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Spontaneous parametric down-conversion: Revisiting the parameters of transverse
entanglement outside the near zone

M. V. Fedorov ,* S. S. Mernova , and K. V. Sliporod
A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia

and National Research University Higher School of Economics, 101000 Moscow, Russia

(Received 28 February 2021; accepted 25 April 2022; published 13 May 2022)

The reduced density matrix ρr (x, x′) of the transverse biphoton state beyond the near zone is found to be real
on and only on diagonals in the plane of the photon’s transverse coordinates (x, x′). This remarkable feature is
found to occur at any distances of photon propagation with diffraction spreading completely taken into account.
The functions of the reduced density matrix at two orthogonal diagonals, ρr (x, x) and ρr (x, −x), are considered
as the only two complementary single-particle distributions generated by the reduced density matrix. The ratio
of widths of these two distributions is interpreted as the new entanglement parameter Rdiag which is found to be
very close to and completely compatible with the Schmidt entanglement parameter K .
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I. INTRODUCTION

One of the simplest regimes of spontaneous paramet-
ric down-conversion (SPDC) is the collinear, frequency-
degenerate regime with type-I phase matching. In this regime
the pump propagates in the nonlinear crystal as an extraordi-
nary wave whereas emitted photons are of the ordinary-wave
type, and a scheme of the SPDC process is e → o + o. The
states of SPDC-generated biphotons propagating in a free
space can be entangled in spectral or/and angular variables of
emitted photons. Very often these types of entanglement can
be considered independently of each other. In this paper we
consider (reconsider) only angular or transverse-coordinate
entanglement, where “transverse” means perpendicular to the
central propagation direction 0z of both the pump and emitted
photons. Moreover, to avoid complications, we will consider
only the case of photons propagating in the plane (xz) per-
pendicular to the optical-axis plane (yz). In experiment, such
simplest geometry can be provided by a slit allowing to
pass only photons with wave vectors belonging to the (xz)
plane. In fact, this type of entanglement is rather well stud-
ied both theoretically and experimentally [1–12]. There are
works [13,14] generalizing such consideration to the cases of
three-dimensional geometry and simultaneous analysis of en-
tanglement in both spectral and angular variables of photons.
However, in this paper we will restrict ourselves to considera-
tion of the simplest case of biphoton pairs propagating in the
given plane (xz) with given equal frequencies.

Parameters characterizing the degree of transverse entan-
glement are known to be the Schmidt entanglement parameter
K [15,16] and the parameter R, defined as the ratio of widths
of the unconditional and conditional single-particle photon
distributions [17,18]. In the near zone close to the exit surface
of the crystal where SPDC takes place, both parameters K and
R are valid and K ≈ R, both in the momentum (wave-vector)
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and coordinate representations. It is known also that with the
diffraction spreading taken into account the Schmidt parame-
ter K remains constant, i.e., independent of the propagation
distance both in the momentum and coordinate represen-
tations, and the same is true for the parameter R in the
momentum representation. But as shown in the works [6,12],
beyond the near zone the parameter R found in the coordi-
nate representation becomes dependent on the propagation
distance and fails to characterize the degree of transverse en-
tanglement appropriately. This fact is interpreted in [6,12] as
migration of entanglement to the phase of the biphoton wave
function. These results are reproduced briefly below in Sec. III
in the frame of a double-Gaussian model for the biphoton
wave function. But, in our opinion, under the inapplicability
conditions of the parameter R [17,18], the inevitably arising
question is whether it is possible to find something instead,
i.e., whether there is any other parameter, different from the
Schmidt parameter K and from the parameter R but, as well
as R, having the previous sense of the ratio of widths of some
single-particle distributions. We claim that such a possibility
exists, and such single-particle distributions are provided by
the single-particle reduced density matrix ρr (x, x′) on the
main and side diagonals in the plane of two photons’ trans-
verse coordinates (x, x′). The proof of this assumption and the
explicit form of the arising new entanglement parameter are
given in the following sections of the paper.

II. GENERAL PROPERTIES OF TRANSVERSE BIPHOTON
WAVE FUNCTIONS AND DENSITY MATRICES

As known [2,4,5], at the described above conditions the
wave function of biphoton pairs arising in the SPDC process
is given by

ψ (k1x, k2x ) ≡ ψG−sinc(k1x, k2x ) = exp

[
− (k1x + k2x )2w2

p

4

]
× sinc

[
Lλp

8πno
(k1x − k2x )2

]
, (1)
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where sinc(u) = sin u/u and k1,2 x are transverse components
(⊥ 0z) of the photon’s wave vectors. The exponential factor
on the right-hand side of this equation is the transverse profile
of the pump with wp and λp being its waist and wavelength.
The sinc function characterizes formation of the biphoton
beam in the crystal of the length L located in the interval z ∈
[−L/2, L/2] which excludes appearance in this expression of
any additional phase factors. The normalization factors here
and henceforth are dropped as long as they are not important;
no is the ordinary-wave refractive index in the crystal.

The wave function (1) has the following evident and useful
properties: it is real, it does not change if both k1x and k2x

change their signs, and it does not change if k1x and k2x

substitute each other, k1x � k2x:

ψ (k1x, k2x ) = ψ (−k1x,−k2x ) = ψ (k2x, k1x ) =
= ψ∗(k1x, k2x ). (2)

Beyond the near zone and at longer times t , the wave
function (1) acquires factors, characterizing propagation of
photons in a free space along the z axis and their diffraction
spreading:

�(k1x, k2x; ζ ) = ψ (k1x, k2x )

× exp{−i[(ω1 + ω2)t − (k1z + k2z )z]}
= ψ (k1x, k2x ) exp

{ − i
[
ωp(t − z/c)

+ ζ
(
k2

1x + k2
2x

)]}
, (3)

where ωp = ω1 + ω2 is the pump frequency, ω1 = ω2 = ωp/2
are frequencies of SPDC photons, k1,2 z ≈ ωp/2c − ζk2

1,2 x in
the paraxial approximation, and

ζ = zλp

2π
. (4)

The wave function (3) can be used directly for defining the
so-called conditional and unconditional single-particle distri-
butions of the probability densities:

dW (c.)(k1x )

dk1x
= |�(k1x, 0; ζ )|2 ≡ |ψ (k1x, 0)|2 (5)

and

dW (u.c.)(k1x )

dk1x
=

∫
dk2x|�(k1x, k2x; ζ )|2

≡
∫

dk2x|ψ (k1x, k2x )|2. (6)

Both of these two distributions are seen to be independent of
ζ . For making them comparable with each other, they should
be normalized by the condition that their heights in maxima
are equal to unity. Then the widths of distributions can be
defined as the widths of two curves at the level 0.5, and
the ratio of these widths is the “widths ratio” entanglement
parameter R of [17]:

R = 	k(u.c.)
1x

	k(c.)
1x

. (7)

FIG. 1. The main (m.d.) and side (s.d.) diagonals in the momen-
tum (k1x, k′

1x ) and coordinate (x1, x′
1) planes.

The full and reduced density matrices are defined as

ρ(k1x, k2x, k′
1x, k′

2x; ζ ) = �(k1x, k2x; ζ )�∗(k′
1x, k′

2x; ζ )

= ψ (k1x, k2x )ψ (k′
1x, k′

2x )

× exp
{
iζ

(
k′2

1x + k′2
2x − k2

1x − k2
2x

)}
(8)

and

ρr (k1x, k′
1x; ζ ) =

∫
dk2xρ(k1x, k2x, k′

1x, k2x; ζ )

=
∫

dk2xψ (k1x, k2x )ψ (k′
1x, k2x )eiζ

(
k′ 2

1x−k2
1x

)
.

(9)

As follows from this equation, at ζ = 0 the reduced density
matrix is symmetric:

ρr (k1x, k′
1x; ζ = 0) = ρr (k′

1x, k1x; ζ = 0) ≡ ρr (k1x, k′
1x ),

(10)
where

ρr (k1x, k′
1x ) =

∫
dk2xψ (k1x, k2x )ψ (k′

1x, k2x ). (11)

An even more important consequence of Eq. (9) is that
the reduced density matrix ρr (k1x, k′

1x; ζ ) is real and does
not depend on the propagation length ζ on and only on the
diagonals in the (k1x, k′

1x ) plane (see Fig. 1), i.e., at k1x = k′
1x

or at k1x = −k′
1x:

ρr (k1x, k′
1x; ζ )|diag = ρ∗

r (k1x, k′
1x; ζ )|diag

= ρr (k1x, k′
1x )|diag. (12)

Owing to this, we can introduce the second pair of single-
particle distributions represented by the reduced density
matrix on the main and side diagonals:

dW (s.d.)(k1x )

dk1x
= ρr (k1x, k1x )

=
∫

dk2x|ψ (k1x, k2x )|2 = dW (u.c.)(k1x )

dk1x
(13)
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and

dW (m.d.)(k1x )

dk1x
= ρr (k1x,−k1x )

=
∫

dk2ψ (k1x, k2x )ψ (−k1x, k2x ). (14)

Both of these distributions do not depend on the photons’
propagation length ζ . The side-diagonal distribution is seen
to be identical to the unconditional distribution of Eq. (6),
whereas the main-diagonal distribution can differ from the
conditional one (5). If 	k(s.d.)

1x and 	k(m.d.)
1x are the widths of

the side- and main-diagonal distributions (13) and (14), their
ratio is the diagonal width-ratio entanglement parameter:

Rdiag = 	k(s.d.)
1x

	k(m.d.)
1x

, (15)

to be compared further with R (7).
At last, the Schmidt entanglement parameter K is defined

by

1

K
= Tr

(
ρ2

r

)
=

∫
dk1xdk2x[ρr (k1x, k2x )]2

=
∫

dk1xdk2xdk′
1xdk′

2x�(k1x, k2x; ζ )�∗(k′
1x, k2x; ζ )

×�∗(k1x, k′
2x; ζ )�(k′

1x, k′
2x; ζ ). (16)

As easily checked, exponential factors in the product of
four � functions cancel each other and, hence, � functions
(3) in Eq. (16) can be replaced everywhere by the Gauss-
sinc near-zone wave function ψ (1). This means that the
Schmidt parameter K remains the same at any values of
the propagation distance ζ . Moreover, as we will see, the
Schmidt parameter K is invariant with respect to the change
of the momentum to coordinate representation. For this reason
the Schmidt entanglement parameter K can be considered
as the benchmark for evaluation of qualities of the parameters
R (7) and Rdiag (15).

For transition to the coordinate representation, the wave
function (3) must be Fourier transformed to give

�̃(x1, x2; ζ ) =
∫

dk1xdk2x�(k1x, k2x; ζ )ei(x1k1x+x2k2x )

=
∫

dk1xdk2xψ (k1x, k2x )eiζ
(

k2
1x+k2

2x

)
ei(x1k1x+x2k2x ).

(17)

The tilde symbol atop � indicates here and below the wave
function in the coordinate representation in order to differen-
tiate it from � in the momentum presentation, and the same
differentiation will be used below for the density matrices ρ̃

and ρ, for entanglement parameters R̃ and R, etc.
The coordinate wave function �̃(x1, x2; ζ ) has properties

following from the transformation properties (2) of the near-
zone momentum wave function ψ (k1x, k2x ) (1):

�̃(x1, x2; ζ ) = �̃(−x1,−x2; ζ ) = �̃(x2, x1; ζ )

= �̃∗(x1, x2; −ζ ). (18)

The ζ -dependent conditional and unconditional probability
densities in the coordinate representation determined by the
wave function of Eq. (17) are given by

dW̃ (c.)(x1)

dx1
= |�̃(x1, x2 = 0; ζ )|2

=
∫

dk1xdk′
1xdk2xdk′

2xψ (k1x, k2x )ψ (k′
1x, k′

2x )

× ei(k1x−k′
1x )x1 eiζ

(
k2

1x+k2
2x−k′ 2

1x−k′ 2
2x

)
(19)

and

dW̃ (u.c.)(x1)

dx1
≡ dW̃ (s.d.)(x1)

dx1

=
∫

dx2|�(x1, x2; ζ )|2

=
∫

dk1xdk′
1xdk2xψ (k1x, k2x )ψ (k′

1x, k2x )

× eiζ
(

k2
1x−k′ 2

1x

)
ei(k1x−k′

1x )x1

=
∫

dk1xdk′
1xρr (k1x, k′

1x; ζ )ei(k1x−k′
1x )x1 . (20)

The full and reduced density matrices in the coordinate repre-
sentation are defined as

ρ̃(x1, x2, x′
1, x′

2; ζ )

= �̃(x1, x2; ζ )�̃∗(x′
1, x′

2; ζ )

=
∫

dk1xdk2xdk′
1xdk′

2xei[x1k1x+x2k2x−x′
1k′

1x−x′
2k′

2x]

× eiζ
[
−k2

1x−k2
2x+k′ 2

1x+k′ 2
2x

]
ψ (k1x, k2x )ψ∗(k′

1x, k′
2x ) (21)

and

ρ̃r (x1, x′
1; ζ ) =

∫
dx2ρ̃(x1, x2, x′

1, x2; ζ )

=
∫

dk1xdk′
1xei(x1k1x−x′

1k′
1x )eiζ

(
−k2

1x+k′ 2
1x

)
× ρr (k1x, k′

1x ). (22)

As follows from the properties (2) of the wave function
ψ (k1x, k′

1x ) (1) and from the definition (11) of ρr (k1x, k′
1x ),

the properties of ρr (k1x, k′
1x ) are very similar to those of the

wave function ψ (k1x, k′
1x ): the function ρr (k1x, k′

1x ) is real,
it does not change when both of its arguments k1x and k′

1x
change signs, and it does not change after permutation of
its arguments k1x � k′

1x. With these notes taken into account,
we find the ζ -dependent coordinate reduced density matrix
ρ̃(x1, x′

1; ζ ) (22) on diagonals in the (x1, x′
1) plane (Fig. 1),

which are given by

ρ̃ (s.d.)
r = ρ̃r (x1, x1; ζ )

=
∫

dk1xdk′
1xeix1(k1x−k′

1x )eiζ
[
−k2

1x+k′ 2
1x

]
ρr (k1x, k′

1x ) (23)
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and

ρ̃ (m.d.)
r = ρ̃r (x1,−x1; ζ )

=
∫

dk1xdk′
1xeix1(k1x+k′

1x )eiζ
[
−k2

1x+k′ 2
1x

]
ρr (k1x, k′

1x ).

(24)

It is easy to find such manipulations with the integration
variables in Eqs. (23) and (24) which convert these expres-
sions to themselves but with complex conjugation, and this
means that at diagonals expressions (23) and (24) are real. For
the side diagonal, this manipulation is simply the permutation
of k1x and k′

1x which gives

ρ̃r (x1, x1; ζ )
k1x�k′

1x== ρ̃ ∗
r (x1, x1; ζ ). (25)

In the case of the main diagonal the permutation of k1x and k′
1x

must be supplemented by changing signs of these variables
(k1x → −k1x and k′

1x → −k′
1x), which gives the same result:

ρ̃r (x1,−x1; ζ )
k1x�−k′

1x== ρ̃ ∗
r (x1,−x1; ζ ). (26)

Thus, once again, at both diagonals the ζ -dependent co-
ordinate reduced density matrices ρ̃r (x1, x′

1; ζ ) are real.
Moreover, in a general case ζ 	= 0, Im[̃ρr (x1, x′

1; ζ )] = 0
only at these two directions, m.d. and s.d., and otherwise
Im[̃ρr (x1, x′

1; ζ )] 	= 0. Note that though this result follows di-
rectly from the properties (2) of the near-zone sinc-Gaussian
wave function ψG−sinc(k1x, k2x ) (1), there is a much wider
class of the near-zone wave functions ψ (k1x + k2x, k1x − k2x ),
differing from ψG−sinc but obeying the same properties (2)
and, hence, generating reduced density matrices with zero
imaginary parts on diagonals. But for the goals of the present
paper, consideration of the near-zone sinc-Gaussian wave
function ψG−sinc(k1x, k2x ) (1) is sufficient.

The importance of zeroing imaginary parts of the reduced
density matrix at diagonals is related to a possibility of consid-
ering the real functions of a single argument x1, ρ̃r (x1, x1; ζ )
and ρ̃r (x1,−x1; ζ ), as the only well-defined single-particle
distributions generated by the reduced density matrix. The
widths of these distributions, 	x (s.d.)

1 and 	x (m.d.)
1 , can be

used for defining the fully “diagonal” width-ratio parameter
characterizing the degree of entanglement in the coordinate
representation:

R̃diag = 	x (s.d),
1

	x (m.d.)
1

. (27)

Note that in accordance with Eqs. (21) and (22), in terms of
the ζ -dependent coordinate wave function �̃(x1, x2; ζ ) (17),
the s.d.- and m.d.-reduced density matrices can be written as

ρ̃r (x1, x1; ζ ) = ρ̃ (s.d.)
r =

∫
dx2|�̃(x1, x2; ζ )|2 (28)

and

ρ̃r (x1,−x1; ζ ) = ρ̃ (m.d.)
r

=
∫

dx2�̃(x1, x2; ζ )�̃∗(−x1, x2; ζ ). (29)

The first of these two expressions, Eq. (28), shows that the dis-
tribution ρ̃ (s.d.)

r (x1, x1) coincides with the distribution which

FIG. 2. The functions exp(−u2) and sinc2(2u2) and coincidence
of their widths at half maxima.

is considered usually as the unconditional one in terms of the
wave function �̃(x1, x2; ζ ), and hence 	x (s.d.)

1 ≡ 	x(u.c.)
1 � .

As for the distribution ρ̃ (m.d.)
r (x1,−x1; ζ ), it does not have

such simple interpretation. But it can be considered as a sub-
stitute of the usual conditional distribution |�̃(x1, x2 = 0; ζ )|2
when the latter gives evidently wrong results. As explained
above in the Introduction and as shown in [4,12], at ζ 	= 0
the conditional single-particle distribution |�̃(x1, x2 = 0; ζ )|2
and its width cannot be used for correct definition of the
entanglement parameter R̃ because “entanglement migrates
to the phase of the wave function.” In contrast to this, the
distribution ρ̃ (m.d.)

r (x1,−x1; ζ ) is phase free, because of which
it cannot demonstrate any migration of entanglement, and in
this sense it is preferable.

As for the Schmidt parameter, as mentioned above, it is
invariant with respect to the transition from the momentum to
coordinate representations, and it is independent of the pho-
ton’s propagation length ζ , i.e., not affected by diffraction. For
these reasons the parameter K remains the main benchmark
for evaluation of the quality of other parameters such as R, R̃,
Rdiag, and R̃diag.

In the following two sections features of entanglement pa-
rameters are analyzed in more detail for the cases of the model
double-Gaussian wave function analytically (Sec. III) and nu-
merically for the Gauss-sinc wave function (1) (Sec. IV).

III. MODEL DOUBLE-GAUSSIAN WAVE FUNCTION

The near-zone model double-Gaussian wave function in
the momentum representation arises when the sinc function
in Eq. (1) is substituted by the Gaussian function to give

ψ2G(k1x, k2x ) ∝ exp

[
−a2(k1x + k2x )2

2

]
× exp

[
−b2(k1x − k2x )2

2

]
(30)

where a = w/
√

2 and b = √
Lλp/(4

√
πno). With this defi-

nition of the parameter b, the sinc function in Eq. (1) takes
the form sinc[2b2(k1x − k2x )2] and the coefficient 2 pro-
vides equality of the full width at half maximum (FWHM)
of the sinc2 and the squared second Gaussian function in
Eq. (30): FWHM[sinc2(2u2)] ≈ FHWM[exp(−u2)], where
u = b(k1x − k2x ) (see Fig. 2).
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Below we will use widely the definitions of the character-
istic length δx = √

ab, dimensionless transverse wave vectors
q1,2 = δx × k1,2 x, and the dimensionless control parameter

η = b

a
, (31)

in terms of which a = δx/
√

η, b = δx
√

η, and Eq. (30) takes
the simplest form:

ψ2G(q1, q2) ∝ exp

[
− (q1 + q2)2

2η
− η

(q1 − q2)2

2

]
. (32)

The double-Gaussian wave function of Eqs. (30) and (32) is
known to yield the Schmidt entanglement parameter (16) of
the form

K2G = a2 + b2

2ab
= 1 + η2

2η
. (33)

Note that the dimensionless form of the Schmidt entanglement
parameter demonstrates most clearly the above-mentioned
symmetry of the double-Gaussian wave function in Eqs. (30)
and (32) owing to which the Schmidt parameter K2G appears
to be invariant with respect to the variable substitution η →
1/η; additionally, K2G is minimal and equals 1 (no entangle-
ment) at η = 1:

K2G(η) ≡ K2G(1/η) and K2G min = K2G(1) = 1. (34)

In addition to the Schmidt parameter K2G(η) (34), we eas-
ily find also the unconditional and conditional single-particle
distributions determined by the wave function ψ2G(k1x, k2x ) in
Eqs. (30) and (32):

dW (u.c.)
2G

dk1x
=

∫
dk2x|�2G(k1x, k2x )|2

= exp

{
− 4a2b2

a2 + b2
k2

1x

}
= exp

{
− 4η2

1 + η2
q2

1

}
(35)

and

dW (c.)
2G

dk1x
= |�2G(k1x, 0)|2

= exp
{−(a2 + b2)k2

1x

}
= exp

{−(1 + η2) q2
1

}
. (36)

The widths of these two single-particle distributions are

	k(u.c.)
1x = a2 + b2

2ab
and 	k(c.)

1x = 1√
a2 + b2

. (37)

The ratio of these widths is the width-ratio parameter of
Ref. [17], in the momentum representation coinciding with
the Schmidt entanglement parameter:

R2G = 	k(u.c.)
1x

	k(c.)
1x

= a2 + b2

2ab
= 1 + η2

2η
= K2G. (38)

The double-Gaussian, near-zone reduced density matrix
ρr 2G is also found easily from its general definition (11) and

Eqs. (30) and (32) for the wave function

ρr 2G|z=0 ∝ exp

{
− a2b2

a2 + b2
(k1x + k′

1x )2

− a2 + b2

4
(k1x − k′

1x )2

}
= exp

{
− η2

1 + η2
(q1 + q′

1)2 − 1 + η2

4
(q1 − q′

1)2

}
.

(39)

Each of two terms in these exponential functions de-
termines the single-particle distributions along diagonals of
Fig. 1:

dW (s.d.)
2G

dk1x
= ρr 2G(k1x, k1x) = exp

{
− 4a2b2

a2 + b2
k2

1x

}
(40)

and

dW (m.d.)
2G

dk1x
= ρr 2G(k1x,−k1x) = exp

{−(a2 + b2)k2
1x

}
. (41)

Obviously, the diagonal distributions (40) and (41) gener-
ated by the reduced density matrix (39) exactly coincide,
respectively, with the unconditional [Eq. (35)] and conditional
[Eq. (36)] distributions generated by the wave function (30).
Consequently, the same is true for the widths of these distribu-
tions, 	k(s.d.)

1x and 	k(m.d.)
1x , which coincide, respectively, with

	k(u.c.)
1x and 	k(c.)

1x . The ratio of widths of the diagonal single-
particle distributions is the diagonal entanglement parameter
(15), which appears to be identical in the case under consider-
ation to two other entanglement parameters in Eq. (38):

Rdiag 2G = 	k(s.d.)
1x

	k(m.d.)
1x

= R2G = K2G = a2 + b2

2ab
. (42)

Beyond the near zone, the wave functions (30) and (32) and
the reduced density matrix (39) acquire additional propagation
factors determined by Eqs. (3) and (22). As a result, the
ζ -dependent wave function �2G(k1x, k2x; ζ ) and the reduced
density matrix ρr 2G(k1x, k′

1x; ζ ) take the forms

�2G(k1x, k2x; ζ ) = exp

[
− (a2 + iζ )(k1x + k2x )2

2

− (b2 + iζ )(k1x − k2x )2

2

]
(43)

and

ρr 2G(k1x, k′
1x; ζ ) = ρr 2G(k1x, k ′

1x )|ζ=0eiζ
(

k′ 2
1x−k2

1x

)
(44)

with ρr 2G(k1x, k ′
1x )|ζ=0 given by Eq. (39).

These phase factors do not affect any of the above-
described single-particle distributions (35), (36), (40), and
(41) or any of the entanglement parameters in Eq. (42) in
the momentum representation. But they do affect the same
characteristics of the diverging biphoton beams in the coordi-
nate representation. The coordinate wave function is obtained
with the help of the double Fourier transformation from
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FIG. 3. Found with the use of the wave function �̃2G(x1, x2; ζ )
(45) widths of the unconditional and conditional single-particle dis-
tributions and their ratio parameter R̃2G(ζ ) (50) vs ζ/ab; 	x(u.c.)

1 and
	x(c)

1 are in units of
√

a2 + b2 and a/b = 3; the dashed line is the
Schmidt entanglement parameter K2G (33).

�2G(k1x, k2x; ζ ) of Eqs. (30) and (44) which gives

�̃2G(x1, x2; ζ ) ∝ exp

[
− (x1 + x2)2

8(a2 + iζ )

]
exp

[
− (x1 − x2)2

8(b2 + iζ )

]
.

(45)

The unconditional single-particle probability distribution de-
termined by this wave function can be presented in the
form

dW (u.c.)(x1)

dx1
=

∫
dx2|�̃2G(x1, x2; ζ )|2

= exp
{
−x2

1/
[
	x(u.c.)

1 (ζ )
]2

}
, (46)

where the calculated width of the unconditional single-
particle distribution is given by

	x(u.c.)
1 (ζ ) =

√
(a2 + b2)(a2b2 + ζ 2)

ab
. (47)

Another single-particle distribution generated by the wave
function (43) is the conditional one:

dW (c.)(x1)

dx1
= |�2G(x1, 0; ζ )|2

= exp
{ − x2

1/
[
	x(c.)

1 (ζ )
]2}

, (48)

with the width of the conditional single-particle distribution
given by

	x(c.)
1 (ζ ) = 2

√
(a4 + ζ 2)(b4 + ζ 2)

(a2 + b2)(a2b2 + ζ 2)
. (49)

By definition [17] the width-ratio parameter is the ratio of
unconditional to conditional widths:

R̃2G(ζ ) = (a2 + b2)

2ab

a2b2 + ζ 2√
(a4 + ζ 2)(b4 + ζ 2)

. (50)

Both unconditional and conditional widths and the parameter
R̃2G are shown in Fig. 3 in their dependence on the normalized
propagation length ζ . This picture and Eqs. (47)–(50) agree
with the results and conclusions of [6,12], and they show that

the parameter R̃2G(ζ ) strongly depends on ζ and significantly
deviates from the Schmidt parameter K2G = const, owing to
which it cannot be considered as the transverse entanglement
quantifier if only ζ 	= 0.

An alternative approach to the entanglement quantification
is related to the use of the reduced density matrix in the
coordinate representation, which is defined as ρr (x1, x′

1; ζ ) =∫
dx2�̃(x1, x2; ζ )�̃∗(x′

1, x2; ζ ) with the wave function of
Eq. (45), and after a series of integrations it can be reduced
to the form

ρr (x1, x′
1; ζ ) = exp

{
− (x1 + x′

1)2

4
[
	x(s.d.)

1

]2 − (x1 − x′
1)2

4
[
	x(m.d.)

1

]2

− iζ
x2

1 − x′ 2
1

4(a2b2 + ζ 2)

}
, (51)

where 	x(m.d.)
1 and 	x(s.d.)

1 are the widths of single-particle
probability distributions along the main and side diagonals in
the (x1, x′

1) plane:

	x(m.d.)
1 (ζ ) = 2

√
a2b2 + ζ 2

a2 + b2
	= 	x(c.)

1 (ζ ) (52)

and

	x(s.d.)
1 (ζ ) =

√
(a2 + b2)(a2b2 + ζ 2)

ab
= 	x(u.c.)

1 (ζ ). (53)

Note once again that if the side-diagonal width 	x(s.d.)
1 (ζ )

(53) coincides with the unconditional width 	x(u.c.)
1 (ζ ) (47)

at any values of ζ , i.e., both in the near zone and beyond
it, the main-diagonal width 	x(m.d.)

1 (ζ ) (52) coincides with
the conditional width 	x(c.)

1 (ζ ) (49) only at ζ = 0, whereas
beyond the near zone 	x(m.d.)

1 (ζ ) differs significantly from
	x(u.c.)

1 (ζ ). The ratio of two widths (53) and (52) gives the
diagonal entanglement parameter for the biphoton states in the
coordinate representation:

R̃diag 2G(ζ ) = 	x(s.d.)
1

	x(m.d.)
1

= a2 + b2

2ab
= K2G. (54)

Two diagonal widths 	x(s.d.)
1 (ζ ) and 	x(m.d.)

1 (ζ ) are shown
in Fig. 4 together with the entanglement parameters R̃diag 2G

and K2G. Remarkably enough, the parameter R̃diag 2G(ζ ) (54)
remains constant at any values of ζ and coincides exactly with
the Schmidt entanglement parameter K2G (33), in contrast to
the width-ratio parameter R̃2G(ζ ) which appears to be inappli-
cable for characterization of transverse entanglement beyond
the near zone.

IV. SINC-GAUSSIAN WAVE FUNCTION: NUMERICAL
SIMULATIONS

The given above analysis based on the use of the model
double-Gaussian wave function in Eqs. (30), (32), and (45)
shows clearly that in this case the diagonal parameter of en-
tanglement R̃diag 2G(ζ ) (54) is a perfectly good substitute of
the traditional width-ratio parameter R̃2G(ζ ) when the latter
significantly deviates from K2G and appears to be inapplicable
for characterization of the degree of entanglement. In contrast
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FIG. 4. The widths 	x(s.d.)
1 and 	x(m.d.)

1 vs ζ and their ratio
Rdiag 2G = 	x(s.d.)

1 /	x(m.d.)
1 ; for comparison the dashed line shows

the usual conditional distribution width 	x(c.)
1 (ζ ) (49) which differs

significantly from 	x(m.d.)
1 (ζ ); in Fig. 2, the ratio a/b is taken equal

to 3, and all widths are in units of
√

a2 + b2.

to this R̃diag 2G(ζ ) = const = K2G. However, the remaining
question is how sensitive is this conclusion to modeling the
true transverse Gauss-sinc biphoton wave function �G−sinc

(1) by the model double-Gaussian wave function �2G (30).
Unfortunately, it is hardly possible to answer this question by
means of any analytical derivations and, obviously, numerical
solutions are needed. The main results of such solutions are
presented below.

But first, we note that, as before, the quality of the pa-
rameter R and of the diagonal entanglement parameters will
be evaluated by comparing them with the Schmidt parameter
KGs, and the latter will be considered as a kind of benchmark
parameter of the degree of entanglement. To meet this goal,
the parameter KGs(η) must have properties close to those of
the parameter K2G(η), the main one of which is symmetry
with respect to the replacement η → 1/η (34). But the pa-
rameter KG−sinc(η) does not necessarily satisfy this condition
automatically. On the other hand, there is some uncertainty in
extracting the parameter b from the general expression (1) for
the Gauss-sinc wave function �G−sinc. Indeed, we can redefine
the sinc function in the general expression (1) for �G−sinc as

sinc

[√
Lλp

8πno
(k1x − k2x )

]
= sinc

[
s × b2(k1x − k2x )2

]
, (55)

where s is the fitting parameter, while

b =
√

Lλp

s × 8πno
(56)

remains one of two parameters in the definition of the control
parameter η = b/a (31). With these redefinitions, the Gauss-
sinc wave function (1) takes the form

ψs(k1x, k2x ) = exp

[
−a2 (k1x + k2x )2

2

]
sinc

[
s×b2(k1x − k2x )2]

= exp

[
− (q1 + q2)2

2η

]
sinc[s×η(q1 − q2)2], (57)

where, as previously, q1,2 = k1,2x/δx and δx = √
ab. With the

wave function ψs (57) used instead of � in Eq. (16) we have

FIG. 5. Generated by the Gauss-sinc wave function (57) with s =
0.85, numerically calculated dependencies on η (solid line) and on
1/η (dashed line) of the Schmidt entanglement parameter KG−sinc,
the momentum representation.

calculated numerically the Schmidt entanglement parameter
KG−sinc(η) at various values of s and η and found the optimal
value of s providing location of the minimum of KG−sinc(η)
at η = 1. This optimal value of the fitting parameter appeared
to be sopt = 0.85. In Fig. 5 the function KG−sinc(η)|s=0.85 is
plotted together with KG−sinc(1/η)|s=0.85. As seen, the sym-
metry of the curves is not complete, but this is the best result
attainable with a single fitting parameter s.

In Fig. 6 we plot the same function KG−sinc(η)|s=0.85 to-
gether with the Schmidt parameter K2G(η) (33) and with two
other entanglement parameters, Rdiag(η) and R(η), found nu-
merically with the same optimized wave function ψs (57) and
s = 0.85. By comparing all these parameters with KG−sinc(η)
we can draw the following conclusions.

FIG. 6. Transverse-entanglement parameters in the momentum
representation vs the control parameter η (31): The Schmidt param-
eter K , the diagonal and the width-ratio parameters Rdiag and R, and,
for comparison, the 2G Schmidt parameter K2G (33).
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FIG. 7. The widths of the conditional and unconditional dis-
tributions in the coordinate representation vs the dimensionless
propagation distance, and the parameter R̃(ζ/ab).

(1) The diagonal entanglement parameter Rdiag(η) is sys-
tematically close to KG−sinc(η) and, in any case, much closer
than any other parameters.

(2) The state characterized by the Gauss-sinc wave func-
tion (1), Eq. (57), is always entangled, even at η = 1 where
KG−sinc(η = 1) > 1 and Rdiag(η = 1) > 1, whereas K2G(η =
1) = 1 (no entanglement).

(3) The double-Gaussian modeling systematically under-
estimates the degree of transverse entanglement as K2G(η)
pronouncedly smaller than KG−sinc(η).

(4) The parameter R(η) differs significantly from
KG−sinc(η) and Rdiag(η).

Additionally, in a rather wide variation range of the control
parameter η, R(η) appears to be smaller than 1, R(η) < 1,
which undermines in this case its physical interpretations as
the ratio of widths of the wider unconditional to the narrower
conditional distributions.

To further analyze the properties of the entanglement pa-
rameters in the coordinate representation (without Gaussian
modeling), we numerically performed the Fourier trans-
form of the wave function ψs(k1x, k2x ) (57) with s = 0.85
and with added propagation factor e−ζ (k2

1x+k2
2x ), and thus ob-

tained the coordinate-dependent wave function �̃(x1, x2; ζ ),
unfortunately, having no simple analytical representation.
Nevertheless, directly with the obtained coordinate-dependent
wave function we found numerically the conditional and
unconditional single-particle distributions |�̃(x1, 0; ζ )|2 and∫

dx2|�̃(x1, x2; ζ )|2, their widths 	x(c.)
1 (ζ ) and 	x(u.c.)

1 (ζ ),
and the ratio of widths—the entanglement parameter R̃ =
	x(u.c.)

1 /	x(c.)
1 —which are shown in Fig. 7.

The curves in Fig. 7 are similar to those of Fig. 3 and
to the results of [12], and they confirm that beyond the near
zone (ζ 	= 0) the traditional width-ratio parameter R̃(ζ ) fails
to characterize the degree of transverse entanglement because
it strongly deviates from the Schmidt entanglement parameter
K (ζ ) = const.

FIG. 8. Widths of the conditional and unconditional distributions
in the coordinate representation vs the propagation distance, and the
parameter R̃diag(ζ/ab).

The second result which can be obtained from the
calculated numerically coordinate-dependent wave func-
tion �̃(x1, x2; ζ ) concerns the diagonal distributions and
diagonal entanglement parameter. The side-diagonal single-
particle distribution and its width coincide with the dis-
cussed above unconditional distribution and width: 	x(s.d.)

1 ≡
	x(u.c.)

1 . As for the main-diagonal distribution, it is given by∫
dx2�̃(x1, x2; ζ )�̃∗(x1,−x2; ζ ). The integral in this expres-

sion also was calculated numerically, as well as the widths
	x(m.d.)

1 , as well as the ratio of the widths R̃diag, and the results
are shown in Fig. 8.

As seen, both widths 	x(s.d.)
1 (ζ ) and 	x(m.d.)

1 (ζ ) are
monotonously growing functions, but their ratio R̃(ζ ) remains
almost constant, and the value of R̃diag is very close to that
of the Schmidt parameter KG−sinc. This result confirms the
conclusion that as with the Gaussian modeling or without
any modeling the diagonal entanglement parameter is a good
transverse entanglement quantifier alongside with the Schmidt
entanglement parameter both in the near zone and beyond it.

V. POSSIBILITIES OF MEASUREMENTS

For the state characterized by the wave function
�(x1, x2; ζ ) its reduced density matrix is given by

ρr (x1, x′
1; ζ ) =

∫
dx2�̃(x1, x2; ζ )�̃∗(x′

1, x2; ζ )

=
∫

dx2|�̃(x1, x2; ζ )||�̃∗(x′
1, x2; ζ )|

× ei[ϕ(x1,x2;ζ )−ϕ(x′
1,x2;ζ )], (58)

where ϕ(x1, x2; ζ ) is the phase of �(x1, x2; ζ ).
Absolute values of the coordinate wave function,

|�̃(x1, x2; ζ )|, can be measured rather easily in a traditional
way of splitting the beam of biphotons for two channels and
measuring coincidence signals by two detectors, one in the
upper and one in the lower channels, with varying locations
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FIG. 9. A scheme for measuring the phase ϕ(x1, x2; ζ ) of the
wave function �̃(x1, x2; ζ ) (part 1); KEP is the knife-edge prism
splitting the pump (p) for two equal counterpropagating parts; Cr and
DM denote two identical nonlinear crystals and dichroic mirrors; in
principle, the KEP can be replaced by a beamsplitter and a couple of
additional mirrors.

of detectors, which gives

|�̃(x1, x2; ζ )| =
√

n(x1, x2; ζ ), (59)

where n(x1, x2; ζ ) is the relative number of detector counts
during some given time and with given locations of detectors
at x1 and x2. These measurements are sufficient for finding the
side-diagonal single-particle distribution:

ρr (x1, x1) = dW (s.d.)

dx1
=

∑
x2

n(x1, x2; ζ ), (60)

where the sum over x2 imitates integration and∑
x1,x2

n(x1, x2; ζ ) = 1.
As for the main-diagonal single-particle distribution deter-

mined by the reduced density matrix, in terms of measured
absolute values of the wave function (59) it is given by

ρr (x1,−x1; ζ ) =
∑

x2

√
n(x1, x2; ζ )n(−x1, x2; ζ )

× exp {i[ϕ(x1, x2; ζ ) − ϕ(−x1, x2; ζ )]}. (61)

Clearly, in this case measurement of phases of the wave func-
tion is needed and is unavoidable.

Such measurements hardly can be done in any simple way.
In principle, various aspects of similar problems were dis-
cussed in a number of works [19–26]. Not attempting to give
here an overview of these works or adapt any of their methods
to our goals, we describe below a scheme of measurements
which seems to be appropriate for finding phases of the wave
function under consideration. The main idea of the scheme we
suggest is similar to that of Ou [27], which was aimed at inves-
tigations in the field of four-photon interference and provided
selection of entangled four-photon polarization states from the
manifold of independently born pairs of photons.

The scheme we suggest is shown in Fig. 9.
In this scheme the pump (p) is assumed to be split for two

equal counterpropagating parts with equal intensities. Each
part of the split pump is directed to its own of two identical
crystals Cr1 and Cr2, as shown in Fig. 9. The total wave
function of biphoton pairs produced in two crystals is given
by the sum of contributions from the crystal Cr1 and Cr2. In
principle, pairs produced in two crystals are not necessarily
born simultaneously. But for measuring phases, the scheme of
measurements has to select only pairs born simultaneously in

FIG. 10. A scheme for extracting photons and measuring the
phase ϕ(x1, x2; ζ ) ≡ ϕ (part 2); C.S.1, C.S.2, and C.S.3 are co-
incidence schemes; D1–D4 are detectors; PBS is the polarization
beamsplitter turned 45◦ around the x axis; HWP and QWP are the
half-wave and quarter-wave phase plates, with the latter to be in-
stalled into the lower channel for the second series of measurements;
s.t .l. are the signal transmission lines from C.S.1 to SC.S.2 and
C.S.3.

both crystals. The total wave function of such simultaneously
born pairs is given by the sum of contributions from two
crystals with equal absolute values of each crystal’s wave
functions but with different signs of phases as shown in the
top of Fig. 9. A possible procedure for measurement is shown
in Fig. 10, which is a direct continuation of Fig. 9, though for
convenience turned 90◦

Photons are assumed to be extracted from both shoulders
by thin pieces of fibers parallel to the z axis at the same
distances x1 and x2 from the central propagation axis z in the
left and right shoulders of the scheme of Fig. 9. The total wave
function of simultaneously born photons extracted in this way
is given by

�extr = |�(x1, x2; ζ )|[e−ϕ(x1,x2 ) + eiϕ(x1,x2 )]. (62)

The extracted photons propagate in fibers along short (x2

photons) and long (x1 photons) trajectories. The short-route
photons move to the detectors D1 and D2 and then to the co-
incidence scheme C.S.1 which registers only x2 photons born
simultaneously in the left and right shoulders. Immediately
after registration in the coincidence scheme C.S.1, signals are
sent to the coincidence schemes C.S.2 and C.S.3 destined
for registration of pairs of long-route photons. These photons
are assumed to be analyzed with the help of the polarization
beamsplitter turned 45◦ around the photon propagation x axis.
But before this, the horizontal polarization of photons in one
of two channels has to be changed to vertical with the help of
the half-wave phase plate with the optical axis directed along
the bisector between the horizontal and vertical directions.
After this, the quantum state of two long-route photons can
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be characterized by the state vector

|ψx1〉 = 1√
2

(
a†

H e−iϕ + a†
V eiϕ

) |0〉

= (− sin ϕa†
45◦ + cos ϕa†

135◦ ) |0〉 , (63)

where a†
H and a†

V are creation operators of photons with hor-
izontal and vertical polarizations, whereas a†

45◦ and a†
135◦ are

the creation operators of photons with polarizations along the
directions at angles 45◦ and 135◦ with respect to the horizontal
direction. The coefficients in front of the operators a†

45◦ and
a†

135◦ are probability amplitudes of finding photons with these
polarizations at the exit from the polarization beamsplitter
(PBS) in Fig. 10. The corresponding probabilities are

w45◦ = cos2 ϕ, w135◦ = sin2 ϕ, (64)

and, hence,

cos(2ϕ) = w45◦ − w135◦ . (65)

Note that, as usual, probabilities w45◦ and w135◦ are de-
termined by relative numbers of photons with polarizations
45◦ and 135◦ registered in the coincidence schemes C.S.2 and
C.S.3. during some given time:

w45◦ = N45◦

N45◦ + N135◦
, w135◦ = N135◦

N45◦ + N135◦
. (66)

Note also that after the detectors D3 and D4 accept, corre-
spondingly, the 45◦- and 135◦-polarized photons, signals from
these detectors are assumed to be sent to two different coin-
cidence schemes, C.S.2 and and C.S.3. Other signals coming
to these coincidence schemes are those coming via two trans-
mission lines from the first coincidence scheme C.S.1, which
selects simultaneous registration of two short-route x1 pho-
tons. The lengths of the transmission lines are assumed to
be carefully adjusted to provide equal arrival times of both
signals coming to the coincidence schemes C.S.2 and to C.S.3.
The conditions of coincidences in these schemes select only
events consisting of simultaneous birth of two pairs of photons
with transverse coordinates x1 and x2, one pair in the left- and
one pair in the right-hand crystals of the scheme in Fig. 9.

Thus, Eqs. (65) and (66) show how cos 2ϕ is related to
experimentally measurable probabilities or numbers of events
to be registered in the coincidence schemes C.S.2 and C.S.3.
But this is still not enough to unambiguously determine the
phase ϕ, which requires at least an independent measurement
of sin 2ϕ in addition to cos 2ϕ. This problem can be solved
quite simply by means of repeated measurements of the same
type as above, but with a slight change in the photon’s polar-
ization in the lower channel in front of the PBS in Fig. 10.
The required change can be produced by means of installation
in the lower channel of the quarter-wave phase plate with the
vertically oriented optical axis,which adds the imaginary unit
in front of a†

V in the quantum state of photons in front of PBS,
which takes the form

|ψ̃x1〉 = 1√
2

(
ia†

H e−iϕ + a†
V eiϕ

) |0〉

=
[

i e−iϕ + eiϕ

2
a†

45◦ + −i e−iϕ + eiϕ

2
a†

135◦

]
|0〉 . (67)

FIG. 11. Indicated by dashed lines with arrows, solutions of
Eqs. (65) and (70) in the cases δ > 0, δ̃ > 0, and δ < 0, δ̃ < 0,
where δ = w45◦ − w135◦ and δ̃ = w̃45◦ − w̃135◦ .

The probabilities of registering photons with 45◦ and 135◦ are
given by

w̃45◦ = |i eiϕ + eiϕ |2
4

= 1 + sin 2ϕ

2
, (68)

and

w̃135◦ = |−i eiϕ + eiϕ|2
4

= 1 − sin 2ϕ

2
, (69)

and the required expression for sin 2ϕ:

sin 2ϕ = w̃45◦ − w̃135◦ (70)

By assuming now that |ϕ| � π/2, we can find the following
explicit expression for phase ϕ in terms of probabilities w45◦ ,
w135◦ , w̃45◦ , and w̃135◦ :

2ϕ = arccos(w45◦ − w135◦ )sign(sin[2ϕ])

= arccos(w45◦ − w135◦ )sign(w̃45◦ − w̃135◦ ), (71)

which is illustrated by Fig. 11. In principle, the described
measurements of the phase ϕ(x1, x2; ζ ), repeated many times
with various values of x1 and x2 and recorded to the com-
puter memory, can be used for reconstruction of of the
main-diagonal single-particle distribution (61). Together with
the much easier found side-diagonal distribution (60), this
provides a way for direct experimental measurement of the
diagonal entanglement parameter R̃diag (27).

VI. CONCLUSION

(1) It is proved that the reduced density matrix of a trans-
verse biphoton state beyond the near zone is real on and
only on diagonals in the plane of the transverse photon’s
coordinates, which makes the diagonal directions in this plane
very special and peculiar. The given proof is rather general
and is based in fact only on properties (2) of the near-
zone momentum-representation wave function ψ (k1x, k2x ) (1).
These properties and the proof itself remain valid for many
other forms of the wave function ψ , e.g. for the super-
Gaussian pump profile, or to the Lorentzian form, etc., and
the same with the sinc function.

(2) Because of the missing imaginary parts in the main-
and side-diagonal elements of the reduced density matrix,
they are interpreted as two orthogonal and complementary
single-particle distributions ρr (x1, x1) and ρr (x1,−x1), the
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widths of which can be used for the definition of a new,
fully diagonal entanglement parameter R̃diag. The fruitfulness
of this idea is confirmed by direct numerical calculations for
the case of the true biphoton wave function ψ (k1x, k2x ) (1)
without any modeling. The results of the calculation presented
in Fig. 8 show that, indeed, the parameter R̃diag is very close
to the Schmidt parameter K and almost is not affected by the

diffraction spreading of the biphoton beam beyond the near
zone.

We believe that these results provide rather important and
interesting knowledge about features of the reduced density
matrix of the transverse-coordinate biphoton state beyond the
near zone and about parameters characterizing the degree of
its entanglement.
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