Matrix Capelli identities related to reflection equation algebra

Dimitri Gurevich ${ }^{\text {a,b }}$, Varvara Petrova ${ }^{\text {c }}$, Pavel Saponov ${ }^{\text {c,d,* }}$
${ }^{\text {a }}$ Université Polytechnique Hauts-de-France, F-59313 Valenciennes, France
${ }^{\mathrm{b}}$ Interdisciplinary Scientific Center J.-V.Poncelet, Moscow 119002, Russian Federation
${ }^{\text {c }}$ National Research University Higher School of Economics, 20 Myasnitskaya Ulitsa, Moscow 101000, Russian Federation
${ }^{\text {d }}$ Institute for High Energy Physics, NRC "Kurchatov Institute", Protvino 142281, Russian Federation

A R T I C L E I N F O

Article history:

Received 3 May 2022
Accepted 9 June 2022
Available online 20 June 2022

MSC:

81R50

Keywords:
Quantum double
Quantum partial derivatives
Quantum elementary symmetric polynomials
Quantum determinant

Abstract

By using the notion of quantum double we introduce analogs of partial derivatives on a reflection equation algebra, associated with a Hecke symmetry of $G L_{N}$ type. We construct the matrix $L=M D$, where M is the generating matrix of the reflection equation algebra and D is the matrix composed of the quantum partial derivatives and prove that the matrices M, D and L satisfy a matrix identity, called the matrix Capelli one. Upon applying quantum trace, it becomes a scalar relation, which is a far-reaching generalization of the classical Capelli identity. Also, we get a generalization of the some higher Capelli identities proved by A. Okounkov in [6].

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Let $M=\left\|m_{i}^{j}\right\|_{1 \leq i, j \leq N}$ be a matrix with commutative entries and $D=\left\|\partial_{i}^{j}\right\|_{1 \leq i, j \leq N}$ be the matrix composed of the partial derivatives ${ }^{1} \partial_{i}^{j}=\partial / \partial m_{j}^{i}$. The famous Capelli identity reads

$$
\begin{equation*}
\operatorname{cdet}(M D+K)=\operatorname{det} M \operatorname{det} D \tag{1.1}
\end{equation*}
$$

where cdet is the so-called column-determinant and K is a diagonal matrix of the form: $K=\operatorname{diag}(N-1, N-2, \ldots, 1,0)$.
There are known many generalizations of this identity. We only mention the paper [5], where a quantum version of the Capelli identity was established, related to the Quantum Group (QG) $U_{q}\left(s l_{N}\right)$ and its dual algebra.

In the present note we exhibit another quantum version of the Capelli identity, which by contrast with [5] is related to Reflection Equation (RE) algebras. By definition, an RE algebra is a unital associative algebra $\mathcal{M}(R)$ generated by entries of the matrix $M=\left\|m_{i}^{j}\right\|_{1 \leq i, j \leq N}$ subject to the following relation:

$$
\begin{equation*}
R M_{1} R M_{1}-M_{1} R M_{1} R=0, \quad M_{1}=M \otimes I, \tag{1.2}
\end{equation*}
$$

where I is the unit matrix and R is a Hecke symmetry. The matrix M is called the generating matrix of the algebra $\mathcal{M}(R)$.

[^0]Let us precise that by a Hecke symmetry we mean a braiding, meeting the Hecke condition:

$$
(q I \otimes I-R)\left(q^{-1} I \otimes I+R\right)=0, \quad q \notin\{0, \pm 1\}
$$

whereas by a braiding we mean a solution of the braid relation:

$$
R_{12} R_{23} R_{12}=R_{23} R_{12} R_{23}, \quad R_{12}=R \otimes I, \quad R_{23}=I \otimes R
$$

Hereafter, R is treated to be an $N^{2} \times N^{2}$ numerical matrix.
The best known examples of the Hecke symmetries are those coming from the QG $U_{q}\left(s l_{N}\right)$. These Hecke symmetries are deformations of the usual flips P. Nevertheless, there exist other Hecke symmetries possessing this property (for instance, the Crammer-Gervais symmetries) as well as those which are not deformations of the usual (or super-)flips.

We impose two additional requirements on the Hecke symmetry R : it should be skew-invertible and even (see [2]). In such a case R will be called the $G L_{N}$ type Hecke symmetry. Note that if R is a $G L_{N}$ type Hecke symmetry, then for generating matrix M of the RE algebra $\mathcal{M}(R)$ one can define the quantum (or R-) $\operatorname{trace} \operatorname{Tr}_{R} M$ and the quantum determinant $\operatorname{det}_{R} M$.

Besides, for any $G L_{N}$ type Hecke symmetry R we define analogs of the partial derivatives ∂_{i}^{j} in such a way that the matrix $L=M D$, where $D=\left\|\partial_{i}^{j}\right\|_{1 \leq i, j \leq N}$, meets the relation:

$$
\begin{equation*}
R L_{1} R L_{1}-L_{1} R L_{1} R=R L_{1}-L_{1} R \tag{1.3}
\end{equation*}
$$

An algebra $\hat{\mathcal{L}}(R)$, generated by entrees of the matrix $L=\left\|l_{i}^{j}\right\|_{1 \leq i, j \leq N}$ is called a modified $R E$ algebra. Note that as $R \rightarrow P$, the algebra $\mathcal{M}(R)$ tends to $\operatorname{Sym}\left(g l_{N}\right)$, whereas the algebra $\hat{\mathcal{L}}(R)$ tends to $U\left(g l_{N}\right)$. This is one of the reasons why we consider the algebras $\mathcal{M}(R)$ (resp., $\hat{\mathcal{L}}(R)$) for any $G L_{N}$ type Hecke symmetry R as a quantum (or q-)analog of $\operatorname{Sym}\left(g l_{N}\right)$ (resp., $U\left(g l_{N}\right)$).

Note that for the generating matrix L of the algebra $\hat{\mathcal{L}}(R)$ the quantum trace $\operatorname{Tr}_{R} L$ and the quantum determinant $\operatorname{det}_{R} L$ are defined in the same way as for the matrix M. Namely, the quantum determinant of $L=M D$ with a proper shift enters our quantum Capelli identity. It should be emphasized that this identity is valid for the whole class of RE algebras $\mathcal{M}(R)$, associated with $G L_{N}$ type Hecke symmetries R. Note that if $R \rightarrow P$ in the limit $q \rightarrow 1$ our quantum Capelli identity turns into the classical one expressed as in [6].

The note is organized as follows. In section 2 we exhibit the quantum double (QD) construction enabling us to introduce q-analogs of the partial derivatives in the entries of the matrix M. In Theorem 3 we present the matrix factorization identities which are called the matrix Capelli identities. Upon applying the R-trace, they turn into a quantum version of the Capelli identity and some its generalizations which are the quantum counterparts of the higher Capelli identities (see Theorem in [6]), corresponding to one-column and one-row Young diagrams. In section 3 we give a proof of these identities. In section 4 we reduce the Capelli identity to a more conventional form, based on the use of quantum determinants. Also, we compare our version of the Capelli identity with that from the article [5].

2. Quantum partial derivatives and matrix Capelli identities

In this section we deal with a skew-invertible Hecke symmetry R without assuming it to be even.
Consider two unital associative algebras A and B equipped with an invertible linear map $\sigma: A \otimes B \rightarrow B \otimes A$ which satisfies the following relations:

$$
\begin{array}{lll}
\sigma \circ\left(\mu_{A} \otimes \mathrm{id}_{B}\right)=\left(\mathrm{id}_{B} \otimes \mu_{A}\right) \circ \sigma_{12} \circ \sigma_{23} \quad \text { on } & A \otimes A \otimes B, \\
\sigma \circ\left(\mathrm{id}_{A} \otimes \mu_{B}\right)=\left(\mu_{B} \otimes \mathrm{id}_{A}\right) \circ \sigma_{23} \circ \sigma_{12} \quad \text { on } & A \otimes B \otimes B, \\
\sigma\left(1_{A} \otimes b\right)=b \otimes 1_{A}, \quad \sigma\left(a \otimes 1_{B}\right)=1_{B} \otimes a & \forall a \in A, \forall b \in B,
\end{array}
$$

where $\mu_{A}: A \otimes A \rightarrow A$ is the product in the algebra $A, 1_{A}$ is its unit, and similarly for B. We call the data (A, B, σ) a quantum double, if the map σ is defined in terms of a braiding R (see [3] for more detail).

Also, the map σ defines permutation relations $a \otimes b=\sigma(a \otimes b), a \in A, b \in B$ and due to this fact σ is referred to as the permutation map. If the algebra A is equipped with a counit $\varepsilon: A \rightarrow C$, then it becomes possible to define an action of the algebra A onto B.

Below we deal with the $\mathrm{QD}(A, B, \sigma)$, where $B=\mathcal{M}(R)$ with the generating matrix M obeying (1.2), the algebra $A=$ $\mathcal{D}\left(R^{-1}\right)$ is the RE algebra with the generating matrix $D=\left\|\partial_{i}^{j}\right\|$ satisfying the relation ${ }^{2}$

$$
\begin{equation*}
R^{-1} D_{1} R^{-1} D_{1}-D_{1} R^{-1} D_{1} R^{-1}=0 \tag{2.1}
\end{equation*}
$$

and the permutation map is

[^1]$$
\sigma: \quad D_{1} R M_{1} R \rightarrow R M_{1} R^{-1} D_{1}+R 1_{B} 1_{A} .
$$

Below we omit the factors 1_{A} and 1_{B}. The corresponding permutation relations can be written in the form:

$$
\begin{equation*}
D_{1} R M_{1}=R M_{1} R^{-1} D_{1} R^{-1}+I \tag{2.2}
\end{equation*}
$$

Remark 1. The quantum double $\left(\mathcal{D}\left(R^{-1}\right), \mathcal{M}(R), \sigma\right)$ with the permuttation relations (2.2) was obtained in [1] from the representation theory of the RE algebra.

The permutation relations (2.2) are compatible with the associative structures of the both algebras $\mathcal{M}(R)$ and $\mathcal{D}\left(R^{-1}\right)$. To prove this we introduce the matrix notation:

$$
M_{\overline{1}}=M_{\underline{1}}=M_{1}, \quad M_{\overline{i+1}}=R_{i} M_{\bar{i}} R_{i}^{-1}, \quad M_{\underline{i+1}}=R_{i}^{-1} M_{\underline{i}} R_{i}, \quad i \geq 1,
$$

where $R_{i}:=R_{i+1}:=I^{\otimes(i-1)} \otimes R \otimes I^{\otimes(p-i-1)}$ is an embedding of R into the space of $N^{p} \times N^{p}$ matrices for any $p \geq i+1$. Then the braid relation on R allows one to prove the equivalence of two forms of defining relations of RE algebra $\mathcal{M}(R)$:

$$
R M_{1} R M_{1}-M_{1} R M_{1} R=0 \quad \Leftrightarrow \quad R M_{1} M_{\overline{2}}-M_{1} M_{\overline{2}} R=0
$$

Note that the defining relations of RE algebra can be also written in terms of any higher copies of matrix M :

$$
\begin{equation*}
R_{p} M_{\bar{p}} M_{\overline{p+1}}-M_{\bar{p}} M_{\overline{p+1}} R_{p}=0, \quad \forall p \geq 1 \tag{2.3}
\end{equation*}
$$

By a straightforward calculation with the use of (2.2) we find:

$$
\begin{equation*}
D_{1}\left(R_{2} M_{\overline{2}} M_{\overline{3}}-M_{\overline{2}} M_{\overline{3}} R_{2}\right)=\left(R_{2} M_{\overline{2}} M_{\overline{3}}-M_{\overline{2}} M_{\overline{3}} R_{2}\right) D_{1} R_{1}^{-1} R_{2}^{-2} R_{1}^{-1} \tag{2.4}
\end{equation*}
$$

The relation (2.4) entails that the defining ideal of the algebra $\mathcal{M}(R)$ is preserved by the permutation relations. In a similar way it is possible to check that the defining ideal of the algebra $\mathcal{D}\left(R^{-1}\right)$ is also preserved by the permutation relations.

In order to get an action of the algebra $\mathcal{D}\left(R^{-1}\right)$ onto $\mathcal{M}(R)$ we introduce a counit in the algebra $A=\mathcal{D}\left(R^{-1}\right)$ in the classical way:

$$
\varepsilon\left(1_{A}\right)=1_{C}, \quad \varepsilon\left(\partial_{i}^{j}\right)=0 \quad \forall i, j, \quad \varepsilon\left(a_{1} a_{2}\right)=\varepsilon\left(a_{1}\right) \varepsilon\left(a_{2}\right) \quad \forall a_{1}, a_{2} \in A
$$

With this counit the action of ∂_{i}^{j} on the generators m_{s}^{k} reads:

$$
D_{1} \triangleright M_{\overline{2}}=R_{12}^{-1}
$$

The permutation relations (2.2) together with the counit map allow one to extend this action on the whole algebra $\mathcal{M}(R)$. The elements ∂_{i}^{j} with the above action are treated as the quantum analogs of the usual partial derivatives in the commutative variables m_{i}^{j}. As was mentioned above, this action is compatible with the algebraic structure of $\mathcal{M}(R)$ (see (2.4)). However, below we do not use the operator treatment of the quantum partial derivatives ∂_{i}^{j}.

Remark 2. If R is a Hecke symmetry coming from $U_{q}\left(s l_{N}\right)$ (the so-called Drinfeld-Jimbo R-matrix) then at the classical limit $q \rightarrow 1$ the permutation relations (2.2) turns into the usual Leinbniz rule for the commutative partial derivatives $\partial_{i}^{j}=\partial / \partial m_{j}^{i}$.

With any Hecke symmetry R we associate the idempotents $A^{(k)}$ and $S^{(k)}$ called the R-skew-symmetrizers and R symmetrizers respectively. They are defined by the following recursion:

$$
\begin{array}{ll}
A^{(1)}=I, & A_{1 \ldots k}^{(k)}=\frac{1}{k_{q}} A_{1 \ldots k-1}^{(k-1)}\left(q^{(k-1)} I^{\otimes k}-(k-1)_{q} R_{k-1}\right) A_{1 \ldots k-1}^{(k-1)}, \quad k \geq 2 . \tag{2.5}\\
S^{(1)}=I, & S_{1 \ldots k}^{(k)}=\frac{1}{k_{q}} S_{1 \ldots k-1}^{(k-1)}\left(q^{-(k-1)} I^{\otimes k}+(k-1)_{q} R_{k-1}\right) S_{1 \ldots k-1}^{(k-1)}, \quad k \geq 2 .
\end{array}
$$

If R is a $G L_{N}$ type Hecke symmetry, then $\operatorname{dim} \operatorname{Im} A^{(N)}=1$ and $A^{(N+1)} \equiv 0$.
Now we are ready to formulate the main result of the paper. We establish a series of matrix factorization identities which leads to the quantum versions of the Capelli identity and some its generalizations called by A. Okounkov the "higher Capelli identities" in [6].

Theorem 3. Let $L=M D$, where M and D are the generating matrices of the algebras $\mathcal{M}(R)$ and $\mathcal{D}\left(R^{-1}\right)$ from the quantum double defined by (1.2), (2.1) and (2.2). Then the following matrix factoriazation identities take place for $\forall k \geq 1$:

$$
\begin{align*}
& A^{(k)} L_{\overline{1}}\left(L_{\overline{2}}+q I\right) \ldots\left(L_{\bar{k}}+q^{k-1}(k-1)_{q} I\right) A^{(k)}=q^{k(k-1)} A^{(k)} M_{\overline{1}} \ldots M_{\bar{k}} D_{\bar{k}} \ldots D_{\overline{1}} \tag{2.6}\\
& S^{(k)} L_{\overline{1}}\left(L_{\overline{2}}-\frac{1}{q} I\right) \ldots\left(L_{\bar{k}}-\frac{(k-1)_{q}}{q^{k-1}} I\right) S^{(k)}=q^{-k(k-1)} S^{(k)} M_{\overline{1}} \ldots M_{\bar{k}} D_{\bar{k}} \ldots D_{\overline{1}} . \tag{2.7}
\end{align*}
$$

Observe that Theorem 3 is valid for any skew-invertible Hecke symmetry R. In the case when R is a $G L_{N}$ type symmetry, the right hand side of (2.6) for $k=N$ can be presented as the product of quantum determinants of the matrices M and D (see the last section).

Definition 4. Let M be the generating matrix of an RE algebra $\mathcal{M}(R)$. The quantities ${ }^{3}$

$$
e_{k}(M)=\left\langle A^{(k)} M_{\overline{1}} M_{\overline{2}} \ldots M_{\bar{k}}\right\rangle_{1 \ldots k}
$$

are called the elementary $(q$-)symmetric polynomials in the matrix M.

By definition, the quantum determinants of the matrices M and D are proportional to the highest elementary symmetric polynomials e_{N} (similarly to the classical matrix analysis):

$$
\begin{equation*}
\operatorname{det}_{R} M:=q^{N^{2}}\left\langle A^{(N)} M_{\overline{1}} M_{\overline{2}} \ldots M_{\bar{N}}\right\rangle_{1 \ldots N}, \quad \operatorname{det}_{R^{-1}} D:=q^{N^{2}}\left\langle A^{(N)} D_{\bar{N}} \ldots D_{\overline{1}}\right\rangle_{1 \ldots N} . \tag{2.8}
\end{equation*}
$$

The normalizing factior $q^{N^{2}}$ is introduced to simplify the formulae below. Note that in the definition of $\operatorname{det}_{R^{-1}} D$ the inverse order of the matrix copies $D_{\bar{k}}$ is used. This is motivated by the relations (2.1) imposed on D.

So, as a corollary of Theorem 3, we have the following version of the generalized quantum Capelli identities.
Corollary 5. Under the assumption of Theorem 3 the following identities hold for $\forall k \geq 1$:

$$
\begin{align*}
& \left\langle A^{(k)} L_{\overline{1}}\left(L_{\overline{2}}+q I\right) \ldots\left(L_{\bar{k}}+q^{k-1}(k-1)_{q} I\right)\right\rangle_{1 \ldots k}=q^{k(k-1)}\left\langle A^{(k)} M_{\overline{1}} \ldots M_{\bar{k}} D_{\bar{k}} \ldots D_{\overline{1}}\right\rangle_{1 \ldots k} \tag{2.9}\\
& \left\langle S^{(k)} L_{\overline{1}}\left(L_{\overline{2}}-\frac{1}{q} I\right) \ldots\left(L_{\bar{k}}-\frac{(k-1)_{q}}{q^{k-1}} I\right)\right\rangle_{1 \ldots k}=q^{-k(k-1)}\left\langle S^{(k)} M_{\overline{1}} \ldots M_{\bar{k}} D_{\bar{k}} \ldots D_{\overline{1}}\right\rangle_{1 \ldots k} . \tag{2.10}
\end{align*}
$$

Formulae (2.9) and (2.10) are generalizations of the higher Capelli identities from [6], corresponding to one-column and one-row Young diagrams respectively.

Corollary 6. Under the assumption of Theorem 3 the following quantum Capelli identity holds true:

$$
\begin{equation*}
\left\langle A^{(N)} L_{\overline{1}}\left(L_{\overline{2}}+q I\right) \ldots\left(L_{\bar{N}}+q^{N-1}(N-1)_{q} I\right)\right\rangle_{1 \ldots N}=q^{-N} \operatorname{det}_{R} M \operatorname{det}_{R^{-1}} D . \tag{2.11}
\end{equation*}
$$

In the last section we consider the quantum determinants in more detail and complete the proof of this Capelli identity.

3. Proof of Theorem 3

We only prove the identity (2.6). The identity (2.7) can be proven in the same way.
Let us apply the induction in k. The base of induction for $k=1$ is tautological. We assume the identity (2.6) to be true up to $k-1$ for some integer $k \geq 2$. Consider the matrix:

$$
F(\alpha)=A^{(k)} L_{1}\left(L_{\overline{2}}+q I\right)\left(L_{\overline{3}}+q^{2} 2_{q} I\right) \ldots\left(L_{\overline{k-1}}+q^{k-2}(k-2)_{q} I\right)\left(L_{\bar{k}}+\alpha I\right) A^{(k)}
$$

where α is a numerical parameter.
Since $A^{(k-1)}$ is a polynomial in R_{i} for $i \leq k-2$, then $L_{\bar{k}} A^{(k-1)}=A^{(k-1)} L_{\bar{k}}$ as a consequence of the braid relation on R. Using this fact as well as the identity $A^{(k)}=A^{(k)} A^{(k-1)}=A^{(k-1)} A^{(k)}$, we can rewrite $F(\alpha)$ in the form:

$$
F(\alpha)=A^{(k)} \underline{A^{(k-1)} L_{1}\left(L_{\overline{2}}+q I\right) \ldots\left(L_{\overline{k-1}}+q^{k-2}(k-2)_{q} I\right) A^{(k-1)}\left(L_{\bar{k}}+\alpha I\right) A^{(k)} . . . ~}
$$

[^2]We transform the underlined expression in accordance with the induction hypothesis and get:

$$
\begin{equation*}
F(\alpha)=q^{(k-1)(k-2)} A^{(k)} M_{1} \ldots M_{\overline{k-1}} D_{\overline{k-1}} \ldots D_{1}\left(L_{\bar{k}}+\alpha I\right) A^{(k)} \tag{3.1}
\end{equation*}
$$

It remains to check that for $\alpha=q^{k-1}(k-1)_{q}$ the expression $F(\alpha)$ turns into the right hand side of (2.6). Expanding the brackets in (3.1) we obtain:

$$
q^{-(k-1)(k-2)} F(\alpha)=A^{(k)} M_{1} \ldots M_{\overline{k-1}} D_{\overline{k-1}} \ldots D_{1} L_{\bar{k}} A^{(k)}+\alpha A^{(k)} M_{1} \ldots M_{\overline{k-1}} D_{\overline{k-1}} \ldots D_{1} A^{(k)}
$$

Now, in the first summand we permute step by step all factors $D_{\bar{i}}$ with the element $L_{\bar{k}}$. Taking into account that $L_{\bar{k}}=$ $R_{k-1 \rightarrow 1} L_{1} R_{1 \rightarrow k-1}^{-1}$, where $R_{1 \rightarrow m}^{ \pm}:=R_{1}^{ \pm} \ldots R_{m}^{ \pm}$(and similarly for $R_{m \rightarrow 1}^{ \pm}$), we find at the first step:

$$
D_{1} L_{\bar{k}}=D_{1} R_{k-1 \rightarrow 1} M_{1} D_{1} R_{1 \rightarrow k-1}^{-1}=R_{k-1 \rightarrow 2} D_{1} R_{1} M_{1} D_{1} R_{1 \rightarrow k-1}^{-1}
$$

In the last expression we replace the product $D_{1} R_{1} M_{1}$ with the use of (2.2):

$$
R_{k-1 \rightarrow 2} \underline{D_{1} R_{1} M_{1}} D_{1} R_{1 \rightarrow k-1}^{-1}=R_{k-1 \rightarrow 1} M_{1} \underline{R_{1}^{-1} D_{1} R_{1}^{-1} D_{1} R_{1 \rightarrow k-1}^{-1}+D_{1} R_{k-1 \rightarrow 2} R_{1 \rightarrow k-1}^{-1},, ~}
$$

then we change $R_{1}^{-1} D_{1} R_{1}^{-1} D_{1}$ for $D_{1} R_{1}^{-1} D_{1} R_{1}^{-1}$ according to (2.1) and finally get:

$$
D_{1} L_{\bar{k}}=L_{\bar{k}} D_{1} R_{k-1 \rightarrow 2} R_{1}^{-2} R_{2 \rightarrow k-1}^{-1}+D_{1} R_{k-1 \rightarrow 2} R_{1}^{-1} R_{2 \rightarrow k-1}^{-1}
$$

So, the first summand in the above expression for $q^{-(k-1)(k-2)} F(\alpha)$ takes the form:

$$
\begin{aligned}
& A^{(k)} M_{1} \ldots M_{\overline{k-1}} D_{\overline{k-1}} \ldots D_{1} L_{\bar{k}} A^{(k)}= \\
& (-q)^{2} A^{(k)} M_{1} \ldots M_{\overline{k-1}} D_{\overline{k-1}} \ldots D_{2} L_{\bar{k}} D_{1} A^{(k)}+(-q) A^{(k)} M_{1} \ldots M_{\overline{k-1}} D_{\overline{k-1}} \ldots D_{1} A^{(k)} .
\end{aligned}
$$

To get this expression, we "evaluate" the chains of R-matrices on the rightmost R-skew-symmetrizer $A^{(k)}$ in accordance with the rules:

$$
\begin{equation*}
A^{(k)} R_{i}^{ \pm 1}=R_{i}^{ \pm 1} A^{(k)}=-q^{\mp 1} A^{(k)}, \quad 1 \leq \forall i \leq k-1 \tag{3.2}
\end{equation*}
$$

At the second step we permute $D_{\overline{2}}$ and $L_{\bar{k}}$. In the same way as above we find:

$$
D_{\overline{2}} L_{\bar{k}}=L_{\bar{k}} D_{\overline{2}} R_{k-1 \rightarrow 3} R_{2}^{-2} R_{3 \rightarrow k-1}^{-1}+D_{\overline{2}} R_{k-1 \rightarrow 3} R_{2}^{-1} R_{3 \rightarrow k-1}^{-1}
$$

Note that all R-matrices in this formula commute with D_{1} and therefore they can be moved to the right $A^{(k)}$ and converted to powers of q according to (3.2).

By induction in p one can prove the general formula:

$$
D_{\bar{p}} L_{\bar{k}}=L_{\bar{k}} D_{\bar{p}} R_{k-1 \rightarrow p+1} R_{p}^{-2} R_{p+1 \rightarrow k-1}^{-1}+D_{\bar{p}} R_{k-1 \rightarrow p+1} R_{p}^{-1} R_{p+1 \rightarrow k-1}^{-1} .
$$

Here also all terms $R_{i}^{ \pm 1} i \geq p$ commute with $D \overline{p-1} \ldots D_{1}$ and can be evaluated at the R-skew-symmetrizer $A^{(k)}$.
Finally, we get the following formula:

$$
\begin{aligned}
q^{-(k-1)(k-2)} F(\alpha) & =q^{2(k-1)} A^{(k)} M_{1} \ldots M_{\overline{k-1}} M_{\bar{k}} D_{\bar{k}} D_{\overline{k-1}} \ldots D_{1} A^{(k)} \\
& +\left(\alpha-q-q^{3}-\cdots-q^{2 k-3}\right) A^{(k)} M_{1} \ldots M_{\overline{k-1}} D_{\overline{k-1}} \ldots D_{\overline{1}} A^{(k)}
\end{aligned}
$$

where we substituted $L_{\bar{k}}=M_{\bar{k}} D_{\bar{k}}$.
At last, by setting $\alpha=q+q^{3}+\cdots+q^{2 k-3}=q^{k-1}(k-1)_{q}$ we kill the second term and get:

$$
\begin{equation*}
F\left(q^{k-1}(k-1)_{q}\right)=q^{k(k-1)} A^{(k)} M_{1} \ldots M_{\overline{k-1}} M_{\bar{k}} D_{\bar{k}} D_{\overline{k-1}} \ldots D_{1} A^{(k)} \tag{3.3}
\end{equation*}
$$

To complete the proof it remains to note that due to algebraic relations (2.3) the R-skew-symmetrizer $A^{(k)}$ commute with the chain of M-matrices

$$
A^{(k)} M_{1} M_{\overline{2}} \ldots M_{\bar{k}}=M_{1} M_{\overline{2}} \ldots M_{\bar{k}} A^{(k)}
$$

and the same is true for the corresponding chain of D matrices. Since $A^{(k)} A^{(k)}=A^{(k)}$, then in the right hand side of (3.3) one can leave only one element $A^{(k)}$:

$$
A^{(k)} M_{1} \ldots M_{\bar{k}} D_{\bar{k}} \ldots D_{1} A^{(k)} \equiv A^{(k)} M_{1} \ldots M_{\bar{k}} D_{\bar{k}} \ldots D_{1} \equiv M_{1} \ldots M_{\bar{k}} D_{\bar{k}} \ldots D_{1} A^{(k)}
$$

This completes the inductive proof of (2.6).

4. Some aspects of quantum determinants

It should be emphasized that the order m of the highest non-trivial skew-symmetrizer $A^{(m)}$ can be different from N, where $N^{2} \times N^{2}$ is the matrix size of R.

Definition 7. We say that a skew-invertible Hecke symmetry R is of rank m if the R-skew-symmetrizers (2.5) satisfy the condition:

$$
\operatorname{dim} \operatorname{Im} A^{(m)}(R)=1, \quad A^{(m+1)}(R) \equiv 0
$$

Note that Corollary 6 remains valid, if in (2.11) we replace N by m assuming the initial $G L_{N}$ type Hecke symmetry R to be of rank m.

Since $A^{(m)}$ is an idempotent and $\operatorname{dim} \operatorname{Im} A^{(m)}=1$, there exist two tensors $|u\rangle=\left\|u_{i_{1} i_{2} \ldots i_{m}}\right\|$ and $\langle v|=\left\|v^{i_{1} i_{2} \ldots i_{m}}\right\|$ such that

$$
A^{(m)}{ }_{i_{1} \ldots i_{m}}^{j_{1} \ldots j_{m}}=u_{i_{1} \ldots i_{m}} v^{j_{1} \ldots j_{m}} \quad \text { and } \quad \sum_{i} v^{i_{1} \ldots i_{m}} u_{i_{1} \ldots i_{m}}=1
$$

Using the above "bra" and "ket" notations, we can present these formulae as follows:

$$
\begin{equation*}
A^{(m)}=|u\rangle\langle v| \quad \text { and } \quad\langle v \mid u\rangle=1 \tag{4.1}
\end{equation*}
$$

The quantum determinant is defined as in (2.8) but with N replaced by m :

$$
\operatorname{det}_{R} M=q^{m^{2}}\left\langle A^{(m)} M_{1} M_{\overline{2}} \ldots M_{\bar{m}}\right\rangle_{1 \ldots m}
$$

With the use of (4.1) we can prove the following matrix identity:

$$
\begin{align*}
A^{(m)} M_{1} \ldots M_{\bar{m}}=A^{(m)} M_{1} \ldots & M_{\bar{m}} A^{(m)} \\
& =|u\rangle\langle v| M_{1} \ldots M_{\bar{m}}|u\rangle\langle v|=A^{(m)}\langle v| M_{1} \ldots M_{\bar{m}}|u\rangle . \tag{4.2}
\end{align*}
$$

Upon calculating the R-trace over all spaces and taking into account that $\left\langle A^{(m)}\right\rangle_{1 \ldots m}=q^{-m^{2}}$ (see [2]), we find that the quantum determinant is actually given by the usual trace of the form:

$$
\operatorname{det}_{R} M=\langle v| M_{1} M_{\overline{2}} \ldots M_{\bar{m}}|u\rangle:=\operatorname{Tr}_{(1 \ldots m)}\left(A^{(m)} M_{1} M_{\overline{2}} \ldots M_{\bar{m}}\right)
$$

As for the quantum determinant of the matrix D we have:

$$
\left.\operatorname{det}_{R^{-1}} D:=q^{m^{2}}\left\langle A^{(m)} D_{\bar{m}} \ldots D_{\overline{2}} D_{1}\right\rangle_{1 \ldots m}=\langle v| D_{\bar{m}} \ldots D_{\overline{2}} D_{1}\right)|u\rangle
$$

Note that this quantum determinant is defined with the same tensors $|u\rangle$ and $\langle v|$ though the matrix D is subject to the RE with R replaced by R^{-1}. It can be explained by the fact that all skew-symmetrizers are invariant with respect to the replacement $R \rightarrow R^{-1}$ and $q \rightarrow q^{-1}$.

Consider now the identity (2.6) for the Hecke symmetry of rank m. With the use of (4.2) the matrix structure of the right hand side of (2.6) for $k=m$ can be transformed as follows:

$$
q^{m(m-1)} A^{(m)} M_{1} \ldots M_{\bar{m}} D_{\bar{m}} \ldots D_{1}=q^{m(m-1)} A^{(m)} \operatorname{det}_{R} M \operatorname{det}_{R^{-1}} D
$$

Finally, by calculating the R-trace over all spaces of the both sides of (2.6), we come to the desired form (2.11) of the right hand side of the quantum Capelli identity:

$$
\left\langle A^{(m)} L_{\overline{1}}\left(L_{\overline{2}}+q I\right) \ldots\left(L_{\bar{m}}+q^{m-1}(m-1)_{q} I\right)\right\rangle_{1 \ldots m}=q^{-m} \operatorname{det}_{R} M \operatorname{det}_{R^{-1}} D .
$$

This completes the proof of Corollary 6.
As follows from the results of [4], if a given Hecke symmetry R is a deformation of the usual flip P, each of the determinants entering the right hand side of the (2.11) can be written as column-determinant or row-determinant. We do not know whether it is possible to do the same with the left hand side of (2.11). Also observe, that if an involutive symmetry R (i.e. such that $R^{2}=I$) is a limit of a Hecke symmetry $R(q)$ as $q \rightarrow 1$, the corresponding Capelli identity can be obtained from (2.11) by setting $q=1$. Thus, it looks like the Capelli identity from [6], but the skew-symmetrizers and quantum determinants should be adapted to $R=R(1)$.

At conclusion, we want to shortly compare our result for quantum Capelli identity with that of the paper [5]. The authors of that paper deal with another quantum version of the Capelli identity, related to the QG $U_{q}\left(s l_{N}\right)$ and the corresponding RTT algebra. As for our results, we are working with quite different quantum algebra - the RE algebra and different quantum derivatives. Besides, we do not restrict ourselves with the $U_{q}\left(s l_{N}\right) R$-matrix, our results are valid for the wide class of RE algebras defined via arbitrary skew-invertible Hecke symmetries.

References

[1] D. Gurevich, P. Pyatov, P. Saponov, Braided Weyl algebras and differential calculus on $U(u(2))$, J. Geom. Phys. 62 (2012) 1175-1188.
[2] D. Gurevich, P. Saponov, From reflection equation algebra to braided yangians, in: Proceedings of the 1st International Conference on Mathematical Physics, Grozny, Russia, 2016, in: Springer Proceedings in Math. and Statistics, vol. 273, 2018.
[3] D. Gurevich, P. Saponov, Doubles of associative algebras and their applications, Phys. Part. Nucl. Lett. 17 (5) (2020) 774-778.
[4] D. Gurevich, P. Saponov, Determinants in quantum matrix algebras and integrable systems, Theor. Math. Phys. 207 (2021) $261-276$.
[5] M. Noumi, T. Umeda, M. Wakayama, A quantum analogue of the Capelli identity and elementary differential calculus on GLq(n), Duke Math. J. 76 (1994) 567-594.
[6] A. Okounkov, Quantum immanants and higher Capelli identities, Transform. Groups 1 (1996) 99-126.

[^0]: * Corresponding author.

 E-mail addresses: dimitri.gurevich@gmail.com (D. Gurevich), Pavel.Saponov@ihep.ru (P. Saponov).
 ${ }^{1}$ Note that $\partial_{i}^{j} m_{k}^{s}=\delta_{i}^{s} \delta_{k}^{j}$. Usually, in the Capelli identity one employs the matrix, transposed to our D.

[^1]: ${ }^{2}$ The matrix R^{-1} is also a Hecke symmetry but with q replaced by q^{-1}.

[^2]: ${ }^{3}$ Hereafter, we use the notation $\langle X\rangle_{1 \ldots k}:=\operatorname{Tr}_{R(1 \ldots k)} X:=\operatorname{Tr}_{R(1)} \ldots \operatorname{Tr}_{R(k)} X$, where X is an $N^{k} \times N^{k}$ matrix.

