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We introduce analogs of creation and annihilation operators, related to involutive and 
Hecke symmetries R , and perform bosonic and fermionic realization of the modified 
Reflection Equation algebras in terms of the so-called Quantum Doubles of Fock type. 
Also, we introduce Quantum Doubles of Fock type, associated with Birman-Murakami-
Wenzl symmetries coming from orthogonal or simplectic Quantum Groups and exhibit the 
algebras obtained by means of the corresponding bosonization (fermionization). Besides, 
we apply this scheme to current braidings arising from Hecke symmetries R via the 
Baxterization procedure.
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1. Introduction

By an associative double we mean a couple (A, B) of associative algebras A and B endowed with the so-called permuta-
tion map

σ : A ⊗ B → B ⊗ A, (1.1)

which satisfies certain requirements (see Section 3).
By a quantum double (QD) we mean an associative double where the map σ is defined by means of a braiding — 

constant or current (i.e. depending on spectral parameters), different from a (super-)flip. A typical example is the so-called 
Heisenberg double constructed of an RTT algebra and a reflection equation (RE) one, associated with the same braiding R . 
A number of other examples of QD can be found in [7].

By a bosonic QD of Fock type we mean a double composed of the algebras SymR(V ) and SymR(V ∗), where R : V ⊗2 →
V ⊗2 is a braiding, while SymR(V ) and SymR(V ∗) are R-analogs of the symmetric algebras of a vector space V and of its 
dual V ∗ . Let us precise that by a braiding R : V ⊗2 → V ⊗2 we mean a solution of the braid relation
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R12 R23 R12 = R23 R12 R23,

where R12 = (R ⊗ I), R23 = (I ⊗ R) and I stands for the identity operator.
A fermionic version of a QD of Fock type can be defined in a similar way by using R-analogs �R (V ) and �R(V ∗) of the 

skew-symmetric algebras �(V ) and �(V ∗).
In the classical case, i.e. when R is the usual flip P , the algebra Sym(V ) often plays the role of a Fock space. Consequently, 

its generators give rise to creation operators, whereas generators of the algebra Sym(V ∗) give rise to annihilation ones. The 
permutation relations between the generators of these two algebras allow one to define an action of the annihilation 
operators on the algebra Sym(V ) as partial derivatives. These two algebras form a classical version of a Fock double. By 
combining the annihilation and creation operators in a proper way we can perform a bosonic realization (or simply, a 
bosonization) of the Lie algebra gl(N) and consequently its enveloping algebra U (gl(N)).

In the present paper we construct R-analogs of these well-known objects, provided braidings R come from the quantum 
groups (QG) Uq(g), corresponding to the classical simple Lie algebras g. More precisely, the role of such a braiding R is 
played by the composition of the image of the universal R-matrix in V ⊗2 and the usual flip (here V is the first fundamental 
space, called basic).

If g ∈ An , then R is a Hecke symmetry. Recall that by a Hecke symmetry we mean a braiding R satisfying an additional 
relation

(R − q I)(R + q−1 I) = 0, q �= ±1.

If g belongs to other series of classical Lie algebras, then R is a Birman-Murakami-Wenzl symmetry (see Section 4). For all 
corresponding QG Uq(g) the R-symmetric algebra SymR(V ) and R-skew-symmetric algebras �R (V ) of the space V are well 
defined. Similar algebras for the dual space V ∗ are also well defined. Hopefully, all these algebras are deformations of their 
classical counterparts (see Remark 6). The first aim of the present paper is to construct the QD from the above algebras.

The second aim consists in studying the following problem: which algebras can be constructed by means of the bosoniza-
tion (or the fermionization) procedure in a way similar to the classical one. It should be emphasized that the final algebras 
are not the corresponding Quantum Groups themselves but they are covariant with respect to their actions.1 Moreover, the 
final algebras differ drastically from each other for different classical series. If R comes from the QG Uq(sl(N)) (in what fol-
lows we call it the standard symmetry), we get the so-called modified reflection equation algebra L(R), which is generated 
by the unit2 and elements l j

i , subject to the following system of relations:

R12L1 R12L1 − L1 R12L1 R12 = R12L1 − L1 R12, L = ‖l j
i ‖1≤i, j≤N , L1 = L ⊗ I. (1.2)

This algebra is a deformation of the universal enveloping algebra U (gl(N)). Observe that the algebra L(R) itself can be 
treated as an enveloping algebra of a generalized (or braided) Lie algebra defined in the space End(V ) of internal endomor-
phisms. Moreover, a similar algebra L(R) can be associated with any Hecke symmetry R (or with an involutive symmetry, 
i.e. such that R2 = I), provided R is skew-invertible (see the next section for definition). A big family of such involutive 
and Hecke symmetries has been constructed in [1]. For each of these symmetries the corresponding algebra L(R) can be 
constructed by means of the bosonization or the fermionization procedures and can be given a meaning of the enveloping 
algebra of a generalized Lie algebra. Moreover, L(R) can be endowed with the trace T rR , which is coordinated with the 
mentioned generalized Lie algebra structure.

Especially we are interested in the following question: to what extent the above construction, associated with Hecke 
symmetries R , can be generalized to the case, when R is a BMW symmetry coming from the orthogonal or simplectic QG. 
In this case we construct some QD associated with such symmetries and introduce algebras arising from the bosonization or 
fermionization procedure. It turns out that the final algebras differ from L(R) and do not have any meaning of enveloping
algebras. This result shows that the BMW symmetries are not well adapted to constructing Lie-algebraic objects. By con-
trast, they fit well for introducing group-like objects. We refer the reader to the end of Section 4, where we discuss this 
phenomenon.

Besides, we apply a similar scheme to the case when R is a current braiding constructed by means of the so-called 
Baxterization procedure from an involutive or Hecke symmetry. We construct the QD of Fock type in the spirit of the 
Zamolodchikov-Faddeev algebras and exhibit the algebra arising from the corresponding bosonic realization. It turns out 
that this algebra is inhomogeneous counterpart of the braided Yangians, introduced in [2].

The paper is organized as follows. In section 2 we recall some basic notions and constructions, related to braidings. 
In section 3 we introduce the corresponding QD of Fock type and perform the bosonic and fermionic realizations of the 
algebras L(R). In section 4 we consider the algebras, associated with BMW symmetries coming from the QG of the Bn , Cn
and Dn series. In section 5 we exhibit QD of Zamolodchikov–Faddeev type as well as the corresponding algebras obtained 
by the bosonization procedure.

Acknowledgments. The work of P.S. was partially supported by RFBR grant no. 19-01-00726.

1 In this connection we want to remark that there are numerous papers (we only mention the pioneering paper [12]), where the QG are realized via the 
q-counterparts of harmonic oscillators.

2 All algebras below are assumed to be unital.
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2. Hecke symmetries and corresponding algebras

Let R : V ⊗2 → V ⊗2 be a braiding. By a successive application of R it is possible to transpose arbitrary tensor powers 
V ⊗k and V ⊗l , that is to define a linear map

V ⊗k ⊗ V ⊗l → V ⊗l ⊗ V ⊗k, k, l ∈N.

However, we also need a transposition rule of the space V and its dual V ∗ . For this purpose we should extend the action of 
the operator R on spaces V ⊗ V ∗ and V ∗ ⊗ V . A method of defining such an extension belongs to V. Lyubashenko [10,11].

We fix a basis {xi}1≤i≤N of the space V and represent the operator R in the corresponding basis of the space V ⊗2 by an 
N2 × N2 matrix ‖Rkl

i j‖:

R(xi ⊗ x j) = Rkl
i j xk ⊗ xl.

A summation over the repeated indices is always understood.
Let us fix a nondegenerate bilinear form <, >r : V ⊗ V ∗ →C and choose a right dual basis3 {xi}1≤i≤N of V ∗ with respect 

to this form: < xi, x j >r= δ
j
i . The pairing of the spaces V ⊗2 and (V ∗)⊗2 is defined by

< xi ⊗ x j, xk ⊗ xl >r=< xi, xl >r< x j, xk >r .

The operator R on the space (V ∗)⊗2 is defined as an operator adjoint to R , and its action on the right dual basis vectors 
is given by the rule:

R(xi ⊗ x j) = R ji
lk xk ⊗ xl.

We keep the notation R for this adjoint operator.
A braiding R is called skew-invertible if there exists an operator � : V ⊗2 → V ⊗2 such that

Tr2 R12�23 = P13 ⇔ Rkl
i j �

jn
lm = δk

m δn
i .

As usual, the bottom indexes in the notation like �23 indicate the position of components of a tensor product where the 
operator acts. The aforementioned extension of the braiding R on the spaces V ⊗ V ∗ and V ∗ ⊗ V reads (see [6] for detail):

R(xi ⊗ x j) = xk ⊗ xl(R−1)
l j
ki, R(xi ⊗ x j) = xl ⊗ xk �li

kj .

If R is skew-invertible we can define the following operators (matrices)

B = Tr1�12 ⇔ B j
i = �

kj
ki , C = Tr2�12 ⇔ C j

i = �
jk
ik . (2.1)

If the matrices B and C are nonsingular, the symmetry R is called strictly skew-invertible.
Introduce now the second bilinear form <, >l: V ∗ ⊗ V →C as the composition of the linear maps:

<, >l =<, >r ◦R.

Then we can introduce a left dual basis {x̃i}1≤i≤N of V ∗ by the requirement

< x̃i, x j >l= δi
j, 1 ≤ ∀ i, j ≤ N.

If R is strictly skew-invertible, then it is not difficult to establish the following relations

< x j, xi >l = B j
i , < xi, x̃ j >r = (B−1)

j
i . (2.2)

Note that in the standard case the pairings <, >r and <, >l are Uq(sl(N))-covariant.
Now, consider the space of the internal endomorphisms

End(V ) ∼= V ⊗ V ∗ (2.3)

equipped with the basis l j
i = xi x j . Hereafter, we omit the sign ⊗, if it does not lead to misunderstanding.

By using the identification (2.3), we get the following multiplication table in this basis

l j
i ◦ lmk = B j

k lmi .

3 The term “right” reflects the position of the argument x j in the bilinear form <, >r .
3
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By contrast with the matrix B , determining the product ◦, the matrix C enters the definition of the so-called R-trace. 
Namely, for any N × N matrix M (even with noncommutative entries) its R-trace is defined by the following formula 
TrR M = Tr C M .

Now, consider the following map

R : End(V )⊗2 → End(V )⊗2, R12L1 R12L1
R
→ L1 R12L1 R12, (2.4)

where L = ‖l j
i ‖1≤i, j≤N and L1 = L ⊗ I . A more explicit expression of this map can be found in [6].

Using the map R, we can define an analog of the Lie bracket in the space End(V ) by putting

[X, Y ]R = X ◦ Y − ◦R(X ⊗ Y ), X, Y ∈ End(V ). (2.5)

The data (End(V ), R, [ , ]R) is called a generalized (or braided) Lie algebra and is denoted gl(V R).
Observe that for this gl(V R)-bracket the following analog of the Jacobi identity is valid on End(V )⊗3 (here we omit the 

subscript R)

[ , ] [ , ]23(I −R)23 = [ , ] [ , ]12.

A proof of this relation is given in [6].
Note that if R is an involutive symmetry, the corresponding Jacobi identity can be cast in the form similar to the classical 

one:

[ , ][ , ]23(I +R12 R23 +R23 R12) = 0.

Let us explain the reason why the algebra L(R) plays the role of the enveloping algebra of the braided Lie algebra 
gl(V R). Indeed, the defining system of the algebra L(R) can be cast under the following form

l j
i llk −R(l j

i llk) = [l j
i , llk]R , (2.6)

where R is the operator introduced in (2.4). Thus, by applying the product ◦ to the left hand side of the relation (2.6), 
where we treat the generators l j

i as elements of End(V ), we get the element [l j
i , l

l
k]R .

Now, we want to show that the R-trace TrR is coordinated with the bracket [ , ]R in the following sense

TrR [X, Y ]R = 0, ∀ X, Y ∈ End(V ),

which is similar to the classical relation for the trace of the commutator of two operators. To this end we first compute 
TrR l j

i . Since l j
i � xk = B j

k xi , then applying the R-trace to the image of the element l j
i we get TrR l j

i = Tr Bk
i C j

k = α δ
j
i , where α

is a nontrivial numerical factor, whose value is determined by the bi-rank of R (see [6] for detail). Thus, taking X = l j
i and 

Y = lmk , we have to show TrR [l j
i , l

m
k ]R = 0. This equality is a consequence of the following chain of relations:

TrR ◦ (R12L1 R12L1 − L1 R12L1 R12) = TrR(R12L1 − L1 R12) = α(R12 I − I R12) = 0.

With any Hecke symmetry R we associate the R-symmetric SymR(V ) and R-skew-symmetric �R(V ) algebras of the 
spaces V and V ∗ by setting

SymR(V ) = T (V )/〈Im(q I − R)〉 = T (V )/〈q xi x j − Rk l
i j xk xl〉, (2.7)

�R(V ) = T (V )/〈Im(q−1 I + R)〉 = T (V )/〈q−1xi x j + Rk l
i j xk xl〉,

SymR(V ∗) = T (V ∗)/〈Im(q I − R)〉 = T (V ∗)/〈q x j xi − Ri j
k l xl xk〉, (2.8)

�R(V ∗) = T (V ∗)/〈Im(q−1 I + R)〉 = T (V ∗)/〈q−1 x j xi + Ri j
k l xl xk〉,

where

T (V ) =
⊕

k

V ⊗k, T (V ∗) =
⊕

k

V ∗⊗k

are the free tensor algebras and 〈 J 〉 stands for a two-sided ideal generated by a subset J in the given algebra. If R is an 
involutive symmetry, we put q = 1 in all these formulae.

It should be emphasized that all these algebras are deformations of their classical counterparts, provided R is a defor-
mation of the usual flip P , i.e. dimensions of their homogenous components are classical (for a generic q if R is Hecke). 
A similar statement is valid, if a Hecke symmetry is a deformation of another involutive symmetry, for instance, a super-
symmetry.

To complete this section, we also mention two quantum matrix algebras, associated with any braiding R . One of them is 
the so-called RTT algebra, defined by the system
4
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R12T1 T2 = T1 T2 R12, T = ‖t j
i ‖1≤i, j≤N , T1 = T ⊗ I, T2 = I ⊗ T . (2.9)

The other one is the RE algebra defined via (1.2) but with the vanishing right hand side. We do not use the former algebra. 
The latter one appears only under its modified form. However, it is worth noting that if R is a Hecke symmetry, the RE 
algebra and its modified version are isomorphic to each other.

3. Quantum doubles and bosonic (fermionic) realization of L(R)

Our next aim is to construct some quantum doubles (QD) from the above R-symmetric and R-skew-symmetric algebras 
and use them in order to perform bosonic and fermionic realizations of the algebra L(R).

First, we recall the definition of doubles of associative algebras from [3]. Consider two associative unital algebras A and 
B equipped with a linear map

σ : A ⊗ B → B ⊗ A,

which satisfies the following conditions:

σ ◦ (μA ⊗ id) = (id ⊗ μA) ◦ σ12σ23 on A ⊗ A ⊗ B,

σ ◦ (id ⊗ μB) = (μB⊗id) ◦ σ23σ12 on A ⊗ B ⊗ B,

σ (1A ⊗ b) = b ⊗ 1A, σ (a ⊗ 1B) = 1B ⊗ a, ∀a ∈ A, ∀b ∈ B,

where μA : A ⊗ A → A is the multiplication operation in the algebra A, 1A is the unit element of A and the symbols μB
and 1B have the same meaning in the algebra B . The symbol “id” stands for the identity operator.

It is not difficult to see that the bilinear map ∗ : (B ⊗ A)⊗2 → B ⊗ A defined by the rule

(b ⊗ a) ∗ (b′ ⊗ a′) := (μB ⊗ μA) ◦ (idB ⊗ σ23 ⊗ idA)(b ⊗ a ⊗ b′ ⊗ a′)
endows the space B ⊗ A with the structure of a unital associative algebra and its unit element is 1B ⊗ 1A .

Definition 1. We call the data (A, B, σ) and the corresponding algebra (B ⊗ A, ∗) a double of associative algebras and denote 
it (A, B).

An associative double (A, B) is called quantum if the map σ is constructed with the use of a braiding, different from a 
(super-)flip.

Observe that if the both algebras A and B are introduced via some systems of relations on the generators, the above 
conditions on the data (A, B, σ) mean that the permutation map preserves these relations. In this sense we say that the 
permutation map and the defining relations of the algebras A and B are compatible.

Now, assume the algebra A to be equipped with a counit (an algebra homomorphism)4 εA : A → C. Then it is possible 
to define a linear action of the algebra A on B by setting

a � b = (idB ⊗ εA) ◦ σ(a ⊗ b), ∀a ∈ A, ∀b ∈ B.

Identifying b ⊗ 1C and b, we get that a � b ∈ B . Thus, each element a ∈ A defines a linear operator

Op(a) : B → B.

It is easy to check that the map a 
→ Op(a) defines a representation of the algebra A in the algebra B:

Op(ab) = Op(a)Op(b), Op(1A) = idB .

Besides, the aforementioned Heisenberg double, we can also mention QD composed from two copies of the RTT algebras. 
The permutation relations between them are also similar to the system (2.9). A counit ε defined on one component of 
such a double is usually defined by ε(t j

i ) = δ
j
i . Note that the corresponding representation of the component A, defined 

according to the above scheme, is a deformation of the trivial one π(T ) = I and consequently is not interesting indeed. The 
QD of Fock type, which we are dealing with, are more meaningful. We introduce these doubles, assuming R to be a Hecke 
symmetry.

Let R : V ⊗2 → V ⊗2 be a skew-invertible Hecke symmetry, A = SymR(V ∗) and B = SymR(V ). Construct a quantum double 
(A, B) by introducing the following permutation relations5:

xa Rb j
a i xb = q−1 xi x j + δ

j
i ⇔ xl xk = q−1 xi x j � i l

j k + Bl
k. (3.1)

4 In general we do not consider any coalgebraic structure in the algebra A. So, the counit is only coordinated with the algebraic structure.
5 By permutation relations we mean the equality of the form a ⊗ b = σ(a ⊗ b).
5
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Remark 2. Recall, that we use the right dual basis in the space V ∗ . For the left dual basis {x̃ j}1≤ j≤N , the permutation 
relations read

xb R j b
i a x̃a = q−1 x̃ j xi + δ

j
i ⇔ xk x̃l = q−1 x̃ j xi �

l i
k j + Cl

k.

Proposition 3. The defining systems of the algebras SymR(V ) and SymR(V ∗) are compatible with the permutation relations (3.1).

Proof. Below, we use the Dirac’s “bra” and “ket” notation:

xi → x|1〉, xi x j → x|1〉x|2〉, xi → x〈1|, xi x j → x〈1|x〈2|, . . .

We call this form of notation the matrix one. Some typical examples are

x〈1|x|1〉 =
N∑

i=1

xi xi, x|1〉x〈1| = xi x
j, x〈2|R 〈12|

|12〉 x|2〉 =
N∑

a,b=1

xa R j b
i a xb.

In what follows the notation R 〈12|
|12〉 will be simplified to R12.

Thus, the defining relations of the algebras (2.7), (2.8) and the permutation relations (3.1) can be respectively rewritten 
as:

R k l
i j xk xl = q xi x j → R12x|1〉x|2〉 = q x|1〉x|2〉

xl xk R i j
k l = q x j xi → x〈2|x〈1|R12 = q x〈2|x〈1|

xa R b j
a i xb = q−1 xi x j + δ

j
i → x〈1|R12x|1〉 = q−1 x|2〉x〈2| + I 〈2|

|2〉

or x|2〉x〈2| = q x〈1|R12x|1〉 − q I 〈2|
|2〉 .

Let us verify, for example, that the defining relations of the algebra SymR(V ) (2.7) are not destroyed by the permutation 
with vectors from V ∗ . For this purpose we permute an arbitrary basis vector xi with elements of the generating set of the 
ideal in (2.7):

(R23 − qI23)x|2〉x|3〉x〈3| = (R23 − qI23)x|2〉
(

q x〈2|R23x|2〉 − q I 〈3|
|3〉

)

= −q(R23 − qI23)x|2〉 + q(R23 − qI23)
(

qx〈1|R12x|1〉 − qI〈2|
|2〉

)
R23x|2〉

= q2x〈1|(R23 − qI23)R12 R23x|1〉x|2〉 = q2x〈1|R12 R23(R12 − qI12)x|1〉x|2〉.
Here, by passing to the third line we have taken into account the consequence of the Hecke condition (R23 − qI23)R23 =
−q−1(R23 − qI23), while the last equality is due to the braid relation for R .

So, we finally get the equality:

(R23 − qI23)x|2〉x|3〉 x〈3| = q2x〈1|R12 R23 (R12 − qI12)x|1〉x|2〉,
which means the compatibility of the defining relations of the algebra SymR(V ) with the permutation relations (3.1).

The compatibility condition for the defining relations of SymR(V ∗) and the permutation relations can be verified in the 
same way. �

Now, we introduce the counit similarly to the classical case:

εA : A = SymR(V ∗) → C, εA(1A) = 1C, εA(x j) = 0, 1 ≤ ∀ j ≤ N.

According to the above scheme all elements of the algebra A = SymR(V ∗) can be represented by operators acting on the 
algebra B = SymR(V ). Compute the action of elements x j onto some monomials in xi :

x j � 1B = 0, x j � xi = B j
i , x j � (xi xk) = B j

i xk + q−1 Bl
k�

mj
li xm, etc. (3.2)

Note that using the properties of � and R we can rewrite the above actions in the equivalent matrix form:

x〈1| �
(

R12x|1〉
)

= I 〈2|
|2〉 , x〈1| �

(
R12 R23x|1〉x|2〉

)
= (R23 + q−1 I23)x|2〉.

As we noticed above, the generators of the algebra A = SymR(V ∗) are analogs of the usual annihilation operators, whereas 
the generators of B = SymR(V ) are analogs of the creation operators: the result of the action of xi on a ∈ SymR(V ) is the 
product xia. The above double (A, B) is said to be quantum bosonic double of Fock type.
6
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In a similar manner it is possible to construct a quantum fermionic double of Fock type by setting A = �R(V ∗), B = �R(V )

and

xa R b j
a i xb = −q xi x j + δ

j
i ⇔ xl xk = −q xi x j � i l

j k + Bl
k. (3.3)

In this case all defining relations are also compatible.
Now, compose the matrix L = ‖l j

i ‖, l j
i = xi x j , where xi ∈ B , x j ∈ A and (A, B) is a bosonic or fermionic double of Fock 

type. Then the following proposition is valid.

Proposition 4. The matrix L meets the relations (1.2).

Proof. In the bosonic case this proposition was proved in [2]. In the fermionic case the proof is similar. �
Thus, representing the factors of the product xi x j as the creation and annihilation operators acting on the algebra B , we 

get the so-called bosonic (or fermionic) realization of the algebra L(R) similar to that of the algebra6 U (gl(N)).
Moreover, similarly to the classical case the generators l j

i preserve any homogenous component Symk
R(V ), k ≥ 1. Thus, 

we get a series of finite-dimensional representations of the algebra L(R). For instance, the action of the elements l j
i = xi x j

onto the first component Sym1
R(V ) = V is as follows

l j
i � xk = xi � (x j � xk) = B j

k xi . (3.4)

Remark 5. Note that on the role of the algebra B we can assign the free tensor algebra T (V ) instead of SymR(V ) and 
keep the same permutation relations. By considering all invariant subspaces with respect to the action �, it is possible 
to construct a more rich representation category of the algebra L(R). Such a category was constructed [6] by means of 
a “braided bi-algebra structure” of L(R). Our present method based on bosonization is a sense close to the method of 
constructing differential calculus on the quantum hyperplane from [16,8].

4. Quantum doubles associated with BMW symmetries

Let us recall that by a BMW symmetry we mean a braiding R which comes from a QG belonging to one of the orthogonal 
(Bn, Dn) or simplectic (Cn) series. An explicit form of these symmetries is exhibited in [15]. Each of them is subject to some 
relations. We need only one of them:

(R − qI)(R + q−1 I)(R − μI) = 0. (4.1)

Note that if R comes from the QG corresponding to an orthogonal group then μ = q1−N and if R comes from the QG 
corresponding to a simplectic group, then μ = −q−1−N . Here N is the dimension of the basic vector space. Below, for the 
sake of simplicity we speak about orthogonal and simplectic QG.

Also, there are known examples of the BMW symmetries coming from super-QG with other values of μ (see [9]). Below, 
we only deal with the BMW symmetries, coming from orthogonal or simplectic QG. Consequently, the parameter μ is 
assumed to take one of the above values. Thus, as q → 1, this parameter tends to 1 for the orthogonal QG and to -1 for the 
simplectic ones.

In [13] there were considered the so-called BMW algebras, which are defined by similar relations but with the parameter 
μ independent on q.

In virtue of (4.1) there exist three complementary idempotents Pq , P−q−1
and Pμ such that

R = qPq − q−1P−q−1 + μPμ.

Each of them is a projector onto the corresponding eigenspace and can be explicitly written in terms of R . For instance, the 
projector

P−q−1 = (R − qI)(R − μI)

(q + q−1)(q−1 + μ)
(4.2)

maps the space V ⊗2 onto the eigenspace of the operator R corresponding to the eigenvalue −q−1. Note that for a generic 
q the denominator of this formula does not vanish.

6 Note that if R → P as q → 1 (for instance, if R is a standard symmetry) the system (1.2) turns into the matrix equality

P L1 P L1 − L1 P L1 P = P L1 − L1 P ⇔ l j
i lmk − lmk l j

i = lmi δ
j

k − l j
k δm

i ,

valid for the usual generators of the algebra U (gl(N)).
7
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Now, let us define the R-symmetric and R-skew-symmetric algebras of the space V by setting

SymR(V ) = T (V )/〈ImP−q−1〉, �R(V ) = T (V )/〈KerP−q−1〉, (4.3)

provided R comes from an orthogonal QG and

SymR(V ) = T (V )/〈KerPq〉, �R(V ) = T (V )/〈ImPq〉,
provided R comes from a simplectic QG.

Remark 6. Note that according to [15] R-symmetric algebras have the classical Poincaré series, i.e. these series are equal to 
the series corresponding to the algebras Sym(V ). However, any prof of this claim has never been published. We do not use 
this property. We want only to observe that the space KerPμ belongs to the second homogenous R-symmetric component 
of the space V ⊗2 if the QG is orthogonal and to R-skew-symmetric component if QG is simplectic.

In a similar manner we define the R-symmetric and R-skew-symmetric algebras of the space V ∗ . For instance, we put 
(in the orthogonal case)

SymR(V ∗) = T (V ∗)/〈ImP−q−1〉, (4.4)

where the idempotents Pq , P−q−1
and Pμ acting in the space (V ∗)⊗2 are expressed in terms of R by the same formulae 

as above. We only have to take into account the way of extending the braiding R onto the space V ∗⊗2, namely, R(xk ⊗ xl) =
Rlk

ji(xi ⊗ x j).
Let us define the permutation relations by formula (3.1) for an orthogonal QG and by (3.3) for a simplectic QG. Then the 

following claim is valid.

Proposition 7. The permutation relations are compatible with the defining systems of the algebras SymR(V ) and SymR(V ∗) for the 
orthogonal series and with these of the algebras �R(V ) and �R(V ∗) for the simplectic series.

Proof. The proposition is proved by a straightforward calculation similar to the case of the Hecke symmetries (see Proposi-
tion 3 above). Nevertheless, we give a short sketch of the proof in order to stress the difference with the Hecke case.

Consider the algebra SymR(V ) for the orthogonal QG defined by the quotient (4.3). Taking into account the permutation 
relations (3.1) we get the following transformation:

x|2〉x|3〉x〈3| = q2x〈1|R12 R23x|1〉x|2〉 − q2(R23 + q−1 I23) x|2〉.

Then for the generating set of the ideal 〈 ImP−q−1 〉 we have:

P−q−1
(R23)x|2〉x|3〉x〈3| = q2x〈1|R12 R23P−q−1

(R12)x|1〉x|2〉 − q2P−q−1
(R23)(R23 + q−1 I23) x|2〉.

The first therm in the right hand side is a consequence of the braid relation on R:

P−q−1
(R23)R12 R23 = R12 R23P−q−1

(R12),

while the second term is equal to zero due to the definition (4.2) of the projector P−q−1
and the cubic minimal polynomial 

(4.1) of the symmetry R . So, we finally get

P−q−1
(R23)x|2〉x|3〉x〈3| = q2x〈1|R12 R23 P−q−1

(R12)x|1〉x|2〉,

which means the compatibility of the permutation relations (3.1) with the defining relations of the algebra SymR(V ) for the 
orthogonal case. All other compatibilities are verified by the similar calculations. �

Now, consider the QD (A, B) of Fock type, corresponding to a BMW symmetry R . For R corresponding to the orthogonal 
QG we set A = SymR(V ∗), B = SymR(V ), and for R corresponding to a simplectic QG we set A = �R(V ∗), B = �R(V ). By 
introducing the same counit as in the algebra L(R), we get an action of the algebra A on the algebra B . The creation and 
annihilation operators are similar to these from the bosonic (resp., fermionic) realization of the algebra L(R).

Now, we introduce a matrix L = ‖l j
i ‖ with entries l j

i = xi x j .

Proposition 8. For all series the matrix L meets the following system

P12L1 R12L1 − L1 R12L1P12 = P12L1 − L1P12, (4.5)

where P =Pq +Pμ for the orthogonal series and P =P−q−1 +Pμ for the simplectic one.
8
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Proof. Consider the case of R corresponding to an orthogonal QG in detail. For a simplectic QG all considerations are 
analogous. Below, we use the matrix notation introduced above.

Since the idempotents Pq , P−q−1
and Pμ are complementary, we have

P−q−1 +Pq +Pμ = I.

Also, according to the definitions of the algebras SymR(V ) and SymR(V ∗) and the permutation relations the complete 
system on the generators xi and xi are

P12x|1〉x|2〉 = x|1〉x|2〉, x〈2|x〈1|P12 = x〈2|x〈1|, x〈1|R12x|1〉 = q−1x|2〉x〈2| + I2,

where P =Pq +Pμ .
Now, substitute the matrix L1 = x|1〉x〈1| into the left hand side of (4.5). Using the relations on the generators we trans-

form the first summand to the following expression:

P12x|1〉x〈1|R12x|1〉x〈1| = q−1P12x|1〉x|2〉x〈2|x〈1| +P12x|1〉x〈1| = q−1x|1〉x|2〉x〈2|x〈1| +P12L1.

Here, underlined are the terms which undergo changes. By the same steps of transformations the second summand can be 
rewritten in the form:

x|1〉x〈1|R12x|1〉x〈1|P12 = q−1x|1〉x|2〉x〈2|x〈1|P12 + x|1〉x〈1|P12 = q−1x|1〉x|2〉x〈2|x〈1| + L1P12.

By taking the difference of the above expressions, we get (4.5). �
Observe that the algebra defined by (4.5) cannot be treated as the enveloping algebra U (g) of a generalized Lie algebra, 

since the relation (4.5) does not enable us to define any operator End(V)⊗2 →End(V)⊗2 similar to R.7

Moreover, though the algebras SymR(V ) and �R(V ) are well defined in this case and are (hopefully!) deformations of 
their classical counterparts, the algebras obtained via the bosonic (fermionic) realization are not deformations of U (g).

Nevertheless, proceeding in a similar way as described above we can construct finite dimensional representations of the 
algebra defined by (4.5) in homogenous components of the algebras SymR(V ) or �R(V ) depending on the series.

Concluding this section we note that if R is an involutive or Hecke symmetry, deforming the usual flip P , the both 
algebras Fun(GL(N)) and U (gl(N)) admit quantum deformations. Moreover, there are two different deformations of the 
algebra Fun(GL(N)): the corresponding RTT algebra or the RE one. However, a deformation of the algebra U (gl(N)) can be 
performed only via the modified RE algebra.

If g is an orthogonal or simplectic Lie algebra, the space Fun(G) of functions on the corresponding group G can be 
deformed as was done in [13]. Note that the authors of the cited paper use Quantum Matrix Algebras of a general form 
including the RTT and RE algebras. By contrary, the algebra U (g) does not have any deformation, covariant with respect to 
the adjoint action of the corresponding QG Uq(g).

As we have noticed in Introduction, the BMW symmetries are not well adapted to constructing R-analogs of Lie algebras.

Remark 9. Now, we would like to discuss the Poisson counterparts of the algebras obtained by the bosonization. If R is 
a Hecke symmetry deforming the usual flip P (for instance, that coming from the QG Uq(sl(N)) or the Crammer-Gervais 
one), then the Poisson counterpart of the algebra L(R) (more precisely, of the algebra, obtained by introducing a second 
deformation parameter h̄ in the front of the right hand side of (1.2)) is a pencil defined on the commutative algebra 
Sym(gl(N)). This pencil is generated by the linear Poisson-Lie bracket, associated with the Lie algebra gl(N), and by a 
quadratic bracket, corresponding to the case h̄ = 0. It is interesting to observe that almost all brackets of this pencil are not 
unimodular. Nevertheless, the quantum counterpart of this pencil (namely, the algebra L(R)) is endowed with a trace, but 
this trace is not usual.

If R is a BMW symmetry coming from an orthogonal or simplectic QG, a similar Poisson pencil does not exist. However, 
a Poisson bracket, corresponding to the deformation of the algebra Fun(G) can be defined.

5. Quantum double of Zamolodchikov-Faddeev type

In this section we deal with algebras associated with current braidings. By a current braiding we mean an operator 
R(u, v) depending on spectral parameters subject to the relation

R12(u, v) R23(u, w) R12(v, w) = R23(v, w) R12(u, w) R23(u, v).

The current braidings, we are dealing with, arise from the Baxterization procedure applied to an involutive (resp., Hecke) 
symmetry. These current braidings are of the form

7 Observe that if R is a Hecke symmetry, the corresponding modified RE algebra can be cast in the form (4.5), but with P =Pq .
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R(u, v) = R − I

u − v
, resp., R(u, v) = R − (q − q−1) u I

u − v
, (5.1)

where R is any skew-invertible involutive (resp., Hecke) symmetry. The former braiding R(u, v) is called rational, the latter 
one is called trigonometric. The reader is referred to [2] for details.

Let us pass to the normalized braidings R(u, v) = g(u, v)−1 R(u, v), where

g(u, v) = 1 − 1

u − v
, resp. g(u, v) = q − (q − q−1)u

u − v

provided R(u, v) is a rational (resp., trigonometrical) braiding (5.1).
It should be emphasized that these operators are still subject to the braid relation (5.1) and are involutive in the following 

sense

R(u, v)R(v, u) = I.

In virtue of this relation the operators R(u, v) have two eigenvalues ±1. So, we introduce an analog of the algebra SymR(V )

by the following relations:

Rkl
i j(u, v)xk(u) xl(v) = xi(v) x j(u) ⇔ Rkl

i j(u, v)xk(u) xl(v) = g(u, v) xi(v) x j(u). (5.2)

Write this system in a more detailed form for a trigonometric braiding

q xi(v) x j(u) − Rkl
i j xk(u) xl(v) = (q − q−1) u

u − v
(xi(v) x j(u) − xi(u) x j(v)).

(The defining relations of the algebra �R (V ) can be written in a similar way.)
However, if we try to represent the currents xi(u) as a formal series in u with Fourier coefficients xi[m] as follows

xi(u) =
∑
m∈Z

xi[m] u−m−1,

we find that it is not possible to rewrite the defining system via polynomial relations on these coefficients. By following the 
classical pattern, we present the algebra in terms of the so-called half-currents

x+
i (u) =

∑
m∈Z,m<0

xi[m] u−m−1, x−
i (u) =

∑
m∈Z,m≥0

xi[m] u−m−1, xi(u) = x+
i (u) + x−

i (u).

Then by imposing the relations

g(u, v) x±
i (v) x±

j (u) = Rkl
i j(u, v)x±

k (u) x±
l (v),

g(u, v) x−
i (v) x+

j (u) = Rkl
i j(u, v)x+

k (u) x−
l (v),

(5.3)

and by using the expansion 1
u−v = ∑

p≥0
v p

up+1 , we can rewrite (5.2) in terms of the Fourier coefficients. However, the system 
(5.2) for the currents xi(u) is preserved.

According to the scheme exhibited in Section 3, we introduce the current R-symmetric algebra of the dual space by the 
following system

g(u, v) xi(u) x j(v) = R ji
lk (u, v)xk(v) xl(u). (5.4)

This system can be also expressed via the Fourier coefficients if we pass to the corresponding half-currents xi±(u). Besides, 
we introduce the permutation relations

xa(u) Rb j
a i xb(v) = q−1 xi(v) x j(u) + δ

j
i δ(u − v), (5.5)

which are compatible with the relations on the currents

xi(u) = x+
i (u) + x−

i (u) and x j(u) = x j
+(u) + xi−(u).

Thus, we have again constructed a quantum double (A, B) of Fock type. The algebras A and B are generated by the 
Fourier coefficients of the currents xk(u) and xk(u), which respectively play the role of the annihilation and creation opera-
tors. Using the definition δ(u − v) = ∑

p∈Z v p

up+1 , we can express the system (5.5) in terms of the Fourier coefficients:

xa[k]Rb j xb[l] = q−1 xi[l] x j[k] + δ
j
δ1 ⇔ xa[k] xb[l] = q−1 xi[l] x j[k]� i a + Ba δ1 .
a i i k+l j b b k+l

10
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Now, define the counit εA as above by setting

εA(1A) = 1C, εA(xa[k]) = 0, ∀a, k.

This allows us to get the action of the algebra A on B:

xa[k] � xb[l] = Ba
bδ

1
k+l and so on.

We call the algebra, defined by the relations (5.2), (5.4), and (5.5), the QD of Zamolodchikov-Faddeev type.
Now, introduce the matrix L(u) = ‖l j

i (u)‖1≤i, j,≤N where l j
i (u) = xi(u) x j(u).

Proposition 10. The matrix L(u) meets the following relation

R12(u, v)L1(u)R12L1(v) − L1(v)R12L1(u)R12(u, v) = (R12L1(u) − L1(u)R12) δ(u − v). (5.6)

Proof. Again, we use the matrix notation. Consider the first summand in the left hand side of (5.6) and substitute the 
matrices L(u) expressed in terms of currents xi(u) and x j(u):

R12(u, v)x|1〉(u)x〈1|(u)R12x|1〉(v)x〈1|(v)
(5.5)= q−1 R12(u, v)x|1〉(u)x|2〉(v)x〈2|(u)x〈1|(v)

+R12(u, v)x|1〉(u)x〈1|(v) δ(u − v)
(5.2)= q−1 g(u, v)x|1〉(u)x|2〉(v)x〈2|(u)x〈1|(v)

+R12(u, v)x|1〉(u)x〈1|(v) δ(u − v).

In a similar way (the only difference is using (5.4) instead of (5.2)) we transform the second summand in the left hand 
side of (5.6):

L1(v)R12L1(u)R12(u, v) = q−1 g(u, v)x|1〉(u)x|2〉(v)x〈2|(u)x〈1|(v) + x|1〉(v)x〈1|(u)R12(u, v) δ(u − v).

Taking the difference of the above expressions we get the desired result:

R12(u, v)L1(u)R12L1(v) − L1(v)R12L1(u)R12(u, v) =
(R12(u, v)x|1〉(u)x〈1|(v) − x|1〉(v)x〈1|(u)R12(u, v))δ(u − v) = (R12L1(u) − L1(u)R12) δ(u − v).

Note that the product R(u, v)δ(u − v) contains the ill-defined terms (q−q−1)u
u−v δ(u − v), but they cancel each other in the 

final expression. As a consequence, the right hand side of (5.6) contains only constant matrix R . �
Concluding the paper we want to observe that the algebras analogous to those defined by (5.6), but with vanishing right 

hand side, were introduced in [2,5] under the name of the braided Yangians or generalized Yangians of RE type. Similar 
algebras but with current braidings in the middle positions and depending of a charge were considered in [4]. Note that the 
algebras from [4] are generalizations of those from [14], corresponding to the An series.

Nevertheless, the defining relations of the algebras from [4] cannot be expressed via the Fourier components. By con-
trast, the system (5.6) can be written in terms of these components. This is a consequence of the fact that we define the 
permutation relations (5.5) in the QD above by means of a constant braiding (namely, a Hecke symmetry), in contrast with 
the initial definition of the ZF algebras.
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