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1. Introduction

It is widely acknowledged that W-algebras form a fundamental class of conformal
field theories. A lot of information has been collected but the picture is far from being
complete. It has long been known that W-algebras have nontrivial deformations, [1], [12].
Recently the interest to these deformations was revived due to discovered connections
to gauge theories and integrable systems, [10], [18], [16], [17].

We are interested in the deformed W-algebras since they possess families of commuting
operators closely connected to affine XXZ models, see [8], [9].

As in the undeformed case, the deformed W-algebras are generated by currents
commuting with a set of screening operators. The screening operators are integrals of
screening currents. In the undeformed case, screening currents can be quite compli-
cated, which makes it difficult to understand the mechanism of commutation with the
W-currents. In the deformed case one observes some simplifications as the screening cur-
rents are sums of several vertex operators and the combinatorics of commutation with
W -currents is often easy to track. This paper is an attempt to understand the W-currents
combinatorially.

For simplicity, we restrict ourselves to the case when each screening current is a
fermionic current written as a single vertex operator. Moreover, we assume that the W-
currents are sums of vertex operators, such that the contractions of each term with all
screening currents are rational functions with at most simple poles. Then the commutator
of W-current with a screening current is a sum of delta functions multiplied by vertex
operators which, after integrating the delta functions out, have to cancel in pairs. Such a
cancellation pattern corresponds to a combinatorial object called gg-characters. In some
cases, qg-characters were observed in [18], [16], [17], [9]. In this paper we give a general
definition of the gg-characters and study them.

The gg-characters in flavor are similar to the g-characters of level zero representa-
tions of quantum affine algebras, [13], [11]. The g-character of a module V is a Laurent
polynomial with non-negative integer coeflicients essentially given by the formal sums of
collections of rational functions which are eigenfunctions of Cartan currents K;(z) in the
module. If the matrix element of the generating current F;(z) between two eigenvectors
is non-trivial, then it is always given by the delta function 6(u/z) (and, in general, its
derivatives) multiplied by a constant, where u is a pole of the eigenvalue of K;(z) on both
vectors. Then the corresponding eigenvalues are related by a simple factor Ai_, i called
“affine root” which allows us to construct and to study the g-characters combinatorially.

Similarly, the gg-characters are Laurent polynomials with non-negative integer coef-
ficients essentially given by the formal sums of collections of rational functions which
are contractions of vertex operators with screening currents S;(z). If the commutator
of S;(z) with two vertex operators contains delta functions which cancel after summing
and taking the integral, then the corresponding contractions should also be related by a
simple factor. This allows us to define analogs of affine roots and study gg-characters in
a way similar to g-characters.
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However, there are important differences. First, even in the case of [12], which is
directly related to quantum affine algebras, one has an extra, “elliptic” parameter which
participates in the contraction of screening currents among themselves. This leads to
a much larger set of examples of families of screening, described by deformed Cartan
matrices, see Appendix C in [9].

Second, the pairwise cancellations of terms do not necessarily correspond to multipli-
cation by one affine root, but also to special products (strings) of affine roots. We call
such cancellation patterns “blocks”. The option of having blocks gives a much larger set
of qg-characters related to a given deformed Cartan matrix compared to the g-characters.

Third, since quantum affine algebras are Hopf algebras and the main part of co-
multiplication of K;(z) is K;(z) ® K;(z), the g-characters can be multiplied as Laurent
polynomials. But the gg-characters do not have this structure. Instead, there is a com-
binatorial fusion which corresponds to the fusion of currents.

Thus gqg-characters and g-characters are different in general, and it is not clear if there
is a conceptual explanation of the similarity of the combinatorics. We do show that some
special class of gg-characters corresponds to g-characters, see Theorem 5.2. Such gg-
characters are one-parameter deformations of the g-characters which is the origin of the
name of the gg-characters.

Our principal result is that given a gg-character one can construct a current given
as a sum of vertex operators which formally commutes with the screening operators,
see Theorem 6.1. We expect that if a sum of vertex operators whose contractions with
screening currents are rational functions with at most simple poles, commutes with the
screening operators then it comes from a gg-character.

With the general knowledge of gg-characters and Theorem 6.1, one can generate a
large number of interesting examples. Many cases, in particular, all affine-type examples
involve infinite gg-characters and, therefore, infinite sums of vertex operators. We observe
that such sums often have a periodicity property, giving rise to well-defined integrals
which are honest operators commuting with the screenings.

The most important examples for us are the cases of three screening currents of
D(2,1; @) type and its affine analog given by four screening currents, since they are
connected to the (5:12 X 5:[2) /§[2 coset theory, see [2], [7]. In this case the simplest gg-
characters correspond to the 6 vector representations (and 12 of them in the affine case)
which are infinite-dimensional.

In [7] we revealed three copies of quantum toroidal gl, algebra whose transfer ma-
trices produce three commuting families of integrals of motion. We show that the first
integrals in each family come from the gg-characters corresponding to the affine vector
representations. We expect that other integrals can also be obtained that way.

For special values of the parameter «, the deformed Cartan matrix of type D(2, 1; «)
becomes that of types 0sp, 5 or gl, , which have finite-dimensional vector representations
of dimensions 6 and 4, respectively. We show that there exist two series of such resonances
of parameters depending on k € Z~, for the first one we have a finite gg-character with
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4k + 2 terms and for the second one we have two finite gg-characters with 4k terms. It
would be interesting to understand the conformal limit of the corresponding deformed
W-algebras.

In this paper we consider only “tame” gg-characters where all screening currents are
fermionic type with the same elliptic parameter. The structure of the gg-characters in
the presence of bosonic type screenings is similar, but combinatorics is more intricate.
Roughly speaking, this happens because the representation theory of Uqu[2 is more com-
plicated than that of Uqu[Ll. We plan to address this issue in the future publications.

At the moment, there are many unanswered questions. We do not have a complete
list of deformed Cartan matrices which admit non-trivial finite tame gg-characters. We
have no classification of the tame gg-characters even in the simplest case of gl, ;. The
structure of non-tame gg-characters (which correspond to poles of higher order in the
contractions) also deserves an additional study.

The paper is constructed as follows. We start in Section 2 with the combinatorial part
describing the definition and properties of tame gg-characters. We discuss the algorithm
of construction of tame gg-characters and the fusion procedure. Sections 3 and 4 are
devoted to various examples of gg-characters. In Section 5 we discuss the connection of
qq-characters to g-characters. Section 6 is the vertex operator part of the paper.

2. The gq-characters

In this section we describe the combinatorics of gg-characters. We restrict ourselves to
the case of fermionic roots of the same kind. The gg-characters in the bosonic situation
were introduced in [18], [16], more general gg-characters appeared in [9].

2.1. The terminology

Let ¢ be a variable. We call it an elliptic variable. We also prepare a finite number of
other independent variables ¢1, g, ..., and work over the ring R of Laurent polynomials
in all variables with integer coefficients. A monomial is an element of R of the form
q“[1; ¢}, where a,a; € Z. Note that in our convention the coefficient of a monomial is
one, e.g. 2q is not a monomial. Then the set of all monomials is a multiplicative group
inside R.

We start with a general deformed Cartan matrix of fermionic type. Let I be a set
of integers of cardinality r. Elements of I will be referred to as “colors”. We call a
symmetric, non-degenerate, r X r matrix C = (c¢;5); jer with entries in R a deformed

Cartan matrix of fermionic type if all entries of C' are of the form ¢;; = 04 — o
-1

i;l where
0;; are monomials, and all diagonal entries are ¢;; = q¢ — ¢
In particular, we have 0; = 0j;, 04 = ¢, and if ¢;; = 0 then o;; = 1.
In this text we consider only deformed Cartan matrices of fermionic type; for brevity

we call them simply Cartan matrices.



B. Feigin et al. / Advances in Mathematics 403 (2022) 108331 5

While it is not clear what a most general reasonable definition of a deformed Cartan
matrix is, there are several studied classes. In [13], deformed Cartan matrices are asso-
ciated to Dynkin diagrams. In [17], deformed Cartan matrices are associated to quivers.
In [9], deformed Cartan matrices are associated to a class of representations of some
quantum toroidal algebras. The majority of the explicit examples of Cartan matrices in
this paper are given by the construction of [9], the examples of D(2,1; «) and D(2,1; @)
are related to [7].

Next, we prepare some formal rings and language to work with them. The gg-
characters will be elements of such rings.

Let Y be a ring of Laurent polynomials with integer coefficients in commutative formal
variables Y; , where ¢ € I, and 0 € Ris a monomial.’

A monomial in Y is a finite product of generators Yfa1 Clearly, the set of all monomials
is a multiplicative group in Y. For a monomial m and x € Y we write m € x if the
coefficient of m in y is non-zero.

For each ¢ € I define a Z-grading deg; of Y by setting deg; ijffl = £6;;. We write
deg(m) = (deg;(m));cr and call it degree of m € Y.

For a monomial o¢ € R, define the ring automorphism

Too: 0 — Y, YlilHYliia
We call the map 7, the shift by oy.

For a set J C I, we have a subring Y; C Y generated by inl (j € J). Define the

surjective ring homomorphism

YEL (i e ),
pi: Y—Y, Yif,l»—>{1“’ (i )

We call p; the restriction map.

Some qg-characters will be infinite sums. We continue with the description of the
corresponding extension of Y.

Let Y be the space of formal sums of countably many monomials in Y. We have the
inclusion of spaces Y C Y. Clearly, the space Y is a Y-module.

The subspace Y, C Y is the space of formal sums of countably many monomials in
Y.

The ring map 7, is extended to the map of vector spaces 7,, : 9 — 9 Let 9(‘]) C 9
be the vector subspace consisting of the formal countable sums of the monomials ), m;
such that among monomials p;(m;) no monomial appears infinitely many times. Then
the map py is extended to the map of vector spaces py : Y() 5 Y. Note that we use
the same notation for the extended maps.

1 We follow notation of [9] which is different from the usual g-character notation. Variable Y; should be
compared to variable X, ! in [5], [6] and usual Y; variables are ratios of two X; variables.
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We often deal with products of elements of Y or even Y where all participating gen-
erators are distinct and therefore there are no cancellation or combining of generators.
We call such products generic. Here are the formal definitions.

We call a monomial m in Y generic if m is a product of distinct generators Yzig1 In
other words, in a generic monomial any generator Y; , can appear only in powers —1,0,
or 1. We call an element y =) m, € Y generic if all monomials mg are generic.

The condition that we have no positive powers more than 1 is equivalent to the
assumption of simple poles in the contractions, or the property of being tame, and it will
be essential. The condition that there are no negative powers smaller than minus one is
added for convenience only and will not be used. In all non-trivial examples we consider
such powers do not appear.

Two monomials mq, mo are called mutually generic, if both m1, mgy are generic, mi;ms,
mq/mgq are generic. In other words, variables present in m; do not appear in ms. In
particular, multiplying m; by ms, we encounter no cancellations.

Two series x1, X2 € Y are mutually generic if every monomial in y; is mutually generic
with every monomial in ys.

Note that if x1, x2 € Y are mutually generic then the product x1x2 € Y is well defined
and generic.

2.2. The definition of tame qq-characters

Tame gg-characters associated to a deformed Cartan matrix are elements of Y with
special combinatorial properties which we now describe.

Given a deformed Cartan matrix C' = (o;; — ori_jl)ie], define the affine roots A;, j € I,
by the formula:

A =[]V, Y, 10

;Y
; L0545
el

For a monomial ¢ € R, we set A;, = 7,A;. The affine roots A; , are generic monomials
in Y of degree zero.

We assumed that the deformed Cartan matrix C' is non-degenerate, it implies that
the affine roots A; , are all algebraically independent.

We define elementary blocks. An elementary block of color i and length k + 1 is an
element BZ-(k) € Y which has the following properties

» the block Bi(k) is a sum of k + 1 monomials, Bi(k) =mg + -+ my;
o the monomial m; has the form

mj:ﬁlm]' H 1/i7q—k+2s,
Ogsgk
s#£]
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where m; is a generic monomial in variables Y11l s #4, and m is a generic monomial

in variables Y, ', 0 # ¢ a € {—k,—k+2,... ,yk};

1,0 7
. . . o . —1
o the monomials m; are connected by the affine roots of color i: m;;1 = m]Ai’q,HzHl.

We also define shifted elementary blocks Bz(ka) = TUBZ-(k) ey.

We note that elementary blocks look similar to g-characters of Uq§ [ irreducible evalu-
ation modules. However, we work with a principally different case of fermionic roots. It is
well known that all irreducible finite-dimensional Uqﬁlm modules are tensor products of
several two-dimensional evaluation modules and a one-dimensional module. Only blocks
Bf? of length 2, trivial blocks Bl-(f)g), and their mutually generic shifted products have
such form. We will discuss a connection to quantl(lm group g-characters in Section 5.

We call the top monomial mg in the block B; ") the i-dominant monomial and the
bottom monomial my, the ¢-anti-dominant monomial. We call a variable Y; , in a mono-
mial m in a block Bi(k) i-dominant (resp. i-anti-dominant) if mA;,;q,l (resp. mA; oq) is
also in the same block Bfk).

We consider products of mutually generic shifted elementary blocks. This is analogous
to (but not the same as) taking tensor products of qu:[g evaluation modules which remain

irreducible and tame.

We are finally ready to define gg-characters. A series x € Y is called a tame qq¢-
character if for all ¢ € I, the series x is a sum of products of mutually generic shifted
elementary blocks of color 4. All gg-characters in this paper are tame, so we will simply
call them qg-characters.

Clearly, a gg-character is always generic. A shift 7,y of a gg-character x is clearly a qqg-
character. If J C I is such that the corresponding Cartan submatrix is non-degenerate,
then the restriction p;x of a gg-character x is clearly a gg-character.

A gg-character is called finite if it is a sum of finitely many monomials.

A sum of gg-characters is a gg-character. A gg-character is called simple if it is not a
sum of two non-zero tame gg-characters.

The constants x = n (n € Z>() are trivially tame gg-characters. More generally,
any generic series x € Y with non-negative coefficients containing only Yfgl is a tame
qq-character. We call such gg-characters polynomial.

A product of two mutually generic gg-characters is a gg-character. A degree zero
qq-character x is called prime if it is not a product of two degree zero gg-characters.

We call a gg-character slim if it has degree zero and for each 7 and for all occurring

shifted elementary blocks BZ(’Z)

the length k£ + 1 is at most 2. Slim gg-characters are to
be compared to g-characters, see Section 5. Non-slim characters do not correspond to
g-characters.

We call a monomial m € Y i-linear if pgym = YLUIYZ-,_;Z for some (not necessarily
distinct) monomials 01,09 € R. A monomial m is linear if it is é-linear for all 7 € I. We

call a gg-character x linear if all monomials in x are linear. Linear gg-characters are slim.
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In general, a generic x € Y can be written as a sum of products of mutually generic
shifted elementary blocks of color i in several ways. For example, it happens when the
same monomial occurs several times. However, we expect that it does not occur for
simple characters. We now prove the uniqueness under some technical assumption which
is sufficient for our purposes.

We say monomial m is i-connected to monomial n if n = mA; L. m contains Y ,,,
and n contains Y; ,,-1.

Thus in a shifted elementary block Bl(lff) = mg+- - -+my, the monomial m; is connected
to monomial m;yy, j =0,...,k—1.

We call a set of monomials m;, j € Z, an infinite chain of color 7 if for all j € Z, m;

is -connected to m41.

Lemma 2.1. Let x be a qq-character. Assume that all monomials in x are distinct. Assume
further that x has no infinite chains of colori. Then it can be written as a sum of products
of mutually generic shifted elementary blocks of color i in the unique way.

Proof. Because of the assumptions, there exists a monomial m € x such that either m is
not i-connected to any other monomial in y or no other monomial in x ¢-connected to m.
In the first case m must be a product of i-dominant monomials and in the second case
m must be a product of i-anti-dominant monomials. In both cases, there is a uniquely
determined product of blocks of color ¢ which has to be present in x. Subtracting this
product and continuing to find such monomial m in the remaining sum of monomials,
we obtain the lemma. O

Note that since A; , are algebraically independent, we cannot have loops: if monomial
m,; is connected to monomial m;,q for j = 1,...,k, then m;, is not connected to m;.
Thus, any finite gg-character with distinct monomials satisfies the assumptions of the
lemma.

The next definitions do depend on the way the gg-character is written as a sum of
products of mutually generic shifted elementary blocks of color i.

If x is a gg-character, then we call a monomial in x i-dominant (resp. i-anti-dominant)
if it is a product of -dominant (resp. i-anti-dominant) monomials in the blocks of color i.
We call a monomial dominant (resp. anti-dominant) if it is i-dominant for all i € I. We
call a variable Y; , in a monomial m € x i-dominant (resp. i-anti-dominant) if it is
i-dominant (resp. i-anti-dominant) in at least one of the blocks of color 4.

The gqg-characters are visualized via its graphs. The graph of a gg-character x is a
colored directed graph whose vertices are monomials m € y. There is an edge of color i

from a monomial m to monomial m/, if m and m’ belong to the same product of blocks

1

of color 4, if m" = mA; , and if m contains dominant variable Y; ,, while m’ contains
;

anti-dominant variable Y; ,,-1. We denote this situation by m—Zsm/'.
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A monomial is --dominant if and only if in the graph there are no incoming edges of
color 4. A monomial is i-anti-dominant if and only if in the graph there are no outgoing
edges of color i.

A gg-character x is linear if and only if in the graph, for each i € I and each monomial
m € x there is at most one edge of color ¢ with vertex m. (This edge can be incoming
or outgoing.)

Clearly, every connected component of a graph of a gg-character is a graph of a qq-
character. Thus, a gg-character is simple if and only if all of its graphs are connected.

Let us repeat that, in general, a gg-character can have several graphs associated to it.
We expect that the graph of a simple gg-character is unique. Due to Lemma 2.1 this is
the case in all examples we consider in this text.

2.8. The algorithm of constructing tame qq-characters

Simple degree zero gg-characters are rigid objects and can often be reconstructed
from just one monomial. The algorithm is similar to the one used for g-characters of
quantum affine algebras, see [11]. On one hand it is somewhat simpler, since we are in
the tame situation. On the other hand it is complicated by the absence of a good concept
of dominant monomials, since we are in the superalgebra situation. Namely, we can say
which monomial is i-dominant after the gg-character is constructed, but not before (as
it was in the non-super case).

Every finite gg-character has a dominant and an anti-dominant monomial. Every finite
qq-character with a unique dominant (or anti-dominant) monomial is simple.

Suppose we have a generic monomial m, and would like to find a simple gg-character
X € Y such that m4 € x and such that my is a unique dominant monomial. Our
algorithm starts with xy = my where all occurring Y; , in m4 (in positive power) are
called unmarked.

If my contains no Y;,, x = my is a simple tame polynomial gg-character.
Otherwise, we choose a maximal string of (unmarked) variables in my of the
form Y;,Y; 425 ... Y; j2x—2,. Here the word maximal means we have no (unmarked)

Yiq-20,Y; q2v, entering m..

IfY."', isinm., the algorithm fails, meaning no such gg-character exists. Otherwise,

1,q o
we set mg = m4, and add to x monomials mq,...,my so that we obtain a block of
color ¢ of length k£ + 1. For example, m; = A;;,lgmo contains Y; ;—25Y; g25 ... Y 2624,
1 .

My = Ai’qgml contains Y; ,-2,Y; 5 Y 416 - . Y g26—2,, etc.

In the monomials mg,m1, ..., m; we mark all positive powers Y; 2j,, j = —1,...,
k—1, and call all other new positive powers Ys,0;10q27+17 s #i,in myq, ..., my unmarked.

We call this process the expansion of a stringk in the i-th direction.

If any of the monomials myq, ..., my is not generic, the algorithm fails. Otherwise, we
continue in the same way. Namely, we choose an unmarked maximal string in any of the
monomials (note that the marked generators are ignored) and expand it.
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In the process we follow two rules. First rule is that if one of the monomials we
add during expansion already exists in y and the positive powers participating in the
expansion are all unmarked, then we mark them and do not add this monomial for the
second time.

Second rule is that we expand in the order of depth. Note that for any monomial
m’ € x, my/m’ is a product of shifted affine roots. Since the affine roots are alge-
braically independent, the way to write m4 /m’ as a product of shifted affine roots is
unique. We say m’ has depth k if m/m’ is a product of k shifted affine roots. The dom-
inant monomial m4 has depth zero. We expand it first. Then we expand all generated
monomials of depth 1, then of depth 2 and so on.

Following these two rules, we proceed with the expansions until no unmarked positive
powers are left.

Then, it is clear, that the algorithm either fails or produces a simple gg-character with
a unique dominant monomial m.

We also note that the affine roots have degree zero. Therefore for all monomials m’
in the result we have deg; m, = deg; m/,, i € I.

One can use another version of the algorithm, declaring the initial monomial m to be
anti-dominant and expanding the strings in the other direction. Moreover, one can do
a mixture: declare that the initial monomial m is i-dominant, ¢ € J, where J C [ is a
subset of colors, and i-anti-dominant for ¢ ¢ J. In such a way, we will be able to obtain
infinite gg-characters which have neither dominant nor anti-dominant monomials.

2.4. Truncation of qq-characters

We describe a procedure which, given a gg-character, allows to produce a gg-character
with a smaller number of terms. We will use this procedure in Section 3.1.

Suppose we have a gg-character y obtained by the algorithm from a dominant mono-
mial m4. Let m € x be a monomial which was obtained after several expansions and
which had an unmarked positive power Y; , when first obtained.

Consider now the dominant monomial m+Yi:71 and apply the algorithm. Then it
proceeds the same way as the algorithm applied to my. But when we arrive at the
monomial m, the unmarked positive power is canceled and we do not do that expansion
anymore. Therefore, the new gg-character will have less terms compared to ¥, it can be
obtained from x i;l by dropping the appropriate terms. We call this gg-character the
truncation of XY;UI and denote it by Trn(in;l).

The truncation procedure is an analog of the construction of finite type modules
which are obtained by multiplying known modules by polynomial modules and taking
the irreducible submodule, see [5], [6]. The finite type modules have properties similar
to finite-dimensional ones, but they are in general infinite-dimensional.
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Similarly, the truncation produces valid gg-characters, but there is a price to pay: the
truncation changes the degree of the gg-character and, in general, one gets a gg-character
of a non-zero degree.

2.5. Combinatorial fusion

Multiplication of gg-characters often produces the same truncation phenomenon. A
non-generic product of gg-characters x1x2 is often not a gg-character, it may be not even
a well-defined element of Y. However, if there exist mutually generic monomials m; € 1,
mg € X2, then all monomials of the gg-character generated by the product mims are in
X1X2-

For example, let r =1, I = {1}. Then B{l) =Y1,4+ Y141 is a block of color one and
of length 2. Then BP,IB(D is not a generic product but it contains the block of length
three B®) = Y] 2Y11 + Y; 421 g2 + Y1 1] 421 we have

1 1 2
BY) . BY) = B + V2.

Note that there is no complementary gg-character at all as Y12’1 is not generic.

We call such products truncated.

We describe a combinatorial procedure which allows us to do the truncation of prod-
ucts of gg-characters without invoking the algorithm. This procedure originates in the
study of the fusion of currents and, therefore, we call it combinatorial fusion.

For each 7 € I, and a monomial ¢ € R, define group homomorphisms [; », 7; » sending
monomials in Y to R considered as an additive group by the rule:

lio(Yjr) = dij(q—q
Ti,0(Yjr) = —0i(q —q~

We call the homomorphisms [; 5, r;,» the combinatorial left and right contractions
with the affine root A; ,. They are to be compared with (6.10), see Section 6 below.
We note, cf. (6.9),

li;Tl (Aj,Tz) =Tjrs (Aiﬂ'l) = (q - qil)(o-ij - 0%1)7—27-1_1

Let m,n € Y be two monomials. Assume that they have the form
m=mg H AZJ o n=ng H AZJVO,7 (2.1)

where the product is over some finite set of indices and a;,b; € Z. Define the relative
combinatorial contraction:

[m, n]

[mo, 1o

= Z(ajlij,ffj (n) + bjrijﬁj (mo)) = Z(ajlij7o'j (nO) + bjrij,Uj (m))

J
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In particular, we have the following simple properties:

_ [m, n] [m',n']  [m,n]
[mlan/] [m,n] =0 [m/’n’] + [m//7n//] - [m//’n//]' (22)

[m,n) [m,n] [m/,n']

]

Then we define the relative pairing

mo, no]

where, for a Laurent polynomial p € R, we denote by pg its constant term.

Let us now have two simple gg-characters x1, x2 € Y. Choose mg € x1, ng € x2. Then
any m € x1, n € x2 have form (2.1).

We define the combinatorial fusion of x; and y2 by multiplying the two and keeping
only the terms with maximal pairing:

X1 % X2 = E mn, M= max  {(m,n)my.ne}
meEx1, NEX2
mex1,neEx2,
(mvn mo,ng—

Clearly, the definition of y; * x2 does not depend on the choice of mq, ng, see (2.2).
Moreover it is commutative as we clearly have

(ma n)mt),no = (n7 m)noamﬂ'

We use the combinatorial fusion to construct non-trivial gg-characters.
For example, consider the case r = 1 when there is only one color. We have

(}/171 + Yqu) * (Yqu + Yl,q4) = Y1,1Y17q2 + Y171Y17q4 + }/17(12}/17(14.

It is easy to see that all blocks of length £+ 1 can be obtained as multiple combinatorial
fusion of blocks of length 2.

However, the combinatorial fusion should be used with care. For example, in the case
r =1, we have (Y11 + Y1 42) * (Y11 + Y1,42) = 2Y11Y7 ¢2. In fact, the correct answer
here should be (Y, + (Y111, 52) + Y127q2) as the main terms in two copies of Y7 1Y] g2
actually cancel and one has to consider “the derivative” and bring back the other terms.
Such an example is not tame though.

Conjecture 2.2. Let x1, x2 be simple qq-characters. Suppose the fusion product x1* x2 s
generic and has all non-zero coefficients one. Then x1 * X2 s a qq-character.

If x1, x2 are mutually generic, then we have (m,n)m, n, = 0, for any m € x1, n € xa.
Indeed, if A; ; is present in the expression (2.1) for m, then some monomial of x; contains
Y; rq and some monomial in x; contains Y; -,—1. It follows that x2 does not contain these
monomials and, therefore, A; . makes no contribution to pairing (1, 1) mg.ne-
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In particular, if x1,x2 are mutually generic, then the fusion product coincides with
the usual product: x1 * x2 = X2 * X1 = X1X2-

3. Examples of gg-characters

For a randomly chosen Cartan matrix, there are no finite degree zero gg-characters.
It seems that every non-trivial example is interesting.
We often use the notation

YLG' — ]_0_7 Y2,U = 20-, Y71 = 10, Y1701Y1,0’2Y 1 =198

1,0 1,03 01,027

YittoYip1,0p = (6 +1)77,
and so on.
3.1. The case of gl ;

We work with two independent variables ¢ and g;. We set ¢2 = ¢ lq !and p =
¢ = q2_2. Let I ={1,2} and

(q q1 m—qfl).
a—-a" qg—q!
We have

A =17 "200 Ay =10 20
We call gg-characters corresponding to this Cartan matrix gg-characters of gl ; type.

Note that we have a natural symmetry exchanging colors: 1, <> 2,. Given a family of
qq-characters one can produce more gg-characters by shifting, taking generic products,
and exchanging colors.

The case of gl, ; is fundamental for us, because for any deformed Cartan matrix of
fermionic type, any restriction py with |J| = 2 gives either the trivial case of two non-
interacting fermions or the case of gl,; with the appropriately chosen ¢;. The case of
gl 1 is also the simplest one and it is convenient to illustrate our methods with.

We start with the dominant degree (1,0) monomial Vy = 1,. Then we expand it
and get monomial Vi = Ay Vo =1 —1231 Note that 1,-1 is marked but 2 -1 is
not. It creates the need to expand V; in color 2 and we get a monomial of depth two,
Vo = A2 V1= 1qq§2q 1a2 . We again get an unmarked 1,,2 which we expand and get

Vi = 1q_1q§ 2q,1q2 which in its turn needs to be expanded in color 2. And so on. As the
1 2

result we obtain an infinite linear gg-character of degree (1,0) which we call x7 .
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We have

[e.°]

X = DO 2 Ly 2, ). ()
i=0

We now start with the anti-dominant monomial 1,-1. Expanding, we obtain an infinite
linear gg-character of degree (1,0) which we call x7 . It can be obtained by changing in
(3.1), ¢,q1.p,¢2 to ¢ L gt p Y gp

Similarly, starting from dominant monomial 2, and anti-dominant monomial 2,-1 we
obtain the infinite linear gg-characters of degree (0,1) which we call x3 and x5 . The
characters Xét are obtained from Xf by exchanging 1 < 2.

We call all these gg-characters (and their shifts) half-lines.

Next, we consider the monomial 1,2, . We look at it as 1-dominant and 2-anti-
dominant. Expanding, we obtain an infinite linear gg-character of degree (1,1) which
we call Y7 ~. We have

X+;— — E(lqp—i2qlp—i + 1q—1p—i2q1—1p,,~). (3.2)
€L

Note that x™~ is periodic: 7,x7~ = x™ 7. Also note that the change 1 <+ 2 in x "~
gives 74, x "7, We call the gg-character x™~ and (the shifts of xy* ) the line.

Now we are ready to construct slim characters.

First, we have slim linear prime gg-characters obtained by generic products Xil"
X5 £27 and xt~191272. We call them degree zero half-lines and lines respectlvely

Next we use the truncation, see Section 2.4. Consider the gg-character X1 . For
general o, the product is generic and therefore it is a slim infinite gg-character. However,
for 0 = gp™", where n € Z>(, we have a cancellation and a truncation. We obtain a
finite linear gg-character with 2n + 1 terms which we denote by XQ"H Trn(x 192 ")
and call a degree zero segment.

n—1

2n+1 _ ap ” ar’ " oq1 o
X =Y g2 1 20 )2 (3.3)
i=0

2n+1

We also have a linear gg-character x5 obtained either by truncation of x3 or by

replacing 1 <> 2 in x3" 1,

To obtain a gg-character with an even number of terms we need to truncate foqf k2
This linear gg-character has 2n + 2 terms and degree (1, —1) which we call a segment.
Similarly, we have a truncation of x4 19 P of degree (—1,1). Making a shift by some

% and multiplying we obtain a slim prime gg-character with 2n x 2m terms. We denote

this character by XQ" 2m and call a prime rectangle. The dominant monomial of y2m2™
s 2n2m 1ﬁqf1p1 2q1 pt—n
18y =g rq
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Vo,0 T Vo1 : Vo,2 : Vo,3 S Vo,a T Vo,s
ALl A2,<12 Al,q.'§ A‘Z,q'} Al,qg
—1 —1 —1 —1 —1 —1
A5l Azl A A A; A
Vio Vi Vi Vi3 V14 Vis
A1 A1 —1 A-1 —1
1,1 2,92 1,42 2,q3 1,93
—1 —1 —1 —1 —1 —1
Al Kq2 Al Kq2 Alaqu Al,qu Al,'ﬂh Al.'ﬁqz
Va0 Va1 Va0 Va3 Va4 Va5
A1 A=l —1 A=l —1
1,1 2,92 1,92 2,93 1,43
—1 —1 —1 —1 -1 —1
Az,mﬁ AQ Kq3 A‘Z,fiq% AZ‘r q3 AQ,N(IS AZ,HL@
V3,0 - Va1 - V3,2 - V33 = V34 - Va5
A Az g Alg A g Al

Fig. 1. The 4 x 6 rectangle gl, ; gg-character.

The prime rectangles have the form x5 " = S22" LS "Ly, o where
Vak,2e = 1:;’7’2?1@11,4 ZZ}g,qw*’“
Vaok+1,2041 = 1Zi’1';(ilk,ﬁq;1p,z ZZqulp,g’ql—lp,k7
V2k+1,2£ = 1Zi71zqflk,ﬁqlp4 Zz;,q—le’ql—lqp—kv
V2k,2l+1 = 1:;’_2?;(1;11)_[ ZZ’—qllp—Z’qlp—k'
where o1 = kg~ 'p'™™, 09 = ¢ 'p'", and k is sufficiently general to avoid any cancel-

lations.

1 —-1,_-2

The graph of a prime rectangle with highest monomial mi_A =179 P’lzgn P s
shown in Fig. 1. Note that this gg-character is slim but not linear.

Finally, we can truncate products (with general enough «):

—1_1—n —1 _1—n
X3 = Trn (x?cm(xQ+ ) 1% P ) , Xo1™" = Tin (xz*m (xi)2ra? ) :
T (D), T (2 ).

The results are slim prime infinite gg-characters which we call prime strips. Multiplying
by factors 27,17 with general enough o to make the factors mutually generic, we obtain
degree zero gg-characters. We call these slim prime gg-characters degree zero prime strips.

It turns out that we have constructed all slim prime gl, ; gg-characters up to a shift.

Proposition 3.1. The prime slim qq-characters of gl type are either degree zero half-
lines, lines, segments, prime strips, or prime rectangles.
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The linear qq-characters of gly | are either degree zero half-lines, lines, segments, or
squares.

Proof. Let x be a slim gg-character and m € x. Let m = mq/ms where both m; and
me contain no inverses. Without loss of generality, we assume that m is such that mo
contains the smallest possible number of variables. Classify the variables appearing in
my (i.e. positive powers in m) as follows. We have 1, (resp. 2,) which are 1-dominant
(resp. 2-dominant) in their blocks and the ones which are 1-anti-dominant (resp. 2-anti-
dominant). We place dominant 1, in pairs with anti-dominant 2,,, when such pairs
exist. Similarly we place dominant 2,4, in pairs with anti-dominant 1,4, , when possible. As
the result we have several unpaired dominant variables, several unpaired anti-dominant
variables and several pairs.

Generate from each unpaired variable Y; , a half-line gg-character of degree (1,0) or
(0,1) and from each pair a line gg-character of degree (1,1). Consider the product { of
all these gg-characters. This product does not have to be generic, so it does not have
to be a gg-character. However, all monomials in y are obtained from this product by
multiplying by ms ! and truncating the result. Note that every half line creates an inverse
of a variable which we call a new inverse.

It is convenient to think that monomials in y are labeled by the set of integer points in
a multi-dimensional simplex, formed by the Cartesian product of all participating lines
and half lines.

Now we consider the first possible truncation on each of the edges of this simplex.
Thus we take m and expand it in the direction of one of the half lines until we arrive
at the first instance when we generate a monomial m’ with unmarked 1, or 2, which is
canceled by ms.

Note that such a cancellation cannot truncate a line since, in such a case, m’ would
have less variables than m. Therefore each such cancellation truncates a half-line to
a segment. Then Y truncates to a sum with monomials labeled by integer points in a
multidimensional parallelepiped (with possibly some infinite sides).

We claim that there are no further truncation. Indeed, the only possibility would be a
new inverse. Suppose we have a new 1 produced by a half line starting from a dominant
monomial. Then the dominant monomial of that half-line is n = 2 g tor Then we should
also have a 1, produced on the edge of our parallelepiped. Expanding this 1, (still on
the edge), we obtain 2 —lq o If this positive power does not cancel, multiplying by n
leads to a block of length two and a contradiction since the initial gg-character was slim.

. -1 -1
! contains 2¢° 9 7 and n cannot be expanded

If this positive power cancels, then the my,
to start with, which is also a contradiction.

Finally, if we have more than 2 different half-lines or segments or lines then x is not
prime. If one of the segments is a degree zero segment, then it is just a factor of x. If
we have segments of degrees (1,—1) and (—1, 1) then their product is a prime rectangle
which splits as a factor. If we have segments of degrees (1, —1) only, then we should have

either a half-line of degree (—1,0) and at least one monomial 2, which is a common factor
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Uop,o T Up,1 T Uop,2 T Uop,3
Al,l Al,tﬁ Al,q1
-1 —1 —1 —1
A AQ A K AQA,K
Uio Ui Ui, Ui
At -1 AL
1,1 1,q? 1,q*
-1 —1 —1 -1
Al rq? Al.r’.qz Alm‘,q*’ ‘41,H:q2
Us,o T Us,1 T Uso 1 Us,3
Al,l 1,q? 1,4
-1 —1 —1 —1
AQ,.» q* AQ.r:q" A2‘r\7q4 AQ,H‘,q‘1
Us,o - Us,1 - Us,2 - Us,3
Alyl Al,q2 Al,lf

Fig. 2. The 4 X 4 non-slim square gl, ; gg-character.

or a full line and at least two common monomials of the form 2,. Then the product of
this monomial (or monomials), of the segment and of the half-line (or line) is a factor.

If there are no segments then the gg-character can be prime only if there is only one
half line or line. O

An example of non-slim degree zero gg-characters is given by non-slim squares. It
-1 -1 2 -1 _2k—2 -1 -1 2 —1 2k—2
. . K K R s
starts with the top monomial Uyg = 1 duordy @R g duody sy 4 . The
: 4,6%,...,q KRG, Kq

monomial Uy o has degree zero. Each step of the algorithm does not create any new
positive powers. Thus the result is a k x k square which we now describe.
For a,b=0,1,...,k — 1, we define

a—1 k2 b1 k-2 _

U , — 1 ;42010 1 21,20 d 2 i 1rnd* 9 i1 e

ab = g2i—1 g2i+1 rq2i—1 rq2itl .
i=0 i—a i=0 i=b

Then x; = Z];_bl:o U, is a degree zero non-slim gg-character. The graph of character
X4 is given in Fig. 2.
Several more non-slim degree zero gl ; gg-characters are given in Figs. 11 and 12.

3.2. The cases of gl,, ,,, 8,11 ps éln,n

We again work with two independent variables ¢ and g;. We set g2 = ¢ 1q; L

Let I ={1,...,7}. Let C be an r x r matrix with all zero entries except

-1
Cok+1,2k = C2k,2k+1 = (42 — (o -
(3.4)

—1 —1
Cii =q—4 C2k—1,2k = C2k,2k—1 = q1 — 41
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Vo - Vi — Va Vs ‘
Al A ATL

2,q2 1,q=1qy

Fig. 3. The vector gl, ,, and gl,,, , gg-characters.

We say that C'is of type gl,, ,, if r =2n — 1 and of type gl,,, ,, if r = 2n.
Then for ¢ € I we have

o JE0E o G a=2k, 55)
G-VE @ GHDE =20,

where by convention 0, = (r + 1), = 1.
2
We start with the dominant degree zero monomial m, = 15% and apply the algorithm.
The result is a slim gg-character with r + 1 terms which we now explain.

For¢=0,...,r, we set

g 24— k+1 .

@ e, (i = 28),

v — (3.6)

a2 —k+1 . —k .

(z)gii,l (i + l)gi_qlq_,c (i =2k +1).

Then
Vogt1 = A;k1+1’q—k‘/v2kv Vogto = A;k1+2’q2q—k Vogt1.

Thus x = Z::o V; is a slim linear gg-character which we call the vector qg-character of
gl, , typeif r =2n —1 and of gl,,, ,, type if r = 2n.
The graph of gg-character y is shown in Fig. 3.

Similarly, one constructs another gg-character x“ with r + 1 terms starting with
2
qq-,

dominant monomial my = (r)g"? if r = 2n and my = (r)gq% if r=2n-1.

Now we consider the affinization of the Cartan matrix adding one more color 0. We
do it only in the case r = 2n — 1. We have | = {0,1,...,7} D I. The Cartan matrix
elements ¢;; are given by the same equation (3.4) where all indices are taken modulo
r+1.2

The affine roots A; have form (3.5) where all indices are taken modulo r + 1.

As far as we know in this case we do not have finite slim gg-characters. But there are

A —1
infinite ones. We start with the monomial V; = 02 13‘12. We declare it to be 1-dominant

and 0-anti-dominant. We now describe the resulting gg-character.

2 It is known that in this case one can introduce one extra independent parameter g3 without changing
the structure of gg-characters, see [9], however, then co,1 = (g2 — g5 *)gs does not have the postulated form
o — o~ L. Therefore we do not cover it here.
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. e Vo
-1 -1 ’ -1
7,qQ 0,992Q ALQ Av‘,qu Ahqqu'2

Fig. 4. The vector j[ g-character.

n,n 4

Let Vi (i € Z) be given by formula (3.6) where 4 is taken modulo r 4 1. Set V; , =
(V7).
We note the periodicity

N A~

Vidr+1 =Vi,0, Q=q".

Then
T
(=2 =33 e
i€Z jE€Z i=0

is a slim gg-character which we call the vector gg-character of ﬁ . type.
The graph of x is given in Fig. 4.
In particular, the restriction to the non-affine part has the form p7(X) = > ;.7 ToiX-
Similarly, one can construct another slim linear gg-character {V starting from mono-

2 —1
mial r¢™ 0% which is r-dominant and 0-anti-dominant.

3.83. The cases Of 05p2n,2n7 05p2n+2,2n7 05p2n,2n} 05p2n+2,2n

We stay with two independent variables ¢ and g1. We set g2 = ¢~ 1q; L
Let I ={1,...,r}, r > 3. The Cartan matrix is the same as (3.4) except for ¢; and
cr; with ¢ =r — 1,7 — 2. For these elements we have

Crir—2 = Cr—1,r—2, Crir—1 = Cr—1,pr = (—1)T(Q1QQ_1 - QQQ1—1)~ (37)

Then the bottom corner 3 x 3 submatrix of the Cartan matrix is

q—q* @ —at @ — gt
—1 -1 —1 —1
Q1—Q11 1q—q L 41 492 — 4195
o-a 4 qay g—q!
or

q—q! G — g g2 —q5 "

-1 21 -1 -1
4z = dy | ¢-¢' s —ale),
©-6G e —a e qg—q !

where the first matrix corresponds to the case of odd r and the second one to the case
of even r.
We say that C'is of type 08Py, 1o 9, if 7 = 2n + 1 and of type ospy,, o, if r = 2n.
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V’r‘ 1
/ e

oV %

-1
/ ALy

Fig. 5. The vector osp,,, 15 5, gg-character.

Vo ?Vl Vr 3%‘/} 2
1,1

N,

r—1

Then A;, i =1,2,...,r — 3, are given by (3.5). In addition if » = 2n + 1 then

Ao = (r=2)1 ' (r=3)% (r—1) (r)d

q1

Ay = (7’—1) (7- 2)1r (,,.)qflgf

o qig; "’
—1 -1
A, = (r)g (7'_2)3} (r— I)Zi_qqu

The formulas for A, o, A,._1, A, when r = 2n are obtained by exchanging ¢, and ¢;.

We have a slim gg-character with 2r terms starting with dominant monomial V[, =

2
lng’ x=VW+Vi+ -+ V. g+ Vig 4+ + V7 + 15

We give the formulas for the case of r = 2n+1. The monomials V; withi =1,...,r—3
are given by (3.6). In addition

Veez = (r=2)20 " =m0 "

Vi = (=12 ) T .

Vi = (2t " =% |

Vimg = (r=2)%, o (r= 1) 20 ()2

and finally
()2 G+ 1)3;3:[;1 (i = 2k),
Vi= (3.9)

@) e G+ DB =2kt ).

The graph of this gg-character is given in Fig. 5
The formulas in the case r = 2n are similar. In particular the graph is the same (with
two vertices less) the only difference is the shifts of the affine roots.

Now we go to the affinization. Let I = {0,1,...,r}. The affine Cartan matrix C is

determined by ¢;; = ¢ij, 4,7 € I and the other non-zero entries are cop = ¢ — ¢~ !,
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V.01 Vi1 Vs
-1 -1 1 —1 -1 -1
A1/ Aot A, Quz / \;»1.@‘/‘»’ Ay / Aoo
Vs Q,IATWl o 1 T> — V., Veey — — W Vi
2,50 a 2,9 . 8 ' 2.Qq;" _
A\ ﬁ ] AQ\ Ja i o
Vo Viy Vo.q

Fig. 6. The vector 08Py, |5 o, gg-characters.

Coo = Co9 = @1 — ql_l, Co1 = Cl9 = ql_lqg —q1 qz_l. Then the left upper corner looks similar
to the right bottom corner:

1q—q’l ) a'e-an' o —qfi
6@ g q-— q‘ll @ —q
@ —qr @ —aqy q—q*

We start with a monomial f/o = 13‘1g OZiql which is 1-dominant and 0-anti-dominant
and obtain an infinite slim gg-character which we now describe.

Let V; = V; and V; = V; be given by (3.6) and by (3.9) if i = 2,...,7—3, and by (3.8)
if i =r —2,r — 1. In addition we set

2 —2n+4
Q=aqyq
and then
f/ — 1qq§0qfq o _ 1q—2n+3 q3q72n+5
0 q q— 0 q2q—2n+3Yq2q—2n+5>

N 2 2 N 3 _—2n+45 2,
= o 1qq2 qu2 . 2q2q n+ g2+ g 2nts
1 ql—l g1 g1 1 qaq—2n+3 q%q72n+5 q§q72n+5'

We also use the notation Vw = 71,V; and Vgg =T,V

Then we have a slim gg-character ¥ = > ..z Z::_(}(Vz@] + V;Qj). We call this qg-
character the vector gg-character of oﬁp%’gn type.

The graph of the vector gg-character of nggn,gn type is given in Fig. 6.

The vector gg-character of 05p,,, 5 o, type corresponding to r = 2n is similar.
3.4. The case of the vector representation of D(2,1; a)

In this section we work with three independent variables: ¢ = qo, q1,q2. We also use
43 = (qoq1g2) " and p; = ¢*¢7, i = 1,2,3.
Set I = {1,2,3}. In this section we study the following Cartan matrix:

qo—qo’i Q3_‘I:;1 qz—qu
C= qs—qg’l qo—qa1 ql—qfl . (3.10)
@2—q q1—q q0o—4qg
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-1 -1
. 2,297 " - 2,q5 2a2a1°
312 ! 312 312 0 !
Vl,l VQ,1 V3,1
—1 —1 —1
Al,l Al,l ALl
27312(1 ! A;31 2(]/)(] 3
) 1 »40 24y
V312 V312 V312 17312
0,0 1,0 2,0 73,0

Fig. 7. The vector D(2, 1; ) gg-character.

‘We have

Av=1giensnt A =12 sy, A=1g 2 s (311
We call gg-characters corresponding to this data of D(2, 1; «) type.

Note the natural symmetry under simultaneous permutations of colors 1,2,3 and
variables q1, qo, q3.

Given a gg-character, we have three restriction maps pgy 2y, pg1,3}, and pyz 33 which
produce gg-characters of gl ; type (with gly 1 non-elliptic parameters gs, g2, and ¢ re-
spectively).

We start with a dominant monomial %?:(1)2 = 33(2;;_;2. Then p{1,3}V03:(1)2 coincides (up to
a shift by gogz) with the dominant monomial for the vector representation of gl ;.

Applying the algorithm, we obtain the following result.

For a € Z>¢, b =0, 1, define the monomials Vagf by the formulas

e -1 -1
V312 — 19%0P1 2‘137 B g2 B
2k,0 qo a5 'p1 T adaepy®
ya1z  _ qaaieifgds ! 3"
2k+1,0 — 9o -2 -1 _—k —k
91 93 P1 q2P1 (3 12)
312 _ 120P1 " 543 q2
V2k1—171 2717k32 —k
’ 40 q3 D1 9092P1
2 —k
12 q092P1 q3 q2
%5 =190 g6 3B
2k+1,1 40 ! qq 2‘13 1171 k q2p1 k

Then Y31? = Y ab V;’}f is a slim linear gg-character which we call the vector qg-

character of D(2,1; «) type. The graph is given in Fig. 7.

312 consists of one vector gg-character (with three

Note that the gl, ; character pg; 33
terms) described in Section 3.2 (also discussed in Section 3.1 as a degree zero segment)
and an infinite sum of shifts of a prime 2 x 2 rectangle described in Section 3.1. The gl5 ;
character p{z,g}X312

Fig. 7 are the horizontal half-lines. The gl, ; character py; 2yx

gives two gl, ; degree zero half-line gg-characters whose graphs in
312 i5 a sum of the trivial

qg-character with an infinite sum of shifts of a prime 2 x 2 rectangle.

Using the symmetries we obtain six slim linear gg-characters x2*¢, where {a,b,c} =
{1,2,3}.
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We also can construct similar six slim linear gg-characters xgape, where {a,b,c} =
{1,2,3} which have an anti-dominant monomial. For example, the gg-character ysio

starts at the anti-dominant monomial 33_2(1_1 The formulas for other monomials are
0] 2

obtained from (3.12) by replacing ¢; and p; with ¢; ', p;*. The graph of x312 is obtained
from Fig. 7 by changing the direction of all edges.

3.5. The case of the vector representation of b(27 1;a)

We affinize the results of the previous section.
We have the same three independent variables: ¢ = qo,q1,q2. We still use g3 =
(49142) " and p; = ¢°¢, 1 =1,2,3.
Let I ={0,1,2,3}. We set
W=l GG, -G, 4B,
O = QI_Q1_1 QO_Q()_l QB_Q:),_I QQ_QQ_l ) (3.13)
qQ_Q21 QS_le (ZO_(]ol QI_Q11
B3935 @29 @—q¢ 90— 4qp
This deformed Cartan matrix produces the affine roots:
Ag =08 10120235 A — 0% 1% 20 30
— — — — —1 —1 —1 —1
Ay =03 1% 28 30 Ag = 0% 1% 20 3%

We call gg-characters corresponding to this Cartan matrix of 15(2, 1; ) type.

We still have symmetries given by permutations of colors 1,2,3 with simultaneous
permutations of variables ¢, g2, ¢3.

The restriction pgy 2314, i = 1,2,3, gives the affine roots from the previous section.
Moreover, for any J C I the restrictions pJ reproduce the affine roots of gl ; type if
|J| = 2 and of D(2,1; «) type if |J| = 3.

We start with the monomial m = Vy ¢ = 0qu K 3qzq which we declare 3-dominant
and 0-anti-dominant. Then the algorithm produces the following result.

Set

312 a1 "a5 T F 1 aopr F 505 'pT ¢ as Pt
1 493 P1 1 3 P1 2 D1
VkQZ_O —£ ]- —62—1 —k32 -k
q1pq qoP1 43 D1 4592P1
—1, ¢
qr P1 qoqul 43 P1 92 P1
V2k+1 20 — =0 1 27, #37 Tk ’
q1 Pl QOP1 a1 a3 Pl q2pP1 (3 14)
312 a1 'a5 pT " 1 qopt L q2p1 ° .
_ 1 493 P1 1 1 1
VEay = 070, 7T R gy gt
91 P1 40 P1 qs P1 q092P1

—¢
1 Pl qO‘IzP1 qul q2pq

V2k+1 2041 = 0%, 1 2 L _p 3P
q P1 q0 Pl qr qs P1 q2P1

Then the sum {32 = Za>b V312 is a linear gg-character which we call the vector qg-
character of IA)(27 1; ) type. The graph of the vector gg-character is pictured in Fig. 8.
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—1
. 1
2,q92q;

312 312 312
Vi Vs S
—1 —1 —1
A1,1 A1,1 A1,1
A—1
2,q2q7 "
312 312 312 312
‘/U,O Vl,O VQ,O ‘/3,]
-1 —1 —1 —1
0,901 Aoaflofh Aquwh AO,QOQl
312 312 312 312 312
VaiT, —>71 Vo2 V1,71 —>71 V2,71 Vi ————
2,929192 2,q2q; "

Fig. 8. The vector D(2,1; a) character.

The restrictions p{17273}f<312 and p{07273}f<312 are sums of shifts of the vector g¢g-
characters of D(2,1; «) type.

The restrictions pgo1,33X*'% and pyg1,03X*'? are the sums of shifts of lowest weight

analogs of vector gg-characters of D(2,1; «) type produced from an anti-dominant mono-
mial.

Using the symmetries we obtain linear gg-characters Y%, where a, b, ¢ are distinct
elements of [ = {0,1,2,3}. Among those we have coincidences, for example, {3'2 is a
shift of {203, In total we have 12 distinct vector gg-characters of D(2,1; a) type.

We describe a different construction of the vector representations of ]3(27 1; @) type.
Define monomials of degree (—1,—1,1,1)

+ ,j:1 +1
Rl = qu ]_q2 2q1¥13qatl (315)
and monomials of degree (1,1,—1,—1)
+1 +1
T = 0,711,729 3% (3.16)

As always, we set Rfa = 7,R{! and Tfo =7, T

Then it is easy to check that xp = ;5 (Ripi + R ;) and xr = ZieZ(Tfpi +T7 )
are gg-characters of degrees (—1,—1,1,1) and (1,1, —1, —1) respectively.

The restrictions pyz 3)Xr and pgo,1yx7 are simply line gg-characters of type gls ;.

It follows that a generic product 7.(xgr)x7 is a linear gg-character of degree 0. And
for special monomials x, the product truncates. The gg-character x>'? is a truncation of
Taogs (XR)XT-
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4. The 18, 66, 130

In this section we study finite degree zero tame gg-characters of type D(2,1;a) and
their restrictions to gl, ;. In particular our Cartan matrix is (3.10) and the affine roots
are given by (3.11).

4.1. 18

The smallest possible nontrivial degree zero gg-character of type D(2,1; ) turns out
to have 18 terms. It is constructed from the dominant monomial mf = lgi_ 1232_1332_ ..
In fact mf = p{lvz’S}Aal, where Ay is the affine root of type ]5(2, 1; ).

The gg-character x'® = Zilil v; turns out to be slim but not linear. We call it the
adjoint gg-character of D(2, 1; ) type.

The monomials v; and the graph are shown in Fig. 9, where we set

A’_i - Az‘_,ql(?qu'l '

The graph has a symmetry with respect to changes of colors and variables. In our
picture the symmetry which exchanges colors 1 and 3 corresponds to the reflection about
the vertical line through vertices vy, vs, vg, v11, V9, V13, v16 and vig. Here and everywhere
we do not picture the symmetry line.

It is also symmetric with respect to the middle horizontal line connecting vertices
v, Vg, v1p and w1y (with colors preserved and arrows reversed).

By the depth counting, the adjoint gg-character has the form 18 = 1+3+43+4+3+3+1.

We note that the restriction pt2:3}x!® decomposes by the rule
18=9+4+4+1.

Here the 1 is a trivial (polynomial) module, the two fours are squares and the 9 is a
generic product of the vector and covector gl, ; gg-characters.

4.2. 66

The next smallest simple finite degree zero gg-character of D(2,1;«) type has 66
monomials. Up to a shift there are three of such gg-characters obtained by permutations
of colors. We describe the one with the dominant monomial

66,1 18
m+ = m+ T;D1 (UQ) = ]_Zi_pll 232_11)1 322_1])1,
where color 1 is chosen and the symmetry between colors 2 and 3 is preserved.

Starting from this monomial one produces a slim simple (but not linear) gg-character
x5! with 66 terms.
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— 1% 92 93
1 =17"1,2"2,3"
ar' Tar Vet

1 ~_
A7l
2 2 o
q: l] q (1 9149 47 9:s q14; q q:
o =19, 2™ g% vz = 1717329, 31T vy = 1712200289
do "4 a3 3 qs 9o " 43
—1 —1
Ay Ay
2 2 2 2 2 2
10195 q2q2 a%qs,q2qs L qqu,qzqR a2qs 1019550195 547 02 a?qs
Vs = —2 1 —2 1 1 Ve = —2 1 2 1 vr = 1 —2 1 —2 1
do 41 do0 " 42 FERELE] do 41 qz x‘IZ 9o " 43 q1 91 do " 42 9o " 43

2,!11«13 21121111612115 93q7 43495
-2 -1
qo [ar xlh ‘Io 4z 92 9o 93 93

vs = 3qfq3,q§<13 q2q1,92q1

— - V1o = 172 _
455,95 " a5 qi,a "
1 -1
Aj A~
2
43 5424; 43 43,954 q1a; qq,qq a3q a3q1,939 a3 43495
v12_1q122“3,;,” v = 10 G109z gdsdy vig = 129007, 25t en®
a5 a5 ",q0 % as a0 42,40 " a2 ai a0
—1 —1
Ay Az}
a5 %ay ;2112 a;as Qa3 59 °9; " o) s 0a; 59392 o4y °4
v1s = 14 0 ! 2 2 La Vie = 2 2qg 2 3 2 vig =1 2% 279, 3412 3
9o 92 4o 43 d0 " q1 4do ‘1‘1 9o 91 4o 92
1 _—
= Axt -
AT _—
2 ){//
a5 %ar ! g tayt nay 2y
vig = 32120223023
90 "1 qp Q92 do 43

Fig. 9. The adjoint D(2, 1; @) gg-character.

Alternatively, the character x%%! can be obtained as the combinatorial fusion:

X0 = B 18
We describe the monomials and the graph in Fig. 10. In this graph we use a notation
(i,7) = viTp, (v;), where v; are monomials in the adjoint gg-character x'®, see Fig. 9. All
arrows are directed downwards. The corresponding shifts of Al-_1 are readily found from
the picture of the adjoint gg-character as well.
The graph has a reflection symmetry across the vertical line connecting the nodes
(1,2) and (15, 18) which changes colors 2 and 3 and variables ¢; and ¢s. To visualize it
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The graph has also a reflection symmetry across the horizontal line connecting the
nodes (8, 8) and (9, 9). This symmetry does not change colors but changes the orientation
of edges.

By the depth counting, the 66 term gg-character has the decomposition

66=1+3+5+8+10+12+104+8+5+3+1.
The gl, ; restriction p{2:313 061 decomposes by the rule
66 =25+ 16+ 16+ 9,

where both 16 are prime squares while 25 and 9 are non-prime squares obtained by

generic product of two segments.

66,1 and p{1:3}y66:1 decompose by the rule

The gl, ; restrictions pt1:2}y
66=16+124+124+9+4+4+44+4+1.

Here the 16 is a generic product of two squares, the twelves are products of a square by
the vector gg-characters, the fours are squares.

4.8. 130
In this section we discuss the gg-character with the dominant monomial

-1 2 -1 -1 2 -1 —1 2 —1
q, ,49 q; 4> ,49 4o 43 ,9 g3
q1,9%q 92, 9%q2 q3,9°%q3

130 18 18
my =my® T2 (m7)
Then the algorithm produces a finite degree zero gg-character x'3° with 130 terms.
Alternatively, the character x'3° can be obtained as the combinatorial fusion:
Y1301 — 18 quxls.

The gg-character x'3° is clearly not slim and not linear. It does have the symmetry
with respect to permutations of colors together with the variables.

The graph of that gg-character is too large to picture. By the depth counting it
decomposes as

130=1+3+6+10+15+18+24+18+15+10+6+3 + 1.

Instead we describe the restriction pys 3y x'3Y. As a gly 1 gg-character we have the de-
composition

130 = 2(12 + 2% + 3% + 52) + 4% + 67
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(2,2)

(9,9)

(15‘, 2) (15, i3)

(15,/’15)

Fig. 11. The 36 term gl, ; gg-character.

In this section we abbreviate (i,j) = v;742(v;), where v; are monomials from the
adjoint 18-term gg-character. Also, all arrows are oriented downwards.

The 62 term gg-character is given in Fig. 11. Note that the graph has a symmetry
interchanging colors 2 and 3 which corresponds to the reflection about the vertical line
through nodes (2,2) and (15,15). The graph has also a symmetry about the horizontal
line connecting (8,8) and (9,9) (the vertices (15,2) and (11,11) should be placed to the
line and vertices (12,6) and (13,5) should be moved off the line to be images of each
other).

The two 52 term gg-characters are given in Fig. 12. Note that the graphs again have
symmetries interchanging colors 2 and 3 which correspond to the reflection about the
vertical line through nodes (2,1), (15,7) for the first graph and through (14, 2), (18, 15)
for the second one. The second graph is the reflection of the first one with respect the
horizontal line through vertices (12,3) and (13,4).

The 16-term gg-character is just a generic product of two squares. The two 9-term gg-
characters are non-slim squares. Then we have two squares and two trivial gg-characters.
All of them with the corresponding monomials are given in Fig. 13.
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(14, 14)

(18,18)

(10,1) (14,10)
(10,3)0(10,4) (16,10)@(17, 10)
(10,7) (18,10)

(10,0) (1,18)

Fig.13. 16 +94+9+4+ 441+ 1 in the 130.

4.4. Resonances

In the previous sections we worked with generic parameters qg, g1, g2- If the parame-
ters satisfy some relation, the gg-characters truncate. Here we discuss a family of such
examples.
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-1 —1
2,q1q5 "

312 312 312 312 312
Vil ——— Vs e Vo Zi— Ve Variin
-1 -1 -1 -1
Ay Ay ATy Ay
ATl Al
2,00 312 V312 2!
V5o 2k—1,0

312 312 312
Voo Vilo V3o

Fig. 14. The truncated vector D(2, 1; @) gg-character.

We start with type D(2,1; ) vector gg-characters.
Note that if i = g2 then the D(2,1;a) Cartan matrix (3.10) becomes the osp, o
Cartan matrix (3.7) with colors 1 and 3 interchanged. In particular, the inﬁnite vector

qq-character x*'% of D(2,1; ) type starting from dominant monomial 3% | see Fig. 7,

agar’
truncates to a 6 term finite gg-character of osp, 5 type, see Fig. 5. This generalizes as
follows.

Fix k € Z~o and assume that
Pt = pa. (4.1)

Then the monomials in (3.12) simplify. In particular, V;,g% = 1q0 ‘e 2q3 @ does not have
factors of color 3 and V32 t11 = 3 , does not have variables of colors 2and 3. As a
result the vector gg-character of D(2 1 a) type truncates and we have a slim gg-character
with 4k + 2 terms: y312 = Y°2% o V32 + Sk V3.

The graph of this gg- Character is given in Fig. 14.

We also note that under resonance (4.1), the gg-character ¥32 of D(2, 1; a), see Fig. 8,
also truncates to the gg-character ¥ = > ., <o V312 where V312 are given by (3.14).

On the other hand the adjoint gg-character Xls does not truncate. Moreover, it can
be obtained as combinatorial fusion:

_ 4312 312
X X —1 @ *ququ

Note that with a specialization of parameters the combinatorial fusion product changes,
as some non-constant monomials become constant.
In particular, for the top monomial we have

m}‘rs = 7_¢f1 (VO?:(l)z)quqs (V23k131,0)'

Another observation is that if g3 = 1 then the D(2, 1; o) Cartan matrix (3.10) becomes
the gly o Cartan matrix (3.4), with colors 1 and 3 interchanged. In particular, the infinite
-1
vector gqg-character x*'2 of D(2,1;a) type starting from dominant monomial 33;(11, see
0
Fig. 7, truncates to the 4 term finite vector gg-character of gl, 5 type, see Fig. 3. This
also generalizes as follows.
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Fix k € Z~o and assume that
Y = g5- (4.2)

Then we have the following cancellations: Voi_1 0 = 1q° o 3q,1q,2, and Vo1 = 2q2q

As a result the vector gg-character of D(2,1;«) type truncates and we have a slim
qq-character with 4k terms: y3'2 = Z% ! V?’l2 + Z% V312

Moreover, in this case, the resonance condltlon (4.2) is invariant under swapping g¢o
and g3. Therefore, we have another slim gg-character x?'® with 4k terms obtained by
truncation of x2!3.

We also note that under resonance (4.2), the qq—character 312 of D(2 1; ), see Fig. 8,
also truncates to the gg-character ¥ = 3 o pcon_1 V2, where V312 are given by
(3.14). -

If k > 1, the adjoint gg-character x'® does not truncate under this resonance either.
And again it can be obtained as combinatorial fusion:

18

X = Telq (X213)

* Tq2q3 (X312)'

In particular, for the top monomial we have
18 213
my =T 1q (Voo )Tanas (Vaiza 0)-
5. Slim gg-characters and representations of quantum groups

The combinatorics of gg-characters is similar but not identical to that of g-characters.
In this section we clarify this relation. Our conclusion is that setting ¢ = 1 in a slim
ggq-character one obtains a g-character of an appropriate quantum group (under some
technical assumptions).

5.1. Quantum group of a general Cartan matriz of fermionic type

We specialize at ¢ = 1.

Let C be a general Cartan matrix of fermionic type as in Section 2.1. Then after
specialization ¢ = 1, we have ¢;; = 0. We assume that C remains non-degenerate after
the specialization.

Let

9ij(z,w) = z — oy 5w.

Starting from Cartan matrix C, we define an algebra Uc. Let R be the field of rational
functions in variables ¢1, ga, ... with complex coefficients.
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Let Uc be the algebra over R generated by coefficients of the series Ei(z) =
Yjez E; 277, Fi(2) = djez Fij279, KE(2) = ZijeZzo K; ;277 (i € I), subject to
the relations

K (2)Kf (w) = Kf (0K (2), K (K] (w) = K[ (0)K;(2), KK, =1,

) )Ej(w)
9i5(w, 2) K (2) F(w) + gij (2, w) Fj (w) K7 (2) =
95 (2, w)Ei(2) Ej(w) — gi (w, 2) E;(
gij(w, 2) Fi(2) Fj(w) — gi5(,
Ei(2)Ei(w) 4 Ei(w)
Fi(2)Fy(w) + Fi(w)
Ei(2)Fj(w) + Fj(w) Ei(2) = 6;;0(z/w)

Here 6(z) = Y,z 2" is the delta function.
Several remarks are in order here.

a. The algebra Ug is written in Drinfeld generators.

b. The level of the algebra U¢ is set to be zero.

c. Generators I; ; with the same index ¢ skew-commute and so do F; ;. In other words
Uc is a superalgebra and E;(z), F;(z) are fermionic currents.

d. The Serre relations are omitted. In most examples, the Serre relations are known, but
it seems to be rather difficult to write the Serre relations in full generality. We do not
discuss them in this text.

e. In all examples studied in this text, Ue is isomorphic (or expected to be isomorphic)
to the standard quantum affine algebra (without the Serre relations).

The algebra Ug carries a topological coproduct given by

AKF(2) = Ki(2) © K (2),
AE;(2) = Ei(2) @ K; (2) +1® Ei(2), (5.1)
AF;(2) = K (2) @ Fi(2) + Fi(2) ® 1.
We note that the coproduct is a homomorphism of superalgebras and in the tensor
product A® B of superalgebras we follow the usual sign rule: we have (a1 ®b;)(as ®bs) =

(=1)rlle2lg a0 @ bibo, a; € A, b; € B.
For o € R, we have a shift of spectral parameter isomorphism 7, : Uc — Uc given by

To(K; (2)) = K7 (02),  76(Fi(2)) = Fi(02),  7o(Ei(2)) = Ei(02).
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For J C I, let C'y denote the matrix obtained from C' by deleting all rows and columns
corresponding to all ¢ ¢ J. Then we have a map py : Ug, — Ug,

Ki(z) o K5, B o EBk),  F)-FGE) (e

Thus any Uc-module M is also a Uc,-module which we denote by p;M.

In the cases when C'is of type gl, ;1 ,, (vesp. gl, ,,) the algebra Uc coincides with the
quantum affine algebra Uy, gl,, 41 (resp. Uy, ﬁ[nn) (without Serre relations), see [20]. In

the affine case, when C' is of type é[ Uc is expected to be related to the quantum

n,n’
toroidal superalgebra of type gl,, ,,. The quantum toroidal superalgebras of type gl,, ,,,
with m # n and with all possible choices of the Cartan matrix, were defined and studied
in [3].? The case of m = n is not discussed there, though the relations of Uc are expected
to hold.

To the best of our knowledge, the Drinfeld realizations of quantum affine superalgebras
0509, 42 2m and 08Py, 5, have not been established.

When C' is of type D(2,1;a), the algebra Ue coincides with the quantum affine su-
peralgebra of type D(2,1;a) (without Serre relations), see [14].Y When C is of type
f)(2, 1; ), the algebra Ug is expected to coincide with the quantum toroidal superalge-
bra of type D(2, 1; ) (without Serre relations), whose definition is yet to be established,
see [7].

We do not know if there are interesting examples beyond the standard supersymmetric
quantum affine and quantum toroidal superalgebras.

5.2. Admissible untangled qq-characters

We introduce terminology related to the specialized gg-characters.

We call a degree zero qq-character admissible if after the specialization ¢ = 1 it remains
generic with all non-zero coefficients one and if there are no cancellations of variables.

If a gg-character is admissible, then clearly it is slim. All explicit examples of slim
qq-character we discuss in this paper are admissible.

We now choose an admissible gg-character x and specialize to ¢ = 1 in the rest of the
section. We keep the concepts of dominant and anti-dominant monomials and variables.
Note that any variable Y; , occurring in a monomial m € x is either dominant or anti-
dominant. Also a graph of x descends to a graph of the specialized character.

The restriction of any admissible gg-character x to any color i € I, p;x, is a sum of
the form ) _ 2% Hi; 1 YZUJYZ_T} Here each summand corresponds to a generic product

of I blocks of length 2. Then the graph of such a summand is an /;-dimensional cube.

3 The quantum toroidal algebras of type gl,, ,, depend on two independent parameters, our setting cor-
responds to the case d = 1 in [3].

4 Our parameters g; are related to ¢ and x(= «) in [14] by ¢1 = ¢~ L

L2 =q¢"" g3 =q "

x
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— vo TO
mo = m21y2u01}127. em3 = m3l, 1 12,
12

my = mgql, 1”’1212"‘”2 2,
T2 VOip

Fig. 15. A square associated to colors 1, 2, and monomials v, 7.

Let i,j € I, and let v,7 € R be monomials in x such that v # 7'0' . A square in
x associated to colors ¢ and j and monomials v, 7 is a set of four dlstlnct monomials
mi, Ma, M3, My Wthh are connected on the graph of x as shown in Fig. 15. That is we
have arrows m1.>m2, m1~—>m3, mg*ém4, and m3.>m4.

Define the constant of the square by the formula

Cij _ vV — O‘ijT.
vr T — O3V
We note that if o;; = 1 then ¢, = —1. We also note that c_c¢/?, = 1.

Let S be the set of edges of the graph of y. We call a map a : S — R\{0} a
supplement of y if for any square associated to colors i, 7 and monomials v, 7 we have
a(my, m3)a(ms, mg) = c_a(my, ma)a(ms, my).

We note that if a supplement exists, and if T is a spanning tree of the graph of Y,
then there exists a supplement which equals one on any edge in T.
+1

i
Consider the corresponding square made of four monomials my, ms, m3, my4 connected

Let ¢,5 € I be two distinct colors, and 7,v two monomials such that v # 7o;

by four arrows as in Fig. 15.

If a graph of a gg-character x contains exactly three of the monomials m1, mo, ms, my
connected by two arrows, then we say that the graph of x has an incomplete square.

In other words, an incomplete square means that a variable of color ¢ which was
dominant (antidominant) became antidominant (dominant) after going along an edge of
color j, j # i.

Note that by the definition of the gg-character all squares of one color (that is where
j = 14) are automatically complete.

We call a gg-character y untangled if x has a graph which has a supplement and no
incomplete squares.

Conjecture 5.1. Any admissible qq-character with a dominant monomial is untangled.
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5.8. A family of tame Uz modules

We construct a Us-module from an admissible untangled gg-character.
For all variables ¢; € R we add to R their square roots qi1 /2,
Fix a non-zero evaluation parameter u € R. For ¢ € I define the multiplicative homo-

morphisms f; mapping monomials in Y to rational functions in R(z), by the rule

1
fiYio) = o172, gl/2y’ [iYje)=1 (5 #1).

If m is a degree zero monomial, then f;(m) is a rational function of u/z which we also
write as f;(m;u/z). It is well defined at z = 0 and at z = oo, and f;(m;0)f;(m;c0) = 1.
Given an admissible gg-character x = > _my, consider the vector space M, , with
basis {v.,, } labeled by monomials m.
Assume we have a graph of y with a supplement a : S — R of x assigning to each
edge of the graph of x a non-zero element of R. Define a map b: S — R of x as follows.

For an edge mim, m,n € X, we set
b(m,n) = a(m,n)"' res f;i(m;u/z).
Z=Tu
Define the action of generators of Ugc on M, ,, by the formulas

K;t(z)vm7 = fzi(m]; u/z)vmj’

Fi(2)vm; = Z a(mj, ms)d(Tsu/2)m,,

5, my—pm, (5.2)
Ei(2)vm,; = Z b(mg, m;)0(Tst/2)vm, .

s, m;ih?%

Here fi(mj;u/z) stands for the expansion of rational function f;(m;;u/z) at 2F! =0
and the sum is taken over all edges of color ¢ of the graph of x starting (for F;(z)) or
ending (for E;(z)) at m;.

Theorem 5.2. Let x be an admissible untangled qq-character. Then formulas (5.2) define
a Uc-module structure on M, ,,.

Proof. Note that

1 —O'i_le’u/Z . gij(7u7z>

. oiyTu/z  gij(z,Tu)

fi(Ajriu/z)

Using this it is easy to check that the quadratic relations involving K:*(z) with all
generators are satisfied.
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m1 = mi1,2,
[ )

Fy (z)alé(uu/z/ Y(z)agé(m’/@
Eq(2)=bi1é(uv/z) E>(z)=b2d(ut/z)

_ voy — _ ro1s
mo = mol1,2"7122 o c = 012 — V—0127 ems3 = m31,177122,
Va2 vT T—0O12V TO1,

Fz(z)am(zm/z'\ %2)035(11”/2)
Eo(z)=bsd(ut/z) E1(2)=b3d(uv/z)

LJ
my = T7L4 1u 1761,21 21/0121 2.,-
TO]

2 VOIi2

Fig. 16. The action in the square.

We check that all other relations in Ug hold as well. All relations are quadratic. Apply
a relation to a vector v,,. Then we get a lot of terms involving v,,,, where m’ is either
m (in E;(z)F;(w)vy,) or obtained from m by walking along two edges of the graph of x.
We show that the total result is zero due to cancellations in squares.

Consider the square on Fig. 15. Then the part of the action related to this square
is given in Fig. 16. Here a; are provided by the values of the supplement a on the
corresponding edges and the values of b; are given by

by = Zr:eysuﬁ(ml)/ah b3 = erusufl(m?,)/a?n
by = zr:€§uf2(m1)/a27 by = zr:eTSu fz(mz)/&4~

This assures that the commutators FEj(z)Fi(w) + Fi(w)E1(z) and Es(z)Fa(w) +
Fy(w)E3(2) coincide with terms d(uv/z) in K" (2) — K; (2) and §(ut/z) in K (2) —
K5 (z), respectively, applied to m;.

Note that

res fi(ms3) = —c res fi(ma), res fa(mi) = —c res fa(ma),
Z=ru zZ=ru Z=TU Z=TU

and that asas = cajas by the definition of supplement. Therefore, we have

a20a3 b3bs baay bias
= — = C’ _—— = —1
aras  bibs agby  asbs

The first two relations are equivalent to F'F' and E'E relations applied to m; and my
respectively. The last two relations are equivalent to Fo(z)Fy(w) 4+ Fy(w)Es(z) = 0 and
Ei(2)Fy(w) + Fa(w)E1(z) = 0 applied to mg and ms respectively.

Due to our assumption, one of the vertices of a square can be missing only if v = Tcr;?l
in which case the relations are satisfied for trivial reasons. For example, let v = 7015 and

then my is missing since we cannot have (2,)2. In such a case, for example, Fy(w)F;(2)m;
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does not produce my. But gi2(w, 2)Fy(2)Fa(w)m; does not produce my either since
(z — o12w)d(uv/2)0(ur/w) =0. O

Clearly, if the graph of x used to construct M, , is connected then M, , is a simple
Uc-module. Indeed, since all monomials are distinct, generators KZ-jE (z) have a joint
simple spectrum, therefore any submodule M has a basis of monomial vectors v,,. But
if one of vy, is in M, then all of them are in M and thus M = M, ,. In particular, if x
is a simple gg-character, then M, ,, is a simple Uc-module.

If x is an admissible untangled gg-character then ¢ = 1 specialization of the gg-
character x is the g-character of M, ,. The algorithm for construction of gg-characters
described in Section 2.3 specializes to the algorithm for construction of g-characters in
[11].

5.4. The case of D(2,1; )

Very little is known about the representation theory of quantum affine algebra of type
D(2,1; «) and its toroidal version. We give a few remarks.

Apart from the trivial one dimensional module, the irreducible representations of
exceptional Lie superalgebra D(2,1; o) are parameterized by triples (a,b,c) € Z>o. The
even part of D(2,1; «) is sla @sla @ sly. We denote by [a, b, ¢] the irreducible sly @ sly D sla-
module of dimension (a4 1)(b+ 1)(¢+ 1) which is a tensor product of three irreducible
slo modules of highest weight a, b, and c.

When restricted to the even subalgebra, a generic finite-dimensional representation
L(ap,e) corresponding to triple (a, b, c) has the following structure, see [19].

Suppose a, b, ¢ are not all equal. This is a typical case when the Kac module is irre-
ducible. Then we have

L(a,b7c) = 2[(1, bv C] + Z ([CL + 2€a b7 C} + [CL, b + 267 C} + [a’a b7 c—+ 26})
ec{-1,1}

+ Z [a+e1,b+ €, ¢+ €]
€1,e0e3€{—1,1}

Here all terms with a negative component must be omitted. In addition, the multiplicity
2 of [a, b, ] is replaced with 1 if exactly one of the numbers a,b, ¢ is 0 and with 0 if two
of them are zero.

Of course, we have the symmetry permuting a,b and c.

Let now a = b = ¢. This is an atypical case. We have

Lia,a,0) = ([a,0a,0a] + [a+2,a,a] + [a,a + 2,a] + [a, a,a + 2])
+(a+l,a+1l,a+1]+[a+1,a,a] + [a,a + 1,a] + [a,a,a + 1]),

where the term [a, a, a] has to be dropped if a = 0.
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We work with the Dynkin diagram where all three roots are fermionic. These roots
change the weight with respect to algebra sly @ sly @ sly by (1,—-1,—1),(—=1,1,—1) and
(=1,—-1,1). In both typical and atypical cases, the highest weight vector of L4,y is the
highest weight vector of [a + 1,0+ 1,¢c + 1].

Algebra D(2,1; «) also has three distinguished choices of Borel subalgebra with one
fermionic simple root and two bosonic ones. For the three distinguished Borel subalge-
bras, the highest weight vector of L, ) is the highest weight vector of [a 4 2,b,c] or
[a,b+ 2,c] or [a,b,c+ 2].

The parity of highest weight vector can be chosen. Let the parity of highest weight
vector of the L, ) be chosen even in the distinguished case (and therefore odd in the
fermionic case). We denote the module where the parity is reversed by L’(’aJLC).

Then we have the following graded dimensions. In the typical case,

dim Ligpe) = (8(a+1)(b+1)(c+1),8(a+1)(b+ 1)(c +1)).
In the atypical case,
dim L q,0) = (4(a + 1)* + 6(a + 1)* — da0,4(a+ 1)* + 6(a + 1)> — 2).

In particular, for a > 1, we have dim L(q 4, 4) +dim Ll(j(k1 a—la-1) = (8(a+1)3,8(a+1)3)
which is the graded character of the Kac module.

The adjoint module Lg ¢ has dimension 17 and in the principal gradation we have
17=14+3+3+3+3+3+1.

The next smallest module is L; g0 which has dimension 32, which in the principal
gradation is 32 =1+3+44+5+6+5+4+3+ 1.

We have the following decomposition:

L0,0,0) ® L(0,0,0) = L2,0,0) + L(0,2,0) T L(0,0,2) + L{1 1.1y + L(0,0,0)

0, 172 = 48 % 3 + 128 + 17.

We construct the 18-dimensional and 66-dimensional representations of quantum
affine algebra of D(2,1; a) type.

For the 18-dimensional module, it is enough to provide the supplement. We set the
value of the supplement on all edges in Fig. 9, to be 1 except

o edges on the second level (from vertices vs, v3,v4 to vertices vs, vg, v7) where we set

the value of supplement to be (g; — q[l)_1

on edges of color i;
o edges on the second to the last level (from vertices v12, v13, V14 to vertices vys, v16, U17)
where we set the value of supplement to be (¢; — ¢; 1) on edges of color i;

o on edges (vs,vs), (vs,v11), (v7,v10) Where we set the value of supplement to be —1.

It is easy to check that such an assignment is indeed a supplement.
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To construct a 66 dimensional module, we consider the tensor product M,is ,q2 ®
M, 15 ,,. Comultiplication (5.1) is not well-defined on this tensor product. However, it is
well-defined on the 66 terms inside this tensor product listed in Fig. 10. Moreover, the
action along all edges which connect a vertex from the 66 terms to some vertex which is
not in the 66 is well-defined and either F'(z) or E(z) action along such an edge vanishes.
Thus, the 66 module is found as a subquotient.

After restriction to finite type D(2, 1; «) the above modules decompose as 18 = 17+ 1
and 66 = 48+ 17+ 1 and therefore can be thought as affinizations of L g, 0,0y and L2 0,0)-
One can argue that these are minimal affinizations in the sense of [4].

On the other hand, it is easy to see that there is no g-character which has the
structure of the 32-dimensional L) module which suggests that L) has no
finite-dimensional affinization in contrast to the even case where every finite-dimensional
irreducible module of finite type had an affinization.

6. Free field realization

The gg-characters are a combinatorial abstraction of basic currents which appear in
the free field construction of deformed W-algebras. We are now in a position to elucidate
this connection.

From now on, we regard the parameters ¢, q1,qo, ... as non-zero complex numbers.
We assume that these numbers are generic in the sense that any non-trivial monomial
in these parameters is not one.

6.1. Vertex operators

—1
ij )z‘,jel'
setting o;; = q*ii, where kj; = ki, ki = 1. We assume that the matrix chl = (q"kii —

Fix a Cartan matrix C = (0 — o We introduce parameters k;; € C by

q*”k”')i jer is non-degenerate for all n # 0.
Consider a Heisenberg algebra with generators {s;,, | i € I, n € Z\{0}} subject to
the commutation relations

1 anij _ q—nkij

[Si,n; sj,m} = —EW 6n+m’0 (n, m 7é 0) . (6.1)

We use also a dual set of generators {y, , | i € I n € Z\{0}}

Yin == (0"~ ")(C s (n#0),

lel

so that

1
[SinYjm] = ﬁéi,jéner,O (n,m #0). (6.2)
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The matrix K = (kij)i,j ¢ may be degenerate in general. We proceed as in the case
of Kac-Moody algebras [15]. Let ¢ = rank K. Choose a decomposition I = Iy U I; and
corresponding submatrices K, = (kij)iela,jelb’ a,b € {0,1}, in such a way that K 1
is an ¢ x ¢ matrix of rank ¢. Let I§ = {i* | ¢ € Iy} be a copy of Iy. We extend K to a

non-degenerate matrix indexed by I = Iy U I U I,
. Koo Koi1 -1
K=K Kipn 0],
-1 0 0

where 1 stands for the (n —¢) x (n — ¢) unit matrix. Consider a Heisenberg algebra with
generators {s; 0, @s, },c; such that

[si,o’sj70:| = [Q5i7Q5j] = 07 [S’L-,O7QS_7‘} = (I?)i,j (7/,] S j)

We define y, o, Qy, for i € I = Iy U I by

Yio =

)

Si*,0 (i € Ip),
- Zkef(f(il)i,ksk,o (i e ),

Q, = {Qs,i* (Z € I()),
B - Zkelﬁ(kil)ikask ('L S Il)

Then the following hold for all ¢,j € I:
[S'L,Ov Qyj} - _51] ) [yj’Ov Qsl] - _51,,] .

We shall refer to s; ,,y;, (n# 0) as oscillators, and s; o,y; o, @s,, Qy, as zero modes.
Notation being as above, we introduce the following vertex operators:

Si(z) = eW5i 2510 ¢ eXinzoSinz " 0, (6.3)

Yi(z) = e 2Yi0 1 elnzoVin® " (6.4)
(=1

Ai(z) = M = g B0 glnzol@maT sz (6.5)

Si(qz)

Here the standard normal ordering rule is in force: creation operators s; _,,,y; _, (n > 0),
e@si, @i are placed to the left and annihilation operators Sivns Yin (n>0), si0, Yio are
to the right. We call A;(z) affine root currents, and S;(z) screening currents.

Quite generally, a product of two vertex operators V (z), W(z) takes the form

V(z)W(w) = 2%y,w(w/z) : V()W (w) :,
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where o € C, and pv,w(w/z) is a formal power series in w/z. We call z*pv.w (w/z) the
—

contraction of V(z), W(z) and use the symbol V(z)W (w) to denote it. For instance

Slww) =z—w, (6.6)
SiVilw) = L, V)il = (6.7
5:(2)Y;(w) = Y;(w)Si(z) =1 (i # ). (6.8)

In all cases considered in this paper, the series v (w/z) can be written as

log pvw(w/z) =Y l(g)” x (fv.w

n\z
n>0

)

qi—q; Vi

where fy w is a rational function of the parameters g; entering the Cartan matrix. We
denote the function fy,w by C(V, W), and use it as a mnemonic for ¢y, (w/z). In this
notation we have

C(Si, 8;) = P (0ij —03;'),

C(S5:,Y)) = C(Y}, 5i) = by,

C(Ai, Aj) = (g —q N(oij —o0y;'), (6.9)
C(A4;,Y;) = —C(Y;, Ai) = (¢ — ¢ )by, (6.10)
C(Y:,Y;) = —(g— ¢ )(C™ )i

In the last line we use the entries of the inverse C~! of the Cartan matrix.
6.2. Bosonization of qq-characters

Y a finite product in the variables

,a

With every monomial m € Y, m = [[,c; [.cc

{Yiu}, nio € Z, we associate a vertex operator

Vin(2) =: H H Yi(az)" e ..

icl aeC

Let m be a generic monomial of degree zero. Due to (6.7), (6.8), the contractions with
—

—
screening currents S;(w)V;,(2), Vin(2)Si(w) depend only on the restriction pg;y(m).
Moreover they converge to the same rational function whose poles are all simple. It
follows that the commutator is a finite sum

[Si(w)v sz(z)] = Zcinn,awilé(%) : Si(CLZ)Vm(Z) .
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where ¢; ;.o € C are some coefficients and as before 0(z) =) . 2" stands for the delta
function. Introduce the screening operator as a formal integral

Si :/S’l(w)dw (6.11)

Given a gg-character xy = ) m,, we shall say that it formally commutes with the
screening operator S; if YY" ¢ m..a : Si(az)Vin, (2) := 0. We write this as [S;, x] = 0.

Example. Consider an elementary block of length k4 1 in a single color,

k J
ai,...,a —1
= E m m; =1 Ak =m I | AT,
X k> J arg¥a,...q? a 0 1,q25—1q
7=0 s=1

where the hat signifies the missing factor. By (6.5), Vi, (2) can be written in terms of
1

screening currents as Vi, (2) =: Viny(2)51(¢* a2)S1(az)~':. Computing the residues we
find
2 2 2j
B 2 95 . _1s(4 A% S1(¢%az)S1(q az).
[$1(w). Vir, (] = 37 (¢~ g¥a)eiw ™ 5(T5) < Vi (2) S
0<i<k
i#]

where ¢; = Hle(q%a —a.)/ Hogsgk’sﬂ(q%a — q**a). We define

Jj=0

In the product Sy (w)Ty(z), the residue at w = ¢*az coming from Sy (w) Vi, (2) cancels
with the one at w = ¢*az coming from S;(w)V,,,(2), for all pairs i # j. This means
that T (z) formally commutes with the screening operator S;. O

This example generalizes as follows.

Theorem 6.1. Let x = Y ms be a finite simple qq-character considered in Section 2.2.
Then there exist coefficients ¢, € C* such that the corresponding current

T\ (2) = Zcmsts (2) (6.12)

formally commutes with all screening operators S; = fSi(w)dw, it € I. The ¢, ’s are
unique up to an overall scalar multiple.

Proof. Let {ms}s=0.1,..; be a sequence of monomials in x such that msﬁﬂns,l
with some iy € I, a; € C*, s = 1,...,1. Consider the linear equations for unknowns

{ds}s:O,...,l:
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— —
ds—1 res S, (W)Vi, ,(2)dw+ds res S (w)Vy, (2)dw=0, s=1,...,1.

wW=asqz w=asq~ 1z

(6.13)

We show below that the ratio d;/dp is determined by mg and m; alone, independently
of the choice of the sequence {ms} connecting them. Since the graph of x is connected,

Theorem will then follow by setting ¢, /¢m, = di/do.
—
Let us take a closer look at the equation (6.13). Introducing f;(w) = S;(w)Vp,, (2)

(i € I), we have

s G i asz

Si (W)W, (2) = fi, (w) [] ——5=2
t=1 WOy, 0t%

W — qagz

and hence
— STl o — o
res S (w)Vp. ,(z)dw = {(qw —qasz) fi. (qu) H W}’ . (6.14)
w=a,qz qw — o, ; az ) lw=a,z

t=1 Ts,it
— { s—1 1

res S (W)Vim, (2)dw = { (¢~ 'w — qas2) f;. (¢ w) MH
w:asq_ ’ " w=asz

ls,itatz s

bl g lw—o
(6.15)

Here we have to be careful when some of the factors vanish at w = asz. For all pairs
s # t, define

NE 1 ifo; = qilas/at,
87 - .
0 if Oig iy 7é qilas/at-

Let further [T be the order of zeroes of (¢*'w —qasz) f;, (¢t w) at w = a,z. The relation
is,a

ms_1 — mg ensures that (6.14) and (6.15) are both well-defined and non-zero. Hence
we must have

s—1
4 (NS -NF)=0, s=1,...,1. (6.16)
t=1

Under this condition, the ratios ds/ds—1 are well defined. We rewrite further the right
hand side of (6.14) as

s—1
qus — O, 3, W
{(qws — qas2) fi, (qus) [ [ ——=1— t}

t=1 IWs = 04 _,;, Wt

wi1=ai1z Wsg—-1=0sg—-12 1 Wsg=AsZ
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Doing the same for (6.15), and multiplying ds/ds—; through s = 1,...,1, we arrive at

l
d; ! qWs — T4, 4, Wt
S { Fo(w 7} 7 6.17
a5 =Y 5:Hl o S)SH# q0i,5,Ws — Wy S lwi=arz,. =iz (6.17)
w— qasz)f; (quw
FS(U}) — _(? q S )fls (q_l) ,
(¢~ 'w — qasz) fi, (¢~ w)
where the specialization ws = asz is performed in the order s =1,2,...,1.
Now let {m/}s=01,. .1 be another sequence of monomials in x such that m{ = my,
mj, = m; and m’, = m,_;A;',, s =1,...,1'. Since the affine roots are algebraically

independent, we must have that I’ = [ and i}, = iy(), a = ax(s) for some permutation
A € &;. Define {d.}s—0. 1, I.T, N.* similarly as above, using {m’}. Then we have
I+ = lf(s), N+ = N)\i(s)7 and d)/d; is given by the same expression (6.17) except that
the specialization is performed in the order wy 1) = ax1)z, ..., wWrq) = ax@)2-

We consider the ratio of d;/dy to dj/dj. For the two ways of specialization, the factors
Fs(ws) give the same contribution and hence cancel out. The factors ws — qilois7itwt
also cancel except in the cases ¢*1o;, ;, = as/a; and t < s, A7L(t) > A7L(s) or t > s,
A71(t) < A71(s). With the abbreviation s’ = A~1(s), ¢/ = A71(¢) we find

dl/do a, NG =NE =N+ »
g~ L (-3) =<[Tax . (618)
1/ o ;

ay
t<s
t'>s'

with ¢ = £1 and v € Z. The power v, is given by

Vs = Z (N;,t - fos) - Z (Nj,t - ths) + Z (NsJ,rt - ths) - Z (N;,t - ijs)‘

tit<s t:t<s tit>s t:it>s
t'>s’ t'>s’ t'<s’ t'<s’
Due to the equality
Z(sttiNi:s)zil;F: Z (stftiNt:f:s)’ 5217"'717 (619)

t:it<s t:it/<s’

following from (6.16) and its analog for {m.}, we obtain vs = 0. Summing (6.19) over s
we obtain also

Z (Ns_,t - Nth) = Z (N;t - Nt—i_s) = Z (ths - N:,_t)’

t<s t>s t<s
t'>s’ t'<s’ t'>s’

which shows that e = 1. We thus conclude that dj/dj = d;/dy. O

We shall say that T, (z) is the gg-current associated with x.
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Remark. While Theorem 6.1 claims only existence of coefficients ¢,,, formula (6.17)
provides a way to compute them. In particular, all the coefficients naturally appear in a
factorized form. O

Remark. In conformal field theory, the usual screening currents are Virasoro primary
fields of conformal weight one, and their integrals commute with the Virasoro current.
For a general primary field S(w) of conformal weight A, the integral [w”S(w)dw/w
commutes with the grading operator Ly. When the conformal limit has a clear meaning,
it is more natural to redefine the screening operator (6.11) in this way. Such a change
amounts to shifting the zero mode s; o by a constant. It affects only a power of ¢’s in
the coefficients ¢,, of gg-currents. 0O

Remark. Formally, Theorem 6.1 can be formulated for infinite qg-characters. However,
formal infinite sums of vertex operators with arbitrary constants do not always make
sense. In the examples below we give the constants explicitly and discuss the regulariza-
tion, see Section 6.3. O

6.3. Vector representation of D(2,1;a) and f)(?, 1;a)

In [9], the gg-currents of vector gg-characters have been given for a class of deformed
W-algebras including gl,, ,,, gl,, 41, and osp,, ,,. In this section, we use parameters k;
with kg = 0 and ki + ko + k3 = —4, such that ¢; = ¢"1!,i=0,1,2,3, goqiqaqs = 1. As
before, p; = g3q?.

According to the general rule, we have zero modes {s;0};_o and {Qs,}},, where
54,0 = Yo,0 and @, = Qy,. Their commutators are given by the extended matrix

1 ki+1 ko+1 k3+1 -1

k41 1 ks+1 ka1 0

([Si,O, Qsj]) = | ka+1 k3+1 1 ki +1 0
0<ij<d | kst 1 ky+1 ki+1 1 0

-1 0 0 0 0

The remaining zero modes {y;0,Qy,} (j = 1,2,3) are given by

1 1

Y1,0 = Yo,0 — m(ﬁ,o +520) — m(sl,o +530),
1 1
Qyy = Qyy — m(Qsl +Qs,) — m(Qsl +Qs,),

and by cyclically permuting 1,2, 3.
In what follows we shall assume that |p1| < 1. We use the standard symbols

m k—1

(21, 2Zm; D)k = H H(l —207), ©,(2) = (2,0/2,P;P) o -

s=135=0
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Following the remark at the end of the previous Section, we modify the screening oper-
ators as follows:

s, :/w_25i=05i(w) dw (i=0,1,2,3). (6.20)

The gg-currents associated with the vector gg-characters x3'2, ¥3!2, see Figs. 7, 8, are

C 312(,) —
formal infinite sums of vertex operators V;’;*(z) = Vs (2),

T312( ):f: 312 312 Z 312v312 (621)
312 Z 0312 312 . (622)
a,beZ
a>b

Explicitly the coefficients 0312 described by Theorem 6.1 are given by

—2 k-1l  k—I+1
312 (112 P P * iP1)o0o 4(k—1) (6.23)
Cok,21 = 2 k1 2 k_Ifl 4o . .
(4020 PV a0 PV p1) e
—2 k-1l k-l
312 _ (g3 °p1 " P1 5P1)oo 4(k—1) (6.24)
2k,214+1 —2 k—l _—2 k—I 0 ) .
(QO 4o P1 9 D1 7p1)oo
2 k—Il+1  k—I+1
Cgilj-l o =— (a5 “py )y P1 ;1) oo qé(k—l)+2 (6.25)
- , .
(40 2a3 2P a0 2pY 1 p1) oo
2 k-l k—l+1
312 (a5 p1 7p1 * ;1) oo 4(k—1)+2 (6.26)
2k+1,2141 — 2 k—I+1 do . .
(023 Py 4o *py i p1) e

Note that cg}bz = 0 unless a > b.

Formulas (6.23)—(6.26) can be obtained by solving the recurrence relations sketched
in the proof of Theorem 6.1. We give below a direct way to derive them.

Recall that the monomials Va?’}f are composed of elementary pieces Ri Tli, see (3.15),
(3.16). Let

PE(2) = Vpze(2), 71 (2) = Vpe(2)

be the corresponding vertex operators. Then the affine root currents are written as

1/2 T (2

Ao(z) = T((p_ﬂ/; L Ay(z) = T}Ezi : (6.27)
(%) L (2)

As(z) =: % L As(z) = Z%(z) . (6.28)

We shall use the contractions
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Table 1
. + +
Contractions X (z)Y (w), where X (2) = p7 (2), 71 (2), Y(w) = S;(w).
So(w) S (w) Sa(w) S3(w)
pr(z) ailz—w %'z —w (¢i'z—w)™' (¢Tz—w)”!
() (@lrmw) Tt (@Flr—w)t gfla—w alz-w

1

€2

—1 .
Tlel(z)pl (w) _ Zﬁﬁqgl (QOQQ w/z, P1gogaw/ % P1) oo

(05 a5 "w/ 2, p1ag " qow/ 23 p1) o
1 —(qog2)T'2
1—(qp 'q2) 7'z’

Jeren (W] 2), (6.29)

grx(2) =1, girz(2)=

and the contractions with screening currents given in Table 1.
The above formulas allow us to calculate the commutator between current S;(w) and
the product 71! (2)p$?(2'):
€1 €2 / —1 —€1 Z €2/ €1 €2 /
[S1(w), 7 ()02 ()] = w8 (0 =) (a0 2 — 45°2) i ()52 ()
X 1 S1(qo L 2)1it (2)p2 () .
We have : S1(qy '2)7;H (2) :=: S1(qo2)7; (2): from (6.27). Noting the relation

- BV AGEE + 0\ o E1 N, _— +/.7
(‘Jo z—qy 21 (2)p7 (2) = (902 — ¢3 ")y (2)p7(2),

which follows from (6.29), we find the commutativity with the screening operator (6.20):

[S1, (71 (2) = 71 (2))pi ()] = 0.

Similarly we obtain

It is now obvious that the formal sum

Do () =1 ()of (") = oy (0*2))

keZ

commutes with S7, S5, S3, and

Y a T ') = o)) (e (07 ) = oy (1)

k,leZ
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commutes with Sy, S1,S2,53. Upon taking the residue at 2z’ = gggoz using (6.29), the
sum over k € Z becomes one-sided:

res (7 (2) =7 (2))(pf () — py (w)). (6.30)

—k
k>0 w=p; gqog2z

Rewriting the summand into a normal-ordered form, we arrive at (6.21), (6.22) with
the coefficients given by (6.23)—(6.26).

6.4. Regularization

Infinite sums of vertex operators such as (6.21), (6.22) are only symbolic expressions,
and do not converge to operators on the Fock space. In order to give them a meaning,
some regularization is necessary.

As an illustration, let us consider a simpler example of gA[mn vector gg-character in
Fig. 4. We choose [ w~("=1%.08;(w)dw (0 < i < 2n— 1) as the screening operators. The
corresponding gg-current is a formal sum

n—1
T(z) =3 (@ — ar e Va(g™>"2) + (a2 — @3 )a® T Vawga (g727'2))
i€Z k=0

which may be viewed as a Jackson integral. We regularize it by the contour integral

dw
2miw

n—1
Treg = /Z((QI — gy NP Var(w) + (g2 — g3 1) T Varg (w))
k=0

This formula is nothing but the first member of the integrals of motion associated with
the W algebra of type gA[,m [9].

Let us return to D(2,1;a). The contraction (6.29) has two series of simple poles on
the w-plane:

w = qogep; *z (k> 0), (6.31)
w=qq; 'py*z (k>0). (6.32)
For simplicity of presentation let us assume that \q0q2i1| > 1 > |qoq§dp1|. We wish

to interpret (6.30) as the result of computing residues of a contour integral. For that
purpose, consider an integral of the form

dw
2miw

T (2) = / (7 (2) = 71 (2)) (o) (w) = py (w)) Fw/z) (6.33)

lw|=|z]|
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We require the kernel function F(w/z) to have two properties: it is a quasi-constant,
ie. F(pyw/z) = F(w/z), and the only poles of the integrand in the region |w| > |z| are
simple poles (6.31). Inspection of the contractions (6.29) then leads us to the expression

w/a) — (L) O (to a2w/2)0p, (PYaiay "w/2)
Flwz = <Z> Op. (4042w/2)Op, (q045 'w/ )

where p is an arbitrary parameter. Formula (6.33) gives a well-defined operator on suit-
able sectors of the Fock space where the integrand comprises integral powers in w.
Collecting residues in |w| > |z| and ignoring the contribution from w = oo, we recover
(6.30) up to an irrelevant overall multiplicative constant.

As opposed to the sum over k, no truncation takes place for the sum over | € Z. We
interpret it simply replacing the sum by the integral

7312 = / TR (6.34)

reg reg P
|zj=1

Let us compare this formula with the deformed (non-local) integrals of motion asso-
ciated with the quantum toroidal gl, algebra [10], [8]. The first member reads

@ = [ e - @) (e w) - st ) (6.35)

|z|=|w|=1

x (w)1+2<’;1£2> 9y " P/ 2) dz dw

z Op, (902w /2)Op, (qogy 'w/z) 2 w '’

where®

2(k 2
B — (k2 +2)

2(ks + 2)
O Tk — ks

(s1,0+ s2,0) + [

(51,0 +53,0)

and 9(z) is a holomorphic function on C* satisfying the quasi-periodicity J(p1z) =
py12729(2). The space of such functions is two-dimensional. Using this freedom one can
make the following choice:

1+h 2 _ h
9% (g9 Pw/2) = O, (ay Lad w/2)Oy, (P14 adaT )/ 2) -

With the identification = 1+ hy,9/(2(k1 + 2)), formula (6.35) matches (6.34) and its
analog:

G (01) =T32, Gy (97) =123 (6.36)

reg reg

5 In [7], the parameter p1 in [8] was set to 1. For the commutativity with screening operators S;, this has
to be chosen rather as qg.
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where we ignore constant multiples.

Alternatively, one can take residues on the poles inside the circle |w| < |z|. To this
end we use the commutation relation (in the sense of analytic continuation of matrix
elements)

€1 ’UJ) ﬁ 61)1 (quglw/Z)epl (qOQQw/Z)

) = A () (2) ™ g e e o w1

to rewrite (6.35) as

G =gt [ o (et w) - o @) (i () - 7 ()

|z|=|w|=1

y (g)lJrz(Zi’fz) ﬂ(qé+h1’°/2w/z) dz dw
z Op, (0 ' q2w/2)Op, (g5 "5 'w/2) 2 w

Choosing ¥ to be

e 1+h 2 1+h
I (g0 " Pw/2) = O, (g0d5 w/2)Op, (pra0 05 ) 2)

computing residues at w = p’fqo_lq;Fl, k > 0, and ignoring the contribution from w = 0,
we find

G (9T) =T, Gy (97)=T%!, (6.37)

reg reg

Together with the symmetry in 1,2,3, (6.36)—(6.37) give the regularization of the 12
vector gg-characters of type D(2,1; ) in Section 3.5.

6.5. Adjoint representation and its fusion

For finite gg-characters, there is no issue of convergence. The current 7"8(z) = T)1s(z)
associated with the adjoint gg-character of D(2,1; «) depicted in Fig. 9 reads

18
T8(2) = ZC}SVU1<Z>7
j=1
where
~ o[k +1] _ (k1 + 1] [k + 1] [k3]

P cls L : s — g1, o8 :

=4 2 =71 k1 5 =4 8 k1 + 2][k2 + 2][ks + 1]

18 _ 3 18 olk+1] 18 18 _ k1 + 2][k2 + 2][ks + 2]
018 =q, Cl5 - q [kl ¥ 2] ) Ci2 =4, C11 = [kl + ].][kg + 1][/€3 I 1] 9
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with the notation [z] = (¢* —¢™")/(¢ — ¢~ "). The rest of the coefficients ¢;* are given
by simultaneously permuting colors 1, 2,3 and kq, ko, k3.

The current T8(2) commutes with fermionic screening operators S;, i = 1,2,3. It can
be shown that T'8(z) commutes also with the bosonic screening operators p;, i = 1,2, 3,
in [7].° Hence T"8(z) belongs to what is termed the deformed W-algebra WD(2,1; a),
which is a deformation of the coset theory (sla)r, X (802)k,/(812)k, +ks,-

One can generate further currents in WD(2,1;a) by the fusion construction. For
example, consider the product T'8(2)T'8(w). It has simple poles at w = (gog;)™22,
i =1,2,3, and w = ¢3°z. Their residues give the gg-currents 799! (2) = Tyes.1(z) and
T'3%(z) = T\0(z) associated with the 66 and 130 gg-characters in Section 4.3 and
Fig. 10, respectively:

T%:1(2) = const. res TY8()T' (w) dw,
w=q3qiz

T'3%(2) = const. res T8 ()T (w) dw .
w=qiz

It would be interesting to know if T'¥(z) generates the entire WD(2, 1; ), and whether
one can extract the spin four current from it in the conformal limit. These are the
questions left for further investigation.
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