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EMBEDDINGS OF AUTOMORPHISM GROUPS

OF FREE GROUPS INTO AUTOMORPHISM GROUPS

OF AFFINE ALGEBRAIC VARIETIES

VLADIMIR L. POPOV

To the memory of A. N. Parshin

Abstract. A new infinite series of rational affine algebraic va-
rieties is constructed whose automorphism group contains the auto-
morphism group Aut(Fn) of the free group Fn of rank n. The
automorphism groups of such varieties are nonlinear and contain
the braid group Bn on n strands for n > 3, and are nonamenable
for n > 2. As an application, it is proved that for n > 3, every
Cremona group of rank > 3n− 1 contains the groups Aut(Fn) and
Bn. This bound is 1 better than the one published earlier by the
author; with respect to Bn the order of its growth rate is one less
than that of the bound following from the paper by D. Krammer.
The basis of the construction are triplets (G,R, n), where G is a
connected semisimple algebraic group and R is a closed subgroup
of its maximal torus.

1. Introduction

The trend of the last decade has been the study of abstract-algebraic,
topological, algebro-geometric, and dynamical properties of automor-
phism groups of algebraic varieties. This paper is related to this topic
and continues the research started in author’s paper [11].
In [11], an infinite series of irreducible algebraic varieties is const-

ructed in whose automorphism group embeds the automorphism group
of a free group Fn of rank n. This has applications to the problems of
linearity and amenability of automorphism groups of algebraic varieties
and that of the embeddability of various groups into Cremona groups.
To formulate the results obtained in this paper, we recall the construc-
tion introduced in [11].
Consider a connected algebraic group G. Denote

X is the group variety of the algebraic group
Gn := G× · · · ×G (n times).

We fix in Fn a free system of generators f1, . . . , fn. For any w ∈ Fn and

x = (g1, . . . , gn) ∈ X, gj ∈ G for all j, (1)
1
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denote by w(x) the element of G obtained from the word w in f1, . . . , fn
by replacing fj with gj for each j. For each σ ∈ Aut(Fn), the mapping

σX : X → X, x 7→ (σ(f1)(x), . . . , σ(fn)(x)). (2)

is an automorphism of the algebraic variety X (but not, in general, of
the group Gn). The mapping σ 7→ (σ−1)X is a group homomorphism
Aut(Fn) → Aut(X). It defines an action of the group Aut(Fn) by
automorphisms of the variety X commuting with the diagonal action
G on X by conjugation. Let us assume that for the restriction of this
action to a closed subgroup R of the group G, there is a categorical
quotient

πX//R : X → X//R (3)

(for example, this property holds if R is finite, see [15, Prop. 19; p. 50,
Expl. 2)], or if G is affine and R is reductive, see [12, 4.4]). Then it
follows from the definition of categorical quotient (see [12, Def. 4.5])
that σX descends to a uniquely defined automorphism σX//R of X//R,
which has the property

πX//R ◦ σX = σX//R ◦ πX//R. (4)

In this case, there arises a group homomorphism

Aut(Fn) → Aut(X//R), σ 7→ (σ−1)X//R, (5)

defining the action of the group Aut(Fn) by automorphisms of the
variety X//R. For some (but not all) G and R, homomorphism (5) is
an embedding. Namely, in [11] it is proved that

(a) in the following cases, homomorphism (5) is an embedding:
• G is nonsolvable and R is finite;
• G is reductive, R = G, n = 1 and G contains a connected
simple normal subgroup of one of the following types:

Aℓ with ℓ > 2, Dℓ with odd ℓ, E6; (6)

(b) in the following cases, homomorphism (5) is not an embedding:
• G is solvable, R is finite and n > 3,
• G is reductive, R = G and either n > 2, or n = 1 and G does
not contain a connected simple normal subgroup of either of
types (6).

This leads to the following general question:

Question. Is it possible to classify the triples (G,R, n), where G is a
connected reductive algebraic group, R is its closed subgroup, and n is
a positive integer, for which homomorphism (5) is an embedding?
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The main result of the present paper is Theorem 1.1, in which the
next step after [11] is taken towards answering the question posed: we
add one more class to the triples of the specified type found in [11]:

Theorem 1.1. Let G be a connected semisimple algebraic group and

let R be a closed subgroup of its maximal torus. Then homomorphism

(5) is an embedding.

As an application we obtain the following Theorem 1.2, in which Bn

denotes the braid group on n strands.

Theorem 1.2. We keep the assumptions of Theorem 1.1. Then X//R
is an affine algebraic variety such that

(a) Aut(X//R) contains Aut(Fn),
(b) Aut(X//R) is nonlinear for n > 3,
(c) Aut(X//R) contains the braid group Bn for n>3.
(d) Aut(X//R) is nonamenable for n>2.

We also explore the rationality problem:

Theorem 1.3. The variety X//R from Theorems 1.1, 1.2 is rational.

As an application we strengthen by 1 the bounds obtained in [11,
Cor. 9 and Rem. 10]:

Theorem 1.4. For any integer n > 1, the Cremona group of rank

> 3n−1 contains the group Aut(Fn) and, for n > 3, the braid group Bn.

Remark. As is proved in [4] by D. Krammer, the braid group Bn

embeds into GLn(n−1)/2. Hence Bn embeds into the Cremona group of
rank n(n − 1)/2. The order of the growth rate of this bound for the
minimal rank of the Cremona group containing Bn is one bigger than
that of the bound from Theorem 1.4.

The proofs of Theorems 1.1–1.4 are given in Section 6.

2. Conventions and notation

In what follows, algebraic varieties are considered over an algebrai-
cally closed field k. We use the results of paper [6] and statement [12,
Prop. 3.4] obtained under the condition char(k) = 0. Therefore, we also
assume that this condition holds. With respect to algebraic geometry
and algebraic groups we follow [1].
The identity element of a group considered in multiplicative nota-

tion is denoted by e (it will be clear from the context which group is
meant).
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The statement that a group A contains a group B means the exis-
tence of a group monomorphism B →֒ A, by which B is identified with
its image.

C (A) is the center of a group A.
A ·m and Am are respectively, the orbit and the stabilizer of a point

m with respect to a considered action of a group A (it will be clear
from the context which action is meant).
The kernel of an action α : A×M →M of a group A on a set M is

the following normal subgroup of A:

ker(α) := {a ∈ A | a ·m = m for all m ∈M}.

By homomorphisms of algebraic groups we mean algebraic homomor-
phisms, and by their actions on algebraic varieties we mean algebraic
actions. In particular, for an algebraic group A, we denote by Aut(A)
the group of its algebraic automorphisms.
The multiplicative group k× of the field k is considered as the algeb-

raic group Gm, and its additive group is considered as Ga.

3. Terminology and some general results

Recall (see [12]) the terminology and results used below, which con-
cern an action of α of an algebraic group H on an irreducible algebraic
variety Y .
(a) An action α is said to be stable if there is a nonempty open set

in Y , the H-orbits of whose points are closed in Y .
(b) A subgroup H∗ of H is called the stabilizer in general posisiton

(s.g.p.) of the action α if there is a nonempty open set in Y such that
for any its point y, the subgroups Hy and H∗ are conjugate in H .
(c) If H is reductive and Y is smooth and affine, then

• The s.g.p. exists.
• The varieties Y and Y//H are endowed with the Luna stratifica-

tions defined as follows. The fact that the points a, b ∈ Y//H belong to
the same Luna stratum means that the normal vector bundles to the
unique H-orbits closed in the fibers π−1

Y//H(a) and π
−1
Y//H(b) orbits are H-

equivariantly isomorphic. The Luna strata in Y are the sets of the form
π−1
Y//H(L), where L is a Luna stratum in Y//H . The Luna stratifications

have the following properties:

(i) the set of all Luna strata is finite;
(ii) all Luna strata in the varieties Y//H and Y are smooth lo-

cally closed subvarieties of these varieties;
(iii) for any Luna stratum L in Y//H there exists an affine variety

F endowed with an action of H such that the restriction
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of the morphism πY//H to the stratum π−1
Y//H(L) (called the

canonical morphism of the Luna stratum π−1
Y//H(L)) is an étale

trivial bundle π−1
Y//H(L) → L with fiber F .

In view of (i) and (ii), there are (unique) open Luna strata in Y//H
and Y . They are called the principal strata and denoted by (Y//H)pr
and Ypr respectively.

Lemma 3.1. We keep the previous notation H, Y , α. Let y ∈ Y be a

point such that

(y1) the orbit H ·y is closed in Y ;

(y2) Hy = ker(α).

Let β be an action of the group H on an algebraic variety Z such that

(k) ker(α) = ker(β),

and let ϕ : Z → Y be an H-equivariant morphism such that ϕ−1(H·y) 6=
∅. Then for every point z ∈ ϕ−1(H ·y) the following properties hold:

(z1) the orbit H ·z is closed in Z;
(z2) Hz = ker(β).

Proof. In view of (y1), the nonempty H-invariant subset ϕ−1(H · y)
is closed in Z and hence contains the closure H ·z of the orbit H ·z.
Assume that (z1) fails, i.e., H ·z \H ·z 6= ∅. Let v ∈ H ·z \H ·z. Then

dim(H ·v) < dim(H ·z). (7)

The restriction of the morphism ϕ to the orbit H·v is an H-equivariant
and therefore a surjective morphism H ·v → H ·y. So dim(H ·v) >

dim(H ·y), which together with (7) gives

dim(H ·y) < dim(H ·z) (8)

On the other hand, since Hz ⊇ ker(β), from (y2) and (k) it follows that
dim(H ·y) > dim(H ·z). This contradicts (8) and proves (z1).
The restriction of the morphism ϕ to the orbit H ·z is an H-equiva-

riant, and therefore a surjective morphism of H·z → H·y. Hence, there
exists h ∈ H for which ϕ(h · z) = y. Therefore,

ker(α)
(k)
= ker(β) ⊆ Hh·z ⊆ Hy

(y2)
= ker(α);

whence, Hh·z = ker(β). Since Hh·z = hHzh
−1 and ker(β) is normal in

H , this proves (z2). �
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Lemma 3.2. Let a commutative group H act transitively on a set M .

(e1) For every H-equivariant mapping ϕ : M → M there is an ele-

ment h ∈ H such that

ϕ(m) = h ·m for every point m ∈ M . (9)

(e2) For every element h ∈ H, the map ϕ : M → M defined by

formula (9) is H-equivariant.

Proof. (e1) Fix a point m0 ∈M . Since the action is transitive, for any
point m ∈ M there is an element z ∈ H such that m = z · m0. In
particular, there is h ∈ H for which ϕ(m0) = h · m0. Since ϕ is H-
equivariant and H is commutative, we then have ϕ(m) = ϕ(z ·m0) =
z · ϕ(m0) = z · (h ·m0) = zh ·m0 = hz ·m0 = h · (z ·m0) = h ·m.
(e2) This follows directly from (9) in view of the commutativity of H .

�

4. Reduction

The proof of Theorem 1.1 is based on the following geometric de-
scription of the kernel of homomorphism (5):

Lemma 4.1. Let G be a connected affine algebraic group and let R
be its closed reductive subgroup. The following properties of an element

σ ∈ Aut(Fn) are equivalent:

(a) σ lies in the kernel of homomorphism (5);
(b) σX(O) = O for every closed R-orbit O in X.

Proof. In this case, the variety X is affine, which implies (see [9, §2
and Append. 1B]) that the morphism π is surjective, its fibers are R-
invariant, and for each point b ∈ X//R, the fiber π−1(b) contains a
unique closed R-orbit Ob. It follows from (4) that the restriction of the
morphism σX to the fiber π−1(b) is its R-equivariant isomorphism with
the fiber π−1(σX//R(b)). In view of the uniqueness of closed orbits in
the fibers, this means that σX(Ob) = OσX//R(b). Therefore, σX//R(b) = b

if and only if σX(Ob) = Ob. �

Under the conditions of Lemma 4.1, the algebra k[X ]R of all R-
invariant elements of the algebra k[X ] of regular functions on X is
finitely generated, X//R is the affine algebraic variety with the algebra
of regular functions k[X//R] = k[X ]R, and the comorphism correspond-
ing to morphism (3) is the identity embedding k[X ]R →֒ k[X ]. This
implies that for any reductive closed subgroup S of G containing R, the
identity embedding k[X ]S →֒ k[X ]R determines a dominant morphism
X//R → X//S. This morphism is Aut(Fn)-equivariant. Therefore, the
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kernel of the action of the group Aut(Fn) on X//R lies in the kernel of
its action on X//S.
In the situation considered in Theorem 1.1, this gives the following.

By the assumption, in it, R is a subgroup of some maximal torus T
of the group G. Therefore, it follows from what has been said that it
suffices to prove Theorem 1.1 for

R = T. (10)

In what follows, we assume that the group G satisfies the conditions
of Theorem 1.1, i.e., is connected and semisimple. Note that the kernel
of the action of the group T on X is C (G), since C (G) ⊂ T (see [1,
13.17,Cor. 2(d)]).

5. Principal Luna stratum for action of T on X

The variety X is smooth, and the group T is reductive. Therefore,
the diagonal action of the torus T on X by conjugation determines the
Luna stratifications of the varieties X and X//T . In what follows, Xpr

denotes the principal stratum of this stratification of the variety X .

Theorem 5.1. Let G be a connected semisimple algebraic group with a

maximal torus T acting diagonally by conjugation on the group variety

X of the group Gn.

(a) The kernel of the specified action is C (G).
(b) The following properties of a point x ∈ X are equivalent:

(b1) x ∈ Xpr;

(b2) the orbit T ·x is closed in X, and Tx = C (G).
(c) Each fiber of the canonical morphism of the Luna stratum Xpr is

a T -orbit equivariantly isomorphic to T/C (G).
(d) codimX(X \Xpr) > n.

Proof. Statement (a) is obvious.
(b) Denote by V the trivial codimX(T )-dimensional vector bundle

over T/C (G). Note that dim(T/C (G)) = dim(T ) since the group C (G)
is finite (see [1, 14.2. Cor.(a)]).

• It suffices for us to prove that

(i) the action of the torus T on X under consideration is stable;
(ii) C (G) is its stabilizer in general position,

or, in other words, that there is a nonempty open subset of X , for
all points x of which property (b2) holds. Indeed, suppose this subset
exists. Due to its openness, its intersection with the open set Xpr is
nonempty. Let x be a point of this intersection. Since C (G) is the
kernel of the action of the group T on X , from condition (b2) it follows
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that the normal bundle of the orbit T ·x is equivariantly isomorphic to
V. From this and from the definition of the Luna strata it follows that
a closed T -orbit from X lies in Xpr if and only if its normal bundle is
equivariantly isomorphic to V. In particular, the dimension of this orbit
is dim(T ). It remains to note that the T -orbit of any point y ∈ Xpr is
closed. Indeed, if this were not the case, then the unique closed T -orbit
in the fiber π−1

X//T (πX//T (y)) ⊆ Xpr lying in its closure had dimension

strictly less than dim(T ·y) 6 dim(T ), which contradicts the dim(T )-
dimensionality of this closed orbit.

• Let us now prove that properties (i) and (ii) indeed hold. It suffices
to prove them for n = 1. Indeed, suppose that for n = 1 they are
proved, i.e., there is a nonempty open subset of G such that T -orbit
of every its point x is closed in G and Tx = C (G). Then, as explained
above, Gpr is the set of all such points x. Let πi : X = Gn → G be
the natural projection onto the ith factor. Applying Lemma 3.1 to it,
we infer that property (b2) holds for each point x of a nonempty set
π−1
i (Gpr), which means that properties (i) and (ii) hold.
• It remains to prove that (i) and (ii) hold for n = 1. In [16, 6.11],

it is proved that the action of G on itself by conjugation is stable and
its s.g.p. is T . From [5, Thm. and Sect. 3] and the reductivity of T , it
follows that the natural action of T on G/T is stable. These two facts
imply, according to [10, Prop. 6], that (i) holds for n = 1.

• Let Φ be the root system of the group G with respect to the torus
T in which subsystems of positive and negative roots with respect to
some base in Φ are fixed. For any α ∈ Φ, there is an embedding of
algebraic groups εα : Ga →֒ G, such that

tεα(x)t
−1 = εα(α(t)x) for all t ∈ T, x ∈ Ga (11)

(see [3, 26.3. Thm.], [16, 2.1]). Consider in G the “big cell” Θ (see [3,
28.5Prop.]), i.e., the set of all elements of the form

∏

α<0

εα(xα)t
∏

α>0

εα(xα), xα ∈ Ga, t ∈ T, (12)

where the factors in the products are taken with respect to some fixed
orders on the sets of positive and negative roots. The set Θ is open in
G and each of its elements can be uniquely written as (12) (see [1,
14.5. Prop.(2), 14.14.Cor.], [16, 2.2, 2.3]). In view of (11), it is T -
invariant. The set Θ0 of all elements of the form (12) with xα 6= 0
for each α ∈ Φ has the same properties. Let a ∈ Θ0 and c ∈ T . It fol-
lows from (11) and the indicated uniqueness that the condition c ∈ Ta
is equivalent to the condition

c ∈ ker(α) for all α ∈ Φ. (13)
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In turn, it follows from (11), (12) and the openness of Θ0 that (13) is
equivalent to the property that c belongs to the kernel of the action of
T on G, i.e., (13) is equivalent to the inclusion c ∈ C (G). This proves
that Ta = C (G). Hence, (ii) holds for n = 1. This completes the proof
of (b).
(c) This follows from (b), since each fiber of the canonical morphism

of any Luna stratum in X contains a unique orbit closed in X .
(d) As is explained in the proof of statement (b), the set Xpr contains

the set
⋃n

i=1 π
−1
i (Gpr), from where we get

X \Xpr ⊆ (G \Gpr)× · · · × (G \Gpr) (n factors). (14)

From (14) it follows that dim(X \Xpr) 6 n(dim(G)−1) = dim(X)−n.
This proves (d). �

6. Proofs of Theorems 1.1–1.4

Proof of Theorem 1.1. As is explained in Section 4, we can (and shall)
assume that equality (10) holds. Arguing by contradiction, suppose
that the kernel of homomorphism (5) contains an element σ∈Aut(Fn),
σ 6= e. The cases n = 1 and n > 2 will be considered separately: in
each of them the proof is based on the properties that do not hold in
the other.

Case n = 1.
The order of Aut(F1) is 2 and σ(f1) = f−1

1 , so

σX(g) = g−1 for each g ∈ G = X . (15)

For any element t ∈ T we have T · t = t. In view of Lemma 4.1, this
implies that σX(t) = t. Together with (15) this shows that t2 = e for
any t ∈ T . This conclusion contradicts the fact that the set of orders
of elements of the torsion subgroup of any torus of positive dimension
is not upper bounded (see [1, 8.9. Prop.]).

Case n > 2.
• Since the kernel of the considered action of the torus T on X is

C (G) (see Theorem 5.1(a)), this action defines a faithful (that is, with
trivial kernel) action on X of the torus

S := T/C (G). (16)

The orbits of this action of the torus S, and hence the categorical
quotient and the Luna stratifications are the same as those of the action
of the torus T . Below, instead of the original action of the torus T , we
consider the indicated action of the torus S.
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• Theorem 5.1(b) and Lemmas 4.1, 3.2(e1) imply the existence of a
set-theoretic mapping ψ : (X//T )pr → S such that

σX(x) = ψ(πX//T (x)) · x for each point x ∈ Xpr. (17)

Let us prove that the set-theoretic mapping

Xpr → S, x 7→ ψ(πX//T (x)) (18)

is a morphism of algebraic varieties. According to Theorem 5.1(b) and
what was said in part (iii) of Section 3, the canonical morphism Xpr →
(X//T )pr is an étale trivial bundle with fiber S. Since algebraic tori
are special groups in the sense of Serre (see [14, Prop. 14]), this bundle
is locally trivial in the Zariski topology. Hence, Xpr is covered by S-
invariant open sets for which there are S-equivariant isomorphisms of
them with varieties of the form U × S, where U is an open subset
of (X//T )pr, and the torus S acts through translations of the second
factor. If we identify them by these isomorphisms, then the restriction
of mapping (18) to any of these open sets has the form

α : U × S → S, (u, s) 7→ ψ(u).

The issue therefore boils down to proving that α is a morphism of
algebraic varieties. To this end, note that since σX is a morphism, then

U × S → U × S, (u, s) 7→ (u, ψ(u)s)

is also a morphism in view of (17). Hence

β : U × S → S × S, (u, s) 7→ (s, ψ(u)s)

is a morphism as well. Moreover,

γ : S × S → S, (s1, s2) 7→ s−1
1 s2. (19)

is a morphism too. It remains to note that α = γ ◦ β.
• Thus, there exists a rational mapping

θ : X 99K S,

which is defined everywhere on the open set Xpr and coincides on it
with morphism (18). Since n > 2, it follows from Theorem 5.1(d) that

codimX(X \Xpr) > 2. (20)

The torus S can be identified with the product of several copies of
the group k×. Then θ is given by a set of rational functions θi : X 99K

k, which are compositions of the mapping θ with projections of this
product onto the factors. Each θi is regular and does not vanish on
Xpr. Since X is smooth, it follows from this and (20) that the divisor
of θi on X is zero, that is, θi is regular and does not vanish on the whole
of X . Thus, we have a morphism θi : X → k×. Since X is the group
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variety of the connected algebraic group Gn, it follows from this and
from [13, Thm. 3] that θi is the product of a character of this group and
a constant. But due to semisimplicity, Gn has no nontrivial characters.
Hence θi is a constant. This means that there is an element s ∈ S for
which θ(X) = s.

• Fix an element t ∈ T that maps to s under the natural surjection
T → S (see (16)). We have proven that σX(x) = t · x for every point
x ∈ Xpr. Since Xpr is open in X , this means that

σX(x) = t · x for every point x ∈ X . (21)

Since σ 6= e, it follows from [11, Thm. 2(b1)] that σX 6= idX . In view
of (21) and Theorem 5.1(a), this gives

t /∈ C (G). (22)

It follows from (21), (1), and (2) that for each i ∈ {1, . . . , n} the
following group identity holds

σ(fi)(g1, . . . , gn) = tgit
−1 for any g1, . . . , gn ∈ G. (23)

In particular, for each g ∈ G the equality obtained by substituting
g1 = . . . = gn = g into (23) holds. Since σ(fi) is a noncommutative
Laurent monomial in f1, . . . fn, this means that there exists an integer
d such that the following group identity holds:

gd = tgt−1 for each g ∈ G. (24)

Notice that

d 6= 1 and d 6= −1. (25)

Indeed, in view of (24), if d = 1, then t ∈ C (G) contrary to (22). If
d = −1, then for any g, h ∈ G the following equality holds:

h−1g−1 = (gh)−1 (24)
= t(gh)t−1 = tgt−1tht−1 (24)

= g−1h−1,

which means that the group G is commutative and contradicts its
semisimplicity.
Further, if r is a positive integer, then the following group identity

holds:

trgt−r = gd
r

for each g ∈ G. (26)

Indeed, (26) becomes (24) for r = 1. Arguing by induction, from

tr−1gt−r+1 = gd
r−1

we get

trgt−r=t(tr−1gt−r+1)t−1 = tgd
r−1

t−1 (24)
= (gd

r−1

)d = gd
r

,

as stated.
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Substituting g = t into (24) and taking into account (25), we con-
clude that t is an element of finite order. Let r in (26) be equal to this
order. Then (26) turns into the group identity

e = gd
r
−1 for every g ∈ G. (27)

In view of (25), we have dr − 1 6= 0. Hence the group identity (27)
implies that G, and therefore also T , is a torsion group the orders
of whose elements are upper bounded. We have arrived at the same
contradiction as when considering the case n = 1. This completes the
proof of Theorem 1.1. �

Proof of Theorem 1.2. Theorem 1.1 implies (a). For n > 3, the group
Aut(Fn) is nonlinear (see [2]) and contains the group Bn (see [8, Sect.
3.7]). In view of (a), this implies (b) and (c). Since the group C (Fn)
is trivial for n > 2 (see [7, Chap. I, Prop. 2.19]), the group Int(Fn) is
isomorphic to Fn and hence is not amenable. From this it follows (d).

�

Proof of Theorem 1.3. Let us prove that the group variety of the group
G is birationally T -equivariantly isomorphic to some T -module. To this
end consider the open set Θ in G introduced in the proof of Theorem
5.1 and fix the following objects:

• one-dimensional T -module Lα for every α ∈ Φ on which T acts by
the formula

t · ℓ = α(t)ℓ, t ∈ T, ℓ ∈ Lα, (28)

• nonzero element ℓα ∈ Lα,
• a trivial T -module F of dimension dim(T ),
• an open embedding of algebraic varieties

ι : T →֒ F

(it exists because T is a torus).
Consider the T -module

V :=
⊕

α>0 Lα ⊕ F ⊕
⊕

α<0 Lα,

where the summands in the direct sums are taken with respect to some
fixed orders on the sets of positive and negative roots. In view of (11),
(28), the mapping τ : Θ → V , sending each element (12) to the vector

⊕
α>0 xαℓα ⊕ ι(t)⊕

⊕
α<0 xαℓα,

is the searched for birational morphism (see [1, 14.4. Rem.]).
Consequently,

τn :=τ×· · ·×τ : Θn :=Θ×· · ·×Θ → V n :=V ⊕· · ·⊕V (n components)
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is also a T -equivariant, and therefore, an R-equivariant birational mor-
phism.
Since R and V n are respectively a diagonalizable group and an R-

module, the field k(V )R is rational over k (see [12, Sect 2.9]). Since
Θn is open in X , this implies that the field k(X)R is also rational over
k. But the action of T on X is stable, and C (G) is the s.g.p. for it
by Theorem 5.1(b). Since R is reductive, from [5, Thm. and Sect. 3]
it follows that the natural action of R on T/C (G) is stable. Hence,
according to [10, Prop. 6], the action of R on X is stable. In view of
[12, Prop. 3.4], this implies that k(X)R is the field of fractions of the
algebra k[X ]R = k[X//R]. This is what the rationality of the variety
X//R means. �

Proof of Theorem 1.4. Let G = SL2, so that dim(G) = 3 and dim(T ) =
1. It follows from here and from Theorem 5.1(c) that dim(X//T ) =
3n− 1. Hence, in view of the rationality of the variety X//T (Theorem
1.3), the group Aut(X//T ) embeds into the Cremona group of rank
3n − 1. The claim of the theorem now follows from Theorem 1.2 and
the fact that every Cremona group embeds into any Cremona group of
a higher rank. �
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