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1. Introduction

It is widely acknowledged that W -algebras form a fundamental class of conformal 
field theories. A lot of information has been collected but the picture is far from being 
complete. It has long been known that W -algebras have nontrivial deformations, [1], [12]. 
Recently the interest to these deformations was revived due to discovered connections 
to gauge theories and integrable systems, [10], [18], [16], [17].

We are interested in the deformed W -algebras since they possess families of commuting 
operators closely connected to affine XXZ models, see [8], [9].

As in the undeformed case, the deformed W -algebras are generated by currents 
commuting with a set of screening operators. The screening operators are integrals of 
screening currents. In the undeformed case, screening currents can be quite compli-
cated, which makes it difficult to understand the mechanism of commutation with the 
W -currents. In the deformed case one observes some simplifications as the screening cur-
rents are sums of several vertex operators and the combinatorics of commutation with 
W -currents is often easy to track. This paper is an attempt to understand the W -currents 
combinatorially.

For simplicity, we restrict ourselves to the case when each screening current is a 
fermionic current written as a single vertex operator. Moreover, we assume that the W -
currents are sums of vertex operators, such that the contractions of each term with all 
screening currents are rational functions with at most simple poles. Then the commutator 
of W -current with a screening current is a sum of delta functions multiplied by vertex 
operators which, after integrating the delta functions out, have to cancel in pairs. Such a 
cancellation pattern corresponds to a combinatorial object called qq-characters. In some 
cases, qq-characters were observed in [18], [16], [17], [9]. In this paper we give a general 
definition of the qq-characters and study them.

The qq-characters in flavor are similar to the q-characters of level zero representa-
tions of quantum affine algebras, [13], [11]. The q-character of a module V is a Laurent 
polynomial with non-negative integer coefficients essentially given by the formal sums of 
collections of rational functions which are eigenfunctions of Cartan currents Ki(z) in the 
module. If the matrix element of the generating current Fi(z) between two eigenvectors 
is non-trivial, then it is always given by the delta function δ(u/z) (and, in general, its 
derivatives) multiplied by a constant, where u is a pole of the eigenvalue of Ki(z) on both 
vectors. Then the corresponding eigenvalues are related by a simple factor A−1

i,u called 
“affine root” which allows us to construct and to study the q-characters combinatorially.

Similarly, the qq-characters are Laurent polynomials with non-negative integer coef-
ficients essentially given by the formal sums of collections of rational functions which 
are contractions of vertex operators with screening currents Si(z). If the commutator 
of Si(z) with two vertex operators contains delta functions which cancel after summing 
and taking the integral, then the corresponding contractions should also be related by a 
simple factor. This allows us to define analogs of affine roots and study qq-characters in 
a way similar to q-characters.
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However, there are important differences. First, even in the case of [12], which is 
directly related to quantum affine algebras, one has an extra, “elliptic” parameter which 
participates in the contraction of screening currents among themselves. This leads to 
a much larger set of examples of families of screening, described by deformed Cartan 
matrices, see Appendix C in [9].

Second, the pairwise cancellations of terms do not necessarily correspond to multipli-
cation by one affine root, but also to special products (strings) of affine roots. We call 
such cancellation patterns “blocks”. The option of having blocks gives a much larger set 
of qq-characters related to a given deformed Cartan matrix compared to the q-characters.

Third, since quantum affine algebras are Hopf algebras and the main part of co-
multiplication of Ki(z) is Ki(z) ⊗Ki(z), the q-characters can be multiplied as Laurent 
polynomials. But the qq-characters do not have this structure. Instead, there is a com-
binatorial fusion which corresponds to the fusion of currents.

Thus qq-characters and q-characters are different in general, and it is not clear if there 
is a conceptual explanation of the similarity of the combinatorics. We do show that some 
special class of qq-characters corresponds to q-characters, see Theorem 5.2. Such qq-
characters are one-parameter deformations of the q-characters which is the origin of the 
name of the qq-characters.

Our principal result is that given a qq-character one can construct a current given 
as a sum of vertex operators which formally commutes with the screening operators, 
see Theorem 6.1. We expect that if a sum of vertex operators whose contractions with 
screening currents are rational functions with at most simple poles, commutes with the 
screening operators then it comes from a qq-character.

With the general knowledge of qq-characters and Theorem 6.1, one can generate a 
large number of interesting examples. Many cases, in particular, all affine-type examples 
involve infinite qq-characters and, therefore, infinite sums of vertex operators. We observe 
that such sums often have a periodicity property, giving rise to well-defined integrals 
which are honest operators commuting with the screenings.

The most important examples for us are the cases of three screening currents of 
D(2, 1; α) type and its affine analog given by four screening currents, since they are 
connected to the (ŝl2 × ŝl2)/ŝl2 coset theory, see [2], [7]. In this case the simplest qq-
characters correspond to the 6 vector representations (and 12 of them in the affine case) 
which are infinite-dimensional.

In [7] we revealed three copies of quantum toroidal gl2 algebra whose transfer ma-
trices produce three commuting families of integrals of motion. We show that the first 
integrals in each family come from the qq-characters corresponding to the affine vector 
representations. We expect that other integrals can also be obtained that way.

For special values of the parameter α, the deformed Cartan matrix of type D(2, 1; α)
becomes that of types osp4,2 or gl2,2 which have finite-dimensional vector representations 
of dimensions 6 and 4, respectively. We show that there exist two series of such resonances 
of parameters depending on k ∈ Z>0, for the first one we have a finite qq-character with 
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4k + 2 terms and for the second one we have two finite qq-characters with 4k terms. It 
would be interesting to understand the conformal limit of the corresponding deformed 
W -algebras.

In this paper we consider only “tame” qq-characters where all screening currents are 
fermionic type with the same elliptic parameter. The structure of the qq-characters in 
the presence of bosonic type screenings is similar, but combinatorics is more intricate. 
Roughly speaking, this happens because the representation theory of Uqĝl2 is more com-
plicated than that of Uqĝl1,1. We plan to address this issue in the future publications.

At the moment, there are many unanswered questions. We do not have a complete 
list of deformed Cartan matrices which admit non-trivial finite tame qq-characters. We 
have no classification of the tame qq-characters even in the simplest case of gl2,1. The 
structure of non-tame qq-characters (which correspond to poles of higher order in the 
contractions) also deserves an additional study.

The paper is constructed as follows. We start in Section 2 with the combinatorial part 
describing the definition and properties of tame qq-characters. We discuss the algorithm 
of construction of tame qq-characters and the fusion procedure. Sections 3 and 4 are 
devoted to various examples of qq-characters. In Section 5 we discuss the connection of 
qq-characters to q-characters. Section 6 is the vertex operator part of the paper.

2. The qq-characters

In this section we describe the combinatorics of qq-characters. We restrict ourselves to 
the case of fermionic roots of the same kind. The qq-characters in the bosonic situation 
were introduced in [18], [16], more general qq-characters appeared in [9].

2.1. The terminology

Let q be a variable. We call it an elliptic variable. We also prepare a finite number of 
other independent variables q1, q2, ..., and work over the ring R of Laurent polynomials 
in all variables with integer coefficients. A monomial is an element of R of the form 
qa

∏
i q

ai
i , where a, ai ∈ Z. Note that in our convention the coefficient of a monomial is 

one, e.g. 2q is not a monomial. Then the set of all monomials is a multiplicative group 
inside R.

We start with a general deformed Cartan matrix of fermionic type. Let I be a set 
of integers of cardinality r. Elements of I will be referred to as “colors”. We call a 
symmetric, non-degenerate, r × r matrix C = (cij)i,j∈I with entries in R a deformed 
Cartan matrix of fermionic type if all entries of C are of the form cij = σij − σ−1

ij where 
σij are monomials, and all diagonal entries are cii = q − q−1.

In particular, we have σij = σji, σii = q, and if cij = 0 then σij = 1.
In this text we consider only deformed Cartan matrices of fermionic type; for brevity 

we call them simply Cartan matrices.
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While it is not clear what a most general reasonable definition of a deformed Cartan 
matrix is, there are several studied classes. In [13], deformed Cartan matrices are asso-
ciated to Dynkin diagrams. In [17], deformed Cartan matrices are associated to quivers. 
In [9], deformed Cartan matrices are associated to a class of representations of some 
quantum toroidal algebras. The majority of the explicit examples of Cartan matrices in 
this paper are given by the construction of [9], the examples of D(2, 1; α) and D̂(2, 1; α)
are related to [7].

Next, we prepare some formal rings and language to work with them. The qq-
characters will be elements of such rings.

Let Y be a ring of Laurent polynomials with integer coefficients in commutative formal 
variables Yi,σ where i ∈ I, and σ ∈ R is a monomial.1

A monomial in Y is a finite product of generators Y ±1
i,σ . Clearly, the set of all monomials 

is a multiplicative group in Y. For a monomial m and χ ∈ Y we write m ∈ χ if the 
coefficient of m in χ is non-zero.

For each i ∈ I define a Z-grading degi of Y by setting degi Y ±1
j,σ = ±δij . We write 

deg(m) = (degi(m))i∈I and call it degree of m ∈ Y.
For a monomial σ0 ∈ R, define the ring automorphism

τσ0 : Y → Y, Y ±1
i,σ �→ Y ±1

i,σ0σ
.

We call the map τσ0 the shift by σ0.
For a set J ⊂ I, we have a subring YJ ⊂ Y generated by Y ±1

j,σ (j ∈ J). Define the 
surjective ring homomorphism

ρJ : Y → YJ , Y ±1
i,σ �→

{
Y ±1
i,σ (i ∈ J),

1 (i /∈ J).

We call ρJ the restriction map.

Some qq-characters will be infinite sums. We continue with the description of the 
corresponding extension of Y.

Let Ỹ be the space of formal sums of countably many monomials in Y. We have the 
inclusion of spaces Y ⊂ Ỹ. Clearly, the space Ỹ is a Y-module.

The subspace ỸJ ⊂ Ỹ is the space of formal sums of countably many monomials in 
YJ .

The ring map τσ0 is extended to the map of vector spaces τσ0 : Ỹ → Ỹ. Let Ỹ(J) ⊂ Ỹ

be the vector subspace consisting of the formal countable sums of the monomials 
∑

i mi

such that among monomials ρJ(mi) no monomial appears infinitely many times. Then 
the map ρJ is extended to the map of vector spaces ρJ : Ỹ(J) → ỸJ . Note that we use 
the same notation for the extended maps.

1 We follow notation of [9] which is different from the usual q-character notation. Variable Yi should be 
compared to variable X−1

i in [5], [6] and usual Yi variables are ratios of two Xi variables.
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We often deal with products of elements of Y or even Ỹ where all participating gen-
erators are distinct and therefore there are no cancellation or combining of generators. 
We call such products generic. Here are the formal definitions.

We call a monomial m in Y generic if m is a product of distinct generators Y ±1
i,σ . In 

other words, in a generic monomial any generator Yi,σ can appear only in powers −1, 0, 
or 1. We call an element χ =

∑
s ms ∈ Ỹ generic if all monomials ms are generic.

The condition that we have no positive powers more than 1 is equivalent to the 
assumption of simple poles in the contractions, or the property of being tame, and it will 
be essential. The condition that there are no negative powers smaller than minus one is 
added for convenience only and will not be used. In all non-trivial examples we consider 
such powers do not appear.

Two monomials m1, m2 are called mutually generic, if both m1, m2 are generic, m1m2, 
m1/m2 are generic. In other words, variables present in m1 do not appear in m2. In 
particular, multiplying m1 by m2, we encounter no cancellations.

Two series χ1, χ2 ∈ Ỹ are mutually generic if every monomial in χ1 is mutually generic 
with every monomial in χ2.

Note that if χ1, χ2 ∈ Ỹ are mutually generic then the product χ1χ2 ∈ Ỹ is well defined 
and generic.

2.2. The definition of tame qq-characters

Tame qq-characters associated to a deformed Cartan matrix are elements of Ỹ with 
special combinatorial properties which we now describe.

Given a deformed Cartan matrix C = (σij −σ−1
ij )i∈I , define the affine roots Aj , j ∈ I, 

by the formula:

Aj =
∏
i∈I

Yi,σij
Y −1
i,σ−1

ij

.

For a monomial σ ∈ R, we set Aj,σ = τσAj . The affine roots Aj,σ are generic monomials 
in Y of degree zero.

We assumed that the deformed Cartan matrix C is non-degenerate, it implies that 
the affine roots Aj,σ are all algebraically independent.

We define elementary blocks. An elementary block of color i and length k + 1 is an 
element B(k)

i ∈ Y which has the following properties

• the block B(k)
i is a sum of k + 1 monomials, B(k)

i = m0 + · · · + mk;
• the monomial mj has the form

mj = m̄m̄j

∏
0≤s≤k

Yi,q−k+2s ,
s �=j
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where m̄j is a generic monomial in variables Y ±1
s,σ , s �= i, and m̄ is a generic monomial 

in variables Y −1
i,σ , σ �= qa, a ∈ {−k, −k + 2, . . . , k};

• the monomials mj are connected by the affine roots of color i: mj+1 = mjA
−1
i,q−k+2j+1 .

We also define shifted elementary blocks B(k)
i,σ = τσB

(k)
i ∈ Y.

We note that elementary blocks look similar to q-characters of Uqŝl2 irreducible evalu-
ation modules. However, we work with a principally different case of fermionic roots. It is 
well known that all irreducible finite-dimensional Uqĝl1,1 modules are tensor products of 
several two-dimensional evaluation modules and a one-dimensional module. Only blocks 
B

(1)
i,σ of length 2, trivial blocks B(0)

i,σ , and their mutually generic shifted products have 
such form. We will discuss a connection to quantum group q-characters in Section 5.

We call the top monomial m0 in the block B(k)
i the i-dominant monomial and the 

bottom monomial mk the i-anti-dominant monomial. We call a variable Yi,σ in a mono-
mial m in a block B(k)

i i-dominant (resp. i-anti-dominant) if mA−1
i,σq−1 (resp. mAi,σq) is 

also in the same block B(k)
i .

We consider products of mutually generic shifted elementary blocks. This is analogous 
to (but not the same as) taking tensor products of Uq ŝl2 evaluation modules which remain 
irreducible and tame.

We are finally ready to define qq-characters. A series χ ∈ Ỹ is called a tame qq-
character if for all i ∈ I, the series χ is a sum of products of mutually generic shifted 
elementary blocks of color i. All qq-characters in this paper are tame, so we will simply 
call them qq-characters.

Clearly, a qq-character is always generic. A shift τσχ of a qq-character χ is clearly a qq-
character. If J ⊂ I is such that the corresponding Cartan submatrix is non-degenerate, 
then the restriction ρJχ of a qq-character χ is clearly a qq-character.

A qq-character is called finite if it is a sum of finitely many monomials.
A sum of qq-characters is a qq-character. A qq-character is called simple if it is not a 

sum of two non-zero tame qq-characters.
The constants χ = n (n ∈ Z≥0) are trivially tame qq-characters. More generally, 

any generic series χ ∈ Ỹ with non-negative coefficients containing only Y −1
i,σ is a tame 

qq-character. We call such qq-characters polynomial.
A product of two mutually generic qq-characters is a qq-character. A degree zero 

qq-character χ is called prime if it is not a product of two degree zero qq-characters.
We call a qq-character slim if it has degree zero and for each i and for all occurring 

shifted elementary blocks B(k)
i,σ the length k + 1 is at most 2. Slim qq-characters are to 

be compared to q-characters, see Section 5. Non-slim characters do not correspond to 
q-characters.

We call a monomial m ∈ Y i-linear if ρ{i}m = Yi,σ1Y
−1
i,σ2

for some (not necessarily 
distinct) monomials σ1, σ2 ∈ R. A monomial m is linear if it is i-linear for all i ∈ I. We 
call a qq-character χ linear if all monomials in χ are linear. Linear qq-characters are slim.
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In general, a generic χ ∈ Ỹ can be written as a sum of products of mutually generic 
shifted elementary blocks of color i in several ways. For example, it happens when the 
same monomial occurs several times. However, we expect that it does not occur for 
simple characters. We now prove the uniqueness under some technical assumption which 
is sufficient for our purposes.

We say monomial m is i-connected to monomial n if n = mA−1
i,σ , m contains Yi,σq, 

and n contains Yi,σq−1 .
Thus in a shifted elementary block B(k)

i,σ = m0+· · ·+mk, the monomial mj is connected 
to monomial mj+1, j = 0, . . . , k − 1.

We call a set of monomials mj , j ∈ Z, an infinite chain of color i if for all j ∈ Z, mj

is i-connected to mj+1.

Lemma 2.1. Let χ be a qq-character. Assume that all monomials in χ are distinct. Assume 
further that χ has no infinite chains of color i. Then it can be written as a sum of products 
of mutually generic shifted elementary blocks of color i in the unique way.

Proof. Because of the assumptions, there exists a monomial m ∈ χ such that either m is 
not i-connected to any other monomial in χ or no other monomial in χ i-connected to m. 
In the first case m must be a product of i-dominant monomials and in the second case 
m must be a product of i-anti-dominant monomials. In both cases, there is a uniquely 
determined product of blocks of color i which has to be present in χ. Subtracting this 
product and continuing to find such monomial m in the remaining sum of monomials, 
we obtain the lemma. �

Note that since Ai,σ are algebraically independent, we cannot have loops: if monomial 
mj is connected to monomial mj+1 for j = 1, . . . , k, then mk is not connected to m1. 
Thus, any finite qq-character with distinct monomials satisfies the assumptions of the 
lemma.

The next definitions do depend on the way the qq-character is written as a sum of 
products of mutually generic shifted elementary blocks of color i.

If χ is a qq-character, then we call a monomial in χ i-dominant (resp. i-anti-dominant) 
if it is a product of i-dominant (resp. i-anti-dominant) monomials in the blocks of color i. 
We call a monomial dominant (resp. anti-dominant) if it is i-dominant for all i ∈ I. We 
call a variable Yi,σ in a monomial m ∈ χ i-dominant (resp. i-anti-dominant) if it is 
i-dominant (resp. i-anti-dominant) in at least one of the blocks of color i.

The qq-characters are visualized via its graphs. The graph of a qq-character χ is a 
colored directed graph whose vertices are monomials m ∈ χ. There is an edge of color i
from a monomial m to monomial m′, if m and m′ belong to the same product of blocks 
of color i, if m′ = mA−1

i,σ and if m contains dominant variable Yi,σq while m′ contains 
anti-dominant variable Yi,σq−1 . We denote this situation by m

i,σ−−→m′.
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A monomial is i-dominant if and only if in the graph there are no incoming edges of 
color i. A monomial is i-anti-dominant if and only if in the graph there are no outgoing 
edges of color i.

A qq-character χ is linear if and only if in the graph, for each i ∈ I and each monomial 
m ∈ χ there is at most one edge of color i with vertex m. (This edge can be incoming 
or outgoing.)

Clearly, every connected component of a graph of a qq-character is a graph of a qq-
character. Thus, a qq-character is simple if and only if all of its graphs are connected.

Let us repeat that, in general, a qq-character can have several graphs associated to it. 
We expect that the graph of a simple qq-character is unique. Due to Lemma 2.1 this is 
the case in all examples we consider in this text.

2.3. The algorithm of constructing tame qq-characters

Simple degree zero qq-characters are rigid objects and can often be reconstructed 
from just one monomial. The algorithm is similar to the one used for q-characters of 
quantum affine algebras, see [11]. On one hand it is somewhat simpler, since we are in 
the tame situation. On the other hand it is complicated by the absence of a good concept 
of dominant monomials, since we are in the superalgebra situation. Namely, we can say 
which monomial is i-dominant after the qq-character is constructed, but not before (as 
it was in the non-super case).

Every finite qq-character has a dominant and an anti-dominant monomial. Every finite 
qq-character with a unique dominant (or anti-dominant) monomial is simple.

Suppose we have a generic monomial m+ and would like to find a simple qq-character 
χ ∈ Ỹ such that m+ ∈ χ and such that m+ is a unique dominant monomial. Our 
algorithm starts with χ = m+ where all occurring Yi,σ in m+ (in positive power) are 
called unmarked.

If m+ contains no Yi,σ, χ = m+ is a simple tame polynomial qq-character. 
Otherwise, we choose a maximal string of (unmarked) variables in m+ of the 
form Yi,σYi,q2σ . . . Yi,q2k−2σ. Here the word maximal means we have no (unmarked) 
Yi,q−2σ, Yi,q2kσ entering m+.

If Y −1
i,q−2σ is in m+, the algorithm fails, meaning no such qq-character exists. Otherwise, 

we set m0 = m+, and add to χ monomials m1, . . . , mk so that we obtain a block of 
color i of length k + 1. For example, m1 = A−1

i,q−1σm0 contains Yi,q−2σYi,q2σ . . . Yi,q2k−2σ, 
m2 = A−1

i,qσm1 contains Yi,q−2σYi,σYi,q4σ . . . Yi,q2k−2σ, etc.
In the monomials m0, m1, . . . , mk we mark all positive powers Yi,q2jσ, j = −1, . . . ,

k−1, and call all other new positive powers Ys,σ−1
is σq2j+1 , s �= i, in m1, . . . , mk unmarked.

We call this process the expansion of a string in the i-th direction.
If any of the monomials m1, . . . , mk is not generic, the algorithm fails. Otherwise, we 

continue in the same way. Namely, we choose an unmarked maximal string in any of the 
monomials (note that the marked generators are ignored) and expand it.
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In the process we follow two rules. First rule is that if one of the monomials we 
add during expansion already exists in χ and the positive powers participating in the 
expansion are all unmarked, then we mark them and do not add this monomial for the 
second time.

Second rule is that we expand in the order of depth. Note that for any monomial 
m′ ∈ χ, m+/m

′ is a product of shifted affine roots. Since the affine roots are alge-
braically independent, the way to write m+/m

′ as a product of shifted affine roots is 
unique. We say m′ has depth k if m+/m

′ is a product of k shifted affine roots. The dom-
inant monomial m+ has depth zero. We expand it first. Then we expand all generated 
monomials of depth 1, then of depth 2 and so on.

Following these two rules, we proceed with the expansions until no unmarked positive 
powers are left.

Then, it is clear, that the algorithm either fails or produces a simple qq-character with 
a unique dominant monomial m+.

We also note that the affine roots have degree zero. Therefore for all monomials m′

in the result we have degi m+ = degi m′
+, i ∈ I.

One can use another version of the algorithm, declaring the initial monomial m to be 
anti-dominant and expanding the strings in the other direction. Moreover, one can do 
a mixture: declare that the initial monomial m is i-dominant, i ∈ J , where J ⊂ I is a 
subset of colors, and i-anti-dominant for i /∈ J . In such a way, we will be able to obtain 
infinite qq-characters which have neither dominant nor anti-dominant monomials.

2.4. Truncation of qq-characters

We describe a procedure which, given a qq-character, allows to produce a qq-character 
with a smaller number of terms. We will use this procedure in Section 3.1.

Suppose we have a qq-character χ obtained by the algorithm from a dominant mono-
mial m+. Let m ∈ χ be a monomial which was obtained after several expansions and 
which had an unmarked positive power Yi,σ when first obtained.

Consider now the dominant monomial m+Y
−1
i,σ and apply the algorithm. Then it 

proceeds the same way as the algorithm applied to m+. But when we arrive at the 
monomial m, the unmarked positive power is canceled and we do not do that expansion 
anymore. Therefore, the new qq-character will have less terms compared to χ, it can be 
obtained from χY −1

i,σ by dropping the appropriate terms. We call this qq-character the 
truncation of χY −1

i,σ and denote it by Trn(χY −1
i,σ ).

The truncation procedure is an analog of the construction of finite type modules 
which are obtained by multiplying known modules by polynomial modules and taking 
the irreducible submodule, see [5], [6]. The finite type modules have properties similar 
to finite-dimensional ones, but they are in general infinite-dimensional.
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Similarly, the truncation produces valid qq-characters, but there is a price to pay: the 
truncation changes the degree of the qq-character and, in general, one gets a qq-character 
of a non-zero degree.

2.5. Combinatorial fusion

Multiplication of qq-characters often produces the same truncation phenomenon. A 
non-generic product of qq-characters χ1χ2 is often not a qq-character, it may be not even 
a well-defined element of Ỹ. However, if there exist mutually generic monomials m1 ∈ χ1, 
m2 ∈ χ2, then all monomials of the qq-character generated by the product m1m2 are in 
χ1χ2.

For example, let r = 1, I = {1}. Then B(1)
1 = Y1,q + Y1,q−1 is a block of color one and 

of length 2. Then B(1)
1,q−1B

(1)
1,q is not a generic product but it contains the block of length 

three B(2)
1 = Y1,q2Y1,1 + Y1,q2Y1,q−2 + Y1,1Y1,q−2 : we have

B
(1)
1,q−1B

(1)
1,q = B

(2)
1 + Y 2

1,1.

Note that there is no complementary qq-character at all as Y 2
1,1 is not generic.

We call such products truncated.
We describe a combinatorial procedure which allows us to do the truncation of prod-

ucts of qq-characters without invoking the algorithm. This procedure originates in the 
study of the fusion of currents and, therefore, we call it combinatorial fusion.

For each i ∈ I, and a monomial σ ∈ R, define group homomorphisms li,σ, ri,σ sending 
monomials in Y to R considered as an additive group by the rule:

li,σ(Yj,τ ) �→ δij(q − q−1)τσ−1,

ri,σ(Yj,τ ) �→ −δij(q − q−1)τ−1σ.

We call the homomorphisms li,σ, ri,σ the combinatorial left and right contractions 
with the affine root Ai,σ. They are to be compared with (6.10), see Section 6 below.

We note, cf. (6.9),

li,τ1(Aj,τ2) = rj,τ2(Ai,τ1) = (q − q−1)(σij − σ−1
ij )τ2τ−1

1 .

Let m, n ∈ Y be two monomials. Assume that they have the form

m = m0
∏
j

A
aj

ij ,σj
, n = n0

∏
j

A
bj
ij ,σj

, (2.1)

where the product is over some finite set of indices and aj, bj ∈ Z. Define the relative 
combinatorial contraction:

[m,n]
[m0, n0]

=
∑

(ajlij ,σj
(n) + bjrij ,σj

(m0)) =
∑

(aj lij ,σj
(n0) + bjrij ,σj

(m)).

j j
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In particular, we have the following simple properties:

[m,n]
[m,n] = 0, [m,n]

[m′, n′] + [m′, n′]
[m,n] = 0, [m,n]

[m′, n′] + [m′, n′]
[m′′, n′′] = [m,n]

[m′′, n′′] . (2.2)

Then we define the relative pairing

(m,n)m0,n0 =
(

[m,n]
[m0, n0]

)
0
∈ Z,

where, for a Laurent polynomial p ∈ R, we denote by p0 its constant term.
Let us now have two simple qq-characters χ1, χ2 ∈ Y. Choose m0 ∈ χ1, n0 ∈ χ2. Then 

any m ∈ χ1, n ∈ χ2 have form (2.1).
We define the combinatorial fusion of χ1 and χ2 by multiplying the two and keeping 

only the terms with maximal pairing:

χ1 ∗ χ2 =
∑

m∈χ1,n∈χ2,
(m,n)m0,n0=M

mn, M = max
m∈χ1, n∈χ2

{(m,n)m0,n0}.

Clearly, the definition of χ1 ∗ χ2 does not depend on the choice of m0, n0, see (2.2). 
Moreover it is commutative as we clearly have

(m,n)m0,n0 = (n,m)n0,m0 .

We use the combinatorial fusion to construct non-trivial qq-characters.
For example, consider the case r = 1 when there is only one color. We have

(Y1,1 + Y1,q2) ∗ (Y1,q2 + Y1,q4) = Y1,1Y1,q2 + Y1,1Y1,q4 + Y1,q2Y1,q4 .

It is easy to see that all blocks of length k+1 can be obtained as multiple combinatorial 
fusion of blocks of length 2.

However, the combinatorial fusion should be used with care. For example, in the case 
r = 1, we have (Y1,1 + Y1,q2) ∗ (Y1,1 + Y1,q2) = 2Y1,1Y1,q2 . In fact, the correct answer 
here should be (Y 2

1,1 + (Y1,1Y1,q2)′ + Y 2
1,q2) as the main terms in two copies of Y1,1Y1,q2

actually cancel and one has to consider “the derivative” and bring back the other terms. 
Such an example is not tame though.

Conjecture 2.2. Let χ1, χ2 be simple qq-characters. Suppose the fusion product χ1 ∗χ2 is 
generic and has all non-zero coefficients one. Then χ1 ∗ χ2 is a qq-character.

If χ1, χ2 are mutually generic, then we have (m, n)m0,n0 = 0, for any m ∈ χ1, n ∈ χ2. 
Indeed, if Ai,τ is present in the expression (2.1) for m, then some monomial of χ1 contains 
Yi,τq and some monomial in χ1 contains Yi,τq−1 . It follows that χ2 does not contain these 
monomials and, therefore, Ai,τ makes no contribution to pairing (m, n)m0,n0 .
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In particular, if χ1, χ2 are mutually generic, then the fusion product coincides with 
the usual product: χ1 ∗ χ2 = χ2 ∗ χ1 = χ1χ2.

3. Examples of qq-characters

For a randomly chosen Cartan matrix, there are no finite degree zero qq-characters. 
It seems that every non-trivial example is interesting.

We often use the notation

Y1,σ = 1σ, Y2,σ = 2σ, Y −1
1,σ = 1σ, Y1,σ1Y1,σ2Y

−1
1,σ3

= 1σ3
σ1,σ2

,

Yi+1,σ1Y
−1
i+1,σ2

= (i + 1)σ2
σ1
,

and so on.

3.1. The case of gl2,1

We work with two independent variables q and q1. We set q2 = q−1q−1
1 , and p =

q2q2
1 = q−2

2 . Let I = {1, 2} and

C =
(

q − q−1 q1 − q−1
1

q1 − q−1
1 q − q−1

)
.

We have

A1 = 1q−1

q 2q−1
1

q1 , A2 = 1q−1
1

q1 2q−1

q .

We call qq-characters corresponding to this Cartan matrix qq-characters of gl2,1 type.
Note that we have a natural symmetry exchanging colors: 1σ ↔ 2σ. Given a family of 

qq-characters one can produce more qq-characters by shifting, taking generic products, 
and exchanging colors.

The case of gl2,1 is fundamental for us, because for any deformed Cartan matrix of 
fermionic type, any restriction ρJ with |J | = 2 gives either the trivial case of two non-
interacting fermions or the case of gl2,1 with the appropriately chosen q1. The case of 
gl2,1 is also the simplest one and it is convenient to illustrate our methods with.

We start with the dominant degree (1, 0) monomial V0 = 1q. Then we expand it 
and get monomial V1 = A−1

1,1V0 = 1q−12q1
q−1
1

. Note that 1q−1 is marked but 2q−1
1

is 
not. It creates the need to expand V1 in color 2 and we get a monomial of depth two, 
V2 = A−1

2,q2V1 = 1qq2
2
2q1
q1q2

2
. We again get an unmarked 1qq2

2
which we expand and get 

V3 = 1q−1q2
2
2q1
q−1
1 q2

2
which in its turn needs to be expanded in color 2. And so on. As the 

result we obtain an infinite linear qq-character of degree (1, 0) which we call χ+
1 .
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We have

χ+
1 =

∞∑
i=0

(1qp−i2q1
q1p−i + 1q−1p−i2q1

q−1
1 p−i

). (3.1)

We now start with the anti-dominant monomial 1q−1 . Expanding, we obtain an infinite 
linear qq-character of degree (1, 0) which we call χ−

1 . It can be obtained by changing in 
(3.1), q, q1, p, q2 to q−1, q−1

1 , p−1, q−1
2 .

Similarly, starting from dominant monomial 2q and anti-dominant monomial 2q−1 we 
obtain the infinite linear qq-characters of degree (0, 1) which we call χ+

2 and χ−
2 . The 

characters χ±
2 are obtained from χ±

1 by exchanging 1 ↔ 2.
We call all these qq-characters (and their shifts) half-lines.
Next, we consider the monomial 1q2q1 . We look at it as 1-dominant and 2-anti-

dominant. Expanding, we obtain an infinite linear qq-character of degree (1, 1) which 
we call χ+,−. We have

χ+,− =
∑
i∈Z

(1qp−i2q1p−i + 1q−1p−i2q−1
1 p−i). (3.2)

Note that χ+,− is periodic: τpχ+,− = χ+,−. Also note that the change 1 ↔ 2 in χ+,−

gives τq2χ+,−. We call the qq-character χ+,− and (the shifts of χ+,−) the line.

Now we are ready to construct slim characters.
First, we have slim linear prime qq-characters obtained by generic products χ±

1 1σ, 
χ±

2 2σ and χ+,−1σ12σ2 . We call them degree zero half-lines and lines respectively.
Next we use the truncation, see Section 2.4. Consider the qq-character χ+

1 1σ. For 
general σ, the product is generic and therefore it is a slim infinite qq-character. However, 
for σ = qp−n, where n ∈ Z≥0, we have a cancellation and a truncation. We obtain a 
finite linear qq-character with 2n + 1 terms which we denote by χ2n+1

1 = Trn(χ+
1 1qp−n)

and call a degree zero segment.

χ2n+1
1 =

n−1∑
i=0

(1qp−n

qp−i 2q1
q1p−i + 1qp−n

q−1p−i2q1
q−1
1 p−i

) + 2q1
q1p−n . (3.3)

We also have a linear qq-character χ2n+1
2 obtained either by truncation of χ+

2 or by 
replacing 1 ↔ 2 in χ2n+1

1 .
To obtain a qq-character with an even number of terms we need to truncate χ+

1 2q−1
1 p−n . 

This linear qq-character has 2n + 2 terms and degree (1, −1) which we call a segment. 
Similarly, we have a truncation of χ+

2 1q−1
1 p−m of degree (−1, 1). Making a shift by some 

κ and multiplying we obtain a slim prime qq-character with 2n × 2m terms. We denote 
this character by χ2n,2m and call a prime rectangle. The dominant monomial of χ2n,2m

is m2n,2m
+ = 1κq−1

1 p1−m

q 2q−1
1 p1−n

κq .
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V0,0 V0,1 V0,2 V0,3 V0,4 V0,5

V1,0 V1,1 V1,2 V1,3 V1,4 V1,5

V2,0 V2,1 V2,2 V2,3 V2,4 V2,5

V3,0 V3,1 V3,2 V3,3 V3,4 V3,5

A−1
1,1 A−1

2,q2
A−1

1,q2
2

A−1
2,q3

2
A−1

1,q4
2

A−1
1,1 A−1

2,q2
A−1

1,q2
2

A−1
2,q3

2
A−1

1,q4
2

A−1
1,1 A−1

2,q2
A−1

1,q2
2

A−1
2,q3

2
A−1

1,q4
2

A−1
1,1 A−1

2,q2
A−1

1,q2
2

A−1
2,q3

2
A−1

1,q4
2

A−1
2,κ

A−1
1,κq2

A−1
2,κq2

2

A−1
2,κ

A−1
1,κq2

A−1
2,κq2

2

A−1
2,κ

A−1
1,κq2

A−1
2,κq2

2

A−1
2,κ

A−1
1,κq2

A−1
2,κq2

2

A−1
2,κ

A−1
1,κq2

A−1
2,κq2

2

A−1
2,κ

A−1
1,κq2

A−1
2,κq2

2

Fig. 1. The 4 × 6 rectangle gl2,1 qq-character.

The prime rectangles have the form χ2n,2m
12 =

∑2n−1
a=0

∑2m−1
b=0 Va,b, where

V2k,2� = 1σ1, κq1
qp−k, κq1p−�2σ2, q1

κqp−�, q1p−k ,

V2k+1,2�+1 = 1σ1, κq1
q−1p−k, κq−1

1 p−�
2σ2, q1
κq−1p−�, q−1

1 p−k
,

V2k+1,2� = 1σ1, κq1
q−1p−k, κq1p−�2σ2, q1

κqp−�, q−1
1 qp−k

,

V2k,2�+1 = 1σ1, κq1
qp−k, κq−1

1 p−�
2σ2, q1
κq−1p−�, q1p−k .

where σ1 = κq−1p1−m, σ2 = q−1p1−n, and κ is sufficiently general to avoid any cancel-
lations.

The graph of a prime rectangle with highest monomial m6,4
+ = 1κq−1p−1

q 2q−1p−2

qκ is 
shown in Fig. 1. Note that this qq-character is slim but not linear.

Finally, we can truncate products (with general enough κ):

χ±,2n
12 = Trn

(
χ±

1 τκ(χ+
2 )1κq−1p1−n

)
, χ±,2n

21 = Trn
(
χ±

2 τκ(χ+
1 )2κq−1p1−n

)
,

χ+,−,2n
2 = Trn

(
χ+,−τκ(χ+

2 )1κq−1pn−1
)
, χ+,−,2n

2 = Trn
(
χ+,−τκ(χ+

1 )2κq−1pn−1
)
.

The results are slim prime infinite qq-characters which we call prime strips. Multiplying 
by factors 2σ, 1σ with general enough σ to make the factors mutually generic, we obtain 
degree zero qq-characters. We call these slim prime qq-characters degree zero prime strips.

It turns out that we have constructed all slim prime gl2,1 qq-characters up to a shift.

Proposition 3.1. The prime slim qq-characters of gl2,1 type are either degree zero half-
lines, lines, segments, prime strips, or prime rectangles.
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The linear qq-characters of gl2,1 are either degree zero half-lines, lines, segments, or 
squares.

Proof. Let χ be a slim qq-character and m ∈ χ. Let m = m1/m2 where both m1 and 
m2 contain no inverses. Without loss of generality, we assume that m is such that m2
contains the smallest possible number of variables. Classify the variables appearing in 
m1 (i.e. positive powers in m) as follows. We have 1σ (resp. 2σ) which are 1-dominant 
(resp. 2-dominant) in their blocks and the ones which are 1-anti-dominant (resp. 2-anti-
dominant). We place dominant 1qσ in pairs with anti-dominant 2q1σ when such pairs 
exist. Similarly we place dominant 2qσ in pairs with anti-dominant 1q1σ when possible. As 
the result we have several unpaired dominant variables, several unpaired anti-dominant 
variables and several pairs.

Generate from each unpaired variable Yi,σ a half-line qq-character of degree (1, 0) or 
(0, 1) and from each pair a line qq-character of degree (1, 1). Consider the product χ̂ of 
all these qq-characters. This product does not have to be generic, so it does not have 
to be a qq-character. However, all monomials in χ are obtained from this product by 
multiplying by m−1

2 and truncating the result. Note that every half line creates an inverse 
of a variable which we call a new inverse.

It is convenient to think that monomials in χ̂ are labeled by the set of integer points in 
a multi-dimensional simplex, formed by the Cartesian product of all participating lines 
and half lines.

Now we consider the first possible truncation on each of the edges of this simplex. 
Thus we take m and expand it in the direction of one of the half lines until we arrive 
at the first instance when we generate a monomial m′ with unmarked 1σ or 2σ which is 
canceled by m2.

Note that such a cancellation cannot truncate a line since, in such a case, m′ would 
have less variables than m. Therefore each such cancellation truncates a half-line to 
a segment. Then χ̂ truncates to a sum with monomials labeled by integer points in a 
multidimensional parallelepiped (with possibly some infinite sides).

We claim that there are no further truncation. Indeed, the only possibility would be a 
new inverse. Suppose we have a new 1σ produced by a half line starting from a dominant 
monomial. Then the dominant monomial of that half-line is n = 2qq−1

1 σ. Then we should 
also have a 1σ produced on the edge of our parallelepiped. Expanding this 1σ (still on 
the edge), we obtain 2q−1q−1

1 σ. If this positive power does not cancel, multiplying by n
leads to a block of length two and a contradiction since the initial qq-character was slim. 
If this positive power cancels, then the m−1

2 contains 2q−1q−1
1 σ and n cannot be expanded 

to start with, which is also a contradiction.
Finally, if we have more than 2 different half-lines or segments or lines then χ is not 

prime. If one of the segments is a degree zero segment, then it is just a factor of χ. If 
we have segments of degrees (1, −1) and (−1, 1) then their product is a prime rectangle 
which splits as a factor. If we have segments of degrees (1, −1) only, then we should have 
either a half-line of degree (−1, 0) and at least one monomial 2σ which is a common factor 
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U0,0 U0,1 U0,2 U0,3

U1,0 U1,1 U1,2 U1,3

U2,0 U2,1 U2,2 U2,3

U3,0 U3,1 U3,2 U3,3

A−1
1,1 A−1

1,q2 A−1
1,q4

A−1
1,1 A−1

1,q2 A−1
1,q4

A−1
1,1 A−1

1,q2 A−1
1,q4

A−1
1,1 A−1

1,q2 A−1
1,q4

A−1
2,κ

A−1
1,κq2

A−1
2,κq4

A−1
2,κ

A−1
1,κq2

A−1
2,κq4

A−1
2,κ

A−1
1,κq2

A−1
2,κq4

A−1
2,κ

A−1
1,κq2

A−1
2,κq4

Fig. 2. The 4 × 4 non-slim square gl2,1 qq-character.

or a full line and at least two common monomials of the form 2σ. Then the product of 
this monomial (or monomials), of the segment and of the half-line (or line) is a factor.

If there are no segments then the qq-character can be prime only if there is only one 
half line or line. �

An example of non-slim degree zero qq-characters is given by non-slim squares. It 
starts with the top monomial U0,0 = 1κq−1

1 ,κq−1
1 q2,...,κq−1

1 q2k−2

q,q3,...,q2k−1 2q−1
1 ,q−1

1 q2,...,q−1
1 q2k−2

κq,κq3,...,κq2k−1 . The 
monomial U0,0 has degree zero. Each step of the algorithm does not create any new 
positive powers. Thus the result is a k × k square which we now describe.

For a, b = 0, 1, . . . , k − 1, we define

Ua,b =
a−1∏
i=0

1q2i−12q1q
2i

k−2∏
i=a

1q2i+12q−1
1 q2i

b−1∏
i=0

2κq2i−11κq1q
2i

k−2∏
i=b

2κq2i+11κq−1
1 q2i

.

Then χk =
∑k−1

a,b=0 Ua,b is a degree zero non-slim qq-character. The graph of character 
χ4 is given in Fig. 2.

Several more non-slim degree zero gl2,1 qq-characters are given in Figs. 11 and 12.

3.2. The cases of gln,n, gln+1,n, ĝln,n

We again work with two independent variables q and q1. We set q2 = q−1q−1
1 .

Let I = {1, . . . , r}. Let C be an r × r matrix with all zero entries except

cii = q − q−1, c2k−1,2k = c2k,2k−1 = q1 − q−1
1 , c2k+1,2k = c2k,2k+1 = q2 − q−1

2 .

(3.4)
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V0 V1 V2 V3 . . . Vr
A−1

1,1 A−1
2,q2

A−1
3,q−1 A−1

4,q−1q2

Fig. 3. The vector gln,n and gln+1,n qq-characters.

We say that C is of type gln,n if r = 2n − 1 and of type gln+1,n if r = 2n.
Then for i ∈ I we have

Ai =

⎧⎨⎩(i−1)q
−1
2

q2 (i)q−1

q (i + 1)q
−1
1

q1 (i = 2k − 1),
(i−1)q

−1
1

q1 (i)q−1

q (i + 1)q
−1
2

q2 (i = 2k),
(3.5)

where by convention 0σ = (r + 1)σ = 1.
We start with the dominant degree zero monomial m+ = 1qq2

2
q and apply the algorithm. 

The result is a slim qq-character with r + 1 terms which we now explain.
For i = 0, . . . , r, we set

Vi =

⎧⎪⎪⎨⎪⎪⎩
(i)q1q

−k+1

q2q−k (i + 1)q
2
2q

−k+1

q−k+1 (i = 2k),

(i)q
2
2q

−k+1

q−k−1 (i + 1)q1q
−k

q−1
1 q−k

(i = 2k + 1).
(3.6)

Then

V2k+1 = A−1
2k+1,q−kV2k, V2k+2 = A−1

2k+2,q2q−kV2k+1.

Thus χ =
∑r

i=0 Vi is a slim linear qq-character which we call the vector qq-character of 
gln,n type if r = 2n − 1 and of gln+1,n type if r = 2n.

The graph of qq-character χ is shown in Fig. 3.

Similarly, one constructs another qq-character χ∨ with r + 1 terms starting with 

dominant monomial m+ = (r)qq
2
2

q if r = 2n and m+ = (r)qq
2
1

q if r = 2n − 1.

Now we consider the affinization of the Cartan matrix adding one more color 0. We 
do it only in the case r = 2n − 1. We have Î = {0, 1, . . . , r} ⊃ I. The Cartan matrix 
elements cij are given by the same equation (3.4) where all indices are taken modulo 
r + 1.2

The affine roots Ai have form (3.5) where all indices are taken modulo r + 1.
As far as we know in this case we do not have finite slim qq-characters. But there are 

infinite ones. We start with the monomial V̂0 = 0q−1
2

q2 1qq2

q . We declare it to be 1-dominant 
and 0-anti-dominant. We now describe the resulting qq-character.

2 It is known that in this case one can introduce one extra independent parameter q3 without changing 
the structure of qq-characters, see [9], however, then c0,1 = (q2 − q−1

2 )q3 does not have the postulated form 
σ − σ−1. Therefore we do not cover it here.
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. . . V̂r,Q−1 V̂0 . . . V̂r V̂0,Q . . . V̂r,Q
. . .

A−1
0,qq2

A−1
1,1 A−1

r,qQ A−1
0,qq2Q

A−1
1,Q A−1

r,qQ2 A−1
r,qq2Q2

Fig. 4. The vector ĝln,n qq-character.

Let V̂i (i ∈ Z) be given by formula (3.6) where i is taken modulo r + 1. Set V̂i,σ =
τσ(V̂i).

We note the periodicity

V̂i+r+1 = V̂i,Q, Q = q−n.

Then

χ̂ =
∑
i∈Z

V̂i =
∑
j∈Z

r∑
i=0

V̂i,Qj

is a slim qq-character which we call the vector qq-character of ĝln,n type.
The graph of χ̂ is given in Fig. 4.
In particular, the restriction to the non-affine part has the form ρI(χ̂) =

∑
i∈Z τQiχ.

Similarly, one can construct another slim linear qq-character χ̂∨ starting from mono-
mial rqq

2
1

q 0q−1
1

q1 which is r-dominant and 0-anti-dominant.

3.3. The cases of osp2n,2n, osp2n+2,2n, ˆosp2n,2n, ˆosp2n+2,2n

We stay with two independent variables q and q1. We set q2 = q−1q−1
1 .

Let I = {1, . . . , r}, r ≥ 3. The Cartan matrix is the same as (3.4) except for cir and 
cri with i = r − 1, r − 2. For these elements we have

cr,r−2 = cr−1,r−2, cr,r−1 = cr−1,r = (−1)r(q1q−1
2 − q2q

−1
1 ). (3.7)

Then the bottom corner 3 × 3 submatrix of the Cartan matrix is⎛⎝ q − q−1 q1 − q−1
1 q1 − q−1

1
q1 − q−1

1 q − q−1 q−1
1 q2 − q1q

−1
2

q1 − q−1
1 q−1

1 q2 − q1q
−1
2 q − q−1

⎞⎠
or ⎛⎝ q − q−1 q2 − q−1

2 q2 − q−1
2

q2 − q−1
2 q − q−1 q1q

−1
2 − q−1

1 q2
q2 − q−1

2 q1q
−1
2 − q−1

1 q2 q − q−1

⎞⎠ ,

where the first matrix corresponds to the case of odd r and the second one to the case 
of even r.

We say that C is of type osp2n+2,2n if r = 2n + 1 and of type osp2n,2n if r = 2n.
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V0 V1 . . . Vr−3 Vr−2

Vr−1

Vr−1

Vr−2 . . .Vr−3 V1 V0
A−1

1,1 A−1
r−2,q−n+1

A−1
r−1,q−n+1q2

A−1
r,q−n+1q2

A−1
r−1,q−n+1q2

A−1
r,q−n+1q2

A−1
r−2,q−n+1q2

2
A−1

1,q−2nq2
2

Fig. 5. The vector osp2n+2,2n qq-character.

Then Ai, i = 1, 2, . . . , r − 3, are given by (3.5). In addition if r = 2n + 1 then

Ar−2 = (r−2)q
−1

q (r−3)q
−1
2

q2 (r−1)q
−1
1

q1 (r)q
−1
1

q1 ,

Ar−1 = (r−1)q
−1

q (r−2)q
−1
1

q1 (r)q
−1
1 q2

q1q
−1
2

,

Ar = (r)q
−1

q (r−2)q
−1
1

q1 (r−1)q1q
−1
2

q−1
1 q2

.

The formulas for Ar−2, Ar−1, Ar when r = 2n are obtained by exchanging q2 and q1.
We have a slim qq-character with 2r terms starting with dominant monomial V0 =

1qq2
2

q , χ = V0 + V1 + · · · + Vr−1 + Vr−1 + · · · + V1 + V0.
We give the formulas for the case of r = 2n +1. The monomials Vi with i = 1, . . . , r−3

are given by (3.6). In addition

Vr−2 = (r−2)q
2
2q

−n+2

q−n (r−1)q1q
−n+1

q−1
1 q−n+1(r)q1q

−n+1

q−1
1 q−n+1 ,

Vr−1 = (r−1)q1q
−n+1

q−1
1 q−n−1(r)q

3
2q

−n+2

q−1
1 q−n+1 ,

Vr−1 = (r)q1q
−n+1

q−1
1 q−n−1(r−1)q

3
2q

−n+2

q−1
1 q−n+1 ,

Vr−2 = (r−2)q
−n

q2
2q

−n+2(r−1)q
3
2q

−n+2

q2q−n (r)q
3
2q

−n+2

q2q−n ,

(3.8)

and finally

Vi =

⎧⎪⎪⎨⎪⎪⎩
(i)q

3
2q

−2n+k

q2q−2n+k (i + 1)q
−2n+k−1

q2
2q

−2n+k−1 (i = 2k),

(i)q
−2n+k−1

q2
2q

−2n+k+1 (i + 1)q
3
2q

−2n+k+1

q2q−2n+k−1 (i = 2k + 1).

(3.9)

The graph of this qq-character is given in Fig. 5.
The formulas in the case r = 2n are similar. In particular the graph is the same (with 

two vertices less) the only difference is the shifts of the affine roots.

Now we go to the affinization. Let Î = {0, 1, . . . , r}. The affine Cartan matrix Ĉ is 
determined by ĉij = cij , i, j ∈ I and the other non-zero entries are c00 = q − q−1, 
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. . . V̂2,Q−1 V̂1,Q−1

V̂0,Q−1

V̂0

. . .V̂1 V̂r−2

V̂r−1

V̂r−1

V̂r−2 . . . V̂1 V̂1,Q

V̂0

V̂0,Q

. . .
A−1

2,q−1
2

A−1
1,1

A−1
1,1A−1

0,1

A−1
0,1

A−1
2,q2

A−1
r−1,Q1/2

A−1
r,Q1/2

A−1
r−1,Q1/2

A−1
r,Q1/2

A−1
2,Qq−1

2

A−1
1,Q

A−1
1,QA−1

0,Q

A−1
0,Q

Fig. 6. The vector ˆosp2n+2,2n qq-characters.

c02 = c20 = q1−q−1
1 , c01 = c10 = q−1

1 q2−q1q
−1
2 . Then the left upper corner looks similar 

to the right bottom corner:⎛⎝ q − q−1 q−1
1 q2 − q1q

−1
2 q1 − q−1

1
q−1
1 q2 − q1q

−1
2 q − q−1 q1 − q−1

1
q1 − q−1

1 q1 − q−1
1 q − q−1

⎞⎠ .

We start with a monomial V̂0 = 1qq2
2

q 0q2
1q

q−1 which is 1-dominant and 0-anti-dominant 
and obtain an infinite slim qq-character which we now describe.

Let V̂i = Vi and V̂i = Vi be given by (3.6) and by (3.9) if i = 2, . . . , r− 3, and by (3.8)
if i = r − 2, r − 1. In addition we set

Q = q2
2q

−2n+4

and then

V̂0 = 1qq2
2

q 0q2
1q

q−1 , V̂0 = 1q−2n+3

q2
2q

−2n+30
q4
2q

−2n+5

q2
2q

−2n+5 ,

V̂1 = 2q1
q−1
1

1qq2
2

q−10
qq2

2
q−1 , V̂1 = 2q3

2q
−2n+5

q2q−2n+30q−2n+3

q2
2q

−2n+51q−2n+3

q2
2q

−2n+5 .

We also use the notation V̂i,σ = τσVi and V̂i,σ = τσVi.
Then we have a slim qq-character χ̂ =

∑
j∈Z

∑r−1
i=0 (V̂i,Qj + V̂i,Qj ). We call this qq-

character the vector qq-character of ˆosp2n,2n type.
The graph of the vector qq-character of ˆosp2n,2n type is given in Fig. 6.
The vector qq-character of ˆosp2n+2,2n type corresponding to r = 2n is similar.

3.4. The case of the vector representation of D(2, 1; α)

In this section we work with three independent variables: q = q0, q1, q2. We also use 
q3 = (q0q1q2)−1 and pi = q2q2

i , i = 1, 2, 3.
Set I = {1, 2, 3}. In this section we study the following Cartan matrix:

C =

⎛⎝q0 − q−1
0 q3 − q−1

3 q2 − q−1
2

q3 − q−1
3 q0 − q−1

0 q1 − q−1
1

q2 − q−1
2 q1 − q−1

1 q0 − q−1
0

⎞⎠ . (3.10)
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V 312
1,1 V 312

2,1

V 312
0,0 V 312

1,0 V 312
2,0

V 312
3,1

V 312
3,0

. . .

. . .

A−1
1,1 A−1

1,1 A−1
1,1

A−1
2,q2q

−1
1

A−1
3,q−1

0 q2q
−2
1

A−1
3,q0q2

A−1
2,q2q

−1
1

A−1
3,q−1

0 q2q
−2
1

A−1
2,q−2

0 q2q
−3
1

A−1
2,q−2

0 q2q
−3
1

Fig. 7. The vector D(2, 1;α) qq-character.

We have

A1 = 1q−1
0

q0 2q−1
3

q3 3q−1
2

q2 , A2 = 1q−1
3

q3 2q−1
0

q0 3q−1
1

q1 , A3 = 1q−1
2

q2 2q−1
1

q1 3q−1
0

q0 . (3.11)

We call qq-characters corresponding to this data of D(2, 1; α) type.
Note the natural symmetry under simultaneous permutations of colors 1, 2, 3 and 

variables q1, q2, q3.
Given a qq-character, we have three restriction maps ρ{1,2}, ρ{1,3}, and ρ{2,3} which 

produce qq-characters of gl2,1 type (with gl2,1 non-elliptic parameters q3, q2, and q1 re-
spectively).

We start with a dominant monomial V 312
0,0 = 3q−1

2
q2
0q2

. Then ρ{1,3}V 312
0,0 coincides (up to 

a shift by q0q2) with the dominant monomial for the vector representation of gl2,1.
Applying the algorithm, we obtain the following result.
For a ∈ Z≥0, b = 0, 1, define the monomials V 312

a,b by the formulas

V 312
2k,0 = 1q0p

−k
1

q0 2q−1
3

q−1
3 p−k

1
3q−1

2
q2
0q2p

−k
1

,

V 312
2k+1,0 = 1q0q

2
2p

−k
1

q0 2q−1
3

q−2
1 q−1

3 p−k
1

3q−1
2

q2p
−k
1

,

V 312
2k,1 = 1q0p

−k
1

q−1
0

2q3
q−1
3 p−k

1
3q2
q2
0q2p

−k
1

,

V 312
2k+1,1 = 1q0q

2
2p

−k
1

q−1
0

2q3
q−2
1 q−1

3 p−k
1

3q2
q2p

−k
1

.

(3.12)

Then χ312 =
∑

a,b V
312
a,b is a slim linear qq-character which we call the vector qq-

character of D(2, 1; α) type. The graph is given in Fig. 7.
Note that the gl2,1 character ρ{1,3}χ312 consists of one vector qq-character (with three 

terms) described in Section 3.2 (also discussed in Section 3.1 as a degree zero segment) 
and an infinite sum of shifts of a prime 2 ×2 rectangle described in Section 3.1. The gl2,1
character ρ{2,3}χ312 gives two gl2,1 degree zero half-line qq-characters whose graphs in 
Fig. 7 are the horizontal half-lines. The gl2,1 character ρ{1,2}χ312 is a sum of the trivial 
qq-character with an infinite sum of shifts of a prime 2 × 2 rectangle.

Using the symmetries we obtain six slim linear qq-characters χabc, where {a, b, c} =
{1, 2, 3}.
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We also can construct similar six slim linear qq-characters χabc, where {a, b, c} =
{1, 2, 3} which have an anti-dominant monomial. For example, the qq-character χ312
starts at the anti-dominant monomial 3q2

q−2
0 q−1

2
. The formulas for other monomials are 

obtained from (3.12) by replacing qi and pi with q−1
i , p−1

i . The graph of χ312 is obtained 
from Fig. 7 by changing the direction of all edges.

3.5. The case of the vector representation of D̂(2, 1; α)

We affinize the results of the previous section.
We have the same three independent variables: q = q0, q1, q2. We still use q3 =

(qq1q2)−1 and pi = q2q2
i , i = 1, 2, 3.

Let Î = {0, 1, 2, 3}. We set

Ĉ =

⎛⎜⎜⎝
q0 − q−1

0 q1 − q−1
1 q2 − q−1

2 q3 − q−1
3

q1 − q−1
1 q0 − q−1

0 q3 − q−1
3 q2 − q−1

2
q2 − q−1

2 q3 − q−1
3 q0 − q−1

0 q1 − q−1
1

q3 − q−1
3 q2 − q−1

2 q1 − q−1
1 q0 − q−1

0

⎞⎟⎟⎠ . (3.13)

This deformed Cartan matrix produces the affine roots:

A0 = 0q−1
0

q0 1q−1
1

q1 2q−1
2

q2 3q−1
3

q3 , A1 = 0q−1
1

q1 1q−1
0

q0 2q−1
3

q3 3q−1
2

q2 ,

A2 = 0q−1
2

q2 1q−1
3

q3 2q−1
0

q0 3q−1
1

q1 , A3 = 0q−1
3

q3 1q−1
2

q2 2q−1
1

q1 3q−1
0

q0 .

We call qq-characters corresponding to this Cartan matrix of D̂(2, 1; α) type.
We still have symmetries given by permutations of colors 1, 2, 3 with simultaneous 

permutations of variables q1, q2, q3.
The restriction ρ{1,2,3}Ai, i = 1, 2, 3, gives the affine roots from the previous section. 

Moreover, for any J ⊂ Î the restrictions ρJ reproduce the affine roots of gl2,1 type if 
|J | = 2 and of D(2, 1; α) type if |J | = 3.

We start with the monomial m = V0,0 = 0q−1
1 q−2

3
q1 3q−1

2
q2
0q2

which we declare 3-dominant 
and 0-anti-dominant. Then the algorithm produces the following result.

Set

V 312
2k,2� = 0q−1

1 q−2
3 p−k

1
q1p

−�
1

1q0p
−k
1

q0p
−�
1

2q−1
3 p−�

1
q−1
3 p−k

1
3q−1

2 p−�
1

q2
0q2p

−k
1

,

V 312
2k+1,2� = 0q−1

1 p−k
1

q1p
−�
1

1q0q
2
2p

−k
1

q0p
−�
1

2q−1
3 p−�

1
q−2
1 q−1

3 p−k
1

3q−1
2 p−�

1
q2p

−k
1

,

V 312
2k,2�+1 = 0q−1

1 q−2
3 p−k

1
q−1
1 p−�

1
1q0p

−k
1

q−1
0 p−�

1
2q3p

−�
1

q−1
3 p−k

1
3q2p

−�
1

q2
0q2p

−k
1

,

V 312
2k+1,2�+1 = 0q−1

1 p−k
1

q−1
1 p−�

1
1q0q

2
2p

−k
1

q−1
0 p−�

1
2q3p

−�
1

q−2
1 q−1

3 p−k
1

3q2p
−�
1

q2p
−k
1

.

(3.14)

Then the sum χ̂312 =
∑

a≥b V
312
a,b is a linear qq-character which we call the vector qq-

character of D̂(2, 1; α) type. The graph of the vector qq-character is pictured in Fig. 8.
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. . .

. . .. . .

V 312
1,1 V 312

2,1 V 312
3,1 . . .

V 312
0,0 V 312

1,0 V 312
2,0 V 312

3,0 . . .

V 312
−1,−1 V 312

0,−1 V 312
1,−1 V 312

2,−1 V 312
3,−1 . . .

A−1
0,q0q1

A−1
0,q0q1

A−1
0,q0q1

A−1
0,q0q1

A−1
1,1 A−1

1,1 A−1
1,1

A−1
2,q2q

−1
1

A−1
3,q0q2p

−1
1

A−1
3,q0q2

A−1
2,q2q

−1
1

A−1
3,q0q2p

−1
1

A−1
2,q2

0q1q2
A−1

3,q0q2
A−1

2,q2q
−1
1

A−1
3,q0q2p

−1
1

Fig. 8. The vector D̂(2, 1;α) character.

The restrictions ρ{1,2,3}χ̂312 and ρ{0,2,3}χ̂312 are sums of shifts of the vector qq-
characters of D(2, 1; α) type.

The restrictions ρ{0,1,3}χ̂312 and ρ{0,1,2}χ̂312 are the sums of shifts of lowest weight 
analogs of vector qq-characters of D(2, 1; α) type produced from an anti-dominant mono-
mial.

Using the symmetries we obtain linear qq-characters χ̂a,b,c, where a, b, c are distinct 
elements of Î = {0, 1, 2, 3}. Among those we have coincidences, for example, χ̂312 is a 
shift of χ̂203. In total we have 12 distinct vector qq-characters of D̂(2, 1; α) type.

We describe a different construction of the vector representations of D̂(2, 1; α) type. 
Define monomials of degree (−1, −1, 1, 1)

R±
1 = 0q±1

3 1q±1
2 2q∓1

1
3q∓1

0
(3.15)

and monomials of degree (1, 1, −1, −1)

T±
1 = 0q∓1

1
1q∓1

0
2q±1

3 3q±1
2 . (3.16)

As always, we set R±
1,σ = τσR

±1
1 and T±

1,σ = τσT
±1
1 .

Then it is easy to check that χR =
∑

i∈Z(R+
1,pi +R−

1,pi) and χT =
∑

i∈Z(T+
1,pi +T−

1,pi)
are qq-characters of degrees (−1, −1, 1, 1) and (1, 1, −1, −1) respectively.

The restrictions ρ{2,3}χR and ρ{0,1}χT are simply line qq-characters of type gl2,1.
It follows that a generic product τκ(χR)χT is a linear qq-character of degree 0. And 

for special monomials κ, the product truncates. The qq-character χ312 is a truncation of 
τq0q2(χR)χT .
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4. The 18, 66, 130

In this section we study finite degree zero tame qq-characters of type D(2, 1; α) and 
their restrictions to gl2,1. In particular our Cartan matrix is (3.10) and the affine roots 
are given by (3.11).

4.1. 18

The smallest possible nontrivial degree zero qq-character of type D(2, 1; α) turns out 
to have 18 terms. It is constructed from the dominant monomial m18

+ = 1q1
q−1
1

2q2
q−1
2

3q3
q−1
3

. 
In fact m18

+ = ρ{1,2,3}A−1
0 , where A0 is the affine root of type D̂(2, 1; α).

The qq-character χ18 =
∑18

i=1 vi turns out to be slim but not linear. We call it the 
adjoint qq-character of D(2, 1; α) type.

The monomials vi and the graph are shown in Fig. 9, where we set

A−1
i,± = A−1

i,q−1
0 q±1

i

.

The graph has a symmetry with respect to changes of colors and variables. In our 
picture the symmetry which exchanges colors 1 and 3 corresponds to the reflection about 
the vertical line through vertices v1, v3, v6, v11, v9, v13, v16 and v18. Here and everywhere 
we do not picture the symmetry line.

It is also symmetric with respect to the middle horizontal line connecting vertices 
v8, v9, v10 and v11 (with colors preserved and arrows reversed).

By the depth counting, the adjoint qq-character has the form 18 = 1 +3 +3 +4 +3 +3 +1.

We note that the restriction ρ{2,3}χ18 decomposes by the rule

18 = 9 + 4 + 4 + 1.

Here the 1 is a trivial (polynomial) module, the two fours are squares and the 9 is a 
generic product of the vector and covector gl2,1 qq-characters.

4.2. 66

The next smallest simple finite degree zero qq-character of D(2, 1; α) type has 66
monomials. Up to a shift there are three of such qq-characters obtained by permutations 
of colors. We describe the one with the dominant monomial

m66,1
+ = m18

+ τp1(v2) = 1q1p1
q−1
1

2q2
q−1
2 p1

3q3
q−1
3 p1

,

where color 1 is chosen and the symmetry between colors 2 and 3 is preserved.
Starting from this monomial one produces a slim simple (but not linear) qq-character 

χ66,1 with 66 terms.
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v1 = 1q1
q−1
1

2q2
q−1
2

3q3
q−1
3

v2 = 1q1
q−2
0 q−1

1
2q2q

2
3

q−1
2

3q2
2q3

q−1
3

v3 = 1q1q
2
3

q−1
1

2q2
q−2
0 q−1

2
3q2

1q3

q−1
3

v4 = 1q1q
2
2

q−1
1

2q2
1q2

q−1
2

3q3
q−2
0 q−1

3

v5 = 1q1q
2
3

q−2
0 q−1

1
2q2q

2
3

q−2
0 q−1

2
3q2

1q3,q
2
2q3

q−1
3 ,q3

v6 = 1q1q
2
2

q−2
0 q−1

1
2q2q

2
1,q2q

2
3

q−1
2 ,q2

3q2
2q3

q−2
0 q−1

3
v7 = 1q1q

2
2,q1q

2
3

q−1
1 ,q1

2q2
1q2

q−2
0 q−1

2
3q2

1q3

q−2
0 q−1

3
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3
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2
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A−1
2,+

A−1
1,+

A−1
3,+

A−1
1,+
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Fig. 9. The adjoint D(2, 1;α) qq-character.

Alternatively, the character χ66,1 can be obtained as the combinatorial fusion:

χ66,1 = χ18 ∗ τp1χ
18.

We describe the monomials and the graph in Fig. 10. In this graph we use a notation 
(i, j) = viτp1(vj), where vi are monomials in the adjoint qq-character χ18, see Fig. 9. All 
arrows are directed downwards. The corresponding shifts of A−1

i are readily found from 
the picture of the adjoint qq-character as well.

The graph has a reflection symmetry across the vertical line connecting the nodes 
(1, 2) and (15, 18) which changes colors 2 and 3 and variables q2 and q3. To visualize it 
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(1, 2)
•

(1, 5)•
(2, 2)
• (1, 6)•

(1, 8)• (2, 5)•
(1, 11)

• (2, 6)• (1, 9)•

(3, 8)• (2, 8)• (1, 12)• (2, 11)• (1, 14)• (1, 13)• (2, 9)• (4, 9)•

(5, 8)•
(3, 12)

• (2, 12)• (1, 16)•
(2, 14)

•

(1, 15)
• (1, 17)•(2, 13)•

(4, 13)
• (6, 9)•

(8, 8)•
(5, 12)

•
(3, 16)

• (2, 16)•
(3, 15)• (1, 18)

•
(2, 15)

• (2, 17)•
(4, 15)• (4, 17)

•
(6, 13)

• (9, 9)•

(15, 18)
•

(12, 18)•
(15, 15)

• (13, 18)•

(8, 18)• (12, 15)•
(11, 18)

• (13, 15)• (9, 18)•

(8, 16)• (8, 15)• (5, 18)• (11, 15)• (7, 18)• (6, 18)• (9, 15)• (9, 17)•

(8, 12)•
(5, 16)

• (5, 15)• (3, 18)•
(2, 18)

•

(7, 15)
• (4, 18)•(6, 15)•

(6, 17)
• (9, 13)•

Fig. 10. The 66 term qq-character of type D(2, 1;α).

one has to imagine left vertices of the short diagonals of blue parallelograms to be below 
others and the right ones above.
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The graph has also a reflection symmetry across the horizontal line connecting the 
nodes (8, 8) and (9, 9). This symmetry does not change colors but changes the orientation 
of edges.

By the depth counting, the 66 term qq-character has the decomposition

66 = 1 + 3 + 5 + 8 + 10 + 12 + 10 + 8 + 5 + 3 + 1.

The gl2,1 restriction ρ{2,3}χ66,1 decomposes by the rule

66 = 25 + 16 + 16 + 9,

where both 16 are prime squares while 25 and 9 are non-prime squares obtained by 
generic product of two segments.

The gl2,1 restrictions ρ{1,2}χ66,1 and ρ{1,3}χ66,1 decompose by the rule

66 = 16 + 12 + 12 + 9 + 4 + 4 + 4 + 4 + 1.

Here the 16 is a generic product of two squares, the twelves are products of a square by 
the vector qq-characters, the fours are squares.

4.3. 130

In this section we discuss the qq-character with the dominant monomial

m130
+ = m18

+ τq2
0
(m18

+ ) = 1q−1
1 , q2q−1

1
q1, q2q1

2q−1
2 , q2q−1

2
q2, q2q2

3q−1
3 , q2q−1

3
q3, q2q3

.

Then the algorithm produces a finite degree zero qq-character χ130 with 130 terms.
Alternatively, the character χ130 can be obtained as the combinatorial fusion:

χ130,1 = χ18 ∗ τq2
0
χ18.

The qq-character χ130 is clearly not slim and not linear. It does have the symmetry 
with respect to permutations of colors together with the variables.

The graph of that qq-character is too large to picture. By the depth counting it 
decomposes as

130 = 1 + 3 + 6 + 10 + 15 + 18 + 24 + 18 + 15 + 10 + 6 + 3 + 1.

Instead we describe the restriction ρ{2,3}χ130. As a gl2,1 qq-character we have the de-
composition

130 = 2(12 + 22 + 32 + 52) + 42 + 62



(2, 2)
•

(5, 2)•
(6, 2)
•

(8, 2)•
(5, 5)
•

(11, 2)
•

(6, 6)
•

(9, 2)
•

(8, 5)•
(12, 2)

•
(11, 5)

• (11, 6)•(13, 2)• (9, 6)•

(8, 8)•
(12, 5)

•
(12, 6)

•
(15, 2)•

(11, 11)•
(13, 5)• (13, 6)• (9, 9)•

(12, 8)•
(12, 11)

•
(15, 5)

• (15, 6)• (13, 11)• (13, 9)•

(12, 12)•
(15, 8)

•
(15, 11)

•
(15, 9)

•
(13, 13)

•

(15, 12)
•

(15, 13)
•

(15, 15)
•

Fig. 11. The 36 term gl2,1 qq-character.

In this section we abbreviate (i, j) = viτq2(vj), where vi are monomials from the 
adjoint 18-term qq-character. Also, all arrows are oriented downwards.

The 62 term qq-character is given in Fig. 11. Note that the graph has a symmetry 
interchanging colors 2 and 3 which corresponds to the reflection about the vertical line 
through nodes (2, 2) and (15, 15). The graph has also a symmetry about the horizontal 
line connecting (8, 8) and (9, 9) (the vertices (15, 2) and (11, 11) should be placed to the 
line and vertices (12, 6) and (13, 5) should be moved off the line to be images of each 
other).

The two 52 term qq-characters are given in Fig. 12. Note that the graphs again have 
symmetries interchanging colors 2 and 3 which correspond to the reflection about the 
vertical line through nodes (2, 1), (15, 7) for the first graph and through (14, 2), (18, 15)
for the second one. The second graph is the reflection of the first one with respect the 
horizontal line through vertices (12, 3) and (13, 4).

The 16-term qq-character is just a generic product of two squares. The two 9-term qq-
characters are non-slim squares. Then we have two squares and two trivial qq-characters. 
All of them with the corresponding monomials are given in Fig. 13.
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(2, 1)
•

(5, 1)•
(6, 1)
•

(8, 1)•
(5, 3)
•

(11, 1)
• (6, 4)• (9, 1)•

(8, 3)•
(12, 1)

•
(11, 3)

•
(11, 4)

•
(13, 1)

•
(9, 4)•

(12, 3)•
(12, 4)

•
(11, 7)•

(15, 1)•
(13, 3)

• (13, 4)•

(12, 7)•
(15, 3)

•
(15, 4)

• (13, 7)•

(15, 7)
•

(14, 2)
•

(14, 5)•
(16, 2)

•
(17, 2)

• (14, 6)•

(16, 5)•
(17, 5)

•
(14, 11)•

(18, 2)•
(16, 6)• (17, 6)•

(16, 8)•
(18, 5)

•
(16, 11)

•
(17, 11)

•
(18, 6)

•
(17, 9)•

(18, 8)•
(16, 12)

•
(18, 11)

•
(17, 13)

•
(18, 9)

•

(18, 12)•
(18, 13)

•

(18, 15)
•

Fig. 12. Two 25 term gl2,1 qq-characters.
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(14, 1)
•

(14, 3)•
(16, 1)

•
(17, 1)

• (14, 4)•

(16, 3)•
(17, 3)

•
(18, 1)

•
(14, 7)

•
(16, 4)

• (17, 4)•

(16, 7)•
(18, 3)

•
(17, 4)

• (17, 7)•

(18, 7)
•

(1, 1)
•

(3, 1)• (4, 1)•

(3, 3)• (7, 1)• (4, 4)•

(7, 3)• (7, 4)•

(7, 7)
•

(14, 14)
•

(16, 14)• (17, 14)•

(16, 16)• (18, 14)• (17, 17)•

(18, 16)• (18, 17)•

(18, 18)
•

(10, 1)
•

(10, 3)• (10, 4)•

(10, 7)
•

(14, 10)
•

(16, 10)• (17, 10)•

(18, 10)
•

(10, 0)
•

(1, 18)
•

Fig. 13. 16 + 9 + 9 + 4 + 4 + 1 + 1 in the 130.

4.4. Resonances

In the previous sections we worked with generic parameters q0, q1, q2. If the parame-
ters satisfy some relation, the qq-characters truncate. Here we discuss a family of such 
examples.
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V 312
1,1 . . .

V 312
0,0 V 312

1,0 V 312
2,0

V 312
2,1

V 312
2k−1,0

V 312
2k−1,1

. . .

V 312
2k,1

V 312
2k,0

V 312
2k+1,1

A−1
1,1 A−1

1,1 A−1
1,1 A−1

1,1

A−1
2,q2q

−1
1

A−1
3,q0q2

A−1
2,q2q

−1
1

A−1
2,q1q

−1
2

A−1
2,q1q

−1
2

A−1
3,q−1

0 q−1
2

Fig. 14. The truncated vector D(2, 1;α) qq-character.

We start with type D(2, 1; α) vector qq-characters.
Note that if q1 = q2 then the D(2, 1; α) Cartan matrix (3.10) becomes the osp4,2

Cartan matrix (3.7) with colors 1 and 3 interchanged. In particular, the infinite vector 
qq-character χ312 of D(2, 1; α) type starting from dominant monomial 3q−1

1
q2
0q1

, see Fig. 7, 
truncates to a 6 term finite qq-character of osp4,2 type, see Fig. 5. This generalizes as 
follows.

Fix k ∈ Z>0 and assume that

pk1 = p2. (4.1)

Then the monomials in (3.12) simplify. In particular, V 312
2k,0 = 1q−1

0 q−2
2

q0 2q−1
3

q3q2
1
, does not have 

factors of color 3 and V 312
2k+1,1 = 3q2

q−2
0 q−1

2
does not have variables of colors 2 and 3. As a 

result the vector qq-character of D(2, 1; α) type truncates and we have a slim qq-character 
with 4k + 2 terms: χ312 =

∑2k
s=0 V

312
s,0 +

∑2k+1
s=1 V 312

s,1 .
The graph of this qq-character is given in Fig. 14.
We also note that under resonance (4.1), the qq-character χ̂312 of D̂(2, 1; α), see Fig. 8, 

also truncates to the qq-character χ̂ =
∑

0≤a−b≤2k V̂
312
ab , where V̂ 312

ab are given by (3.14).
On the other hand the adjoint qq-character χ18 does not truncate. Moreover, it can 

be obtained as combinatorial fusion:

χ18 = χ312
q−1
0 q1

∗ τq2q3χ312.

Note that with a specialization of parameters the combinatorial fusion product changes, 
as some non-constant monomials become constant.

In particular, for the top monomial we have

m18
+ = τq−1

0 q1
(V 312

0,0 )τq2q3(V 312
2k−1,0).

Another observation is that if q2
2 = 1 then the D(2, 1; α) Cartan matrix (3.10) becomes 

the gl2,2 Cartan matrix (3.4), with colors 1 and 3 interchanged. In particular, the infinite 

vector qq-character χ312 of D(2, 1; α) type starting from dominant monomial 3q−1
1

q2
0q1

, see 
Fig. 7, truncates to the 4 term finite vector qq-character of gl2,2 type, see Fig. 3. This 
also generalizes as follows.
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Fix k ∈ Z>0 and assume that

pk1 = q2
0 . (4.2)

Then we have the following cancellations: V2k−1,0 = 1q−1
0 q−2

3
q0 3q−1

2
q−1
2 q−2

3
, and V2k,1 = 2q3

q3q2
2
.

As a result the vector qq-character of D(2, 1; α) type truncates and we have a slim 
qq-character with 4k terms: χ312 =

∑2k−1
s=0 V 312

s,0 +
∑2k

s=1 V
312
s,1 .

Moreover, in this case, the resonance condition (4.2) is invariant under swapping q2
and q3. Therefore, we have another slim qq-character χ213 with 4k terms obtained by 
truncation of χ213.

We also note that under resonance (4.2), the qq-character χ̂312 of D̂(2, 1; α), see Fig. 8, 
also truncates to the qq-character χ̂ =

∑
0≤a−b≤2k−1 V̂

312
ab , where V̂ 312

ab are given by 
(3.14).

If k > 1, the adjoint qq-character χ18 does not truncate under this resonance either. 
And again it can be obtained as combinatorial fusion:

χ18 = τq−1
0 q1

(χ213) ∗ τq2q3(χ312).

In particular, for the top monomial we have

m18
+ = τq−1

0 q1
(V 213

0,0 )τq2q3(V 312
2k−2,0).

5. Slim qq-characters and representations of quantum groups

The combinatorics of qq-characters is similar but not identical to that of q-characters. 
In this section we clarify this relation. Our conclusion is that setting q0 = 1 in a slim 
qq-character one obtains a q-character of an appropriate quantum group (under some 
technical assumptions).

5.1. Quantum group of a general Cartan matrix of fermionic type

We specialize at q = 1.
Let C be a general Cartan matrix of fermionic type as in Section 2.1. Then after 

specialization q = 1, we have cii = 0. We assume that C remains non-degenerate after 
the specialization.

Let

gij(z, w) = z − σijw.

Starting from Cartan matrix C, we define an algebra UC. Let R̃ be the field of rational 
functions in variables q1, q2, ... with complex coefficients.
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Let UC be the algebra over R̃ generated by coefficients of the series Ei(z) =∑
j∈ZEi,jz

−j , Fi(z) =
∑

j∈Z Fi,jz
−j , K±

i (z) =
∑

±j∈Z≥0
Ki,jz

−j (i ∈ I), subject to 
the relations

K±
i (z)K±

j (w) = K±
j (w)K±

i (z), K±
i (z)K∓

j (w) = K∓
j (w)K±

i (z), K+
i,0K

−
i,0 = 1,

gij(z, w)K±
i (z)Ej(w) + gij(w, z)Ej(w)K±

i (z) = 0,

gij(w, z)K±
i (z)Fj(w) + gij(z, w)Fj(w)K±

i (z) = 0,

gij(z, w)Ei(z)Ej(w) − gij(w, z)Ej(w)Ei(z) = 0,

gij(w, z)Fi(z)Fj(w) − gij(z, w)Fj(w)Fi(z) = 0,

Ei(z)Ei(w) + Ei(w)Ei(z) = 0,

Fi(z)Fi(w) + Fi(w)Fi(z) = 0,

Ei(z)Fj(w) + Fj(w)Ei(z) = δijδ(z/w)(K+
i (z) −K−

i (w)).

Here δ(z) =
∑

i∈Z zi is the delta function.
Several remarks are in order here.

a. The algebra UC is written in Drinfeld generators.
b. The level of the algebra UC is set to be zero.
c. Generators Ei,j with the same index i skew-commute and so do Fi,j. In other words 

UC is a superalgebra and Ei(z), Fi(z) are fermionic currents.
d. The Serre relations are omitted. In most examples, the Serre relations are known, but 

it seems to be rather difficult to write the Serre relations in full generality. We do not 
discuss them in this text.

e. In all examples studied in this text, UC is isomorphic (or expected to be isomorphic) 
to the standard quantum affine algebra (without the Serre relations).

The algebra UC carries a topological coproduct given by

ΔK±
i (z) = K±

i (z) ⊗K±
i (z),

ΔEi(z) = Ei(z) ⊗K−
i (z) + 1 ⊗ Ei(z),

ΔFi(z) = K+
i (z) ⊗ Fi(z) + Fi(z) ⊗ 1.

(5.1)

We note that the coproduct is a homomorphism of superalgebras and in the tensor 
product A ⊗B of superalgebras we follow the usual sign rule: we have (a1⊗b1)(a2⊗b2) =
(−1)|b1||a2|a1a2 ⊗ b1b2, ai ∈ A, bi ∈ B.

For σ ∈ R, we have a shift of spectral parameter isomorphism τσ : UC → UC given by

τσ(K±
i (z)) = K±

i (σz), τσ(Fi(z)) = Fi(σz), τσ(Ei(z)) = Ei(σz).
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For J ⊂ I, let CJ denote the matrix obtained from C by deleting all rows and columns 
corresponding to all i /∈ J . Then we have a map ρJ : UCJ

→ UC ,

K±
j (z) �→ K±

j (z), Ej(z) �→ Ej(z), Fj(z) �→ Fj(z) (j ∈ J).

Thus any UC-module M is also a UCJ
-module which we denote by ρJM .

In the cases when C is of type gln+1,n (resp. gln,n) the algebra UC coincides with the 
quantum affine algebra Uq1 ĝln+1,n (resp. Uq1 ĝln,n) (without Serre relations), see [20]. In 
the affine case, when C is of type ĝln,n, UC is expected to be related to the quantum 
toroidal superalgebra of type gln,n. The quantum toroidal superalgebras of type glm,n, 
with m �= n and with all possible choices of the Cartan matrix, were defined and studied 
in [3].3 The case of m = n is not discussed there, though the relations of UC are expected 
to hold.

To the best of our knowledge, the Drinfeld realizations of quantum affine superalgebras 
ˆosp2m+2,2m and ˆosp2m,2m have not been established.

When C is of type D(2, 1; α), the algebra UC coincides with the quantum affine su-
peralgebra of type D(2, 1; α) (without Serre relations), see [14].4 When C is of type 
D̂(2, 1; α), the algebra UC is expected to coincide with the quantum toroidal superalge-
bra of type D(2, 1; α) (without Serre relations), whose definition is yet to be established, 
see [7].

We do not know if there are interesting examples beyond the standard supersymmetric 
quantum affine and quantum toroidal superalgebras.

5.2. Admissible untangled qq-characters

We introduce terminology related to the specialized qq-characters.
We call a degree zero qq-character admissible if after the specialization q = 1 it remains 

generic with all non-zero coefficients one and if there are no cancellations of variables.
If a qq-character is admissible, then clearly it is slim. All explicit examples of slim 

qq-character we discuss in this paper are admissible.

We now choose an admissible qq-character χ and specialize to q = 1 in the rest of the 
section. We keep the concepts of dominant and anti-dominant monomials and variables. 
Note that any variable Yi,σ occurring in a monomial m ∈ χ is either dominant or anti-
dominant. Also a graph of χ descends to a graph of the specialized character.

The restriction of any admissible qq-character χ to any color i ∈ I, ρ{i}χ, is a sum of 
the form 

∑
s 2ls

∏ls
j=1 Yi,σj,s

Y −1
i,τj,s

. Here each summand corresponds to a generic product 
of ls blocks of length 2. Then the graph of such a summand is an ls-dimensional cube.

3 The quantum toroidal algebras of type glm,n depend on two independent parameters, our setting cor-
responds to the case d = 1 in [3].
4 Our parameters qi are related to q and x(= α) in [14] by q1 = q−x, q2 = qx+1, q3 = q−1.
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m1 = m̄11ν2τ•

m2 = m̄21ν2νσ12
νσ−1

12
2τ • m3 = m̄31ν1τσ12

τσ−1
12

2τ•

m4 = m̄41ν1τσ12
τσ−1

12
2νσ12
νσ−1

12
2τ

•

A−1
1,ν A−1

2,τ

A−1
2,τ A−1

1,ν

Fig. 15. A square associated to colors 1, 2, and monomials ν, τ .

Let i, j ∈ I, and let ν, τ ∈ R be monomials in χ such that ν �= τσ±1
ij . A square in 

χ associated to colors i and j and monomials ν, τ is a set of four distinct monomials 
m1, m2, m3, m4 which are connected on the graph of χ as shown in Fig. 15. That is we 

have arrows m1
i,ν−−→m2, m1

j,τ−−→m3, m2
j,τ−−→m4, and m3

i,ν−−→m4.
Define the constant of the square by the formula

cijντ = ν − σijτ

τ − σijν
.

We note that if σij = 1 then cijντ = −1. We also note that cijντcjiτν = 1.
Let S be the set of edges of the graph of χ. We call a map a : S → R̃\{0} a 

supplement of χ if for any square associated to colors i, j and monomials ν, τ we have 
a(m1, m3)a(m3, m4) = cijντa(m1, m2)a(m2, m4).

We note that if a supplement exists, and if T is a spanning tree of the graph of χ, 
then there exists a supplement which equals one on any edge in T .

Let i, j ∈ I be two distinct colors, and τ, ν two monomials such that ν �= τσ±1
ij . 

Consider the corresponding square made of four monomials m1, m2, m3, m4 connected 
by four arrows as in Fig. 15.

If a graph of a qq-character χ contains exactly three of the monomials m1, m2, m3, m4

connected by two arrows, then we say that the graph of χ has an incomplete square.
In other words, an incomplete square means that a variable of color i which was 

dominant (antidominant) became antidominant (dominant) after going along an edge of 
color j, j �= i.

Note that by the definition of the qq-character all squares of one color (that is where 
j = i) are automatically complete.

We call a qq-character χ untangled if χ has a graph which has a supplement and no 
incomplete squares.

Conjecture 5.1. Any admissible qq-character with a dominant monomial is untangled.
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5.3. A family of tame UC modules

We construct a UC-module from an admissible untangled qq-character.
For all variables qi ∈ R we add to R̃ their square roots q1/2

i .
Fix a non-zero evaluation parameter u ∈ R̃. For i ∈ I define the multiplicative homo-

morphisms fi mapping monomials in Y to rational functions in R̃(z), by the rule

fi(Yi,σ) = 1
σ−1/2z − σ1/2u

, fi(Yj,σ) = 1 (j �= i).

If m is a degree zero monomial, then fi(m) is a rational function of u/z which we also 
write as fi(m; u/z). It is well defined at z = 0 and at z = ∞, and fi(m; 0)fi(m; ∞) = 1.

Given an admissible qq-character χ =
∑

s ms, consider the vector space Mχ,u with 
basis {vms

} labeled by monomials ms.
Assume we have a graph of χ with a supplement a : S → R̃ of χ assigning to each 

edge of the graph of χ a non-zero element of R̃. Define a map b : S → R̃ of χ as follows. 
For an edge m

i,τ−−→n, m, n ∈ χ, we set

b(m,n) = a(m,n)−1 res
z=τu

fi(m;u/z).

Define the action of generators of UC on Mχ,u by the formulas

K±
i (z)vmj

= f±
i (mj ;u/z)vmj

,

Fi(z)vmj
=

∑
s, mj

i,τs−−→ms

a(mj ,ms)δ(τsu/z)vms
,

Ei(z)vmj
=

∑
s, ms

i,τs−−→mj

b(ms,mj)δ(τsu/z)vms
.

(5.2)

Here f±
i (mj ; u/z) stands for the expansion of rational function fi(mj ; u/z) at z∓1 = 0

and the sum is taken over all edges of color i of the graph of χ starting (for Fi(z)) or 
ending (for Ei(z)) at mj .

Theorem 5.2. Let χ be an admissible untangled qq-character. Then formulas (5.2) define 
a UC-module structure on Mχ,u.

Proof. Note that

fi(Aj,τ ;u/z) = σij

1 − σ−1
ij τu/z

1 − σijτu/z
= −gij(τu, z)

gij(z, τu) .

Using this it is easy to check that the quadratic relations involving K±
i (z) with all 

generators are satisfied.
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m1 = m̄11ν2τ•

m2 = m̄21ν2νσ12
νσ−1

12
2τ • m3 = m̄31ν1τσ12

τσ−1
12

2τ•

m4 = m̄41ν1τσ12
τσ−1

12
2νσ12
νσ−1

12
2τ

•

F2(z)=a2δ(uτ/z)
E2(z)=b2δ(uτ/z)

F1(z)=a1δ(uν/z)
E1(z)=b1δ(uν/z)

F1(z)=a3δ(uν/z)
E1(z)=b3δ(uν/z)

F2(z)=a4δ(uτ/z)
E2(z)=b4δ(uτ/z)

c = c12
ντ = ν−σ12τ

τ−σ12ν

Fig. 16. The action in the square.

We check that all other relations in UC hold as well. All relations are quadratic. Apply 
a relation to a vector vm. Then we get a lot of terms involving vm′ , where m′ is either 
m (in Ei(z)Fi(w)vm) or obtained from m by walking along two edges of the graph of χ. 
We show that the total result is zero due to cancellations in squares.

Consider the square on Fig. 15. Then the part of the action related to this square 
is given in Fig. 16. Here ai are provided by the values of the supplement a on the 
corresponding edges and the values of bi are given by

b1 = res
z=νu

f1(m1)/a1, b3 = res
z=νu

f1(m3)/a3,

b2 = res
z=τu

f2(m1)/a2, b4 = res
z=τu

f2(m2)/a4.

This assures that the commutators E1(z)F1(w) + F1(w)E1(z) and E2(z)F2(w) +
F2(w)E2(z) coincide with terms δ(uν/z) in K+

1 (z) − K−
1 (z) and δ(uτ/z) in K+

2 (z) −
K−

2 (z), respectively, applied to mi.
Note that

res
z=νu

f1(m3) = −c res
z=νu

f1(m1), res
z=τu

f2(m1) = −c res
z=τu

f2(m2),

and that a2a3 = ca1a4 by the definition of supplement. Therefore, we have

a2a3

a1a4
= b3b2

b1b4
= c,

b2a1

a3b4
= b1a2

a4b3
= −1.

The first two relations are equivalent to FF and EE relations applied to m1 and m4
respectively. The last two relations are equivalent to E2(z)F1(w) + F1(w)E2(z) = 0 and 
E1(z)F2(w) + F2(w)E1(z) = 0 applied to m3 and m2 respectively.

Due to our assumption, one of the vertices of a square can be missing only if ν = τσ±1
ij

in which case the relations are satisfied for trivial reasons. For example, let ν = τσ12 and 
then m2 is missing since we cannot have (2τ )2. In such a case, for example, F2(w)F1(z)m1
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does not produce m4. But g12(w, z)F1(z)F2(w)m1 does not produce m4 either since 
(z − σ12w)δ(uν/z)δ(uτ/w) = 0. �

Clearly, if the graph of χ used to construct Mχ,u is connected then Mχ,u is a simple 
UC-module. Indeed, since all monomials are distinct, generators K±

i (z) have a joint 
simple spectrum, therefore any submodule M has a basis of monomial vectors vm. But 
if one of vm is in M , then all of them are in M and thus M = Mχ,u. In particular, if χ
is a simple qq-character, then Mχ,u is a simple UC -module.

If χ is an admissible untangled qq-character then q = 1 specialization of the qq-
character χ is the q-character of Mχ,u. The algorithm for construction of qq-characters 
described in Section 2.3 specializes to the algorithm for construction of q-characters in 
[11].

5.4. The case of D(2, 1; α)

Very little is known about the representation theory of quantum affine algebra of type 
D(2, 1; α) and its toroidal version. We give a few remarks.

Apart from the trivial one dimensional module, the irreducible representations of 
exceptional Lie superalgebra D(2, 1; α) are parameterized by triples (a, b, c) ∈ Z≥0. The 
even part of D(2, 1; α) is sl2⊕sl2⊕sl2. We denote by [a, b, c] the irreducible sl2⊕sl2⊕sl2-
module of dimension (a + 1)(b + 1)(c + 1) which is a tensor product of three irreducible 
sl2 modules of highest weight a, b, and c.

When restricted to the even subalgebra, a generic finite-dimensional representation 
L(a,b,c) corresponding to triple (a, b, c) has the following structure, see [19].

Suppose a, b, c are not all equal. This is a typical case when the Kac module is irre-
ducible. Then we have

L(a,b,c) = 2[a, b, c] +
∑

ε∈{−1,1}
([a + 2ε, b, c] + [a, b + 2ε, c] + [a, b, c + 2ε])

+
∑

ε1,ε2ε3∈{−1,1}
[a + ε1, b + ε2, c + ε2].

Here all terms with a negative component must be omitted. In addition, the multiplicity 
2 of [a, b, c] is replaced with 1 if exactly one of the numbers a, b, c is 0 and with 0 if two 
of them are zero.

Of course, we have the symmetry permuting a, b and c.

Let now a = b = c. This is an atypical case. We have

L(a,a,a) = ([a, a, a] + [a + 2, a, a] + [a, a + 2, a] + [a, a, a + 2])

+ ([a + 1, a + 1, a + 1] + [a + 1, a, a] + [a, a + 1, a] + [a, a, a + 1]),

where the term [a, a, a] has to be dropped if a = 0.
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We work with the Dynkin diagram where all three roots are fermionic. These roots 
change the weight with respect to algebra sl2 ⊕ sl2 ⊕ sl2 by (1, −1, −1), (−1, 1, −1) and 
(−1, −1, 1). In both typical and atypical cases, the highest weight vector of L(a,b,c) is the 
highest weight vector of [a + 1, b + 1, c + 1].

Algebra D(2, 1; α) also has three distinguished choices of Borel subalgebra with one 
fermionic simple root and two bosonic ones. For the three distinguished Borel subalge-
bras, the highest weight vector of L(a,b,c) is the highest weight vector of [a + 2, b, c] or 
[a, b + 2, c] or [a, b, c + 2].

The parity of highest weight vector can be chosen. Let the parity of highest weight 
vector of the L(a,b,c) be chosen even in the distinguished case (and therefore odd in the 
fermionic case). We denote the module where the parity is reversed by Lp

(a,b,c).
Then we have the following graded dimensions. In the typical case,

dimL(a,b,c) = (8(a + 1)(b + 1)(c + 1), 8(a + 1)(b + 1)(c + 1)).

In the atypical case,

dimL(a,a,a) = (4(a + 1)3 + 6(a + 1)2 − δa,0, 4(a + 1)3 + 6(a + 1)2 − 2).

In particular, for a > 1, we have dimL(a,a,a) +dimLp
(a−1,a−1,a−1) = (8(a +1)3, 8(a +1)3)

which is the graded character of the Kac module.

The adjoint module L0,0,0 has dimension 17 and in the principal gradation we have 
17 = 1 + 3 + 3 + 3 + 3 + 3 + 1.

The next smallest module is L1,0,0 which has dimension 32, which in the principal 
gradation is 32 = 1 + 3 + 4 + 5 + 6 + 5 + 4 + 3 + 1.

We have the following decomposition:

L(0,0,0) ⊗ L(0,0,0) = L(2,0,0) + L(0,2,0) + L(0,0,2) + Lp
(1,1,1) + L(0,0,0),

so, 172 = 48 ∗ 3 + 128 + 17.

We construct the 18-dimensional and 66-dimensional representations of quantum 
affine algebra of D(2, 1; α) type.

For the 18-dimensional module, it is enough to provide the supplement. We set the 
value of the supplement on all edges in Fig. 9, to be 1 except

• edges on the second level (from vertices v2, v3, v4 to vertices v5, v6, v7) where we set 
the value of supplement to be (qi − q−1

i )−1 on edges of color i;
• edges on the second to the last level (from vertices v12, v13, v14 to vertices v15, v16, v17) 

where we set the value of supplement to be (qi − q−1
i ) on edges of color i;

• on edges (v5, v8), (v6, v11), (v7, v10) where we set the value of supplement to be −1.

It is easy to check that such an assignment is indeed a supplement.



B. Feigin et al. / Advances in Mathematics 403 (2022) 108331 41
To construct a 66 dimensional module, we consider the tensor product Mχ18,uq2
1
⊗

Mχ18,u. Comultiplication (5.1) is not well-defined on this tensor product. However, it is 
well-defined on the 66 terms inside this tensor product listed in Fig. 10. Moreover, the 
action along all edges which connect a vertex from the 66 terms to some vertex which is 
not in the 66 is well-defined and either F (z) or E(z) action along such an edge vanishes. 
Thus, the 66 module is found as a subquotient.

After restriction to finite type D(2, 1; α) the above modules decompose as 18 = 17 +1
and 66 = 48 +17 +1 and therefore can be thought as affinizations of L(0,0,0) and L(2,0,0). 
One can argue that these are minimal affinizations in the sense of [4].

On the other hand, it is easy to see that there is no q-character which has the 
structure of the 32-dimensional L(1,0,0) module which suggests that L(1,0,0) has no 
finite-dimensional affinization in contrast to the even case where every finite-dimensional 
irreducible module of finite type had an affinization.

6. Free field realization

The qq-characters are a combinatorial abstraction of basic currents which appear in 
the free field construction of deformed W -algebras. We are now in a position to elucidate 
this connection.

From now on, we regard the parameters q, q1, q2, . . . as non-zero complex numbers. 
We assume that these numbers are generic in the sense that any non-trivial monomial 
in these parameters is not one.

6.1. Vertex operators

Fix a Cartan matrix C =
(
σij − σ−1

ij

)
i,j∈I

. We introduce parameters kij ∈ C by 

setting σij = qkij , where kji = kij , kii = 1. We assume that the matrix C [n] =
(
qnkij −

q−nkij
)
i,j∈I

is non-degenerate for all n �= 0.
Consider a Heisenberg algebra with generators {si,n | i ∈ I, n ∈ Z\{0}} subject to 

the commutation relations

[si,n, sj,m] = − 1
n

qnkij − q−nkij

qn − q−n
δn+m,0 (n,m �= 0) . (6.1)

We use also a dual set of generators {yi,n | i ∈ I n ∈ Z\{0}}

yi,n = −
∑
l∈I

(qn − q−n)(C [n]−1
)i,lsl,n (n �= 0),

so that

[si,n, yj,m] = 1
n
δi,jδn+m,0 (n,m �= 0) . (6.2)
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The matrix K =
(
kij

)
i,j∈I

may be degenerate in general. We proceed as in the case 
of Kac-Moody algebras [15]. Let � = rankK. Choose a decomposition I = I0 � I1 and 
corresponding submatrices Ka,b =

(
kij

)
i∈Ia,j∈Ib

, a, b ∈ {0, 1}, in such a way that K1,1
is an � × � matrix of rank �. Let I∗0 = {i∗ | i ∈ I0} be a copy of I0. We extend K to a 
non-degenerate matrix indexed by Î = I0 � I1 � I∗0 ,

K̂ =
(
K0,0 K0,1 −1
K1,0 K1,1 0
−1 0 0

)
,

where 1 stands for the (n − �) × (n − �) unit matrix. Consider a Heisenberg algebra with 
generators {si,0, Qsi}i∈Î such that

[si,0, sj,0] = [Qsi , Qsj ] = 0 , [si,0, Qsj ] = (K̂)i,j (i, j ∈ Î).

We define yi,0, Qyi for i ∈ I = I0 � I1 by

yi,0 =
{

si∗,0 (i ∈ I0),
−
∑

k∈Î(K̂−1)i,ksk,0 (i ∈ I1),

Qyi =
{
Qsi∗ (i ∈ I0),
−
∑

k∈Î(K̂−1)i,kQsk (i ∈ I1).

Then the following hold for all i, j ∈ I:

[si,0, Qyj ] = −δi,j , [yj,0, Qsi ] = −δi,j .

We shall refer to si,n, yi,n (n �= 0) as oscillators, and si,0, yi,0, Qsi , Qyi as zero modes.
Notation being as above, we introduce the following vertex operators:

Si(z) = eQsi zsi,0 : e
∑

n �=0 si,nz−n

: , (6.3)

Yi(z) = eQyi zyi,0 : e
∑

n �=0 yi,nz−n

: , (6.4)

Ai(z) =: Si(q−1z)
Si(qz)

:= q−2si,0 : e
∑

n �=0(q
n−q−n)si,nz−n

: . (6.5)

Here the standard normal ordering rule is in force: creation operators si,−n, yi,−n (n > 0), 
eQsi , eQyi are placed to the left and annihilation operators si,n, yi,n (n > 0), si,0, yi,0 are 
to the right. We call Ai(z) affine root currents, and Si(z) screening currents.

Quite generally, a product of two vertex operators V (z), W (z) takes the form

V (z)W (w) = zαϕV,W (w/z) : V (z)W (w) : ,
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where α ∈ C, and ϕV,W (w/z) is a formal power series in w/z. We call zαϕV,W (w/z) the 

contraction of V (z), W (z) and use the symbol V (z)W (w) to denote it. For instance

Si(z)Si(w) = z − w , (6.6)

Si(z)Yi(w) = 1
z − w

, Yi(w)Si(z) = 1
w − z

, (6.7)

Si(z)Yj(w) = Yj(w)Si(z) = 1 (i �= j). (6.8)

In all cases considered in this paper, the series ϕV,W (w/z) can be written as

logϕV,W (w/z) =
∑
n>0

1
n

(w
z

)n

×
(
fV,W

∣∣∣
qi→qni ,∀i

)
,

where fV,W is a rational function of the parameters qi entering the Cartan matrix. We 
denote the function fV,W by C(V, W ), and use it as a mnemonic for ϕV,W (w/z). In this 
notation we have

C(Si, Sj) = − 1
q − q−1 (σij − σ−1

ij ) ,

C(Si, Yj) = C(Yj , Si) = δij ,

C(Ai, Aj) = (q − q−1)(σij − σ−1
ij ) , (6.9)

C(Ai, Yj) = −C(Yj , Ai) = (q − q−1)δi,j , (6.10)

C(Yi, Yj) = −(q − q−1)(C−1)i,j .

In the last line we use the entries of the inverse C−1 of the Cartan matrix.

6.2. Bosonization of qq-characters

With every monomial m ∈ Y, m =
∏

i∈I

∏
a∈C Y

ni,a

i,a , a finite product in the variables 
{Yi,a}, ni,a ∈ Z, we associate a vertex operator

Vm(z) =:
∏
i∈I

∏
a∈C

Yi(az)ni,a : .

Let m be a generic monomial of degree zero. Due to (6.7), (6.8), the contractions with 

screening currents Si(w)Vm(z), Vm(z)Si(w) depend only on the restriction ρ{i}(m). 
Moreover they converge to the same rational function whose poles are all simple. It 
follows that the commutator is a finite sum

[Si(w), Vm(z)] =
∑
a

ci,m,aw
−1δ

(az
w

)
: Si(az)Vm(z) : ,
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where ci,m,a ∈ C are some coefficients and as before δ(z) =
∑

n∈Z zn stands for the delta 
function. Introduce the screening operator as a formal integral

Si =
ˆ

Si(w)dw . (6.11)

Given a qq-character χ =
∑

s ms, we shall say that it formally commutes with the 
screening operator Si if 

∑
s

∑
a ci,ms,a : Si(az)Vms

(z) := 0. We write this as [Si, χ] = 0.

Example. Consider an elementary block of length k + 1 in a single color,

χ =
k∑

j=0
mk , mj = 1a1,...,ak

a,...,q̂2ja,...,q2ka
= m0

j∏
s=1

A−1
1,q2s−1a ,

where the hat signifies the missing factor. By (6.5), Vmj
(z) can be written in terms of 

screening currents as Vmj
(z) =: Vm0(z)S1(q2jaz)S1(az)−1:. Computing the residues we 

find

[S1(w), Vmj
(z)] =

∑
0≤i≤k
i�=j

(q2ia− q2ja)ci w−1δ
(q2iaz

w

)
: Vm0(z)

S1(q2iaz)S1(q2jaz)
S1(az)

: ,

where ci =
∏k

r=1(q2ia − ar)/ 
∏

0≤s≤k,s �=i(q2ia − q2sa). We define

Tχ(z) =
k∑

j=0
cj Vmj

(z) .

In the product S1(w)Tχ(z), the residue at w = q2iaz coming from S1(w)Vmj
(z) cancels 

with the one at w = q2jaz coming from S1(w)Vmi
(z), for all pairs i �= j. This means 

that Tχ(z) formally commutes with the screening operator S1. �
This example generalizes as follows.

Theorem 6.1. Let χ =
∑

s ms be a finite simple qq-character considered in Section 2.2. 
Then there exist coefficients cm ∈ C× such that the corresponding current

Tχ(z) =
∑
s

cms
Vms

(z) (6.12)

formally commutes with all screening operators Si =
´
Si(w)dw, i ∈ I. The cms

’s are 
unique up to an overall scalar multiple.

Proof. Let {ms}s=0,1,...,l be a sequence of monomials in χ such that ms
is,as−−−→ms−1

with some is ∈ I, as ∈ C×, s = 1, . . . , l. Consider the linear equations for unknowns 
{ds}s=0,...,l:
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ds−1 res
w=asqz

Sis(w)Vms−1(z)dw + ds res
w=asq−1z

Sis(w)Vms
(z)dw = 0 , s = 1, . . . , l .

(6.13)

We show below that the ratio dl/d0 is determined by m0 and ml alone, independently 
of the choice of the sequence {ms} connecting them. Since the graph of χ is connected, 
Theorem will then follow by setting cml

/cm0 = dl/d0.

Let us take a closer look at the equation (6.13). Introducing fi(w) = Si(w)Vm0(z)
(i ∈ I), we have

Sis(w)Vms−1(z) = fis(w)
s−1∏
t=1

w − σis,itatz

w − σ−1
is,it

atz
,

Sis(w)Vms
(z) = Sis(w)Vms−1(z)

w − qasz

w − q−1asz
,

and hence

res
w=asqz

Sis(w)Vms−1(z)dw =
{

(qw − qasz)fis(qw)
s−1∏
t=1

qw − σis,itatz

qw − σ−1
is,it

atz

}∣∣∣
w=asz

, (6.14)

res
w=asq−1z

Sis(w)Vms
(z)dw =

{
(q−1w − qasz)fis(q−1w)

s−1∏
t=1

q−1w − σis,itatz

q−1w − σ−1
is,it

atz

}∣∣∣
w=asz

.

(6.15)

Here we have to be careful when some of the factors vanish at w = asz. For all pairs 
s �= t, define

N±
s,t =

{
1 if σis,it = q±1as/at,

0 if σis,it �= q±1as/at.

Let further l±s be the order of zeroes of (q±1w−qasz)fis(q±1w) at w = asz. The relation 

ms−1
is,as−→ ms ensures that (6.14) and (6.15) are both well-defined and non-zero. Hence 

we must have

l±s +
s−1∑
t=1

(N±
s,t −N∓

t,s) = 0 , s = 1, . . . , l . (6.16)

Under this condition, the ratios ds/ds−1 are well defined. We rewrite further the right 
hand side of (6.14) as

{
(qws − qasz)fis(qws)

s−1∏
t=1

qws − σis,itwt

qws − σ−1
is,it

wt

}∣∣∣
w1=a1z

· · ·
∣∣∣
ws−1=as−1z

∣∣∣
ws=asz

.
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Doing the same for (6.15), and multiplying ds/ds−1 through s = 1, . . . , l, we arrive at

dl
d0

= (−1)l
{ l∏
s=1

Fs(ws)
∏
s �=t

qws − σis,itwt

qσis,itws − wt

}∣∣∣
w1=a1z,...,wl=alz

, (6.17)

Fs(w) = (qw − qasz)fis(qw)
(q−1w − qasz)fis(q−1w) ,

where the specialization ws = asz is performed in the order s = 1, 2, . . . , l.
Now let {m′

s}s=0,1,...,l′ be another sequence of monomials in χ such that m′
0 = m0, 

m′
l′ = ml and m′

s = m′
s−1A

−1
i′s,a

′
s
, s = 1, . . . , l′. Since the affine roots are algebraically 

independent, we must have that l′ = l and i′s = iλ(s), a′s = aλ(s) for some permutation 
λ ∈ Sl. Define {d′s}s=0,...,l, l′ ±s , N ′ ±

s similarly as above, using {m′
s}. Then we have 

l′ ±s = l±λ(s), N
′ ±
s = N±

λ(s), and d′�/d
′
0 is given by the same expression (6.17) except that 

the specialization is performed in the order wλ(1) = aλ(1)z, . . . , wλ(l) = aλ(l)z.
We consider the ratio of dl/d0 to d′l/d

′
0. For the two ways of specialization, the factors 

Fs(ws) give the same contribution and hence cancel out. The factors ws − q±1σis,itwt

also cancel except in the cases q±1σis,it = as/at and t < s, λ−1(t) > λ−1(s) or t > s, 
λ−1(t) < λ−1(s). With the abbreviation s′ = λ−1(s), t′ = λ−1(t) we find

dl/d0

d′l/d
′
0

=
∏
t<s
t′>s′

(
−as
at

)N−
s,t−N+

t,s−N+
s,t+N−

t,s

= ε
∏
s

aνs
s , . (6.18)

with ε = ±1 and νs ∈ Z. The power νs is given by

νs =
∑
t:t<s
t′>s′

(N−
s,t −N+

t,s) −
∑
t:t<s
t′>s′

(N+
s,t −N−

t,s) +
∑
t:t>s
t′<s′

(N+
s,t −N−

t,s) −
∑
t:t>s
t′<s′

(N−
s,t −N+

t,s) .

Due to the equality∑
t:t<s

(N∓
s,t −N±

t,s) = −l∓s =
∑

t:t′<s′

(N∓
s,t −N±

t,s) , s = 1, . . . , l , (6.19)

following from (6.16) and its analog for {m′
s}, we obtain νs = 0. Summing (6.19) over s

we obtain also∑
t<s
t′>s′

(N−
s,t −N+

t,s) =
∑
t>s
t′<s′

(N−
s,t −N+

t,s) =
∑
t<s
t′>s′

(N−
t,s −N+

s,t) ,

which shows that ε = 1. We thus conclude that d′l/d′0 = dl/d0. �
We shall say that Tχ(z) is the qq-current associated with χ.
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Remark. While Theorem 6.1 claims only existence of coefficients cm, formula (6.17)
provides a way to compute them. In particular, all the coefficients naturally appear in a 
factorized form. �
Remark. In conformal field theory, the usual screening currents are Virasoro primary 
fields of conformal weight one, and their integrals commute with the Virasoro current. 
For a general primary field S(w) of conformal weight Δ, the integral 

´
wΔS(w)dw/w

commutes with the grading operator L0. When the conformal limit has a clear meaning, 
it is more natural to redefine the screening operator (6.11) in this way. Such a change 
amounts to shifting the zero mode si,0 by a constant. It affects only a power of q’s in 
the coefficients cm of qq-currents. �
Remark. Formally, Theorem 6.1 can be formulated for infinite qq-characters. However, 
formal infinite sums of vertex operators with arbitrary constants do not always make 
sense. In the examples below we give the constants explicitly and discuss the regulariza-
tion, see Section 6.3. �
6.3. Vector representation of D(2, 1; α) and D̂(2, 1; α)

In [9], the qq-currents of vector qq-characters have been given for a class of deformed 
W -algebras including gln,n, gln+1,n, and ospn,n. In this section, we use parameters ki
with k0 = 0 and k1 + k2 + k3 = −4, such that qi = qki+1, i = 0, 1, 2, 3, q0q1q2q3 = 1. As 
before, pi = q2

0q
2
i .

According to the general rule, we have zero modes {si,0}4
i=0 and {Qsi}4

i=0, where 
s4,0 = y0,0 and Qs4 = Qy0 . Their commutators are given by the extended matrix

(
[si,0, Qsj ]

)
0≤i,j≤4

=

⎛⎜⎜⎜⎝
1 k1 + 1 k2 + 1 k3 + 1 −1

k1 + 1 1 k3 + 1 k2 + 1 0
k2 + 1 k3 + 1 1 k1 + 1 0
k3 + 1 k2 + 1 k1 + 1 1 0
−1 0 0 0 0

⎞⎟⎟⎟⎠ .

The remaining zero modes {yj,0, Qyj
} (j = 1, 2, 3) are given by

y1,0 = y0,0 −
1

2(k3 + 2)(s1,0 + s2,0) −
1

2(k2 + 2)(s1,0 + s3,0) ,

Qy1 = Qy0 −
1

2(k3 + 2)(Qs1 + Qs2) −
1

2(k2 + 2)(Qs1 + Qs3) ,

and by cyclically permuting 1, 2, 3.
In what follows we shall assume that |p1| < 1. We use the standard symbols

(z1, . . . , zm; p)k =
m∏
s=1

k−1∏
j=0

(1 − zsp
j) , Θp(z) = (z, p/z, p; p)∞ .
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Following the remark at the end of the previous Section, we modify the screening oper-
ators as follows:

Si =
ˆ

w−2δi,0Si(w) dw (i = 0, 1, 2, 3). (6.20)

The qq-currents associated with the vector qq-characters χ312, χ̂312, see Figs. 7, 8, are 
formal infinite sums of vertex operators V 312

a,b (z) = VV 312
a,b

(z),

T 312(z) =
∞∑
a=0

c312a,0 V
312
a,0 (z) +

∞∑
a=1

c312a,1 V
312
a,1 (z) , (6.21)

T̂ 312(z) =
∑
a,b∈Z
a≥b

c312a,b V
312
a,b (z) . (6.22)

Explicitly the coefficients c312a,b described by Theorem 6.1 are given by

c3122k,2l = (q−2
2 pk−l

1 , pk−l+1
1 ; p1)∞

(q−2
0 q−2

2 pk−l
1 , q−2

0 pk−l+1
1 ; p1)∞

q
4(k−l)
0 , (6.23)

c3122k,2l+1 = − (q−2
2 pk−l

1 , pk−l
1 ; p1)∞

(q−2
0 q−2

2 pk−l
1 , q−2

0 pk−l
1 ; p1)∞

q
4(k−l)
0 , (6.24)

c3122k+1,2l = − (q−2
2 pk−l+1

1 , pk−l+1
1 ; p1)∞

(q−2
0 q−2

2 pk−l+1
1 , q−2

0 pk−l+1
1 ; p1)∞

q
4(k−l)+2
0 , (6.25)

c3122k+1,2l+1 = (q−2
2 pk−l

1 , pk−l+1
1 ; p1)∞

(q−2
0 q−2

2 pk−l
1 , q−2

0 pk−l+1
1 ; p1)∞

q
4(k−l)+2
0 . (6.26)

Note that c312a,b = 0 unless a ≥ b.
Formulas (6.23)–(6.26) can be obtained by solving the recurrence relations sketched 

in the proof of Theorem 6.1. We give below a direct way to derive them.
Recall that the monomials V 312

a,b are composed of elementary pieces R±
1 , T±

1 , see (3.15), 
(3.16). Let

ρ±1 (z) = VR±
1
(z) , τ±1 (z) = VT±

1
(z)

be the corresponding vertex operators. Then the affine root currents are written as

A0(z) =: τ+
1 (p1/2

1 z)
τ−1 (p−1/2

1 z)
: , A1(z) =: τ

−
1 (z)
τ+
1 (z)

: , (6.27)

A2(z) =: ρ+
1 (p1/2

1 z)
ρ−1 (p−1/2

1 z)
: , A3(z) =: ρ

−
1 (z)

ρ+
1 (z)

: . (6.28)

We shall use the contractions
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Table 1
Contractions X(z)Y (w), where X(z) = ρ±

1 (z), τ±
1 (z), Y (w) = Si(w).

S0(w) S1(w) S2(w) S3(w)

ρ±
1 (z) q±1

3 z − w q±1
2 z − w (q∓1

1 z − w)−1 (q∓1z − w)−1

τ±
1 (z) (q∓1

1 z − w)−1 (q∓1z − w)−1 q±1
3 z − w q±1

2 z − w

τ ε11 (z)ρε21 (w) = z−
2

k1+2 qε10
(q0q−1

2 w/z, p1q0q2w/z; p1)∞
(q−1

0 q−1
2 w/z, p1q

−1
0 q2w/z; p1)∞

gε1ε2(w/z) , (6.29)

g±,±(z) = 1 , g±,∓(z) = 1 − (q0q2)∓1z

1 − (q−1
0 q2)∓1z

,

and the contractions with screening currents given in Table 1.
The above formulas allow us to calculate the commutator between current S1(w) and 

the product τ ε11 (z)ρε21 (z′):

[S1(w), τ ε11 (z)ρε21 (z′)] = w−1δ
(
q−ε1
0

z

w

)(
q−ε1
0 z − qε22 z′

)
τ ε11 (z)ρε21 (z′)

× : S1(q−ε1
0 z)τ ε11 (z)ρε21 (z′) : .

We have : S1(q−1
0 z)τ+

1 (z) :=: S1(q0z)τ−1 (z): from (6.27). Noting the relation

(q−1
0 z − q±1

2 z′)τ+
1 (z)ρ±1 (z′) = (q0z − q±1

2 z′)τ−1 (z)ρ±1 (z′) ,

which follows from (6.29), we find the commutativity with the screening operator (6.20):

[S1, (τ+
1 (z) − τ−1 (z))ρ±1 (z′)] = 0 .

Similarly we obtain

[S2, τ
±
1 (z)(ρ+

1 (p1/2
1 z′) − ρ−1 (p−1/2

1 z′))] = 0 ,

[S3, τ
±
1 (z)(ρ+

1 (z′) − ρ−1 (z′))] = 0 ,

[S0, (q4
0τ

+
1 (p1/2

1 z) − τ−1 (p−1/2
1 z))ρ±1 (z′)] = 0 .

It is now obvious that the formal sum∑
k∈Z

(τ+
1 (z) − τ−1 (z))(ρ+

1 (p−k
1 z′) − ρ−1 (p−k

1 z′))

commutes with S1, S2, S3, and∑
k,l∈Z

q−4l
0 (τ+

1 (p−l
1 z) − τ−1 (p−l

1 z))(ρ+
1 (p−k

1 z′) − ρ−1 (p−k
1 z′))
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commutes with S0, S1, S2, S3. Upon taking the residue at z′ = q0q2z using (6.29), the 
sum over k ∈ Z becomes one-sided:

∑
k≥0

res
w=p−k

1 q0q2z
(τ+

1 (z) − τ−1 (z))(ρ+
1 (w) − ρ−1 (w)) . (6.30)

Rewriting the summand into a normal-ordered form, we arrive at (6.21), (6.22) with 
the coefficients given by (6.23)–(6.26).

6.4. Regularization

Infinite sums of vertex operators such as (6.21), (6.22) are only symbolic expressions, 
and do not converge to operators on the Fock space. In order to give them a meaning, 
some regularization is necessary.

As an illustration, let us consider a simpler example of ĝln,n vector qq-character in 
Fig. 4. We choose 

´
w−(n−1)δi,0Si(w)dw (0 ≤ i ≤ 2n −1) as the screening operators. The 

corresponding qq-current is a formal sum

T (z) =
∑
i∈Z

n−1∑
k=0

(
(q1 − q−1

1 )q2kV2k(q−2niz) + (q2 − q−1
2 )q2k+1V2k+1(q−2niz)

)
,

which may be viewed as a Jackson integral. We regularize it by the contour integral

Treg =
ˆ n−1∑

k=0

(
(q1 − q−1

1 )q2kV2k(w) + (q2 − q−1
2 )q2k+1V2k+1(w)

) dw

2πiw .

This formula is nothing but the first member of the integrals of motion associated with 
the W algebra of type ĝln,n [9].

Let us return to D(2, 1; α). The contraction (6.29) has two series of simple poles on 
the w-plane:

w = q0q2p
−k
1 z (k ≥ 0), (6.31)

w = q0q
−1
2 p−k+1

1 z (k ≥ 0). (6.32)

For simplicity of presentation let us assume that |q0q±1
2 | > 1 > |q0q±1

2 p1|. We wish 
to interpret (6.30) as the result of computing residues of a contour integral. For that 
purpose, consider an integral of the form

T 312
reg (z) =

ˆ

|w|=|z|

(
τ+(z) − τ−1 (z)

)(
ρ+
1 (w) − ρ−1 (w)

)
F (w/z) dw

2πiw . (6.33)
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We require the kernel function F (w/z) to have two properties: it is a quasi-constant, 
i.e. F (p1w/z) = F (w/z), and the only poles of the integrand in the region |w| > |z| are 
simple poles (6.31). Inspection of the contractions (6.29) then leads us to the expression

F (w/z) =
(w
z

)μΘp1(q−1
0 q2w/z)Θp1(p

μ
1 q

3
0q

−1
2 w/z)

Θp1(q0q2w/z)Θp1(q0q−1
2 w/z)

where μ is an arbitrary parameter. Formula (6.33) gives a well-defined operator on suit-
able sectors of the Fock space where the integrand comprises integral powers in w. 
Collecting residues in |w| > |z| and ignoring the contribution from w = ∞, we recover 
(6.30) up to an irrelevant overall multiplicative constant.

As opposed to the sum over k, no truncation takes place for the sum over l ∈ Z. We 
interpret it simply replacing the sum by the integral

T̂ 312
reg =

ˆ

|z|=1

z
2

k1+2T 312
reg (z)dz

z
. (6.34)

Let us compare this formula with the deformed (non-local) integrals of motion asso-
ciated with the quantum toroidal gl2 algebra [10], [8]. The first member reads

G1,1(ϑ) =
¨

|z|=|w|=1

z
2

k1+2
(
τ+
1 (z) − τ−1 (z)

)(
ρ+
1 (w) − ρ−1 (w)

)
(6.35)

×
(w
z

)1+ h1,0
2(k1+2) ϑ(q1+h1,0/2

0 w/z)
Θp1(q0q2w/z)Θp1(q0q−1

2 w/z)
dz

z

dw

w
,

where5

h1,0 = 2(k2 + 2)
k2 − k3

(s1,0 + s2,0) + 2(k3 + 2)
k2 − k3

(s1,0 + s3,0) ,

and ϑ(z) is a holomorphic function on C× satisfying the quasi-periodicity ϑ(p1z) =
p−1
1 z−2ϑ(z). The space of such functions is two-dimensional. Using this freedom one can 

make the following choice:

ϑ±(q1+h1,0/2
0 w/z) = Θp1(q−1

0 q±1
2 w/z)Θp1(p1q

h1,0
0 q3

0q
∓1
2 w/z) .

With the identification μ = 1 + h1,0/(2(k1 + 2)), formula (6.35) matches (6.34) and its 
analog:

G1,1(ϑ+) = T̂ 312
reg , G1,1(ϑ−) = T̂ 213

reg , (6.36)

5 In [7], the parameter p̄1 in [8] was set to 1. For the commutativity with screening operators Si, this has 
to be chosen rather as q2

0 .
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where we ignore constant multiples.
Alternatively, one can take residues on the poles inside the circle |w| < |z|. To this 

end we use the commutation relation (in the sense of analytic continuation of matrix 
elements)

τ ε11 (z)ρε21 (w) = ρε21 (w)τ ε11 (z) × q−4
0

(w
z

) 2
k1+2 Θp1(q0q−1

2 w/z)Θp1(q0q2w/z)
Θp1(q−1

0 q−1
2 w/z)Θp1(q−1

0 q2w/z)

to rewrite (6.35) as

G1,1(ϑ) = q−4
0

¨

|z|=|w|=1

w
2

k1+2
(
ρ+
1 (w) − ρ−1 (w)

)(
τ+
1 (z) − τ−1 (z)

)

×
(w
z

)1+ h1,0
2(k1+2) ϑ(q1+h1,0/2

0 w/z)
Θp1(q−1

0 q2w/z)Θp1(q−1
0 q−1

2 w/z)
dz

z

dw

w
.

Choosing ϑ to be

ϑ̃±(q1+h1,0/2
0 w/z) = Θp1(q0q±1

2 w/z)Θp1(p1q
1+h1,0
0 q∓1

2 w/z) ,

computing residues at w = pk1q
−1
0 q∓1

2 , k ≥ 0, and ignoring the contribution from w = 0, 
we find

G1,1(ϑ̃+) = T̂ 130
reg , G1,1(ϑ̃−) = T̂ 031

reg . (6.37)

Together with the symmetry in 1, 2, 3, (6.36)–(6.37) give the regularization of the 12 
vector qq-characters of type D̂(2, 1; α) in Section 3.5.

6.5. Adjoint representation and its fusion

For finite qq-characters, there is no issue of convergence. The current T 18(z) = Tχ18(z)
associated with the adjoint qq-character of D(2, 1; α) depicted in Fig. 9 reads

T 18(z) =
18∑
j=1

c18j Vvj (z) ,

where

c181 = q−3 , c182 = −q−2 [k1 + 1]
[k1 + 2] , c185 = q−1 , c188 = − [k1 + 1][k2 + 1][k3]

[k1 + 2][k2 + 2][k3 + 1] ,

c1818 = q3 , c1815 = −q2 [k1 + 1]
[k1 + 2] , c1812 = q , c1811 = − [k1 + 2][k2 + 2][k3 + 2]

[k1 + 1][k2 + 1][k3 + 1] ,
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with the notation [x] = (qx − q−x)/(q − q−1). The rest of the coefficients c18j are given 
by simultaneously permuting colors 1, 2, 3 and k1, k2, k3.

The current T 18(z) commutes with fermionic screening operators Si, i = 1, 2, 3. It can 
be shown that T 18(z) commutes also with the bosonic screening operators ρi, i = 1, 2, 3, 
in [7].6 Hence T 18(z) belongs to what is termed the deformed W -algebra WD(2, 1; α), 
which is a deformation of the coset theory (sl2)k1 × (sl2)k2/(sl2)k1+k2 .

One can generate further currents in WD(2, 1; α) by the fusion construction. For 
example, consider the product T 18(z)T 18(w). It has simple poles at w = (q0qi)±2z, 
i = 1, 2, 3, and w = q±2

0 z. Their residues give the qq-currents T 66,1(z) = Tχ66,1(z) and 
T 130(z) = Tχ130(z) associated with the 66 and 130 qq-characters in Section 4.3 and 
Fig. 10, respectively:

T 66,1(z) = const. res
w=q2

0q
2
1z
T 18(z)T 18(w) dw ,

T 130(z) = const. res
w=q2

0z
T 18(z)T 18(w) dw .

It would be interesting to know if T 18(z) generates the entire WD(2, 1; α), and whether 
one can extract the spin four current from it in the conformal limit. These are the 
questions left for further investigation.
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