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Abstract. This paper is devoted to the monitoring system HPC Task-
Master developed at the HSE University for the cHARISMa cluster.
This system automatically evaluates the efficiency of performing tasks
of HPC cluster users and identifies inefficient tasks, thereby significantly
saving the expensive machine time. In addition, users can view reports
on completing their tasks, along with inferences about their work and
interactive graphs. Particular attention in this paper is paid to determin-
ing the effectiveness of the task – the system allows the administrator
to personally configure the criteria for evaluating the effectiveness of the
task without the need for changes in the source code. The system is
developed using open-source software and is publicly available for use on
other clusters.
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1 Introduction

A task efficiency monitoring system is essential for detecting incorrectly started
calculations that entail the insufficiently efficient use of cluster resources. This
paper describes a new task performance monitoring system, HPC TaskMaster,
developed at the HSE University for the cHARISMa (Computer of HSE for
Artificial Intelligence and Supercomputer Modeling) cluster.

The developed system allows users to view reports on the performance of their
tasks together with interactive execution schedules and automatically identify
tasks that worked inefficiently. Having access to the results of the analysis, users
can run their tasks more efficiently in the future, which will significantly save
the machine time of the cluster.

In addition, the system will allow the administrators of the cluster to collect
statistics about user tasks, which was previously unavailable.
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The most common examples of the inefficient usage of cluster resources are:

– allocation of insufficient or excessive resources for a task;
– running a non-parallel task on multiple CPU cores or GPUs;
– allocation of the compute node capacity without starting calculations.

The following requirements were defined for the design of the task perfor-
mance monitoring system.

1. The system should collect the following data for each task:
– utilization of specific CPU cores allocated for the task;
– utilization of GPUs allocated for the task;
– GPU memory utilization;
– GPU power consumption;
– utilization of RAM created by the task;
– file system usage.

2. The system must analyze the collected data and use it to determine whether
the task worked effectively.

3. The system must provide users with access to the list of completed tasks and
reports on their completion using a web application.

The rest of this paper is organized as follows. A comparison of different
monitoring systems is carried out in Sect. 2. In Sect. 3, the architecture of the
system is described. The detection of inefficient user tasks is considered in Sect. 4.
User statistics are provided in Sect. 5. Finally, Sect. 6 shows the conclusions of
this work.

2 Related Work

The key feature of the HSE cluster is how it allocates resources for user tasks.
Instead of allocating the entire compute node for one task, the user is given a
certain number of processor cores and GPUs. As a result, several dozen tasks can
be performed on the compute node at once, thus optimizing cluster resources.
Due to this feature, ready-made solutions for monitoring system resources, such
as Nagios and Zabbix, are not suitable for this cluster. cHARISMa already has
a monitoring system of its own [4], however, it is designed to display only the
global usage across the whole cluster and its nodes.

Since one of the HSE University goals is to provide cluster users with a
secure system in the HSE University environment, a new monitoring system was
built using open-source monitoring tools. Chan [3], Wegrzynek [11], Kychkin [6],
Safonov [10] describe how using a combination of programs such as Telegraf,
InfluxDB and Grafana allows one to quickly set up and run a cluster resource
monitoring system. In [2,3], it is also described how the Slurm plugin acct gather
enables to collect metrics for Slurm tasks, which is precisely the data required
for a task efficiency monitoring system. Since all programs, except Telegraf, are
already installed on cHARISMa, this approach can be used to monitor tasks on
the cluster.



HPC TaskMaster 19

The development of LIKWID Monitoring Stat [9], a task monitoring system
using InfluxDB, Grafana and built-in LIKWID tools for monitoring tasks on the
cluster, also draws attention. For each task, a dashboard is created from ready-
made JSON templates, which allows creating personalized graphs for each task.
The disadvantages of using the LIKWID Monitoring Stack on the HSE Cluster
include the need to use LIKWID tools for the system to operate and the lack of
a web interface for the system in addition to Grafana, which makes the system
inconvenient for using on a cluster with a large number of users and tasks.

In addition to monitoring cluster resources, the system must analyze the
effectiveness of user tasks. A well-known system for creating reports on the
effectiveness of tasks is JobDigest [7,8]. It analyzes the collected integral values
and, based on them, applies a tag to the task describing the property of the
task (for example, “low GPU utilization”). Although using tags is convenient
for searching and filtering tasks, it is not always possible to provide an overall
picture of the effectiveness of the task using tags alone.

Summarizing all the above, we can conclude that there is no ready-made
task monitoring system fitting the individual characteristics of the cHARISMa
cluster, which can be integrated into the HSE University environment. It is
necessary to develop its own software system for evaluating the effectiveness of
tasks, which can be flexibly configured for specific types of user tasks, delimit
access for cluster users, and take into account the compliance of tasks with
registered scientific and educational projects. As the basis of the system, it is
worth using the open-source software Telegraf, InfluxDB and Grafana.

3 System Architecture

This section describes the monitoring infrastructure of the HPC TaskMaster
system, shown in Fig. 1.

Fig. 1. Diagram of the system components
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The Slurm task scheduler is used to run tasks on the cluster. The main
data of Slurm tasks is stored in the MySQL relational database using the back-
ground process slurm database (slurmdbd), and the task metrics are written to
the InfluxDB time series database using the plugin acct gather. This plugin col-
lects memory and filesystem usage (read/write) for each task.

The required metrics of utilizing specific CPU cores and GPUs are collected
with the Telegraf daemon, which has built-in plugins for these metrics. Thus,
having the CPU and GPU IDs assigned to the task, the system can collect
metrics for the components and, therefore, distinguish utilization for different
tasks on one node. Additional metrics are collected using developed plugins in
Python.

The collected metrics are stored in the InfluxDB database. InfluxDB was cho-
sen as a time-series database because of Telegraf support and Slurm acct gather
plugin support, which allows one to store all the required metrics in one database.

Grafana is used as a tool for visualizing graphs on the cHARISMa cluster.
Grafana provides great opportunities for configuring and formatting charts and
also has support for creating them using the API. This API allows automating
the creation of graphs for each task. New graphs for each task are created using
JSON templates. Based on the available data about the task, when the user
requests it, graphs are automatically built in Grafana. The created graphs are
displayed on the system’s website using iframe technology, where the user can
interactively view the graphs for the period of task execution. In addition, the
system creates graphs for both completed and running tasks. Thereby, the user
can observe the work of his task in real time.

The advantage of using a combination of Telegraf, InfluxDB and Grafana is
the ability to install and configure these tools on any cluster. Moreover, these
tools make the monitoring system quite flexible – additional data for the system
can be collected using the built-in plugins of Telegraf or developed ones.

It is important to pay attention to the fact that the HPC TaskMaster system
has a negligible impact on the performance of compute nodes; the installed
Telegraf daemon uses only 0.03% of the overall CPU performance. In addition
to Telegraf, another source of the computing cluster load is InfluxDB. Installed
on the head node, InluxDB uses an average of 5 GB of storage per month. To
free up storage, a retention policy that compresses metrics older than 6 months
is used.

The HPC TaskMaster system is developed on Django, a Python web frame-
work that has a large number of available packages and a wide range of tools for
developing web applications, which allows one to develop a monitoring system
using Telegraf, InfluxDB and Grafana. In addition, Django has a built-in admin-
istration panel through which the administrator can configure the monitoring
system himself without making changes to the source code of the program.

The task performance monitoring system works according to the following
principles:
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– metrics are collected on each compute node using Telegraf and stored in the
InfluxDB database on the head node. Metrics from the acct gather plugin are
also stored in InfluxDB;

– the system updates its local MySQL database by comparing its tasks with
those from the Slurm database;

– while the task is running, aggregated metrics are collected for it from the
InfluxDB database with a certain period;

– if the task is completed, its aggregated metrics are collected for the last time;
– the collected aggregated metrics are analyzed by the system, and an inference

about the efficiency of the task is generated.

4 Detecting Inefficient Tasks

The user interacts with the HSE high-performance computing cluster [4] by
launching tasks through the SLURM workload manager. A task is a set of user
processes for which the workload manager allocates computing resources (com-
pute nodes, CPUs, GPUs, etc.) Each launch of the user’s program for execution
generates a new task, which is collected in the database and analyzed.

Here we define task efficiency as the usage of allocated resources above a
certain threshold.

4.1 Collected Data

HPC TaskMaster collects two types of data about running tasks on the HPC
cluster:

1) parameters characterizing the running task;
2) metrics that characterize the execution of the task.

Parameters. Table 1 shows the task parameters and their type.

Metrics
Table 2 shows the metrics collected during the execution of the task. The metrics
form a time series θi. Θ = {θi} denotes the set of all-time series of the task.

The frequency of collecting metrics can be adjusted and selected in such a way
as to obtain sufficiently detailed information about the task without overloading
the system with data collection and storage.

4.2 Data Processing

Aggregated Metrics
To simplify the analysis, aggregated metrics Λk = (λk

1 , · · · , λk
m) are calculated

for each time series [5]. They include the minimum, maximum, average, median
and standard deviations. In addition to them, the tuple Λ includes the average
load of each node and the combined average load of the nodes.
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Table 1. Parameters of the task

№ Parameter Type

1 ID Integer

2 Task name

String
3 Status

4 Launch command

5 Type of compute nodes

6 Number of compute nodes

Integer

7 Number of CPU cores

8 Number of GPUs

9 Exit code

10 User ID

11 Project ID

12 Start date and time
Date

13 End date and time

Table 2. Collected metrics and collection frequency

№ Metrics Frequency, seconds Units of measurement

1 CPU cores usage by the user

10

percentages2 CPU cores usage by the system

3 GPU usage

4 RAM usage

kilobyte5 GPU memory usage

7 GPU power consumption watt

8 File System access 60 megabyte

Tags
Since the task parameters are a heterogeneous set of data (integers, strings,
dates), to simplify their analysis, a system of tags, i.e., “labels” indicating the
type of task, execution time, and other properties of the task, is introduced.
Table 3 contains a list of tags currently available in the system. Additional tags
can be developed and implemented into the system.

The tuple T k = (τk
1 , . . . , τk

n) is assigned to the task with the ID k, where n is
the number of tags in the system. The τi element corresponds to the indicator of
the i tag and takes the value 1 if all conditions are met and the tag is assigned
to the task, and 0 otherwise.

Indicators
To determine if the task is working inefficiently, it is necessary to evaluate the
disposal of the components involved in the task. To do this, the concept of
indicator of problems is introduced.
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Table 3. List of tags

№ Tags Type

1 Jupyter-notebook task

String

2 LAMMPS task

3 VASP task

4 Allocation of resources for calculations

5 The task lasted less than a minute

6 The task was completed with an error

Indicators, dimensionless values inversely proportional to the value of the
metrics, are used to evaluate the disposal of the components involved in the
task.

Indicators take a value from 0 (with the full use of allocated resources) to
1 (otherwise). For example, the value of the indicator lj is calculated from the
aggregated metric λk

j ∈ Λk using formula (1).

lkj = 1 − λk
j − aj

bj − aj
, lj ∈ [0, 1], (1)

where aj , bj are the admin defined parameters referring to the minimum and
maximum possible values of the j-th element of the aggregated metrics.

Indicators are placed in the tuple of indicators Lk = (lk1 , . . . , lkm).
The list of currently available indicators is presented in Table 4. Additional

indicators can be developed and implemented into the system. The number of
indicators for a specific task depends on the number of cores, compute nodes
and GPUs used.

Table 4. List of indicators

№ Indicators

1 Low average CPU usage

2 Low average CPU core usage

3 Low average GPU usage

4 Low GPU memory usage

5 The task was completed with an error

4.3 Inferences

To help users to interpret the results, the system has a set of inferences Φ = (φi).
Inferences are the result of the analysis of the task.
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Different requirements for tags and indicator values are set for each inference.
An inference is assigned to the task when all the conditions are met. Several
inferences can correspond to one task at once.

Denote the union of tuples of indicators L and tags T as

Nk = (lk1 , . . . , lkn, τk
1 , . . . , τk

m). (2)

Let Ωi be a set of conditions for the output of φi to the elements of the tuple
Nk.

Then we can match the set Ck to each problem:

Ck = {φi ∈ Φ : Πω∈Ωi
1ω(Nk) = 1}, (3)

where 1ω is the indicator function equal to 1 if the condition ω ∈ Ωi is met. In
other words, the tuple Ck contains the inferences assigned to the task.

4.4 Example

Let us consider a computational task performed on the cHARISMa supercom-
puter using 176 cores and 16 NVIDIA Tesla V100 GPU accelerators on 4 compute
nodes. Table 5 shows the parameters of the task.

Table 5. Parameters of the task

№ Parameter Value

1 ID 405408

2 Task name SimpleRun

3 Status Successful

4 Exit code 0

5 Launch command sbatch run task.sh

6 User ID 2000

7 Project ID 32

8 Start date and time November 11, 2021 10:13:28

9 End date and time November 12, 2021 13:19:09

10 Type of compute nodes type a

11 Number of compute nodes 4

12 Number of CPU cores 176

13 Number of GPUs 16

The aggregated metrics across all compute nodes for the example task are
shown in Table 6.
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Table 6. Aggregated metrics by node

№ Metrics Value

1 Avg. load of cores on comp. node cn-001 99.36

2 Avg. load of cores on comp. node cn-002 99.11

3 Avg. load of cores on comp. node cn-003 99.15

4 Avg. load of cores on comp. node cn-004 99.51

5 Avg. load of comp. nodes 99.28

7 Avg. utilization of GPUs on comp. node cn-001 71.62

8 Avg. utilization of GPUs on comp. node cn-002 71.6

9 Avg. utilization of GPUs on comp. node cn-003 71.15

10 Avg. utilization of GPUs on comp. node cn-004 71.8

11 Avg. utilization of GPUs 71.54

Table 7 shows the aggregated metrics of the time series for compute node
cn-001. Data for compute nodes cn-002, cn-003, cn-004 are not shown to save
space.

Table 7. Aggregated metrics of compute node cn-001

Node cn-001 Min Avg Max

CPU usage by the system

1 Core 1 0 0.12 11.4
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

44 Core 44 0 0.13 7

CPU usage by the user

45 Core 1 0 98.9 100
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

88 Core 44 0 99.8 100

89 Average usage of cores on the node 99.36

GPU usage №:0

90 Utilization 0 71.62 99

91 Memory usage, MB 0 7095.3 8780

92 Power consumption, Watt 66 128.9 156.1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

GPU usage №:3

99 Utilization 0 71.61 99

100 Memory usage, MB 0 7095.3 8780

101 Power consumption, Watt 66 129 155.9

102 RAM usage, MB 0.35 128.29 715.44

File system access, GB

103 Read 0 141389.39 288706.41

104 Write 0 1302.76 2753.31
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Tags of the Task
Based on the parameters of the task from Table 5 and the tags from Table 3, no
tag will be assigned to task 405408, since it is completed without an error and
is not the launch of one of the packages. Therefore, the tuple of task tags will
have the form T 405408 = (0, 0, 0, 0, 0, 0).

Indicators of the Task
Based on the data from Tables 6, 7, the system calculates the values of the
indicators shown in Table 8.

Table 8. List of indicators

N Indicator Value

Compute node cn-001

1 Core 1 0.011
.
.
.

.

.

.
.
.
.

44 Core 44 0.002

207 GPU №:0 utilization 0.284
.
.
.

.

.

.
.
.
.

210 GPU №:3 utilization 0.284

223 GPU №:0 memory usage 0.778
.
.
.

.

.

.
.
.
.

226 GPU №:3 memory usage 0.778

.

.

.
.
.
.

.

.

.

Compute node cn-004

205 Core 1 0.011
.
.
.

.

.

.
.
.
.

206 Core 40 0.002

207 GPU №:0 utilization 0.279
.
.
.

.

.

.
.
.
.

208 GPU №:4 utilization 0.28

209 GPU №:0 memory usage 0.779
.
.
.

.

.

.
.
.
.

210 GPU №:3 memory usage 0.778

Summary

239 Avg. load of cores on node cn-001 0.006

240 Avg. load of cores on node cn-002 0.009

241 Avg. load of cores on node cn-003 0.008

242 Avg. load of cores on node cn-004 0.005

243 Avg. load of nodes 0.007

244 Avg. utilization of GPUs on node cn-001 0.284

245 Avg. utilization of GPUs on node cn-002 0.284

246 Avg. utilization of GPUs on node cn-003 0.289

247 Avg. utilization of GPUs on node cn-004 0.282

248 Avg. utilization of GPUs 0.285
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Inferences of the Task
After the previous steps, we get a tuple

N405408 = (l1, . . . , l202, τ1, . . . , τ6)
As an example, let us consider the three outputs presented in Table 9.

Table 9. Inferences

φi Inference Conditions Cond. is met

1 Successful task li ≤ 0.5, i = 1, · · · , 248 Yes

τi = 0, i = 5, 6 Yes

2 Task completed with an error τ5 = 1 No

3 Inefficient CPU usage li > .5 i = 1, · · · , 206, 239, · · · , 243 No

4 GPU is not used
li ≤ 0.5,
i = 1, · · · , 206, 211, · · · , 215

No

li > 0.8,
i = 207, · · · , 238, 244, · · · , 248

No

Based on the tuple N405408, the system will associate the set C405408 = {φ1}
with task 405408, since the task is executed without errors and all resources are
used.

An example of the task report with an inference of inefficient salloc usage is
shown in Fig. 2.

Fig. 2. Task report

5 User Statistics

System administrators have access to inference statistics for each cluster user
for a selected period of time. An example of statistics is shown in Fig. 3. Using
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this pie chart, administrators can understand which types of tasks are caus-
ing difficulties for the user. After determining the problem that the user has
encountered, he can get a personal consultation to solve this problem.

Fig. 3. Graphs of the utilization of computing resources by the task

Statistics of the most active users of the cluster with the lowest percentage
of effective tasks are compiled monthly; personal consultations are held on the
basis of the statistics. By tracking trends in user efficiency by month, we can
conclude how the HPC TaskMaster system can increase the efficiency of using
cluster resources.

6 Conclusions

The developed task performance monitoring system, HPC TaskMaster, is a pow-
erful tool that provides all the necessary information (main information, aggre-
gated metrics, graphs, and inferences) about tasks in one place. This system
will help users to identify the problem for existing scientific applications and
applications of their development, thereby simplifying work with the cluster for
users, allowing them to perform scientific calculations faster and more efficiently
in the future.

HPC TaskMaster is constantly evolving and improving. Among the future
directions for development are:

– monitoring the effectiveness of individual categories of applications using
machine learning tools;
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– adding new types of indicators and tags to generate new inferences;
– smart recognition of the type of running application;
– development of a module for notifying users about the launch of inefficient

tasks by them.

HPC TaskMaster is available to all cluster users of cHARISMa via the personal
account of the supercomputer complex. HPC TaskMaster is also available for
public use [1], and any suggestions for improving the project are greatly appre-
ciated.

The research was performed using the cHARISMa HPC cluster of the HSE
University [4].
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