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In the proof of Proposition 2.3 of the paper [1] I referred to a result form the paper
[2] which is valid only in characteristic zero, while later in the paper I use Propo-
sition 2.3 for varieties over an arbitrary algebraically closed field. What follows is
a proof of this proposition that is valid in any characteristic.

Proof. Suppose that X is a smooth projective surface and C ⊂ X is a curve such
that C ∼= P

1, the self-intersection index (C,C) equals 1, and C ⊂ X is an ample
divisor. We are to prove that X ∼= P

2.
Observe that any flat deformation C ′ ⊂ X of the curve C ⊂ X is isomorphic

to P
1. Indeed, χ(OC ′) = 1 and C ′ is irreducible since (C ′,C) = 1 and C is

ample. Hence, h0(NX |C ′) = 2, hi (NX |C ′) = 0 for i > 0, so if B is the connected
component of the Hilbert scheme of curves on X which (the component) contains
the point corresponding to C , then B is a (smooth) projective surface. If

T

p

q
X

B

is the standard diagram representing the family of curves on X parameterized by B,
then, for a general (closed) point x ∈ X , one has dim q−1(x) = 1.

Let σ : X̃ → X be the blowup of X at x . Proper transforms (with respect to
σ ) of the curves from the family B passing through x , are isomorphic to P

1 and
have zero self-intersection. Arguing as in the proof of Proposition 2.2 in [1], we
conclude that X̃ admits a morphism π : X̃ → C onto a smooth curve C such that
the fibers of π are the above-mentioned proper transforms, all isomorphic to P

1.
Restricting π to the exceptional curve E = σ−1(x) ⊂ X̃ , one concludes that
there exists a surjective morphism E → C , whence C ∼= P

1 by Lüroth’s theorem.
Besides, E is a section of the morphism π , so X̃ is a P1-bundle over P1 ∼= C , so
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X ∼= P(OP1 ⊕OP1(d)) for some d ≥ 0. Since this P1-bundle has a section E with
self-intersection equal to −1, one concludes that d = 1; the blowdown of such a
section of P(OP1 ⊕ OP1(1)) is isomorphic to P2, and we are done. 	
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