, there exist two tensors |u) = ||uj,i,.;, | and (v| = [[vi12=im || such that

im

Im

m) J1--Jm i1... Ji i1...1
AM I =gy g vI I and Y vty =1
i

Using the above “bra” and “ket” notations, we can present these formulae as follows:
A™ —juy(v| and  (v|u)=1. (4.1)
The quantum determinant is defined as in (2.8) but with N replaced by m:
detgM = q™ (A™ M;My... Mi)1..m.
With the use of (4.1) we can prove the following matrix identity:

AWM, Mg =A™M; ... MzA™
= |u)(v|M1 ... Mmlu){v] = A™ (v|My ... Mmu). (4.2)

Upon calculating the R-trace over all spaces and taking into account that (AM™); , = q‘mz (see [2]), we find that the
quantum determinant is actually given by the usual trace of the form:

detgM = (v|M1Ms... Milu) :=Trr_m (A™ M1 Ms.. .. Mip).

As for the quantum determinant of the matrix D we have:

2
detg-1D :=q™ (A" Dg...D3D1)1..m = (v|Dsz. .. DsD1)[u).

Note that this quantum determinant is defined with the same tensors |u) and (v| though the matrix D is subject to the
RE with R replaced by R='. It can be explained by the fact that all skew-symmetrizers are invariant with respect to the
replacement R — R~! and g — g~ 1.

Consider now the identity (2.6) for the Hecke symmetry of rank m. With the use of (4.2) the matrix structure of the
right hand side of (2.6) for k =m can be transformed as follows:

qnMm=DAMM, . MmDi... Dy =q" ™ DA™ detg M detg-1D.

Finally, by calculating the R-trace over all spaces of the both sides of (2.6), we come to the desired form (2.11) of the right
hand side of the quantum Capelli identity:

(AL (Ly+qD) ... (L + g™ (m — 1)gD)1..m = g "detgM detg 1 D.

This completes the proof of Corollary 6.

As follows from the results of [4], if a given Hecke symmetry R is a deformation of the usual flip P, each of the
determinants entering the right hand side of the (2.11) can be written as column-determinant or row-determinant. We do
not know whether it is possible to do the same with the left hand side of (2.11). Also observe, that if an involutive symmetry
R (i.e. such that R =) is a limit of a Hecke symmetry R(q) as q — 1, the corresponding Capelli identity can be obtained
from (2.11) by setting g = 1. Thus, it looks like the Capelli identity from [6], but the skew-symmetrizers and quantum
determinants should be adapted to R = R(1).

At conclusion, we want to shortly compare our result for quantum Capelli identity with that of the paper [5]. The authors
of that paper deal with another quantum version of the Capelli identity, related to the QG Ug(sly) and the corresponding
RTT algebra. As for our results, we are working with quite different quantum algebra — the RE algebra and different quantum
derivatives. Besides, we do not restrict ourselves with the Ug(sly) R-matrix, our results are valid for the wide class of RE
algebras defined via arbitrary skew-invertible Hecke symmetries.

6
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