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Preface

The conference “Interactions between Representation Theory and Algebraic Geom-
etry” was held at the University of Chicago on August 21–25, 2017. It brought
together about 150 participants from several major universities in the USA and
abroad, more than half of whom were junior mathematicians. It featured 21 talks by
eminent mathematicians from the USA, Europe, and Asia on topics at the cutting
edge of mathematical research. Some junior participants gave introductory talks in
the evening to try to make the presentations by the main speakers more accessible
to the general audience, in addition to giving poster presentations of their research.

The research articles in these proceedings are dedicated, as was the conference,
to Alexander Beilinson and Victor Ginzburg, two visionaries in the fields of
Representation Theory and Algebraic Geometry, in honor of their 60th birthdays.
Their work and mentoring has influenced a great number of researchers and will
continue to shape the development of those branches of mathematics for many
years to come. Their influence can be perceived throughout this volume, for
instance where important roles are played by D-modules and perverse sheaves,
Grassmannians and their affine and loop group analogues, categorical approaches
to representation theory, versions of Hecke algebras, symplectic algebraic geometry,
and many other topics.

The chapters have been organized thematically as follows: the first three deal with
the subjects of groups, algebras, and categories and their representation theory; the
next four deal with D-modules and perverse sheaves, particularly on flag varieties
and their generalizations; the final two deal with analogous varieties defined by
quivers and their relationships to representation theory, cohomology theories, and
symplectic geometry.

Irvine, CA, USA Vladimir Baranovsky

Edmonton, AB, Canada Nicolas Guay

London, UK Travis Schedler

v
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4 P. Etingof and V. Ostrik

1 Introduction

The notion of the semisimplification of a spherical tensor category was introduced
in [BW], although in the context of algebraic geometry, it can be traced back to the
notion of numerical equivalence of cycles in the theory of motives; see, e.g., [Ja].
More generally, various adequate equivalence relations in the same theory can be
considered as examples of tensor ideals in the symmetric tensor category of Chow
motives.

Recall that a morphism f : X → Y in a spherical tensor category C over a field
k is called negligible if for any morphism g : Y → X, one has Tr(f ◦ g) = 0.
One can show that the collection N of negligible morphisms is a tensor ideal;
thus, one can define an additive monoidal category C := C/N . One can show that
C is, in fact, semisimple abelian, with simple objects being the indecomposable
objects of C of nonzero dimension, and it is called the semisimplification of C.
Moreover, this definition can be generalized to pivotal categories in which the
left and right dimension of indecomposables vanish simultaneously and even to
Karoubian (not necessarily abelian) monoidal categories in which the trace of a
nilpotent endomorphism is zero.

The semisimplification construction is a rich source of semisimple tensor
categories. In the simplest cases, when the classification of indecomposables in C is
tame, the semisimplification can be described explicitly. Admittedly, this happens
rather rarely: most of the time, the classification of indecomposables is wild, and
the corresponding semisimplified category C is somewhat unmanageable, i.e., may
have uncountably many simple objects even if C is finite (e.g., this happens already
for C = Repk((Z/p)

2), where k is an uncountable field with char(k) = p > 2).
However, in this case, we may consider the tensor subcategory of C generated by a
given object X, which is much more manageable (in particular, always has a finite
or countable set of isomorphism classes of simple objects); in particular, it is an
interesting question when this subcategory is fusion (i.e., has finitely many simple
objects) and what it looks like in this case.

The goal of this paper is to develop a number of tools for studying semisimpli-
fications of tensor categories and to apply them to compute the semisimplifications
and their tensor subcategories generated by particular objects in a number of specific
examples.

Specifically, in Sect. 2, we review the basic theory of tensor ideals and semisim-
plifications.

In Sect. 3, we give some general results about semisimplifications. In particular,
we discuss semisimplifications of Tannakian categories in characteristic zero,
reductive envelopes of algebraic groups, and the generalized Jacobson-Morozov
lemma (following André and Kahn), compatibility of semisimplification with
equivariantization and with surjective tensor functors.

In Sect. 4, we use classical results of modular representation theory (the Green
correspondence) to show that the semisimplification of the category RepG of
representations of a finite group G in characteristic p > 0 is naturally equivalent to
that of the normalizer of its p-Sylow subgroup and compute the semisimplification
of RepG when the Sylow subgroup is cyclic of order p (in particular for G = Sn+p
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with 0 ≤ n < p). We then use this result and the work of Harman to compute the
semisimplification of the abelian envelope of the Deligne category Repab(Sn).

In Sect. 5, we compute the semisimplifications of some non-symmetric categories
in characteristic zero, namely, the category of representations of the Kac-De Concini
quantum group Uq(b), where b is the Borel subalgebra of sl2 when q is generic and
when q is a root of unity.

In Sect. 6, we study surjective tensor functors between Verlinde categories
attached to simple algebraic groups in characteristic p; interesting examples of such
functors, which are attached to pairs of simple algebraic groups G ⊃ K where K

contains a regular unipotent element of G, are obtained from the semisimplification
construction.

In Sect. 7, we study objects of finite type in semisimplifications of categories
of group representations in characteristic p, i.e., objects generating fusion subcate-
gories. We give a number of nontrivial examples of objects of finite type and study
the fusion categories they generate.

In Sect. 8, we determine the semisimplifications of the tilting categories of
GL(n), SL(n), and PGL(n) in characteristic 2.1

Finally, in the appendix, we classify categorifications of the representation ring
and Verlinde ring for SO(3). This is used in Sect. 5.

2 Preliminaries

2.1 Tensor Ideals

Let k be a field and let C be a k−linear monoidal category. Recall that a tensor ideal
I in C is a collection of subspaces I (X, Y ) ⊂ Hom(X, Y ) for all X, Y ∈ C such that
for all X, Y,Z, T ∈ C
(1) for α ∈ I (X, Y ) and β ∈ Hom(Y, Z), γ ∈ Hom(Z,X), we have α ◦ γ ∈

I (Z, Y ) and β ◦ α ∈ I (X,Z);
(2) for α ∈ I (X, Y ), β ∈ Hom(Z, T ), we have α ⊗ β ∈ I (X ⊗ Z, Y ⊗ T ) and

β ⊗ α ∈ I (Z ⊗X, T ⊗ Y ).

If I is a tensor ideal in C, then one can define a new k−linear monoidal category
C′ (the quotient of C by I ) as follows: the objects of C′ are the objects of C;
HomC′(X, Y ) := HomC(X, Y )/I (X, Y ); the composition of morphisms is the same
as in C (note that condition (1) ensures that the composition is well defined); the
tensor product is the same as in C (well defined, thanks to condition (2)).

Moreover, the identity map on the objects and morphisms induces a canonical
quotient monoidal functor C → C′.

It is clear that if C is rigid, pivotal, spherical, braided, and symmetric, then so
is C′.

1We refer the reader to [BEEO] where the results of Sect. 8 are generalized to arbitrary
characteristic.
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2.2 Semisimplification of a Spherical Tensor Category

We recall the theory of semisimplifications of spherical tensor categories, due to
Barrett and Westbury [BW]. We give proofs for reader’s convenience.

Let k be an algebraically closed field and C be a spherical tensor category over k
(see [EGNO, Subsection 4.7]).

Definition 2.1 A morphism f : X → Y in C is called negligible if for any
morphism g : Y → X, one has Tr(f ◦ g) = 0.

Lemma 2.2 ([B2], Exercise 3(ii), Subsection 2.18) LetX = ⊕iXi and Y = ⊕j Yj

be decompositions of X, Y into indecomposable objects and f = ⊕i,j fij be a
morphism X → Y , where fij : Xi → Yj . Then f is negligible if and only if
for each i, j either dimYj = 0 or fij is not an isomorphism (equivalently, either
dimXi = 0 or fij is not an isomorphism).

Proof First let us prove the lemma when X, Y are indecomposable. If f : X → Y

is not an isomorphism, then for any g : Y → X, the morphism f ◦ g : Y → Y

is not an isomorphism, either; otherwise, f is injective (hence not surjective) and
Y ∼= Imf⊕Kerg, with both summands nonzero, giving a contradiction. Hence, f ◦g
is nilpotent and Tr(f ◦ g) = 0. Also, if f is an isomorphism (so dimX = dimY ),
then for any g : Y → X, one has f ◦ g = λId + h, where λ ∈ k and h : Y → Y

is nilpotent. Hence, Tr(f ◦ g) = λ dimY = λ dimX. If dimX = dimY = 0, this
is always zero, while if dimX = dimY �= 0, then we can take g = f−1 (so that
λ = 1), and Tr(f ◦ g) = dimY �= 0, as desired.

Now consider the general case. Suppose the condition of the lemma is satisfied
and g : Y → X is a morphism, g = (gji). Then Tr(f ◦ g) =∑i,j Tr(fij ◦ gji). If
either dim Yj = 0 or fij is not an isomorphism (equivalently, either dimXi = 0
or fij is not an isomorphism) for all i, j , then by the indecomposable case,
Tr(fij ◦ gji) = 0 for all i, j ; hence, Tr(f ◦ g) = 0. However, if for some i, j this
condition is violated, then we can take gji = f−1

ij and gpq = 0 for (p, q) �= (i, j),
so that Tr(f ◦ g) = dimXi = dimYj . This implies the lemma. �

Let N (C) be the collection of negligible morphisms of C.

Lemma 2.3 N (C) is a tensor ideal in C.
Proof It is clear that a linear combination of negligible morphisms is negligible.
Also, it is easy to see that f ◦ a, b ◦ f are negligible for any a, b (when these
compositions make sense). It remains to show that the tensor products a ⊗ f and
f ⊗ b are negligible. Let us prove this for a ⊗ f , where a : Z → T ; the case of
f ⊗ b is similar. Let g : T ⊗ Y → Z ⊗ X. Then Tr((a ⊗ f ) ◦ g) = Tr(f ◦ g′),
where g′ := TrT ((a⊗ Id) ◦ g). Hence, Tr((a⊗ f ) ◦ g) = 0 and a⊗ f is negligible,
as desired. �

Thus, we can define a spherical tensor category C := C/N (C).
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Proposition 2.4 The category C is a semisimple tensor category. The simple objects
of C are the indecomposable objects of C of nonzero dimension.

Proof It is clear that indecomposable objects of C are images of indecomposable
objects of C. More precisely, if X, Y ∈ C are indecomposable, then by Lemma 2.2,
HomC(X, Y ) = 0 if X � Y or dimX = 0 or dimY = 0 (i.e., if dimX = 0, then
X = 0 in C), and dim HomC(X, Y ) = 1 if X ∼= Y and dimX �= 0. This implies the
proposition. �
Definition 2.5 The category C is called the semisimplification of C.

Note that the category C comes equipped with a natural monoidal functor
S : C → C, which we call the semisimplification functor. This functor, however,
is not a tensor functor, since it is not left or right exact, in general. We will denote
the image S(X) of an object X under this functor by X.

2.3 Generalization to Pivotal Karoubian Categories

The above results generalize to pivotal tensor categories [EGNO, Subsection 4.7]
such that dimL X = 0 if and only if dimR X = 0 for any indecomposable object
X ∈ C (an example of such a category which is not spherical is the category
of representations of the Taft Hopf algebra). Namely, in such a category, for any
endomorphism h : X → X of an indecomposable object X, one has TrL(h) = 0
if and only if TrR(h) = 0. Thus, if f : X → Y is a morphism between arbitrary
objects of C, then the condition that for any g : Y → X, one has TrL(f ◦ g) = 0 is
equivalent to the condition that for any g : Y → X, one has TrR(f ◦ g) = 0. One
then defines f to be negligible if any of these two equivalent conditions is satisfied.
Then Lemmas 2.2, 2.3, and Proposition 2.4 generalize verbatim, with analogous
proofs.

Moreover, the above results also extend to the case when C is a Karoubian
rigid monoidal category in which the trace of a nilpotent endomorphism is zero,
a necessary condition for C to be embeddable into an abelian tensor category.2 For
instance, the well-known construction of the fusion categories attached to a simple
Lie algebra g (in characteristic zero or p bigger than the Coxeter number), [EGNO,
Subsection 8.18.2], starts with the category of tilting modules for the corresponding
(quantum) group (which is Karoubian) and takes a quotient by the tensor ideal of
negligible morphisms. Note that in this special case, negligible morphisms happen
to be those that factor through negligible objects (i.e., direct sums of simple objects
of dimension 0); this is not the case in general (e.g., for Repk(Z/p)).

2Note that this condition is not necessarily satisfied: e.g., if char(k) = p, t ∈ k, and Rep
k
(St )

is the Karoubian Deligne category of representations of St [EGNO, Subsection 9.12], then this
property holds only if t ∈ Fp ⊂ k; namely, if σ is the cyclic permutation on X⊗p , where X is the
tautological object, then (1− σ)p = 0 but Tr(1− σ) = tp − t .
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To summarize, we have the following result. Let C be a pivotal category, let
dimL(X) := TrL(IdX), dimR(X) := TrR(IdX) for X ∈ C, and call a morphism
f : X → Y negligible if for any g : Y → X, one has TrL(f ◦ g) = 0.

Theorem 2.6 Let C be a k−linear Karoubian rigid monoidal category such that all
morphism spaces are finite dimensional.3 Assume that C is equipped with a pivotal
structure such that

(1) the left trace TrL of any nilpotent endomorphism is zero;
(2) dimL X = 0 if and only if dimR X = 0 for an indecomposable X ∈ C.

Then negligible morphisms are characterized as in Lemma 2.2 and form a tensor
ideal N (C). Moreover, C/N (C) is a semisimple tensor category, whose simple
objects are the indecomposable objects of C of nonzero dimension.

Proof First of all, (1) implies that the right trace of any nilpotent endomorphism in
C is zero, since TrL(f ) = TrR(f ∗); see [EGNO, Proposition 4.7.3].

Hence, for an endomorphism h : X → X, TrL(h) = 0 if and only if TrR(h) = 0.
Indeed, by decomposing X into generalized eigenobjects of h, we may assume that
h = λId + h0, where h0 is nilpotent. Then TrL(h) = λ dimL X and TrR(h) =
λ dimR X (as TrL(h0) = TrR(h0) = 0), so our claim follows from (2).

The rest of the proof is parallel to the spherical abelian case. �
Example 2.7

1. If C is semisimple, then C ∼= C. Moreover, in this case, for any tensor category
D, one has C �D ∼= C �D.

2. If char(k) = p > 0 and C = Repk(Z/p), then C is the Verlinde category Verp
introduced by Gelfand-Kazhdan and Georgiev-Mathieu; see [O] and references
therein.

3. Let char(k) = 0 and C = RepGL(n|1), n ≥ 1. Then

C = Rep(GL(n− 1)×GL(1)×GL(1))� Supervec,

where Supervec is the category of supervector spaces; see [H], Theorem 4.13.
4. Let G = (Z/2Z)2 and char(k) = 2. Then it is well known that indecomposable

representations of G over k of nonzero mod 2 (i.e., odd) dimension are precisely
Ωn(1), n ∈ Z, where Ω is the Heller shift operator; see, e.g., [B1, Theorem
4.3.3]. Also one deduces from [B1, Corollary 3.1.6] that

Ωn(1)⊗Ωm(1) � Ωn+m(1)⊕ a projective module.

Thus, Repk(G) = VecZ = RepGL(1).

3Note that any Karoubian linear category with finite dimensional morphism spaces satisfies the
Krull-Schmidt theorem, which says that any object has a unique decomposition into a direct sum of
indecomposables (up to a non-unique isomorphism); for this reason, such categories are sometimes
called Krull-Schmidt categories.
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Remark 2.8

1. It is clear that if C is symmetric or braided, then so is C and the functor S.
2. If C is finite, then C may be infinite (see Example 2.7(4)) and can, in fact, be

unmanageably large, since the problem of classifying indecomposable objects in
finite abelian categories is often wild (in fact, this is already so for Repk(Z/p)

2,
where char(k) = p > 2).

Remark 2.9

1. Let C = RepH , where H is a finite dimensional Hopf algebra over a field k of
characteristic zero. Then condition (2) of Theorem 2.6 (that dimL X = 0 if and
only if dimR X = 0) holds for any pivotal structure. Indeed, we may assume that
k = C. A pivotal structure on RepH is given by a grouplike element g ∈ H such
that gxg−1 = S2(x) for x ∈ H and dimL X = TrX(g), dimR X = TrX(g−1).
But g has finite order, so the eigenvalues of g are roots of unity; hence, dimR X =
dimL X, as desired. We expect that the same holds for any finite tensor category
over a field of characteristic zero.

However, the above condition can be violated for categories of finite dimen-
sional modules or comodules over an infinite dimensional Hopf algebra. For
example, let C be the category of finite dimensional representations of Uq(b),
q ∈ C

×, where b ⊂ sl3 is a Borel subalgebra. Recall that a pivotal structure
on C is defined by the element K = q2ρ . Let X be the Uq(b) subrepresentation
of the adjoint representation of Uq(sl3) (with highest weight α1 + α2) spanned
by the vectors whose weights are positive roots. Then dimL X = 2q2 + q4

and dimR X = 2q−2 + q−4. So if q2 = −2, then dimL X = 0 but
dimR X = −3/4 �= 0.

The same happens in characteristic p, even for a finite dimensional Hopf
algebra. Namely, we can take the same example. Note that q2 = −2 is then a
root of unity (or some order dividing p − 1), so one may replace Uq(b) with the
corresponding small quantum group uq(b).

2. Condition (1) of Theorem 2.6 holds true if C is an abelian tensor category,
since the quantum trace is additive on exact sequences; see, e.g., [EGNO,
Proposition 4.7.5]. Moreover, assume that there exists a pivotal tensor functor
C → D, where the category D satisfies condition (1) of Theorem 2.6 (e.g.,
D is abelian). Then obviously the category C also satisfies condition (1) of
Theorem 2.6. This observation was used by U. Jannsen to prove that the category
of numerical motives is semisimple; see [Ja]. Moreover, the assumption on finite
dimensionality of morphism spaces in C in Theorem 2.6 can be dropped if there
exists a pivotal monoidal functor F : C → D′, where all morphism spaces
in D′ are finite dimensional, since the tensor ideal of morphisms sent by F to
zero consists of negligible morphisms, which implies finite dimensionality of
morphism spaces in C/N (C).

Here is an example of such a situation. Take any collection of morphisms
in a symmetric tensor category D, compute some of relations between them,
and define C to be the Karoubian envelope of the universal symmetric monoidal
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category generated by morphisms satisfying these relations. Then we have an
obvious symmetric monoidal functor C → D; hence, the semisimplification of C
is a semisimple symmetric tensor category.

3 General Results on Semisimplification of Tensor Categories

3.1 Splitting of the Semisimplification Functor for Tannakian
Categories in Characteristic Zero, Reductive Envelopes,
and the Jacobson-Morozov Lemma

For Tannakian categories in characteristic zero, André and Kahn showed that
the semisimplification functor S admits a splitting S∗ and used it to show the
existence and uniqueness (up to conjugation) of the reductive envelope of any affine
proalgebraic group in characteristic zero. In this subsection, we review this theory
(cf. [AK, S]).

Theorem 3.1 ([AK], Theorem 1, Theorem 2) If char(k) = 0 and C = RepG is a
Tannakian category over k (where G is an affine proalgebraic group over k), then
the functor S : C → C admits a splitting S∗ : C → C, a surjective tensor functor
such that S∗(X) ∼= X for each indecomposable X ∈ C, and S ◦ S∗ ∼= Id as a
symmetric tensor functor.

Now let C be as above and F be the forgetful functor C → Vec. Then F ◦ S∗ :
C → Vec is a fiber functor, so by the Tannakian formalism [DM], we have C =
RepG, where G := Aut(F ◦ S∗) is a reductive affine proalgebraic group, equipped
with a homomorphism ψG : G→ G (defined up to conjugation in G) giving rise to
the functor S∗. Moreover, since S∗ is surjective, ψG is an inclusion.

Definition 3.2 ([AK]) The group G equipped with the homomorphism ψG

(defined up to conjugation) is called the reductive envelope of G.

Theorem 3.3 ([AK], Theorem 3, Theorem 4) The reductive envelope G enjoys
the following universal property: If φ : G → L is a homomorphism from G to a
reductive proalgebraic group L, then there exists a homomorphism φ : G → L

such that φ = φ ◦ ψG. Moreover, φ is unique up to conjugation in L by elements
commuting with φ(G).

Proof The morphism φ gives rise to a symmetric tensor functor Φ : RepL →
RepG. Consider the functor Φ ′ := S ◦ Φ. Even though S may not be exact on
any side, the functor Φ ′ is exact since the category RepL is semisimple (as L is
reductive). Thus, Φ ′ : RepL → RepG is a symmetric tensor functor. Hence, by
Tannakian formalism [DM], it comes from a homomorphism φ′ : G → L defined
uniquely up to conjugation in L. Moreover, consider the functor S∗◦Φ ′ = S∗◦S◦Φ.
This functor is exact since its source is a semisimple category, so it is a symmetric
tensor functor, and it follows from Proposition 13.7.1 of [AK] that it is naturally
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isomorphic to Φ as a tensor functor. This means that the homomorphisms φ and
φ′ ◦ ψG are conjugate under L: φ(g) = �φ′(ψG(g))�−1 for some � ∈ L and all
g ∈ G. Hence, φ(g) = φ̃(ψG(g)) for all g ∈ G, where φ̃(a) := �φ′(a)�−1.

Finally, let us show that the homomorphism φ̃ in the theorem is determined
uniquely up to conjugation in L (automatically by elements commuting with φ(G)).
To this end, let Φ̃ : RepL→ RepG be the functor defined by φ̃. Then S∗ ◦ Φ̃ = Φ;
hence, postcomposing with S, we get Φ̃ = S ◦ Φ. Thus, Φ̃ is uniquely determined,
and hence φ̃ is determined up to conjugation, as desired. �
Remark 3.4 A geometric proof of the existence and properties of the reductive
envelope is given in [S].

Example 3.5 Consider the special case G = Ga . In this case, the indecomposable
representations of G are unipotent Jordan blocks Jn of sizes n = 1, 2, 3 . . ., so
it is easy to see that RepG ∼= Rep SL(2) (as the Grothendieck ring of RepG

coincides with that of Rep SL(2) and the dimensions of nonzero objects of RepG

are positive). So in this case, the existence of G is easy (namely, G = SL(2)), and
the existence of the splitting S∗ is also straightforward (namely, S∗ is induced by
the standard inclusion ψG : Ga ↪→ SL(2) as upper triangular matrices with ones
on the diagonal). Thus, Theorem 3.3 in this case tells us that any homomorphism
φ : Ga → L for a reductive proalgebraic group L uniquely (up to conjugacy) factors
through a homomorphism φ̃ : SL(2) → L. As pointed out in [AK, S], this implies
the celebrated Jacobson-Morozov lemma:

Proposition 3.6 Let L be a reductive algebraic group over k and u ∈ L a unipotent

element. Then there exists a homomorphism θ : SL(2)→ L such that θ

(
1 1
0 1

)

= u.

Moreover, θ is unique up to conjugation by the centralizer Zu of u.

Proof Let G be the 1-parameter unipotent subgroup of L generated by u and φ :
G → L be the corresponding embedding. Identify G with Ga by sending u to 1.
Then it remains to apply Theorem 3.3 and set θ = φ̃. �

Note that when G is an algebraic group, then G is typically only a proalgebraic
group (of infinite type), which can be very large. In fact, this is already so when G =
G

2
a , since the problem of classifying pairs of commuting matrices is well known to

be wild; i.e., the case G = Ga (leading to the Jacobson-Morozov lemma) is a rare
exception. In other words, the whole category RepG is typically unmanageable.
However, it makes sense to consider tensor subcategories of this category generated
by a single object, which are more manageable. Namely, we have the following
corollary.

Corollary 3.7 Let G be an affine algebraic group over k and V ∈ RepG a faithful
representation of G (so that G ↪→ GL(V )). Then there exists a reductive algebraic
group GV ⊂ GL(V ) containing G (a quotient of G) such that the subcategory CV
of RepG ∼= RepG tensor generated by V is naturally equivalent to RepGV .
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Proof Let FV : CV → Vec be the restriction of the fiber functor of RepG to CV . Let
GV := Aut(FV ). Then GV ⊂ GL(V ) is a reductive subgroup such that RepGV =
CV . Moreover, GV is a quotient of G; hence, we have a natural homomorphism
G→ GV , which is obviously injective, as desired. �
Definition 3.8 We will call GV the reductive envelope of G inside GL(V ).

Remark 3.9

1. Let C = Repk Z/p, where char(k) = p ≥ 5. Then a tensor functor S∗ : C →
C does not exist, since C = Verp contains objects of non-integer Frobenius-
Perron dimension. Also, if C = RepGL(n|1) over k of characteristic zero, then
a symmetric functor S∗ as is Theorem 3.1 does not exist, either. Indeed, if V is
the vector representation of GL(n|1), then ∧n−1S(V ) = 0 (cf. Example 2.7(3)),
while ∧n−1V �= 0 (it is a negligible but nonzero object in C). In fact, it is clear
that a splitting functor S∗ with the properties stated in Theorem 3.1 cannot exist
if C has indecomposable objects of dimension 0.

2. Note that the existence of the group G such that RepG ∼= RepG follows
from Deligne’s theorem [D1, Theorem 7.1], since RepG is a symmetric tensor
category over k in which nonzero objects have positive integer dimensions. This
is, in fact, used in the proof of Theorem 3.1 in [AK].

Moreover, using a more general version of Deligne’s theorem for supergroups,
[D2], one can see that if G is an affine proalgebraic supergroup over k of
characteristic zero and z ∈ G an element of order≤ 2 acting on O(G) by parity, and
Rep(G, z) is the category of representations of G on superspaces on which z acts
by parity, then Rep(G, z) = Rep(G, z) for some reductive proalgebraic supergroup
G, i.e., one whose representation category is semisimple; see [H, Theorem 2.2]. In
particular, for each V ∈ Rep(G, z), V generates a category Rep(GV , z), where GV

is a reductive algebraic supergroup (a quotient of G). This means that the connected
component of the identity G0

V of GV is of the form G′V /C, where C is a finite
central subgroup, and G′V = G+V ×G−V , where G+V is a usual reductive group, and
LieG−V is a direct sum of Lie superalgebras of type osp(1|2n); see [W].

In fact, as was explained to us by Thorsten Heidersdorf, the symmetric structure
of the category is not essential in the André-Kahn theorem on the existence of
splitting of the semisimplification functor. Namely, Theorem 12.1.1 and 13.2.1 of
[AK] immediately imply the following theorem:

Theorem 3.10 Let C be a Karoubian pivotal category as in Theorem 2.6, such that
the ideal N (C) of negligible morphisms in C coincides with the nilpotent radical
rad(C) of C (where rad(C)(X, Y ) is the intersection of the radical of the algebra
End(X⊕ Y ) with HomC(X, Y )); in other words, C has no nonzero indecomposable
objects of zero dimension. Then the semisimplification functor S : C → C admits a
monoidal splitting S∗ : C → C.
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Corollary 3.11 Let C be a Karoubian pivotal category as in Theorem 2.6. Then
following conditions are equivalent:

(i) Any indecomposable direct summand in a tensor product of two indecompos-
able objects of nonzero dimension also has nonzero dimension; in other words,
indecomposables of nonzero dimension span a full monoidal subcategory of C.

(ii) The semisimplification functor S : C → C admits a monoidal splitting S∗ :
C → C.

Proof It follows from Theorem 3.10 that (i) implies (ii). To prove that (ii) implies
(i), assume that (i) fails, and let X, Y be simple objects of nonzero dimension such
that X ⊗ Y ∼= Z ⊕ T where Z �= 0 is indecomposable and has dimension zero.
Then S(X)⊗ S(Y ) ∼= S(T ). So if there is a monoidal splitting S∗, then applying S∗
to the last equality, we get X ⊗ Y ∼= T . Thus, T ∼= Z ⊕ T , which contradicts the
Krull-Schmidt theorem. �

In particular, this implies existence of reductive envelopes for quantum groups.
Namely, let H be a Hopf algebra over a field k in which the squared antipode is
given by conjugation by a character χ ∈ H ∗ (thereby defining a pivotal structure on
Corep(H)), with no indecomposable finite dimensional comodules M �= 0 of zero
dimension. Then the category Corep(H) satisfies the assumptions of Theorem 3.10.
Therefore, we obtain

Proposition 3.12 There exists a unique universal cosemisimple Hopf algebra H

with a surjective homomorphism s : H → H (in other words, any Hopf algebra
homomorphism H ′ → H from a cosemisimple Hopf algebra H ′ uniquely factors
through s). Namely, Corep(H) = Corep(H).

The proof is analogous to the case when H is commutative over C (i.e., the case
of proalgebraic groups). Heuristically writing G = Spec(H) and G = Spec(H),
we may say that the reductive quantum group G is the reductive envelope of the
quantum group G.

Example 3.13 Let q be a transcendental number or, more generally, a complex
number which is not a root of any polynomial with positive integer coefficients,
say a positive real number or its image under an automorphism of C. Let Bq be the
quantum Borel subgroup of the quantum group Gq attached to a simple complex
algebraic group G. The category Rep(Bq) = Corep(O(Bq)) has a pivotal structure
given by the element q2ρ of the corresponding quantum enveloping algebra.
Therefore, the dimension (both left and right) of any nonzero representation of Bq is
a Laurent polynomial in q with positive integer coefficients. Thus, this dimension is
nonzero. Hence, Proposition 3.12 applies, and H := O(Bq) is the quotient of some
cosemisimple Hopf algebra H := O(Bq) for some reductive quantum group Bq ,
such that every representation of Bq factors canonically through Bq .
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3.2 Compatibility of Semisimplification with
Equivariantization

Now let C be a tensor category and L be a finite group acting on C. Let CL be the
L-equivariantization of C [EGNO, Subsection 4.15]. The following lemma is easy
[EGNO, Exercise 4.15.3].

Lemma 3.14 If

1 → N → G→ L→ 1

is an exact sequence of groups, then L acts naturally on Repk N , and (Repk N)L ∼=
Repk G.

Clearly, any action of L on C descends to its action on the semisimplification C.

Proposition 3.15 If |L| �= 0 in k and L preserves the spherical structure of C, then
L-equivariantization commutes with semisimplification. In other words, we have a

natural equivalence of tensor categories CL ∼= CL
.

Proof We have a natural forgetful functor F : CL → C. We claim that if X, Y ∈ CL

and f : X → Y is negligible, then F(f ) is negligible. Indeed, recall that
Hom(F (X), F (Y )) carries a natural action of L and that F defines an isomorphism
Hom(X, Y ) ∼= Hom(F (X), F (Y ))L. Now let h ∈ Hom(F (Y ), F (X)), and let us
show that Tr(F (f ) ◦ h) = 0. Let h = |L|−1∑

γ∈L γ (h). Then h = F(g) for a
unique g ∈ Hom(X, Y ). Thus, since F(f ) commutes with L and the action of L

preserves traces, we have

Tr(F (f ) ◦ h) = Tr(F (f ) ◦ h) = Tr(F (f ) ◦ F(g)) = 0,

as desired. Thus, the functor F descends to a tensor functor F : CL → C. Moreover,
for any T ∈ CL, the object F(T ) has a natural structure of an L-equivariant object
(coming from that of T ), so the functor F factors naturally through a tensor functor

E : CL → CL
.

Suppose T ∈ CL is simple. Then T = X, where X ∈ CL is an indecomposable
object of nonzero dimension. Thus, X = IndL

LZ
(ρ⊗Z), where Z is an indecompos-

able object of C of nonzero dimension, LZ is the stabilizer of Z in L, and ρ is an
irreducible representation of LZ over k. Then E(T ) = IndL

LZ
(ρ ⊗ Z). Thus, E(T )

is simple (since so is Z, and LZ = LZ).
It remains to show that E is essentially surjective, i.e., every simple object of

CL
is of the form E(T ). To this end, note that every simple object of CL

has the
form W = IndL

LV
(ρ ⊗ V ), where V = X is a simple object of C and ρ is an

irreducible representation of LV . Since |LV | �= 0 in k, we have dim ρ �= 0 in
k. Hence, W = E(T ), where T = IndL

LV
(ρ ⊗ X) is a simple object of CL (as

LV = LX). The proposition is proved. �
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Corollary 3.16 In the setup of Lemma 3.14, assume that |L| �= 0 in k. Then
Repk G ∼= Repk N

L
.

Proof This follows from Proposition 3.15 and Lemma 3.14. �
Remark 3.17 Similarly to Theorem 2.6, Proposition 3.15 and its proof generalize
to Karoubian pivotal categories satisfying the assumptions of Theorem 2.6.

3.3 Compatibility of Negligible Morphisms with Surjective
Tensor Functors

Let C,D be finite spherical tensor categories [EGNO, Section 6] and F : C → D
a surjective tensor functor [EGNO, Subsection 6.3]. Let I : D → C be the right
adjoint of F . Note that I is exact since F maps projectives to projectives [EGNO,
Theorem 6.1.16].

Definition 3.18 The index of F is d := dim I (1).

Definition 3.19 Let us say that I is dimension-scaling if dim I (V ) = d dimV for
all V ∈ D.

Proposition 3.20 If F has a nonzero index and I is dimension-scaling, then

(i) dimF(Y ) = dimY for all Y ∈ C;
(ii) for any negligible morphism f in C, the morphism F(f ) is negligible in D.

Proof We have a functorial isomorphism εY : I (F (Y ))→ I (1)⊗ Y . Indeed,

Hom(X, I (F (Y ))) = Hom(F (X), F (Y )) = Hom(F (X)⊗ F(Y )∗, 1) =

Hom(F (X ⊗ Y ∗), 1) = Hom(X ⊗ Y ∗, I (1)) = Hom(X, I (1)⊗ Y ).

Since I is dimension-scaling, we have

d dimF(Y ) = dim I (F (Y )) = dim(I (1)⊗ Y ) = d dimY.

Since d �= 0, this implies (i).
Now let us prove (ii). For this, note that if f : X → Y is a morphism in C, then

εY ◦ I (F (f )) ◦ ε−1
X = IdI (1) ⊗ f . Hence, the morphism I (F (f )) is negligible. �

Lemma 3.21 If h : V → V is a morphism in D, then one has Tr(I (h)) = dTr(h).

Proof By decomposing V into generalized eigenobjects of h, we may assume that
h has a single eigenvalue λ. Then h = λId + h0, where h0 is nilpotent, so I (h) =
λId + I (h0). Since I (h0) is nilpotent, the desired statement reduces to the identity
dim I (V ) = d dimV for all V ∈ D, which holds since I is dimension-scaling. �
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Now let g : F(Y )→ F(X) be a morphism. Then by Lemma 3.21,

dTr(F (f ) ◦ g) = Tr(I (F (f ) ◦ g)) = Tr(I (F (f )) ◦ I (g)).

But this is zero, since I (F (f )) is negligible. Since d �= 0, this implies that
Tr(F (f ) ◦ g) = 0, i.e., F(f ) is negligible, yielding (ii). �

Proposition 3.20 immediately implies

Corollary 3.22 If F has a nonzero index and I is dimension-scaling, then F

descends to a tensor functor F : C → D.

Now let H be an involutive finite dimensional Hopf algebra over any alge-
braically closed field k (i.e., S2 = Id, where S is the antipode of H ) and K be a
Hopf subalgebra in H ; for example, H is cocommutative (e.g., a group algebra).
Then C = RepH and D = RepK are finite spherical tensor categories, where
dimensions are the usual dimensions (projected to k). Restriction from H to K

defines a surjective tensor functor F : C → D. Let I : Rep(K) → Rep(H) be the
right adjoint to this functor, i.e., the induction functor, I (V ) = HomK(H, V ).

Recall that by the Nichols-Zoeller theorem [NZ], H is a free K-module, of some
rank d.

Corollary 3.23 Assume that d �= 0 in k. Then any negligible morphism f : X → Y

of H -modules is also negligible as a morphism of K-modules. Thus, F defines a
tensor functor: RepH → RepK .

Proof We have dim I (V ) = d dimV , i.e., I is dimension-scaling. Thus, the result
follows from Proposition 3.20. �

4 Semisimplification of Representation Categories of Finite
Groups in Characteristic p

4.1 The Result

Let char(k) = p > 0. Let G be a finite group and P be a Sylow p-subgroup
of G. Let NG(P ) be the normalizer of P in G. Since [G : NG(P )] �= 0 in k,
Corollary 3.23 implies

Proposition 4.1 Let f : X → Y be a negligible morphism of G-modules. Then f

is negligible as a morphism of NG(P )-modules. Thus, the restriction functor F :
Repk G → Repk NG(P ) descends to a tensor functor between semisimplifications
F : Repk G→ Repk NG(P ).

Our main result in this section is the following theorem.

Theorem 4.2 The functor F in Proposition 4.1 is an equivalence of tensor cate-
gories.
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Theorem 4.2 is proved in the next subsection.
Let L = NG(P )/P .

Corollary 4.3 One has Repk G ∼= (Repk P)L.

Proof This follows from Theorem 4.2 and Corollary 3.16, since |L| �= 0 in k (as
P ⊂ G is a p-Sylow subgroup). �

4.2 Proof of Theorem 4.2

To prove Theorem 4.2, we will use the theory of vertices of modular representations
and the Green correspondence (see, e.g., [A, Chapter III]), which we will now recall.
Let M be a finite dimensional representation of a finite group G over a field k of
characteristic p. Let H be a subgroup of G.

Definition 4.4 We say that M is relatively H -projective if M is a direct summand
in IndG

HV for some finite dimensional H -module V .

Proposition 4.5 (see, e.g., [A], Section 9) For each indecomposableG-moduleM ,
the minimal subgroupsH ⊂ G such thatM is relativelyH -projective are conjugate,
and they are p-groups.

Definition 4.6 The minimal subgroup H ⊂ G such that M is relatively H -
projective (well defined up to conjugation, thanks to Proposition 4.5) is called the
vertex of M .

Proposition 4.7 ([G], Theorem 9) If dimM �= 0 in k, then the vertex of M is the
Sylow p-subgroup P ⊂ G.

Proof The result is well known, but we give a proof for reader’s convenience. Let
H be the vertex of M , so M is a direct summand of IndG

HV for some H−module V .
For the sake of contradiction, assume that H is not conjugate to P . We will prove:

(a) any direct summand of IndG
HV has dimension zero.

This is a contradiction with our assumption on H , since M is one of such direct
summands. We deduce (a) from the following stronger statement:

(b) any direct summand of ResGP IndG
HV has dimension zero.

To prove (b), recall that by the Mackey formula (see [A, III.8, Lemma 7])

ResGP IndG
HV =

⊕

s∈P \G/H

IndP
P∩sHs−1 RessHs−1

P∩sHs−1s(V ).

By the assumption P ∩ sHs−1 is strictly contained in P for any s. Since P

is p−group, P ∩ sHs−1 is a subnormal subgroup of P . Thus, by Green’s
indecomposability theorem (see [A, III.8, Theorem 8]), the functor IndP

P∩sHs−1

sends indecomposable modules to indecomposable ones. In particular, any direct
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summand of IndP
P∩sHs−1 RessHs−1

P∩sHs−1s(V ) is induced from P ∩ sHs−1 and has

dimension divisible by the index [P : P ∩ sHs−1], hence vanishes in k; see [A,
III.8, Lemma 4]. The result follows. �
Theorem 4.8 [A] (Green’s correspondence) For each p-subgroup H ⊂ NG(P ),
there is a bijection between indecomposable representations of G with vertex H

and indecomposable representations of NG(P ) with vertex H , given by X �→ X◦
for X ∈ Repk G, such that X|NG(P ) = X◦ ⊕ N , where N is a direct sum of
indecomposable NG(P )-modules with vertices other than H .

We can now prove Theorem 4.2. Let T ∈ RepG be a simple object. Then T = X,
where X ∈ RepG is an indecomposable module of nonzero dimension. Hence,
by Proposition 4.7, the vertex of X is P . Hence, by Theorem 4.8, X|NG(P ) =
X◦ ⊕ N , where N is a direct sum of indecomposable NG(P )-modules whose
vertices are different from P . Then by Proposition 4.7, the dimension of each of
these indecomposable modules is zero; hence, N is negligible. This means that
F(T ) = X◦, which is a simple object of RepNG(P ). This shows that the functor F
is injective.

Now let Z ∈ RepNG(P ) be a simple object. Then Z = Y for some Y ∈
RepNG(P ). But Y is a direct summand in (IndG

NG(P )Y )|NG(P ). Hence, Z is a direct

summand in F(IndG
NG(P )Y ), proving that F is surjective.

Thus, F is an equivalence, as claimed.

4.3 The Case of Sylow Subgroup of Prime Order

Let us now consider the simplest nontrivial special case of Theorem 4.2, when the
p-Sylow subgroup of G has order p.

Corollary 4.9 If P = Z/p, then Repk G = (Verp)L, where Verp is the Verlinde
category (see Example 2.7(2)).

Note that if p = 2, then Verp = Vec. Thus, if P = Z/2, then Corollary 4.9 says
that Repk G = Repk L.

So let us consider the case p > 2 and compute the category (Verp)L more
explicitly. Note that Verp = Ver+p �Supervec and Verp has no nontrivial symmetric
tensor autoequivalences [O], while Ver+p has no nontrivial tensor automorphisms of
the identity functor. Thus, from Corollary 4.9, we get

Repk G = Ver+p � SupervecL.

The group of tensor automorphisms of the identity functor of Supervec is
Z/2. Hence, actions of L on Supervec correspond to elements H 2(L,Z/2). Let
c ∈ H 2(L,Z/2) be the element corresponding to the action as above, and let us
compute c. Since the action of L on Z/p factors through an action of Z/(p−1), the
element c is pulled back from a canonical element c̄ ∈ H 2(Z/(p−1),Z/2) = Z/2.
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Proposition 4.10 The element c̄ is nontrivial.

Proof It suffices to show that the pullback of c̄ to Z/2 ⊂ Z/(p − 1) is nontrivial.
For this purpose, it suffices to consider the semisimplification of Repk Dp, where
Dp := Z/2�Z/p is the dihedral group. In Repk Dp, we have an invertible object X
of vector space dimension p−1, which has composition series k+,k−, . . . ,k+,k−,
where k+ is the trivial representation of Z/2 and k− is the sign representation, and
it suffices to show that X has order > 2. But we have X = X∗⊗k−. Thus, X cannot
have order 2, as desired. �

Let L̃ be the central extension of L by Z/2 defined by the cocycle c, and let z be
the generator of the central subgroup Z/2 ⊂ L̃.

Corollary 4.11 If p is odd and P = Z/p, then

Repk G ∼= Ver+p � Repk(L̃, z),

where Repk(L̃, z) is the category of representations of L̃ on supervector spaces, so
that z acts by the parity operator.

4.4 The Case of the Symmetric Group Sp+n, where n < p

If p = 2, then we have Repk S2 = Repk S3 = Veck. So consider the case p > 2. Let
G = Sp+n, where 0 ≤ n < p. Then P = Z/p, and NG(P ) = Sn×Z/(p−1)�Z/p.
Thus, by Corollary 4.11,

Repk Sp+n
∼= Repk Sn � Ver+p � Repk(Z/2(p − 1), z),

where z is the element of order 2 in Z/2(p − 1). In particular, for n ≥ 2, the group
of invertible objects of this category is Z/2× Z/2(p − 1).

In particular, we obtain the following proposition.

Proposition 4.12 If n < p, then the restriction functor

Res : Repk Sn+p → Repk(Sn × Sp)

induces an equivalence Repk Sn+p → Repk(Sn × Sp).

Proof The functor Res descends to a tensor functor Repk Sn+p → Repk(Sn × Sp)

by Corollary 3.22, and this tensor functor is an equivalence since the inclusion
Sn × Sp ↪→ Sn+p induces an isomorphism of the normalizers of the Sylow
p-subgroups. �

Let us now describe the functor S more explicitly, in the special case n = 0, i.e.,
C = Repk Sp, where p > 2. It is well known that in this case, we have a unique
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non-semisimple block B of defect 1, namely, the block of the trivial representation.
The blocks of defect zero consist of objects of dimension 0, so they are killed by
S. So let us first consider the images under S of the simple objects of B. These
objects have the form ∧iVp−2, i = 0, . . . , p − 2, where Vp−2 is the p − 2-
dimensional irreducible representation of Sp which is the middle composition factor
in the permutation representation. To compute the image S(Vp−2) of Vp−2, denote
by Li i = 1, 3, 5, . . . , p − 2 the simple objects of Ver+p (so that L1 = 1) and by χ

the generator of Repk(Z/2(p − 1)). The object S(Vp−2) has to be simple and has
dimension −2, so it has the form Lp−2 ⊗ χm, where m is even as dimχ = −1.
Moreover, S2Vp−2 contains 1 as a direct summand, which implies that m = 0
or m = p − 1. Finally, ∧p−2Vp−2 = sign is the sign representation of Sp, so
∧p−2(Lp−2 ⊗ χm) = χm(p−2) is nontrivial, which implies that m = p − 1. Thus,

S(Vp−2) = Lp−2 ⊗ χp−1.

This means that

S(∧iVp−2) = Lp−1−i ⊗ χp−1

for odd i ≤ p − 2 and

S(∧iVp−2) = Li+1

for even i ≤ p − 2.
Now consider the representation Vp−1 of Sp on the space of functions on [1, p]

modulo constants. Then S(Vp−1) has dimension−1, so it is of the form χm for some
odd m. Moreover, it is well known that ∧iVp−1 is indecomposable for i ≤ p − 1.
Since it is not invertible for 0 < i < p − 1, we see that χmi �= 1, χp−1 for any
0 < i < p−1. Also χm(p−1) = χp−1. This implies that the order of χm is 2(p−1),
so we may assume that m = 1 by making a suitable choice of χ . Thus, for a suitable
choice of χ , we have

S(Vp−1) = χ.

The suitable choice of χ is well defined only up to the change χ → χp, since the
group Z/2(p − 1) has an automorphism of order 2 (sending 1 to p) which acts
trivially on Z/(p− 1) = Aut(Z/p). Thus, the well-defined question is to determine
χ2, which is a character of Aut(Z/p), naturally identified with F

×
p . Then it is easy

to show by a direct calculation that χ2 is the natural inclusion F
×
p ↪→ k× coming

from the inclusion of fields Fp ↪→ k.
Thus, we obtain

Proposition 4.13 The category Repk Sp is generated by Vp−2 and Vp−1. In other

words, the simple objects of Repk Sp have the form Vp−1
⊗m ⊗ ∧iV p−2, where
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0 ≤ m ≤ p − 2 and 0 ≤ i ≤ p − 2 (so the total number of simple objects is
(p − 1)2).

4.5 Application: The Semisimplification of the Deligne
Category RepabSn

Let n be a nonnegative integer and k be a field of characteristic zero. Let RepSn

denote the Karoubian Deligne category over k defined in [D3] (its main property
is that it can be interpolated to non-integer values of n in k). This category has a
tensor ideal I such that RepSn/I = Repk Sn. Moreover, it is known (see [D3, CO])

that RepSn has an abelian envelope RepabSn; in particular, the trace of any nilpotent
endomorphism in RepSn vanishes. Since I consists of morphisms factoring through
negligible objects (i.e., direct sums of indecomposable objects of dimension zero),
and Repk Sn is semisimple, we see that I = N (C) is the full ideal of negligible
morphisms (i.e., every negligible morphism factors through a negligible object),
and the semisimplification RepSn coincides with Repk Sn.

The question of describing the semisimplification of the abelian envelope
RepabSn is more interesting. The answer is given by the following theorem.

Theorem 4.14

(i) The restriction functor

Res : RepabSn → Repk Sn � RepabS0

induces an equivalence between the semisimplifications of these categories.
(ii) We have an equivalence of symmetric tensor categories

RepabSn
∼= Repk Sn � Repk(GL(1)× SL(2), (−1,−1)).

Proof We will use the approach of [Ha] to Deligne categories. Namely, let us take
k = C. Then, according to [Ha, Theorem 1.1(b)], we have

RepabSn = lim
p→∞Rep

Fp
Sn+p,

where lim denotes an appropriate ultrafilter limit (i.e., ultraproduct). More precisely,
this means that RepabSn is the tensor subcategory in the appropriate ultrafilter limit
tensor generated by the “permutation” object P (the analog of the permutation
representation). It is easy to see that the ultrafilter limit commutes with the
semisimplification, so (i) follows from Proposition 4.12.

By virtue of (i), it suffices to check (ii) for n = 0. In this case, according to
Sect. 4.4, Rep

Fp
Sn+p = Rep

Fp
Sp is generated by Vp−2 and Vp−1. In the ultrafilter
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limit, the sequences of representations Vp−2 and Vp−1 converge to the objects V−2
and V−1 of RepabS0 (of dimensions −2 and −1, respectively), defined by the (non-
split) exact sequences

0 → 1→ P → V−1 → 0, 0 → V−2 → V−1 → 1→ 0

(in particular, V−2 is simple). Thus, by Proposition 4.13, the category RepabSn is

generated by V−2 and V−1. Moreover, since

Vp−2 = Lp−2 ⊗ χp−1,

we find that V−2 generates a subcategory with Grothendieck ring of Repk SL(2).
Since dimV−2 = −2, this is the category Repk(SL(2),−1). Similarly, since Vp−1
is invertible of order 2(p−1), we see that V−1 is invertible of infinite order, so since
its dimension is−1, it generates Repk(GL(1),−1). Thus, together these two objects
generate the category Repk Sn �Repk(GL(1)× SL(2), (−1,−1)), as claimed. �

5 Semisimplification of Some Non-Symmetric Categories

Let char(k) = 0, q ∈ k×, and Hq be the Hopf algebra generated by the grouplike
element g and element E with defining relation gEg−1 = qE and coproduct defined
by Δ(E) = E ⊗ g + 1⊗E. Then S(E) = −Eg−1, so S2(E) = gEg−1 = qE. Let
Cq ⊂ RepHq be the category of finite dimensional representations of Hq on which
g acts semisimply with eigenvalues being powers of q. This category has a pivotal
structure defined by the element g.

5.1 Generic q

First assume that q is not a root of unity. Then for any V ∈ Cq , E|V is nilpotent,
since E maps eigenvectors of g with eigenvalue λ to those with eigenvalue λq.
Thus, the indecomposable objects of Cq are Vm1,m2 , where m1 ≥ m2 are integers,
namely, Jordan blocks for E of size m1−m2+1 containing a nonzero vector v with
gv = qm1v,Ev = 0. Then dimVm1,m2 = qm2 + . . . + qm1 , which is never zero,
so there is no nonzero negligible objects. It is easy to see that the tensor product
of Vm1,m2 obeys the same fusion rules as representations of GLq(2) with highest
weights (m1,m2), where q2 = q. From this, we obtain

Proposition 5.1 One has Cq ∼= RepGLq(2).

Proof Let us construct a tensor functor T : RepGLq(2) → Cq such that S ◦ T is
an equivalence RepGLq(2) → Cq . For this purpose, consider the Hopf algebra
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Uq(gl2) with generators g1, g2, e, f such that g1, g2 are commuting grouplike
elements and

g1eg
−1
1 = qe, g1fg

−1
1 = q−1f, g2eg

−1
2 = q−1e, g2fg

−1
2 = qf,

[e, f ] = g1g
−1
2 − g2g

−1
1

q− q−1 ,

Δ(e) = e ⊗ g1g
−1
2 + 1⊗ e, Δ(f ) = f ⊗ 1+ g2g

−1
1 ⊗ f.

Let us realize RepGLq(2) as the category of finite dimensional representations of
Uq(gl2) on which g1, g2 act semisimply with eigenvalues being powers of q. Let
J be the twist for Uq(gl2) which acts on v ⊗ w by q−rs when g1v = qrv and
g2w = qsw. Then the conjugated coproduct ΔJ (a) := J−1Δ(a)J of the element e
has the form

ΔJ (e) = e ⊗ g1 + g−1
1 ⊗ e.

Thus, setting ē := g1e, we have

ΔJ (ē) = ē ⊗ g2
1 + 1⊗ ē.

We therefore have an inclusion of Hopf algebras ψ : Hq ↪→ Uq(gl2)
J given by

ψ(g) = g2
1, ψ(E) = ē, which defines the desired tensor functor T . �

5.2 Roots of Unity

Now consider the case when q is a root of unity of some order n, which is more
interesting. For simplicity, assume that n ≥ 3 is odd, and let q be a root of unity
of order 2n such that q2 = q. In this case, by definition, Cq = RepHq/(g

n − 1)
is the category of finite dimensional representations of the quotient Hopf algebra
Hq/(g

n − 1). Note that the action of E on objects of Cq no longer needs to be
nilpotent. Namely, En is a central element which can act on a simple module by an
arbitrary scalar. However, if En = λ �= 0 on some simple module V , then given
an eigenvector v ∈ V of g with eigenvalue γ , the elements v,Ev, . . . , En−1v are
a basis of V , so V has dimension γ (1 + q + q2 + . . . + qn−1) = 0. Thus, the
action of E on any non-negligible indecomposable module must be nilpotent. This
shows that the non-negligible indecomposable modules are still Vm1,m2 , but now
d := m1 − m2 + 1 is not divisible by n, and also m := m1 is defined only up to
a shift by n. We will denote this module by V (m, d). Thus, the simple objects of
Cq are V (m, d), where 0 ≤ m ≤ n − 1 and d ≥ 1, not divisible by n. Note that
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V (m, 1) ⊗ V (r, d) = V (r, d) ⊗ V (m, 1) = V (r + m, d) (with addition mod n);
thus, V (m, 1)⊗ V (r, d) = V (r, d)⊗ V (m, 1) = V (m+ r, d).

To compute the fusion rules in Cq , consider the Hopf subalgebra Kq ⊂ Hq

generated by g and En (this Hopf algebra is commutative and cocommutative,
as En is a primitive element). Let χ be the generating character of the cyclic
group generated by g such that χ(g) = q. Then the Green ring of the category
of finite dimensional representations of Kq/(g

n − 1) with nilpotent action of En is
R[Z/n] = R[χ ]/(χn−1), where R is the representation ring of SL(2). Moreover, if
X ∈ Cq is a negligible indecomposable module over Hq/(g

n−1), then its restriction
to Kq/(g

n − 1) lies in the ideal of R[Z/n] generated by 1+ χ + . . .+ χn−1. Thus,
we have a natural homomorphism

θ : Gr(Cq)→ R[χ ]/(1+ χ + . . .+ χn−1).

Let us now compute θ(V (m, d)). First, it is clear that θ(V (m, 1)) = χm. Also, for
a simple object X ∈ Cq , let ν(X) ∈ Z/2n be defined by ν(V (m, d)) = 2m− d + 1.
Then for any direct summand Z in X ⊗ Y , we have ν(Z) = ν(X) + ν(Y ) (since
the representations V (m, d) extend to GLq(2), where the order of q is 2n, and
q2m−d+1 = qm1+m2 is determined by the action of the central element g1g2). Thus,
the subcategory C0

q spanned by V (m, d) with 2m− d+ 1 = 0 modulo 2n is a tensor
subcategory of Cq . Moreover, it is easy to check that the restriction

θ : Gr(C0
q)→ R[χ ]/(1+ χ + . . .+ χn−1)

is injective.
Now, the basis of Gr(C0

q) is formed by V (m, 2rn+ 2m+ 1), r ≥ 0. Consider

first the case r = 0, 0 ≤ m ≤ n−3
2 . In this case, we get

θ(V (m, 2m+ 1)) = χm + χm−1 + . . . .+ χ−m.

This means that the collection of (n− 1)/2 objects

V (m, 2m+ 1), 0 ≤ m ≤ (n− 3)/2

span a tensor subcategory, whose Grothendieck ring is that of Ver+q , the even part of
the category Verq (the fusion category attached to Uq(sl2)).

Now, let Wi ∈ R be a unique irreducible representation of SL(2) with
dim(Wi) = i + 1. Then it is easy to see (by looking at bases of representations)
that

θ(V (0, 2rn+ 1)) = W2r+1 −W2r , θ(V (−1, 2rn− 1)) = W2r−1 −W2r , r ≥ 1.

This means that the collection of objects V (0, 2rn+ 1), V (−1, 2rn− 1),
r ≥ 1 spans a tensor subcategory with Grothendieck ring of RepPGL(2),
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with V (0, 2rn+ 1) �→ U4r+1, V (−1, 2rn− 1) �→ U4r−1, with Us denoting
the irreducible representation of PGL(2) of dimension s. Indeed, let us evaluate
the characters of Wi at the point −x. Then we have

V (0, 2rn+ 1) �→ x2r+1+x2r . . .+x−2r−1, V (−1, 2rn− 1) �→ x2r+x2r−1 . . . .+x−2r ,

which implies the statement.
We also note that the object V (n− 1, n− 1) is invertible and has order 2.
The analysis of the case when n is even is similar, using Theorem A.3.
Thus, we obtain

Theorem 5.2 The Grothendieck ring of Cq is isomorphic to the Grothendieck ring
of the category

VecZ/n � Verq � RepPGL(2).

Corollary 5.3

(i) The category spanned by V (0, 2rn+ 1), V (−1, 2rn− 1) is a tensor category
equivalent to RepOSp(1|2).

(ii) The category spanned by V (m, 2m+ 1), V (m, 2m+ 1)⊗V (n− 1, n− 1), 0 ≤
m ≤ (n− 3)/2 is a tensor category equivalent to Verq.

Proof Part (i) follows from Theorems 5.2 and A.1(ii) (since the generating object
V (−1, 2n− 1) corresponding to U3 has dimension −1).

Part (ii) follows from Theorems 5.2, A.3, and Remark A.4(iii). �
Thus, we expect that there is an equivalence of tensor categories

Cq ∼= VecZ/n � Verq � RepOSp(1|2).

Note that this does not immediately follow from Theorem 5.2 since the external
tensor product C�D might have nontrivial associators (for instance, this is the case
when both categories C and D are pointed).

6 Surjective Symmetric Tensor Functors Between Verlinde
Categories Verp(G)

Let G be a simple algebraic group over Z, h = h(G) the Coxeter number of G,
and p ≥ h a prime. Let k be an algebraically closed field of characteristic p.
Let Verp(G) = Verp(G,k) be the associated Verlinde category of G, i.e., the
semisimplification of the category Tilt(G) of tilting modules for G over k. For
example, Verp(SL(2)) = Verp.

Similarly, one defines Verp(G) when G is connected reductive. In this case, we
should require that p ≥ hi for all i, where hi are the Coxeter numbers of all simple
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constituents of G. Note that Verp(G) is a fusion category (i.e., finite) if and only if
G is semisimple.

We would like to construct surjective symmetric tensor functors Verp(G) →
Verp(K) for simple G. To this end, suppose that φ : K ↪→ G is an embedding of
reductive algebraic groups. In this case, we have the following proposition.

Proposition 6.1 Let p be sufficiently large, and let T be a tilting module for G.
Then T |K is also a tilting module.

Proof The module T occurs as a direct summand in V⊗m, where V is the direct sum
of the irreducible G-modules whose highest weights generate the cone of dominant
weights for G. Hence, T |K is a direct summand in V⊗m|K . But V |K is a direct
sum of simple K-modules with small highest weights (compared to p), which are
therefore tilting. Thus, T |K is tilting. �
Proposition 6.2 Let p be sufficiently large, and let K contain a regular unipotent
element of G (equivalently, a principal SL(2)-subgroup of G). Then for any
negligible tilting module T over G, the restriction T |K is negligible.

Proof Let u ∈ K(k) be a regular unipotent element of G and U ∼= Z/p be
the subgroup generated by u. Then by Jantzen [J], E13, T |U is projective, hence
negligible. This implies that T |K is negligible. �
Corollary 6.3 If K contains a regular unipotent element of G, then for large
enough p, we have a surjective tensor functor F : Verp(G)→ Verp(K).

Proof By Proposition 6.1, we have a monoidal functor

Res : Tilt(G)→ Tilt(K),

and by Proposition 6.2, it maps negligible objects to negligible ones. Hence,
this functor descends to a tensor functor between the semisimplifications Res :
Tilt(G) → Tilt(K). This implies the required statement, since Tilt(G) ∼= Verp(G)

(and similarly for K), so we can take F = Res, and it is clear that this functor is
surjective. �

Corollary 6.3 raises a question of classification of pairs K ⊂ G, where G is
simple, K is connected reductive, and K contains a regular unipotent element of
G. Let us call such a pair a principal pair. It is clear that it suffices to classify
the corresponding pairs of Lie algebras (which we also call principal); namely, a
principal pair of groups K ⊂ G is determined by a principal pair of Lie algebras
k ⊂ g and a central subgroup in G. The question of classification of principal pairs
of Lie algebras is solved by the following theorem.

Theorem 6.4 [SS] The principal pairs of Lie algebras k ⊂ g (with a proper
inclusion) are given by the following list:

(1) sp(2n) ⊂ sl(2n), n ≥ 2;
(2) so(2n+ 1) ⊂ sl(2n+ 1), n ≥ 2;
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(3) so(2n+ 1) ⊂ so(2n+ 2), n ≥ 3;
(4) G2 ⊂ so(7);
(5) G2 ⊂ so(8);
(6) G2 ⊂ sl(7);
(7) F4 ⊂ E6.
(8) sl2 ⊂ g for any simple g.

Namely, the subalgebras (1), (2), (3), (5), and (7) are obtained as fixed points of
a Dynkin diagram automorphism, (4) is obtained by composing (5) and (3), and (6)
is obtained by composing (5) and (2).

Note that Theorem 6.4 holds not only in characteristic zero but also in sufficiently
large characteristic (for each fixed g).

Question 6.5 Suppose that the groups K � G are fixed. Is it true that for large
enough p, all surjective tensor functors F : Verp(G) → Verp(K) are given by
Corollary 6.3 (up to autoequivalences of Verp(G) and Verp(K))?

7 Objects of Finite Type in Semisimplifications

Let D be a semisimple tensor category and X ∈ D. Let us say that X is of finite type
if the number of isomorphism classes of simple objects occurring in tensor products
of X and X∗ is finite; i.e., X generates a fusion subcategory DX ⊂ D. If C is the
semisimplification of a category C, and X ∈ C, we will say that X is of finite type if
so is X. It is an interesting question which objects of C are of finite type. Note that
according to Example 2.7(4), X does not have to be of finite type even if C is the
representation category of a finite group (e.g., C = Repk(Z/2)2 for char(k) = 2).

Yet, a lot of interesting representations of finite groups do turn out to be of finite
type and generate interesting fusion categories. The goal of this subsection is to give
some examples of such representations.

Let H be an affine algebraic group over an algebraically closed field k of
characteristic zero. Let V be a rational representation of H . Let HV be the reductive
envelope of H inside GL(V ) defined in Definition 3.8. Assume that H contains a
regular unipotent element of HV (e.g., H = Un, the maximal unipotent subgroup
of SL(n) and V = kn; then HV = SL(V )). Note that all this data is defined
over some finitely generated subring R ⊂ k, hence can be reduced modulo p

for sufficiently large p; namely, given a homomorphism ψ : R → Fp, we have
ψ(R) = Fq , where q = pr for some r , and we have a chain of finite groups
H(Fq) ⊂ HV (Fq) ⊂ GL(V (Fq)). Let Vψ = V (Fp); it is a representation of these
finite groups over Fp. Let C := Rep

Fp
H(Fq).

Theorem 7.1 For large enough p, the category CVψ
generated by Vψ is a quotient

of Verp(HV ) = Verp(HV ,Fp). In particular, the object Vψ is of finite type in C.
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Proof We have an additive monoidal restriction functor

Res : Tilt(HV (Fp))→ Rep
Fp

H(Fq),

hence an additive monoidal functor

S ◦ Res : Tilt(HV (Fp))→ Rep
Fp

H(Fq).

Moreover, the image of a negligible module under the functor Res is negligible, as
it is already so after restricting to the group Z/p generated by a regular unipotent
element of HV contained in H(Fq) [J, E13]. Hence, the functor S ◦Res descends to
a tensor functor F̃ : Verp(HV )→ Rep

Fp
H(Fq) (this functor is automatically exact

since the source category is semisimple). Moreover, the functor F̃ lands in CVψ
, so

we get a surjective tensor functor F : Verp(HV )→ CVψ
. In particular, in this case,

CVψ
is a quotient of Verp(HV ), thus a fusion category if HV is semisimple.

Moreover, even if HV is not semisimple but only reductive, CVψ
is still a fusion

category, since one-dimensional representations of HV obviously have finite order
when restricted to the finite group H(Fq). �
Conjecture 7.2 For sufficiently large p, the surjective tensor functor F :
Verp(HV )→ CVψ

is an equivalence.

Remark 7.3 Let C be a symmetric tensor category over a field k of characteristic
p > 0, C be its semisimplification, and X ∈ C. According to Conjecture 1.3 of
[O], there should be a Verlinde fiber functor F : CX → Verp (this is actually a
theorem if X is of finite type; see [O]). So, in particular, assuming this conjecture,
we can define the number d(X) := FPdim(F (X)), the Frobenius-Perron dimension
of F(X). A more refined invariant is the full decomposition of F(X) into the simple
objects L1, . . . , Lp−1 of Verp: F(X) = ∑

i ai(X)Li . It is an interesting question
how to compute these invariants for a given X (actually, this question can also be
asked in characteristic zero, with Verp replaced by Supervec). Also, one can define
the affine group scheme GX = Aut(F ) in Verp (or Supervec), and its dimension
δ(X) is another interesting invariant of X. Note that X is of finite type if and only if
δ(X) = 0. Also note that if X = Vψ in the setting of Theorem 7.1, then the above
invariants can be easily computed using the results of [EOV].

We also have the following proposition.

Proposition 7.4 Let G be a finite group and V a representation of G over an
algebraically closed field k of characteristic p of dimension d < p. Suppose that
there exists an element g ∈ G such that the restriction of V to the cyclic group
generated by g is indecomposable. Then V is of finite type.

Proof We may assume that V is faithful, i.e., G ⊂ GL(d). Let u be the unipotent
part of g. Then u is a power of g and a regular unipotent element of GL(d) (as it acts
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indecomposably on V ). Hence, the restriction functor Tiltp(GL(d)) → Repk(G)

descends to a tensor functor Verp(GL(d)) → Repk(G). In particular, the tensor
category generated by V in the semisimplification of Repk(G) is finite, as desired.

�
This proposition can be generalized as follows, with a similar proof:

Proposition 7.5 Let G be a finite group and V a faithful representation of G over
an algebraically closed field k of characteristic p of dimension d < p. Suppose that
K ⊂ GL(d) is a reductive subgroup containing G, such that G contains a regular
unipotent element of K . Then V is of finite type.

8 Semisimplification of Tilt(GL(n)) when char(k) = 2

In this section, we describe the category C when C = Tilt(GL(n)) and char(k) = 2.
First recall Lucas’ theorem in elementary number theory:
Let a ∈ Z, b ∈ Z+ with p-adic expansions

a =
∑

i

aip
i, b =

∑

i

bip
i,

with 0 ≤ ai, bi ≤ p − 1.

Proposition 8.1 (Lucas’ Theorem) One has

(
a

b

)

=
∏

i

(
ai

bi

)

mod p.

In particular,
(
a
b

)
is not divisible by p if and only if bi ≤ ai for all i.

Let V = kn be the tautological representation of GL(n). Recall that the
indecomposable objects of the category C are the indecomposable direct summands
in tensor products of the fundamental modules ∧�V , 1 ≤ � ≤ n. Moreover, it is
well known that we can take � to be only powers of 2. Indeed, if � = 2k1 + · · ·+ 2kr

with 0 ≤ k1 < · · · < kr is the binary expansion of �, then by Lucas’ theorem, the
multinomial coefficient

N := �!
2k1 ! . . . 2kr ! =

(
�

2k1

)(
�− 2k1

2k2

)

. . .

is odd. Now pick a subset of coset representatives C ⊂ S� mapping bijectively onto
the quotient S�/(S2k1 × · · · × S2kr ), and define the operator P := ∑

g∈C g on the

space ∧2k1
V ⊗· · ·⊗∧2ks V . Since |C| = N , it is easy to see (e.g., by picking a basis
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of V ) that P 2 = P and Im(P ) = ∧�V , which shows that ∧�V is naturally a direct
summand in ∧2k1

V ⊗ · · · ⊗ ∧2ks V , as desired.
This shows that the semisimplification C is generated by the objects Xm :=

∧2mV , with 0 ≤ m ≤ log2 n. Note that dimk Xm =
(
n
2r
)
, which by Lucas’ theorem

is odd if and only if the m-th digit (from the right) in the binary expansion of n is 1.
Thus, we can keep only Xm with such values of m. In other words, C is generated
by Xm1 , . . . , Xms , where n = 2m1 + · · · + 2ms , 0 ≤ m1 < · · · < ms , is the binary
expansion of n.

Proposition 8.2 Let nj = 2m1 + · · · + 2mj , 1 ≤ j ≤ s, and let Yj := ∧nj V . Then
Yj is invertible. Moreover, Yj = Xmj

⊗Yj−1 (where Y0 := 1), soXmj
are invertible

as well. Hence, the category C is pointed.

Proof To prove that Yj is invertible, it suffices to show that the module
∧nj V ⊗ (∧nj V )∗ has a unique indecomposable direct summand of odd dimension,
namely, 1 (which is a direct summand using the evaluation and coevaluation maps).
To this end, it suffices to show that this is so after restriction of this representation to
any subgroup G ⊂ GL(n). Take G = GL(nj )×GL(n− nj ). Then V = V ′ ⊕V ′′,
where dimk V

′ = nj and dimk V
′′ = n− nj , and

∧nj V |G = ⊕nj
i=0 ∧nj−i V ′ ⊗ ∧iV ′′.

Note that n − nj is divisible by 2mj+1 > nj ; hence, by Lucas’ theorem,
∧iV ′′ is even dimensional for any 0 < i ≤ nj . This means that any odd-
dimensional indecomposable direct summand in the G-module ∧nj V ⊗ (∧nj V )∗ is
∧nj V ′ ⊗ (∧nj V ′)∗ = 1.

Now, Yj is a direct summand in Xmj
⊗ Yj−1. Since Xmj

is simple and Yj−1 is
invertible, we get Yj = Xmj

⊗ Yj−1, i.e., Xmj
= Yj ⊗ Y ∗j−1 is invertible. �

Proposition 8.3 The objects Xmj
, j = 1, . . . , s are multiplicatively independent.

In other words, we have C = Veck(Zs), where the group Z
s is generated by the

isomorphism classes of the objects Xmj
(or Yj ).

Proof Assume the contrary, i.e., that we have a nontrivial relation

X
⊗p1
m1 ⊗ · · · ⊗X

⊗p�
m�

∼= X
⊗q1
m1 ⊗ · · · ⊗X

⊗q�
m�

, (1)

where � ≤ s and pi, qi ∈ Z≥0 with piqi = 0 for 1 ≤ i ≤ � and p� �= 0 (so q� = 0).
Let r = 2m� + · · · + 2ms , so that n− r = 2m1 + · · · + 2m�−1 . Consider the subgroup
G = GL(r)×GL(n− r) ⊂ GL(n). Then V = V ′ ⊕ V ′′, where dimk V

′ = r and
dimk V

′′ = n− r . For each 1 ≤ j ≤ �, we have

∧2mj
V |G = ⊕2mj

i=0 ∧i V ′ ⊗ ∧2mj−iV ′′,

Since r is divisible by 2m� and n − r < 2m� , all the indecomposable summands in
this direct sum have even dimension except i = 0 for j < l and i = 2m� for j = �.
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Thus, the only odd-dimensional indecomposable direct summand of ∧2mj
V |G is a

trivial representation of GL(r) except for j = �, in which case GL(r) acts on this
summand by the determinant character. Thus, GL(r) acts trivially on the unique
odd-dimensional indecomposable direct summand on the right-hand side of (1) but
by detp� on such summand on the left-hand side, which is a contradiction. �
Corollary 8.4 We have Tilt(SLn) = Veck(Zs−1) where Z

s−1 is generated by the
isomorphism classes of Xm1 , . . . , Xms modulo the relation Xm1 . . . Xms = 1, and
Tilt(PGLn) = Veck(Zs−1) where Zs−1 is the group of X⊗n1

m1 . . . X
⊗ns
ms

, n1 . . . , ns ∈
Z, where

∑
i 2mini = 0.

Proof Straightforward from Proposition 8.3. �

Appendix A: Categorifications of Based Rings Attached to
SO(3)

The goal of this Appendix is to deduce some classification results on categorifica-
tions of certain based rings from the results of [MPS]. We assume that the base field
k is algebraically closed of characteristic zero.

A.1 We consider the based ring K∞ (see [EGNO, Chapter 3]) with basis Xi, i ∈
Z≥0 and with multiplication determined by

X0 = 1, X1Xi = XiX1 = Xi−1 +Xi +Xi+1, i ≥ 1.

It is a classical fact that K∞ is isomorphic to the representation ring of the group
SO(3) via the map sending Xi to a unique irreducible representation of dimension
2i + 1.

We will consider pivotal categorifications of K∞, that is, semisimple pivotal
tensor categories C equipped with an isomorphism of based rings K(C) � K∞
(cf. [EGNO, 4.10]). Any such category C is automatically spherical since every
object of C is self-dual. Let X ∈ C be an object such that its class [X] corresponds
to X1 ∈ K∞. Let d ∈ k be the dimension of X. There exists q ∈ k such that
d = [3]q = q2 + 1+ q−2.

Theorem A.1

(i) Assume that q2 = 1 or that q2 is not a root of 1. Then C is equivalent to the
category Rep(SO(3)q) (see [MPS, Section 4]).

(ii) Assume q2 = −1. Then C is equivalent to the category Rep(OSp(1|2)) (see
[MPS, Section 4]).

Proof Let C0 be the monoidal subcategory of C generated by X and by (nonzero)
morphisms 1→ X ⊗X,X ⊗X → 1, X → X ⊗X,X ⊗X → X. Thus:
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objects of C0 = X⊗n, n ∈ Z≥0,

morphisms of C0 = morphisms in C which are linear combinations

of tensor products and compositions of the four morphisms above.

Let N be the ideal of negligible morphisms in C0, and let C̃ = C0/N be the quotient.
Clearly,

dim HomC̃(X
⊗m,X⊗n) ≤ dim HomC0(X

⊗m,X⊗n) (2)

≤ dim HomC(X⊗m,X⊗n).

The category C̃ is an example of a (possibly twisted) trivalent category, as defined
in [MPS, Section 7] (thus, C̃ satisfies the assumptions of [MPS, Definition 2.1]
except, possibly, the rotational invariance of the morphism X → X ⊗ X).
Moreover, the numbers dim HomC̃(1, X

⊗k) are bounded by the numbers dk =
dim HomC(1, X⊗k), which are easily computable using the isomorphism K(C) �
K∞. In particular, dk = 1, 0, 1, 1, 3 for k = 0, 1, 2, 3, 4. Since d �= 2, [MPS,
Proposition 7.1] implies that C̃ is not twisted, that is, C̃ is a trivalent category in
the sense of [MPS, Definition 2.1]. Thus, by [MPS, Theorem A], C̃ is equivalent to
Rep(SO(3)q) or Rep(OSp(1|2)); in particular, the Grothendieck ring K(C̃) of (the
Karoubian envelope of) C̃ is isomorphic to K∞ = K(C). Thus, the inequalities in
(2) are, in fact, equalities, and the category C is equivalent to the Karoubian envelope
of C̃. The result follows. �
Remark A.2

(i) We expect that the assumption on q in Theorem A.1 is automatically satisfied,
i.e., there is no categorification of K∞ where q2 �= ±1 is a root of 1. Moreover,
it seems likely that the assumption on pivotality of C can also be dropped.

(ii) D. Copeland and H. Wenzl recently obtained a classification of ribbon cate-
gorifications of the based rings K(Rep(SO(n)q)) for any n. In particular, this
implies Theorem A.1 (and Theorem A.3 below) under an additional assumption
that the category C is braided.

A.2. Fusion Categories For an integer l ≥ 2, we consider the based ring Kl with
basis Xi, i = 0, . . . , l and with multiplication determined by

X0 = 1, X1Xi = Xi−1 +Xi +Xi+1, i = 1, . . . l − 1, X1Xl = Xl−1.

The ring Kl can be considered as a truncated version of the ring K∞. It is well
known that the ring Kl has categorifications of the form Rep(SO(3)q) = Ver+q ,
where q is a suitable root of 1.
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Theorem A.3 Let C be a pivotal fusion category which is a categorification of Kl

where l > 2. Then there is a tensor equivalence C � Rep(SO(3)q) where q is a
primitive root of 1 of degree 4(l + 1).

Proof We start by classifying homomorphisms φ : Kl → k. Any such homomor-
phism is uniquely determined by φ(X1); if φq(X1) = [3]q = q2 + 1 + q−2, then

φq(Xi) = [2i + 1]q = q2i+1−q−2i−1

q−q−1 ; in particular, the existence of φq is equivalent
to the equation

[3]q[2l + 1]q = [2l − 1]q ⇐⇒ q2(l+1) = ±1, q2 �= 1.

Clearly, φq = φq′ if and only if q2 = q′±2. One computes easily the formal codegree
fφq (see, e.g., [O1, Section 2.3]) of φq:

fφq =
{

l + 1 if q2 = −1,
− 2(l+1)

(q−q−1)2 if q2 �= −1.

The category C is spherical, as all its objects are self-dual. Hence, by [O1,
Corollary 2.15], the dimension field (i.e., the subfield of k generated by the
dimensions of the objects) of C contains all fφq ; thus, the degree of the dimension

field over the rationals is ≥ 1
2ϕ(2(l + 1)), where ϕ is the Euler function (this is

the degree of the field generated by q2 + q−2, where q2 is a primitive root of 1 of
degree 2(l + 1)). It follows that the dimension homomorphism Kl = K(C) → k
is φq, with q2 being a primitive root of 1 of degree r , where r divides 2(l + 1) and
ϕ(r) = ϕ(2(l+1)). Thus, either r = 2(l+1) or r = l+1. The latter case is possible
only if l + 1 is odd, and in this case, φq(Xl/2) = 0, so φq cannot be the dimension
homomorphism.

Thus, we have proved that the dimension homomorphism

Kl = K(C)→ k

coincides with the dimension homomorphism

Kl = K(Rep(SO(3)q)→ k,

where q is a primitive root of 1 of degree 4(l + 1).
The rest of the proof is parallel to the proof of Theorem A.1. We consider the

subcategory C0 of C generated by the morphisms

1→ X ⊗X,X ⊗X → 1, X → X ⊗X,X ⊗X → X

and its quotient C̃ by negligible morphisms. Then one deduces from [MPS, Theorem
A] that the (Karoubian envelope of) the category C̃ is equivalent to Rep(SO(3)q),
which has the same Grothendieck ring as C. This implies that C̃ ∼= C, and the result
follows. �
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Remark A.4

(i) The categorifications of Kl with l = 2 are completely classified in [EGO]. This
case is somewhat different from the case l > 2; see [MPS, Section 7].

(ii) It is conjectured that any fusion category has a pivotal structure. Thus, we
expect that the pivotality assumption in Theorem A.3 is superfluous.

(iii) Another family of truncations of the ring K∞ is given by rings K̃l, l ≥ 1 with
basis X0, . . . , Xl and with multiplication

X0 = 1, X1Xi = Xi−1 +Xi +Xi+1, i = 1, . . . l − 1, X1Xl = Xl−1 +Xl.

Such rings are also categorified by Rep(SO(3)q) where q is a suitable root
of 1. It is easy to see that there are no other categorifications C of K̃l , since
C � VecZ/2Z would have been an example of a Temperley-Lieb category
generated by the object Xl � 1.

Acknowledgments The authors are grateful to D. Benson, I. Entova-Aizenbud, T. Heidersdorf,
A. Kleshchev, D. Nakano, V. Serganova, and N. Snyder for useful discussions. The work of P.E.
and V.O. was partially supported by the NSF grants DMS-1502244 and DMS-1702251. The work
of V.O. has also been funded by the Russian Academic Excellence Project ‘5-100’.

References

[A] J. L. Alperin, Local representation theory, Modular Representations as an Introduction
to the Local Representation Theory of Finite Groups, Cambridge Studies in Advanced
Mathematics, 11, Cambridge University Press, 1993.

[AK] Y. Andre, B. Kahn, with an appendix by P. O’Sullivan, Nilpotence, radicaux et
structures monoídales, arXiv:math/0203273, Rendiconti del Seminario Matematico
dell’Universita di Padova 108 (2002), 107–291.

[BEEO] J. Brundan, I. Entova-Aizenbud, P. Etingof, V. Ostrik, Semisimplification of the
category of tilting modules for GL(n), Adv. Math. 375 (2020), 107331.

[BW] J. Barrett and B. Westbury, Spherical categories, Adv. Math. 143 (1999), 357–375.
[B1] D. J. Benson, Representations and Cohomology, I: Basic representation theory of finite

groups and associative algebras, Cambridge University Press, 1995.
[B2] D. J. Benson, Modular Representation theory, New trends and methods. SLNM 1081

(1984).
[CO] J. Comes, V. Ostrik, On the Deligne category RepabSd , arXiv:1304.3491, Algebra

Number Theory 8 (2014), no. 2, 473–496.
[D1] P. Deligne, Catégories tannakiennes, in : The Grothendieck Festschrift, vol. 2,

Birkhäuser P.M. 87 (1990), 111–198.
[D2] P. Deligne. Catégories tensorielles, Mosc. Math. J., 2(2):227–248, 2002.
[D3] P. Deligne, La catégorie des représentations du groupe symétrique St , lorsque t nest pas

un entier naturel, in: Algebraic Groups and Homogeneous Spaces, in: Tata Inst. Fund.
Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007, 209–273.

[DM] P. Deligne, J. Milne, Tannakian categories, Lecture notes in Math. 900, 1981.
[EGO] P. Etingof, S. Gelaki, V. Ostrik, Classification of fusion categories of dimension pq, Int.

Math. Res. Not. 2004, no. 57, p. 3041–3056.



On Semisimplification of Tensor Categories 35

[EOV] P. Etingof, V. Ostrik, S. Venkatesh, Computations in symmetric fusion categories in
characteristic p, arXiv:1512.02309, Int. Math. Res. Not. IMRN 2017, no. 2, p.468–
489.

[EGNO] P. Etingof, S. Gelaki, D. Nikshych, V. Ostrik, Tensor categories, AMS, 2015.
[G] J. A. Green, On indecomposable representations of a finite group, Math. Zeitschrift, v.

70, p. 430–445, 1959.
[H] T. Heidersdorf, On supergroups and their semisimplified representation categories,

arXiv:1512.03420.
[Ha] N. Harman, Deligne categories as limits in rank and characteristic, arXiv:1601.03426.
[Ja] U. Jannsen, Motives, numerical equivalence and semi-simplicity, Inv. Math. 107

(1992), 447–452.
[J] J. C. Jantzen, Representations of algebraic groups, 2nd edition, American Mathemati-

cal Society, Providence, RI, 2003.
[MPS] S. Morrison, E. Peters and N. Snyder, Categories generated by a trivalent vertex, Selecta

Math. (N.S.) 23 (2017) no. 2, 817–868.
[NZ] W. Nichols and M. B. Zoeller, A Hopf algebra freeness theorem. Amer. J. Math. 111

(1989), 381–385.
[O1] V. Ostrik, Pivotal fusion categories of rank 3, Mosc. Math. J. 15 (2015), no. 2, p. 373–

396.
[O] V. Ostrik, On symmetric fusion categories in positive characteristic, arXiv:1503.01492.
[S] P. O’Sullivan, The generalized Jacobson-Morozov theorem, Memoirs of the AMS,

v.973, 2010.
[SS] J. Saxl, G. Seitz, Subgroups of algebraic groups containing regular unipotent elements,

Journal of the London Mathematical Society / Volume 55 / Issue 02 / April 1997, pp
370–386.

[W] R. Weissauer, Semisimple algebraic tensor categories, arXiv:0909.1793.



Totally Aspherical Parameters for
Cherednik Algebras

Ivan Losev

Dedicated to Vitya Ginzburg, on his 60th birthday, with
admiration.

Contents

1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2 PKZ vs Harish-Chandra Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.1 Reminder on Cherednik Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2 Reminder on Categories O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3 Totally Aspherical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4 Harish-Chandra Module vs PKZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5 Total Asphericity vs Simplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6 Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Cyclotomic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1 Type A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Quantized Quiver Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Main Result in the Cyclotomic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Functors Ei, Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Absence of Finite Dimensional Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 Proof of the Main Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

MSC 2010: 16G99

1 Introduction

Let W be a complex reflection group and h be its reflection representation. The
rational Cherednik algebra Hc(W) is a filtered deformation of the skew-group ring
S(h⊕ h∗)#W depending on a parameter c that is a collection of complex numbers.
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Inside Hc(W), there is a so-called spherical subalgebra eHc(W)e, where e ∈ CW

is the averaging idempotent, that deforms S(h ⊕ h∗)W . The parameter c is called
spherical if Hc(W) and eHc(W)e are Morita equivalent (via the bimodule Hc(W)e).
The parameter c is called aspherical if it is not spherical. The goal of this paper is
to investigate parameters that are “as aspherical as possible.”

The algebra Hc(W) has a triangular decomposition, Hc(W) = S(h∗) ⊗ CW ⊗
S(h), that is analogous to the triangular decomposition of the universal enveloping
algebra of a semisimple Lie algebra. Thanks to this decomposition, it makes sense
to consider the category O for Hc(W): by definition, the category Oc(W) consists
of all Hc(W)-modules M that are finitely generated over S(h∗) and have locally
nilpotent action of h.

Definition 1.1 We say that c is totally aspherical if, for M ∈ Oc(W), the following
two conditions are equivalent:

(i) M is torsion as an S(h∗)-module.
(ii) eM = 0.

We will see below, Proposition 2.7, that c is totally aspherical if and only if the
algebra eHc(W)e is simple.

Let us point out that (ii) always implies (i). So, informally, c is totally aspherical
if the multiplication by e kills as many modules in Oc(W) as it theoretically can. On
the other hand, there are totally aspherical parameters that are spherical. Those are
the parameters where there are no S(h∗)-torsion modules in Oc(W). But this case is
not interesting: the category Oc(W) is semisimple.

For example, we can take W = Sn (the symmetric group). Here, c is a single
complex number, and we will show that all parameters in the interval (−1, 0) are
totally aspherical. More generally, we will establish the existence of sufficiently
many (in a suitable sense) of totally aspherical parameters for W = G(�, 1, n) :=
Sn � (Z/�Z)n.

We apply the notion of the total asphericity to relate two remarkable modules in
Oc(W): the projective object PKZ and what we call the Harish-Chandra module.

One can construct objects in Oc(W) as follows. We have the induction functor
Δc : S(h)#W -modf d,ln → Oc(W) from the category of the finite dimensional
S(h)#W -modules with locally nilpotent h-action. It is defined by Δc(M) :=
Hc(W)⊗S(h)#W M . For example, take an irreducible W -module λ; it can be viewed
as an S(h)#W -module with zero action of h. The object Δc(λ) ∈ Oc(W) is called a
Verma module. It has a unique simple quotient to be denoted by Lc(λ). The objects
Lc(λ) form a complete collection of simples in Oc(W). Another interesting example
is for M = S(h)/(S(h)W+ ), where S(h)W+ is the ideal in S(h)W of all polynomials
without constant term and (S(h)W+ ) stands for the ideal in S(h) generated by S(h)W+ .
Recall that M is a graded module isomorphic to the regular representation of W . The
module Hc := Δc(M) will be called the Harish-Chandra module, by analogy with a
D-module on a semisimple Lie algebra; see [HK]. A question one can ask is whether
this natural module has any nice categorical properties, for example, whether it is
projective.
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On the other hand, in [GGOR], the authors introduced a crucial tool to study
the category Oc(W), the KZ (Knizhnik-Zamolodchikov) functor. This is a functor
KZ : Oc(W)→ Hq(W) -mod, where we write Hq(W) for the Hecke algebra of the
group W corresponding to a parameter q computed from c (we do not need a precise
formula at this point). The functor KZ is exact. On the level of vector spaces, to a
module M ∈ Oc(W), this functor assigns the fiber Mx of M at a generic point x ∈ h.
So KZ is given by HomOc(W)(PKZ,c, •), where PKZ,c is a projective object equipped
with an epimorphism Hq(W) � EndOc(W)(PKZ,c)

opp (which is an isomorphism if
and only if dimHq(W) = |W |1). The object PKZ,c is decomposed as

⊕

λ∈Irr(W)

Pc(λ)
rkLc(λ). (1.1)

Here, we write Pc(λ) for the projective cover of Lc(λ), and rk stands for the generic
rank over S(h∗) (=the dimension of a general fiber). The object PKZ,c has very nice
categorical properties, for example, its indecomposable summands are precisely the
indecomposable projectives that are also injectives. On the other hand, it is difficult
to construct PKZ,c explicitly.

Around 2005, Ginzburg and, independently, Rouquier asked the question when
PKZ,c is isomorphic to Hc (unpublished). In this paper, we establish the following
criterion for PKZ,c

∼= Hc.

Theorem 1.2 The following two conditions are equivalent:

(a) PKZ,c
∼= Hc.

(b) c is totally aspherical.

Corollary 1.3 For W = Sn, we have PKZ,c
∼= Hc for c ∈ (−1, 0).

This paper is organized as follows. We start Sect. 2 by recalling some generalities
on the rational Cherednik algebras and their categories O. Then we investigate some
properties of Oc(W) for a totally aspherical parameter c and use those properties to
prove Theorem 1.2. We finish the section by recalling a general conjecture on the
locus, where the equivalent conditions of Theorem 1.2 hold.

In Sect. 3, we study the case of the groups W = G(�, 1, n). We first prove
Corollary 1.3. Then we extend it to the groups G(�, 1, n) for � > 1, Theorem 3.1.
The proof of this theorem is based on results from [BL].

1After this paper was written, Etingof, [E], checked that this is the case for all complex reflection
groups W .
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2 PKZ vs Harish-Chandra Module

2.1 Reminder on Cherednik Algebras

Let W be a complex reflection group and h its reflection representation. We write S

for the set of reflections in W . For s ∈ S, we choose elements αs ∈ h∗, α∨s ∈ h such
that sαs = λss, sα

∨
s = λ−1

s α∨s with λs ∈ C \ {1} and 〈αs, α
∨
s 〉 = 2.

Let c : S → C be a function constant on the conjugacy classes. By definition,
[EG, Section 1.4], [GGOR, Section 3.1], the rational Cherednik algebra Hc(=
Hc(W) = Hc(W, h)) is the quotient of the skew-group algebra T (h⊕h∗)#W by the
following relations:

[x, x′] = [y, y′] = 0, [y, x] = 〈y, x〉 −
∑

s∈S
c(s)〈x, α∨s 〉〈y, αs〉s, x, x′ ∈ h∗, y, y′ ∈ h.

Let us recall some structural results about Hc. The algebra Hc is filtered (say, with
deg h = deg h∗ = 1, degW = 0), and its associated graded is S(h ⊕ h∗)#W , [EG,
Section 1.2]. This yields the triangular decomposition Hc = S(h∗) ⊗ CW ⊗ S(h),
[GGOR, Section 3.2].

Consider the element δ := ∏
s α

�s
s ∈ S(h∗)W , where �s stands for the order of

s so that the element δ is W -invariant. Since ad δ is locally nilpotent, the quotient
Hc[δ−1] is well-defined. There is a natural isomorphism Hc[δ−1] ∼= D(hreg)#W ,
[EG, Section 1.4], [GGOR, Section 5.1].

Consider the averaging idempotent e := |W |−1∑
w∈W w ∈ CW ⊂ Hc. The

spherical subalgebra of Hc, by definition, is eHce. When the algebras eHce and
Hc are Morita equivalent (automatically, via the bimodule Hce), we say that the
parameter c is spherical. Otherwise, we say that c is aspherical.

There is an Euler element h ∈ Hc satisfying [h, x] = x, [h, y] = −y, [h,w] =
0. So the operator [h, ·] defines a grading on Hc to be called the Euler grading.
The Euler element is constructed as follows. Pick a basis y1, . . . , yn ∈ h, and let
x1, . . . , xn ∈ h∗ be the dual basis. Then

h =
n∑

i=1

xiyi + n

2
−
∑

s∈S

2c(s)

1− λs

s. (2.1)

2.2 Reminder on CategoriesO

Following [GGOR, Section 3.2], we consider the full subcategory Oc(W) of
Hc -mod consisting of all modules M that are finitely generated over S(h∗) and
with locally nilpotent action of h. Equivalently, we can require that the modules
in Oc(W) are finitely generated over Hc (and h still acts locally nilpotently). In
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the category Oc(W), we have analogs of Verma modules that are indexed by the
irreducible representations λ of W . By definition, the Verma module indexed by λ

is Δc(λ) := Hc ⊗S(h)#W λ, where h acts by 0 on λ. It is easy to see that this module
is in Oc(W). Using the Euler element, one shows that Δc(λ) has a unique simple
quotient to be denoted by Lc(λ). The objects Lc(λ) form a complete collection of
simples in Oc(W).

Often we drop W from the notation and just write Oc. Let us note that all finite
dimensional modules lie in Oc, thanks to the presence of the Euler element.

Definition 2.1

• To a module M ∈ Oc, we can assign its associated variety V(M) that, by
definition, is the support of M (as a coherent sheaf) in h. Clearly, V(M) is a
closed W -stable subvariety.

• The dimension of the variety V(M) is called the Gelfand-Kirillov (shortly, GK)
dimension of M .

• Finally to a module M in Oc, one can assign its generic rank, rkM , the generic
rank of M viewed as an S(h∗)-module.

The category Oc has enough projective objects; see, for example, [GGOR,
Theorem 2.19]. For λ ∈ IrrW , let Pc(λ) denote the projective cover of Lc(λ).
Following [GGOR], we consider the projective object PKZ defined by

PKZ =
⊕

λ∈IrrW

Pc(λ)
rkLc(λ).

We write PKZ,c when we want to indicate the parameter. The importance of this
projective is that it defines a quotient functor from Oc to the category of modules
over a suitable Hecke algebra.

We will also need the category O over eHce (to be denoted by Osph
c ); see

[GL, Section 3]. By definition, this category consists of all finitely generated eHce-
modules N such that

(1) ehe(= he = eh) acts on N locally finitely.
(2) the sum of the positive graded components of eHce (with respect to the Euler

grading) acts locally nilpotently on N .

The following lemma is a consequence of [GL, Proposition 3.2.1].

Lemma 2.2 The functor M �→ eM is a quotient functor Oc → Osph
c . The left

adjoint and right inverse is given by N �→ Hce ⊗eHce N .

For N ∈ Osph
c , we define the generic rank, rkN , as the generic rank of N viewed

as an S(h∗)W -module. Note that rkN = rk eN .
We have naive duality functors Oc(W, h)

∼−→ Oc∗(W, h∗),Osph
c (W, h)

∼−→
Osph

c∗ (W, h∗), where c∗(s) := c(s−1); see [GGOR, 4.2] for the former. Namely,
consider the isomorphism ϕ : Hc(W, h) → Hc∗(W, h∗)opp that is the identity on
h, h∗ and maps w to w−1, w ∈ W . Let us note that ϕ restricts to an isomorphism
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eHc(W, h)e
∼−→ (eHc∗(W, h∗)e)opp. For M ∈ Oc(W, h), the restricted dual M∨

(the sum of the duals of the generalized eigenspaces for h) is a left Hc∗(W, h∗)-
module that lies in the category O. The functor M �→ M∨ is the duality functor that
we need. A duality between the spherical categories is defined in a similar fashion.

Lemma 2.3 The following claims are true.

(1) The dualityOc(W, h)
∼−→ Oc∗(W, h∗) preserves the GK dimensions and generic

ranks.
(2) A similar claim holds for the spherical categories O.
(3) Moreover, the duality functors Oc(W, h)

∼−→ Oc∗(W, h∗),Osph
c (W, h)

∼−→
Osph

c∗ (W, h∗) intertwine the functors of multiplication by e.

Proof We can read the GK dimension and the GK multiplicity of a graded S(h∗)-
module from the dimensions of the graded components (by the definitions of those
invariants). Note that the GK multiplicity is the same as the generic rank.

Choose a section σ : C/Z → C. Introduce a grading on M ∈ Oc by declaring
that the degree of the generalized eigenspace for h with eigenvalue α is α − σ(α).
Then we get the grading on M∨ compatible with the Euler grading on Hc∗(W, h∗)
and such that dimM∨

n = dimMn. This completes the proof of (1). The proof of (2)
is similar.

The claim that (eM)∨ = e(M∨) follows directly from the construction. �
We will also need induction and restriction functors for categories Oc introduced

in [BE]. Let W ′ be a parabolic subgroup of W . Then we have an exact functor
ResW

′
W : Oc(W) → Oc(W

′). The target category is the category O for Hc(W
′),

where the parameter is obtained by restricting c to W ′ ∩ S. We will need two facts
about the restriction functor:

(a) If W ′ is the stabilizer of a generic point in an irreducible component of V(M),
then ResW

′
W (M) is a nonzero finite dimensional module.

(b) The functor ResW
′

W induces a functor between the quotients, Osph
c → Osph

c (W ′).

(a) was established in [BE, Section 3.8], while (b) is in [GL, Section 3.5].

2.3 Totally Aspherical Parameters

Recall that we call a parameter c totally aspherical if eM = 0 for all S(h∗)-torsion
modules M ∈ Oc(W). Equivalently, c is totally aspherical if and only if V(N) =
h/W for all N ∈ Osph

c (W). Here and below, we write V(N) for the associated
variety of N ∈ Osph

c (W) in h/W .

Lemma 2.4 If c is totally aspherical, then all modules in Osph
c (W) are free over

S(h∗)W .
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Proof Repeating the argument from [EGL, Section 3.2], we see that all modules
in Osph

c (W) are Cohen-Macaulay over S(h∗)W . Since all modules are torsion-free
over S(h∗)W , this implies that they are projective over S(h∗)W . But they are also
graded and hence are free. �
Corollary 2.5 Let c be a totally aspherical parameter, and letM ∈ Osph

c (W). Then

dimMS(h)W+ = rkM,

where we write MS(h)W+ for the subspace {m ∈ M|S(h)W+m = 0}.
Proof Recall the duality •∨ : Osph

c (W, h)
∼−→ Osph

c∗ (W, h∗) explained in Sect. 2.2.
The parameter c∗ is totally aspherical for Hc∗(W, h∗); this follows from Lemma 2.3.
So dimM∨/S(h)W+M∨ = rkM∨ = rkM , the first equality follows from Lemma 2.4

and the second one from Lemma 2.3. But dimMS(h)W+ = dimM∨/S(h)W+M∨ by
the construction of •∨. �

2.4 Harish-Chandra Module vs PKZ

In this section, we prove Theorem 1.2.

Proof of Theorem 1.2 For M ∈ Oc(W), we have

HomOc(W)(Hc,M) ∼= HomS(h)#W(S(h)/(S(h)W+ ),M) ∼= e(MS(h)W+ ) = (eM)S(h)
W+ .

(2.2)
Let us prove the implication (b)⇒ (a). It follows from Corollary 2.5 that

dim HomOc(W)(Hc,M) = rk(eM).

The right-hand side coincides with rk(M) which, in turn, equals dim HomOc(W)

(PKZ,c,M). So we conclude that

dim HomOc(W)(Hc,M) = dim HomOc(W)(PKZ,c,M). (2.3)

Since PKZ,c is projective, equivalently, the functor HomOc(W)(PKZ,c, •) is exact;
we see that the functor HomOc(W)(Hc, •) is exact; equivalently, Hc is projective.
Equation (2.3) now implies Hc

∼= PKZ,c.
Let us prove (a)⇒(b). Assume there is a simple object M ∈ Oc(W) that is S(h∗)-

torsion (equivalently, HomOc(W)(PKZ,c,M) = 0) such that eM �= 0. Since S(h)W+
acts locally nilpotently, we see that (eM)S(h)

W+ �= 0. Thanks to (2.2), we see that
HomOc(W)(Hc,M) �= 0. So Hc �∼= PKZ,c. �
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Remark 2.6 Note that if c is not totally aspherical, then Hc is not projective. Assume
the contrary. We have

dim HomOc(W)(Hc,M) = dim(eM)S(h)
W+ = dim(eM)∨/S(h)W+ (eM)∨

� rk(eM)∨ = rk(eM) = rk(M).

So, for a torsion-free Lc(λ), we see that the multiplicity of Pc(λ) in Hc is not less
than the multiplicity of Pc(λ) in PKZ,c. But both PKZ,c and Hc have a filtration
of length

∑
λ∈IrrW dim λ with Verma quotients. This length is independent of the

choice of the filtration and hence Hc
∼= PKZ,c. Contradiction.

2.5 Total Asphericity vs Simplicity

Here, we are going to provide one more equivalent formulation of total asphericity.

Proposition 2.7 A parameter c is totally aspherical if and only if the algebra eHce

is simple.

Let us introduce the following condition on c.

(*) eW ′M ′ = 0 for any parabolic subgroup W ′ ⊂ W different from {1} and any
finite dimensional Hc(W

′)-module M ′. Here, we write eW ′ for the averaging
idempotent in CW ′.

The proposition follows from the next two lemmas.

Lemma 2.8 The parameter c is totally aspherical if and only if (*) holds.

This lemma will also be important in Sect. 3 to determine aspherical values for
the groups W = G(�, 1, n).

Lemma 2.9 The algebra eHce is simple if and only if (*) holds.

Proof of Lemma 2.8 Recall the restriction functors ResW
′

W : Oc(W) →
Oc(W

′),Osph
c (W) → Osph

c (W ′) defined in [BE, Section 3.5] and [GL, Section
3.5]. We have ResW

′
W (e•) ∼= eW ′ ResW

′
W (•); see [GL, Section 3.5.2]. Also for any

nonzero M ∈ Oc(W), there is W ′ such that ResW
′

W (M) is nonzero finite dimensional;
see [BE, Section 3.8]. So if eW ′M ′ = 0 for any parabolic subgroup W ′ and any
finite dimensional module M ′ ∈ Oc(W

′), then c is totally aspherical for Hc(W).
Now suppose that c is totally aspherical. Recall the functor IndW

W ′ from [BE,

Section 3.5], a right adjoint of ResW
′

W . It was proved in [S] (under some additional
assumptions on W ) and later in [L3] in the full generality that IndW

W ′ is also

a left adjoint of ResW
′

W . Let N be a finite dimensional eW ′Hc(W
′)eW ′ -module.

The Hc(W
′) module Ñ := Hc(W

′)eW ′ ⊗eW ′Hc(W ′)eW ′ N is also finite dimen-
sional because Hc(W

′)eW ′ is finitely generated over eW ′Hc(W
′)eW ′ . The module
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IndW
W ′(Ñ) is nonzero and has proper associated variety by Shan and Vasserot [SV,

Proposition 2.7]. So e IndW
W ′(Ñ) = 0. The module ResW

′
W ◦ IndW

W ′(Ñ) is not killed

by eW ′ because it admits a nonzero homomorphism to Ñ . On the other hand,

eW ′ ResW
′

W ◦ IndW
W ′(Ñ) = ResW

′
W (e IndW

W ′(Ñ)) = 0.

This contradiction completes the proof. �
Proof of Lemma 2.9 Let J ⊂ eHce be a proper two-sided ideal. Its associated
variety in (h⊕ h∗)/W , i.e., the subvariety defined by grJ , is proper. Pick a generic
point (with stabilizer, say, W ′) in an irreducible component of the associated variety
of J , and consider the functor •† from [L1] at that point. Then J† is a proper ideal
of finite codimension in eW ′Hc(W

′)eW ′ , by a direct analog of [L1, Theorem 3.4.6]
for spherical subalgebras (that holds with the same proof). So (*) does not hold.

Now assume that eW ′Hc(W
′)eW ′ has a finite dimensional representation. Let I

be the annihilator, and set B := eW ′Hc(W
′)eW ′/I. Then we apply (the spherical

version of) the functor •† associated to W ′ from [L1, Section 3.7] to B and get
a Harish-Chandra Hc-bimodule B† with a homomorphism eHc(W)e → B†. The
kernel is a proper two-sided ideal; its associated variety is the image of (h⊕ h∗)W ′

in (h⊕ h∗)/W . So eHce is not simple. �

2.6 Shifts

There is a conjecture of Rouquier saying that there are “sufficiently many” totally
aspherical parameters. Namely, let us write p for the space of the W -invariant
functions c : S → C. Let us write cs for a function that maps s′ ∈ S to 1 if s′ is
conjugate to s and to 0 else. For a reflection hyperplane H and i ∈ {0, . . . , �H − 1}
(where �H is the cardinality of the pointwise stabilizer WH ) define an element
hH,i ∈ p∗ by

hH,i(c) = 1

�H

∑

s∈WH \{1}

2cs
λs − 1

λ−i
s (2.4)

The elements hH,i with i �= 0 form a basis in p∗ and
∑�H−1

i=0 hH,i = 0. Let p∗
Z

denote the integral lattice in p∗ spanned by the elements hH,i − hH,0, and let pZ be
dual to p∗

Z
. For example, when W = Sn, we get hH,1 − hH,0 = c, and the lattice

pZ consists of integers.
In general, the meaning of the lattice pZ is as follows. Recall that from a

Cherednik parameter c, one can produce a parameter q for the Hecke algebra of W .
Two Cherednik parameters c1, c2 produce the same Hecke parameter if c1−c2 ∈ pZ.
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It was conjectured by Rouquier (unpublished) that every coset c + pZ contains a
parameter c with PKZ,c = Hc, i.e., (see Theorem 1.2) a totally aspherical parameter.
In the next section, we will prove a theorem that implies this conjecture for the
groups W = G(�, 1, n).

3 Cyclotomic Case

3.1 Type A

Here, we are going to prove Corollary 1.3. Our proof is based on Lemma 2.8.

Proof of Corollary 1.3 Recall that the algebra Hc(Sm) has a finite dimensional
representation if and only if c is rational with denominator m, and in this case,
there is a unique finite dimensional irreducible representation, and every finite
dimensional representation is completely reducible; see [BEG]. Further, by loc.cit.,
the finite dimensional irreducible representation is annihilated by e if and only if
c ∈ (−1, 0). All parabolic subgroups of Sn are conjugate to ones of the form
Sn1 × . . .×Snk with

∑k
i=1 ni � n. Now Corollary 1.3 follows from Lemma 2.8.

�
Let us point out that the totally aspherical parameters outside (−1, 0) are either

irrational or have denominator bigger than n (and so the category Oc(Sn) is
semisimple).

3.2 Quantized Quiver Varieties

We proceed to the case of the groups G(�, 1, n). The spherical subalgebras in this
case can be realized as quantized quiver varieties (i.e., as Hamiltonian reductions
of the algebras of differential operators on spaces of quiver representations). In this
subsection, we recall how this is done.

Let Q = (Q0,Q1, t, h) be the affine Dynkin quiver of type A with � vertices
(and some orientation). We label the vertices cyclically by numbers 0, . . . , � − 1
with 0 corresponding to the extending vertex. Let εi ∈ C

Q0 denote the coordinate
vector (=the simple root) at the vertex i and δ = ∑

i∈Q0
εi be the indecomposable

imaginary root. Consider the representation space R = R(Q, v, ε0) with dimension
vector v = (vi)i∈Q0 and one-dimensional co-framing w = ε0 at the extending
vertex, explicitly, R =⊕a∈Q1

Hom(Vt(a), Vh(a))⊕ V ∗0 , where dimVi = vi . On the
space R, we have a natural action of the group G =∏i∈Q0

GL(Vi).
To the action of G on R, we can associate several varieties/algebras obtained

by Hamiltonian reduction. Let us recall the construction. We have a moment map
μ : T ∗R → g∗ defined as follows. Its dual map μ∗ : g → C[T ∗R] sends x ∈ g
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to the velocity vector field xR ∈ Vect(R) viewed as an element of C[T ∗R] via a
natural inclusion Vect(R) ↪→ C[T ∗R]. Consider the variety X0(v) := T ∗R///0G(=
μ−1(0)//G). When vi = n for all i (i.e., v = nδ), this variety is identified with (h⊕
h∗)/W , where W = G(�, 1, n); see, e.g., [Go2, 7.7]. The identification can be made
equivariant with respect to the C

×-actions by dilations: the action on μ−1(0)//G is
induced from the action on T ∗R by dilations.

Next, take a generic enough character θ of the group G. We can form the GIT
reduction Xθ(v) := T ∗R///θ0G(= μ−1(0)θ−ss//G). This is a smooth symplectic
variety equipped with a natural morphism Xθ(v) → X0(v). When v = nδ, this
morphism is a resolution of singularities; see, e.g., [Go2, 7.8].

One can also quantize the variety X0(nδ) using the quantum Hamiltonian
reduction. Define the symmetrized quantum comoment map Φ(x) := 1

2 (xR+xR∗) :
g → D(R), where g stands for the Lie algebra of G and D(R) for the algebra of
linear differential operators on R. Note that Φ(x) does not depend on the orientation
of Q. Pick a collection λ = (λ0, . . . , λ�−1) of complex numbers, and view it as a
character of g via 〈λ, x〉 :=∑�−1

i=0 λi tr(xi). Then set

Aλ(nδ) := D(R)///λG(= [D(R)/D(R){Φ(x)− 〈λ, x〉}]G).

This is a filtered algebra with grAλ(nδ) = C[X0(nδ)]. Moreover, we have a filtered
algebra isomorphism Aλ(nδ) ∼= eHc(W)e, where one recovers λ from c as follows.
We can encode the parameter c as (κ, c1, . . . , c�−1), where κ ∈ C is the parameter
corresponding to a reflection in Sn and ci corresponds to i ∈ Z/�Z.

According to [Go1] (see also [L2, Section 6.2]), we get

λk = 1

�
(1+ 2

�−1∑

j=1

cj exp(2π
√−1j/�)), k �= 0,

λ0 = 1

�
(1+ 2

�−1∑

j=1

cj )+ κ − 1

2
.

(3.1)

We can also produce quantizations of Xθ(v) using quantum Hamiltonian reduc-
tion. Namely, we microlocalize the algebra D(R) to a sheaf (in the conical topology)
DR of filtered algebras on T ∗R. Then we set

Aθ
λ(v) := DR///

θ
λG(= [DR/DR{Φ(x)− 〈λ, x〉}|(T ∗R)θ−ss ]G)

(note that this definition differs from [BL] by a shift of λ because here we use the
symmetrized quantum comoment map). This is a sheaf of filtered algebras on Xθ(v)

with grAθ
λ(v) = OXθ (v) and Γ (Aθ

λ(nδ)) = Aλ(nδ). In general, we set Aλ(v) :=
Γ (Aθ

λ(v)); the right-hand side does not depend on the choice of θ by Braden et al.
[BPW, Section 3.3]. We also set A0

λ(v) = [D(R)/D(R){Φ(x)−〈λ, x〉}]G,X(v) :=
Spec(C[Xθ(v)]). Note that there is a natural homomorphism A0

λ(v) → Aλ(v). Let
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ρv denote the natural morphism Xθ(v) → X(v); it is a resolution of singularities
for any v. We often write ρ instead of ρv .

We can consider the derived global section functor

RΓ : Db(Aθ
λ(v) -mod)→ Db(Aλ(v) -mod).

Here, we write Aλ(v) -mod for the category of Aλ(v)-modules and Aθ
λ(v) -mod for

the category of all quasi-coherent sheaves of Aθ
λ(v)-modules (as usual, by a quasi-

coherent sheaf, one means a sheaf that is the union of its coherent subsheaves, where
“coherent” is the same as “good” in [MN, Section 4.5]). Note that Aθ

λ(v) -mod is
the quotient of the category of the (G, λ)-equivariant D(R)-modules by the Serre
category of all D-modules with θ -unstable support, [BL, Proposition 2.13].

The functor RΓ restricts to RΓ : Db
ρ−1(0)

(Aθ
λ(v) -mod) → Db

f in(Aλ(v) -mod).

Here, the superscript “ρ−1(0)” indicates the category of all complexes with coherent
homology supported on ρ−1(0). Similarly, the subscript “fin” means the category of
all complexes with finite dimensional homology.

3.3 Main Result in the Cyclotomic Case

Let us state our main result. Define the subalgebra aλ ⊂ g(Q) = ŝl� as follows. It is
generated by the Cartan subalgebra t of g(Q) and the root subspaces g(Q)β for real
roots β =∑i∈Q0

biεi such that

∑

i∈Q0

biλi + 1

2
b0 ∈ Z.

Theorem 3.1 Suppose that v = nδ and

(1) |〈λ, β〉| � 1
2 |b0| for all roots β = (bi)i∈Q0 of a

λ,
(2) and 〈λ, δ〉− 1

2 is either in (−1, 0) or an integer or has denominator bigger than
n (irrational numbers have denominator +∞, by convention).

Then the parameter c computed from λ using (3.1) is totally aspherical.

Corollary 3.2 Rouquier’s conjecture mentioned in Sect. 2.6 is true for the groups
G(�, 1, n): every coset c + pZ contains a totally aspherical parameter.

Proof of Corollary 3.2 Note that, under the isomorphism p ∼= C
Q0 given by (3.1),

the lattice pZ coincides with Z
Q0 ; a computation is somewhat implicitly contained,

e.g., in [GL, 2.3.1]. So it is enough to show that every λ ∈ C
Q0 admits an integral

shift satisfying the conditions of Theorem 3.1.
If aλ = t, then the proof is easy; we just need to achieve condition (2). Assume

aλ �= t. Choose a system of simple roots, β1, . . . , βk , for aλ consisting of positive
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roots for g(Q). We claim that it is enough to show that there is an element λ′ ∈
λ+ Z

Q0 satisfying

0 � 〈λ′ + ω∨0 /2, βi〉 � (ω0, βi), ∀i = 1, . . . , k. (3.2)

Here, ω∨0 denotes the fundamental coweight corresponding to 0, and (·, ·) stands
for the usual invariant scalar product (so that 〈ω∨0 , •〉 = (ω0, •)). Since the βi’s are
roots of aλ, we see that 〈λ′ +ω∨0 /2, βi〉 is an integer. Clearly, (3.2) implies (1). Now
suppose the denominator d of 〈λ+ ω∨0 /2, δ〉 satisfies d � n. Then dδ is integral on
λ + ω∨0 /2, and hence (ω0, βi) ∈ {0, . . . , d − 1}. Indeed, (ω0, βi) � 0 because βi

is positive, and if (ω0, βi) � d, then βi − dδ is a positive root of aλ, and hence βi

is not a simple root for aλ. It follows that dδ is the sum of some of βi’s and hence
(3.2) also implies (2).

Now let us prove that (3.2) holds for some λ′ ∈ λ+Z
Q0 . For simplicity, consider

the case when k = �, the general case (k < �) is analogous. We can apply an
element from S� to λ; this does not change the inequalities (3.2). Thanks to this, we
can assume that βi = εi + diδ, i = 1, . . . , �. Set xi := 〈λ′ + ω∨0 /2, εi〉. Then (3.2)
can be rewritten as

0 � xi + di(x1 + . . .+ x�) � di + δi,�. (3.3)

Set s := x1+. . .+x� so that s = 〈λ′+ ω∨0
2 , δ〉 and xi+dis is an integer for all i. From

βi = εi + diδ, i = 1, . . . , �, and dδ =∑�
i=1 βi , we deduce that 1+∑�

i=1 di = d.
The coset s+Z is determined by λ because changing λ by adding an element of ZQ0

results in changing s by an integer. The number ds equals 〈λ′ + ω∨0 /2, dδ〉 hence is
an integer. The numbers d, ds are coprime because d is precisely the denominator
of 〈λ+ ω∨0 /2, δ〉 and hence of s.

Summing the inequalities (3.3), we get 0 � ds � d. This specifies s ∈ [0, 1]
uniquely (with the exception of the non-interesting case d = 1). One can then
rewrite (3.3) as

0 � xi + dis � di, i = 1, . . . , �− 1,

0 � ds −
�−1∑

i=1

(xi + dis) � d −
�−1∑

i=1

di
(3.4)

It is now clear that these inequalities have a solution (x1, . . . , x�) in a given coset in
Q

�/Z�. �
Let us describe key ideas of the proof of Theorem 3.1. Lemma 2.8 reduces

the problem to checking the absence of the finite dimensional representations. To
show that Aλ(nδ) has no finite dimensional representations, it is enough to prove
that RΓ (M) = 0 for any Aθ

λ(nδ)-module M supported on ρ−1
nδ (0). The structure

of the irreducible Aθ
λ(v)-modules supported on ρ−1

v (0) was studied in [BL]. We
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will see that under condition (1), the algebra Aλ(nδ) has no finite dimensional
representations; this is a key step. From here and results of Sect. 3.1, we will see
that (1) and (2) guarantee the absence of the finite dimensional representations of the
slice algebras (which in this case means the spherical subalgebras for the parabolic
subgroups).

Let us discuss our key step in more detail. In [BL, Section 5.2], we have
shown that the category

⊕
v D

b(Aθ
λv
(v) -mod

ρ−1
v (0)) carries a categorical action

(in a weak sense) of aλ (here, the parameters λv depend on v in a suitable way;
note that parameters λ we use in this paper differ from those in [BL] by a shift).
This means that there are endo-functors Eα, Fα indexed by simple roots α of aλ

that define a representation of aλ (in the usual sense) on K0. Each pair Eα, Fα

defines a categorical sl2-action in the strong sense (of Chuang-Rouquier, [CR]; see
also Rouquier, [R]). Moreover, Eα, Fα define an sl2-crystal structure on the set of
simples with crystal operators ẽα, f̃α . We will see that the condition |〈λ, α〉| �
1
2 (ω0, α) guarantees that we have RΓ (M) = 0 for a simple M lying in the image of
f̃α . We will first do this when α is a simple root for g(Q), Sect. 3.4, and then extend
this result to the general case.

Remark 3.3 It does not seem that Theorem 3.1 describes all totally aspherical
parameters: it should not be true that condition (1) specifies precisely the parameters
where Aλ(nδ) has no finite dimensional representations. [BL, Conjecture 9.8]
reduces the question of when Aλ(nδ) has no finite dimensional representation to
a problem in the integrable representation theory of aλ.

Remark 3.4 In the case when n = 1, all parameters c where PKZ,c
∼= Hc were

described in [T]: by [T, Theorem C], this isomorphism holds if and only if c is in
the set F introduced in [T, Definition 4.4].

3.4 Functors Ei,Fi

An important role in the proof of the main theorem of [BL] is played by Webster’s
functors Ei, Fi between the derived categories of modules over the sheaves Aθ

λ(v).
Fix i ∈ Q0 such that λi ∈ Z + 1

2 (wi +∑a,t (a)=i vh(a) +
∑

a,h(a)=i vt (a)), and
assume that θk > 0 for all k ∈ Q0. We are going to recall the functors

Fi : Db(Aθ
λ(v) -mod) � Db(Aθ

λ′(v + εi) -mod) : Ei

introduced in [W]. Here, λ′ is a parameter recovered from λ (below we will explain
how).

Assume i is a source (otherwise, we can invert some arrows; this does not change
λ and the sheaf Aθ

λ(v)). Set w̃i := wi +∑a,t (a)=i vh(a). Consider the reduction

Aθi
λi
(v, i) := DR///

θi
λi

GL(Vi). Since i is a source and θi > 0, this reduction is
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D
λ̃i
Gr(vi ,w̃i )

⊗DR,

where the notation is as follows. We write R for

⊕

a,t (a) �=i

Hom(Vt(a), Vh(a))⊕
⊕

j �=i

Hom(Vj ,C
wj ),

where wj = δj0. So R = Hom(Vi,C
w̃i ) ⊕ R. The superscript λ̃i above

indicates the differential operators with coefficients in the line bundle O(λ̃i) on
Gr(vi, w̃i), where λ̃i := λi − w̃i/2. The category Aθ

λ(v) -mod is the quotient of

DR///
θi
λi

GL(Vi) -modG,λ by a Serre subcategory; the superscript (G, λ) means “λ-

twisted G-equivariant modules.” Here, we write G for
∏

j �=i GL(Vi), λ := (λ̃j )j �=i .

The formula for λ̃j is

λ̃j := λj − 1

2
(wj +

∑

t (a)=j

vh(a) −
∑

h(a)=j

vt (a)).

Note that Aθ
λ(v) is the quantum Hamiltonian reduction of D(R) for the quantum

comoment map x �→ xR and level λ̃ = (λ̃j )j∈Q0 . The Serre subcategory in

Aθi
λi
(v, i) -modG,λ we have to mod out consists of all modules whose singular

support is contained in the image of μ−1
i (0)θi−ss \μ−1(0)θ−ss in T ∗R///θi GL(Vi).

One can define functors, [W],

Fi : Db
G,λ(A

θi
λi
(v, i) -mod) � Db

G,λ(A
θi
λi
(v + εi, i) -mod) : Ei (3.5)

in a standard way (pull-push), using the correspondence Fl(vi, vi+1, w̃i) consisting
of 2 step flags (or, more precisely, Fl(vi, vi + 1, w̃i) × δR , where δR stands for the
diagonal in R2). Here, we write Db

G,λ(•) for the (G, λ)-equivariant derived category
in the sense of Bernstein and Lunts. Of course, the functors Ei, Fi make sense for
the non-equivariant derived categories as well.

The category Db(Aθ
λ(v) -mod) is the quotient of Db

G,λ(A
θi
λi
(v, i) -mod) by the

full subcategory of all complexes whose homology satisfies the support condition
mentioned above; see [BL, Section 7.1].

As Webster checked in [W], the functors Ei, Fi descend to functors between
the quotient categories Db(Aθ

λ(v) -mod),Db(Aθ
λ′(v + εi) -mod). Here, we write λ′

for the parameter producing the vector λ̃, but for the dimension v + εi , we have
λ′k = λk + nik/2, where nik is the number of arrows connecting i to k.

Let us write RΓi for the derived global section functor

Db
G,λ(A

θi
λi
(v, i) -mod)→ Db

G,λ(Aλi (v, i) -mod),
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where Aλi (v, i) := Γ (Aθi
λi
(v, i)). We have

Aλi (v, i) = Dλ̃i (Gr(vi, w̃i))⊗D(R).

The following lemma gives a sufficient condition for a Aθi
λi
(v, i)-module to be

annihilated by RΓi . This is our first result toward the proof of Theorem 3.1.

Lemma 3.5 Suppose 2vi � w̃i (and still i is a source). If |λi | � w̃i/2−vi , thenRΓi

annihilates everyAθi
λi
(v, i)-moduleM that appears as a subquotient inH•(FiN) for

N ∈ Aθi
λi
(v − εi, i) -modG,λ.

Proof It is enough to prove this claim for the usual (non-equivariant) derived
categories.

Let M ′ ∈ Aθi
w̃i/2(v, i) -mod be the twist of M by the line bundle O(−λ̃i )

on Gr(vi, w̃i). It follows from the Beilinson-Bernstein theorem that Γi :
Aθi

w̃i/2(v, i) -mod → Aw̃i/2(v, i) -mod is a category equivalence.

The functor Fi : Db(Aw̃i/2(v − εi, i) -mod) → Db(Aw̃i/2(v, i) -mod) can
be realized as a tensor product B ⊗L

D(Gr(vi−1,w̃i ))
•, where B is a complex of

D(Gr(vi, w̃i))-D(Gr(vi−1, w̃i))- bimodules with Harish-Chandra homology (both
algebras are quotients of U(gl(w̃i)) and so the notion of a HC bimodule does make
sense). Since 2vi � wi , the Gelfand-Kirillov dimension of D(Gr(vi − 1, w̃i))

is less than that of D(Gr(vi, w̃i)). It follows that there is a proper two-sided
ideal I in D(Gr(vi, w̃i)) annihilating all Harish-Chandra D(Gr(vi, w̃i))-D(Gr(vi −
1, w̃i))-bimodules. Namely, the regular D(Gr(vi, w̃i))-bimodule has finite length,
and for I , we take the minimal two-sided ideal such that the GK dimension of
D(Gr(vi, w̃i))/I does not exceed that of D(Gr(vi, w̃i)).

Note that RΓi(M) = RHomA(B, Γi(M
′)), where we write A for D(Gr(vi, w̃i))

and B for the translation D(Gr(vi, w̃i))-Dλ̃i (Gr(vi, w̃i))-bimodule. Then

RHomA(B, Γi(M
′)) = RHomA/I (B/IB, Γi(M

′)).

So to show that RΓi(M) = 0, it remains to check that B/IB = 0.
Assume the contrary. The bimodule B and the ideal I are HC bimodules.

Applying a suitable restriction functor (see [BL, Section 5.4]) to B/IB,
we get a nonzero finite dimensional bimodule over the slice algebras to
Dλ̃i (Gr(vi, w̃i)),D(Gr(vi, w̃i)). Recall that a slice algebra to Dλ′i (vi, w̃i) for
λ′i ∈ C has the form Dλ′i+k(vi − k, w̃i − 2k); this follows, for example, from
[BL, Section 5.4]. From |λi | � w̃i/2 − vi , we see that the slice algebras for
Dλi (Gr(vi, w̃i)) have no finite dimensional representations. This proves B = IB

and completes the proof of the lemma. �
The lemma has the following important corollary, which gives a sufficient

condition for a Aθ
λ(v)-module to be annihilated by RΓ .
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Corollary 3.6 Suppose 2vi � w̃i (and still i is a source). If |λi | � w̃i/2− vi , then
RΓ annihilates every simple Aθ

λ(v)-module M0 that appears in the homology of
FiN0, where N0 is a simple Aθ

λ′(v − εi)-module supported on ρ−1
v−εi

(0) (and λ′ is a
suitable parameter so that the functor Fi makes sense).

Proof Let πθ (v) : D(R) -modG,λ̃ � Aθ
λ(v) -mod denote the quotient

functor; it factors as πθ(v) ◦ πθi (v, i), where πθi (v, i) : D(R) -modG,λ̃ �
Aθi

λi
(v, i) -modG,λ -mod and πθ(v) : Aθi

λi
(v, i) -modG,λ -mod → Aθ

λ(v) -mod
are the quotient functors; see [BL, Section 7.1]. We also have derived analogs of
these functors (between the corresponding equivariant derived categories) to be
denoted by the same letters. The functors πθ (v), πθ (v), πθi (v, i) have derived right
adjoints, for example, Rπθ(v)∗ lifts a complex of Aθ

λ(v)-modules to that of (G, λ̃)-
equivariant DR|T ∗Rθ−ss -modules and then takes derived global sections; compare
with [MN, Lemma 4.6]. So we see that RjΓ (•) = Rjπθ (v)∗(•)G for all j (we
pass to the cohomology because a priori the two derived functors map to slightly
different categories). So it is enough to prove that Rjπθ (v)∗(M0)

GL(vi ) = 0.
From the description of Rπθ(v)∗ (and similar descriptions of the other two

derived functors), we deduce that Rπθ(v)∗(•)GL(vi ) = RΓi ◦ Rπθ(v)∗(•). So it
suffices to show that RΓi ◦ Rπθ(v)∗(M0) = 0. By Bezrukavnikov and Losev [BL,
Corollary 6.2] and the main result of [BL], N0 is regular holonomic. By the proof
of [BL, Corollary 6.2], FiN0 is the direct sum of simple Aθi

λi
(v, i)-modules with

homological shifts. So it is sufficient to show that RΓi ◦ Rπθ(v)∗ ◦ Fi(N0) = 0.
Recall that πθ (v − εi) ◦ Ei

∼= Ei ◦ πθ(v). Also recall that (up to a homological
shift) Fi is right adjoint to Ei . So we have an isomorphism Fi ◦ Rπθ(v − εi)

∗ ∼=
Rπθ(v)∗ ◦Fi (up to a homological shift). So it suffices to show that RΓi annihilates
Fi ◦ Rπθ(v − εi)

∗(N0). But this follows from Lemma 3.5. �

3.5 Absence of Finite Dimensional Representations

Lemma 3.7 Let θ be a generic stability condition. Then the following conditions
are equivalent.

(a) The algebra Aλ(v) has no finite dimensional representations.
(b) RΓ (M) = 0 for any simple Aθ

λ(v)-module M supported on ρ−1
v (0).

Proof We can view RΓ as a functor D−(Aθ
λ(v) -mod) → D−(Aλ(v) -mod). This

functor has a left adjoint and right inverse functor, namely, the derived localization
functor

LLoc : D−(Aλ(v) -mod)→ D−(Aθ
λ(v) -mod).

The functors RΓ,LLoc restrict to the subcategories D−
ρ−1(0)

(Aθ
λ(v) -mod),

D−
f in(Aλ(v) -mod). So RΓ is a quotient functor
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D−
ρ−1(0)

(Aθ
λ(v) -mod) � D−

f in(Aλ(v) -mod).

Our claim follows. �
Now take θ with all positive coordinates; it is generic. Consider the system of

simple roots for aλ consisting of minimal roots whose pairing with θ is positive. All
these roots are positive. Moreover, the condition in (1) of Theorem 3.1 is equivalent
to |〈λ, α〉| � (ω0, α)/2 for all simple roots α of aλ.

In [BL, Section 5.2], we have constructed endo-functors Eα, Fα of⊕
v D

b(Aθ
λv
(v) -mod) that preserve

⊕
v D

b

ρ−1
v (0)

(Aθ
λv
(v) -mod) (we write λv instead

of λ, because the parameter depends on v; see Sect. 3.4). The construction goes as
follows. Pick an element σ in the Weyl group W(Q) of Q. Then we have a Lusztig-
Maffei-Nakajima (LMN) isomorphism σ∗ : Xθ(v)

∼−→ Xσθ (σ · v), where we write
σ ·v for the dimension vector corresponding to the weight σν. This isomorphism lifts
to that of quantizations: σ∗ : Aθ

λ(v)
∼−→ Aσθ

σλ(σ · v); see [BL, Section 2.2] (note that
here we use the symmetrized quantum comoment map so the parameter transforms
linearly). The categories Aθ

λ(v) -mod,Aθ ′
λ (v) -mod are naturally equivalent as long

as θ, θ ′ lie in the same Weyl chamber for aλ; see [BL, Section 5.1.4]. Now pick
a simple root α, and choose θ ′ inside the Weyl chamber for aλ containing θ and
such that kerα is a wall for the g(Q)-chamber of θ ′. So there is σ ∈ W(Q) such
that σα is a simple root for g(Q) and all entries of σθ ′ are positive. Then we set
Fα = σ−1∗ ◦ Fi ◦ σ∗, Eα = σ−1∗ ◦ Ei ◦ σ∗.
Proposition 3.8 Suppose (1) of Theorem 3.1 holds. Then the algebra Aλ(nδ) has
no finite dimensional irreducible representations.

Proof We will need the following facts from [BL]:

(i) For fixed α, the functors Eα, Fα define an sl2-action on
⊕

v K0(Aθ
λv
(v)

-mod
ρ−1
v (0)). The classes of simples form a dual perfect basis.

(ii) The simples annihilated by all Eα live in dimensions v corresponding to
extremal weights for g(Q).

(i) is in [BL, Sections 5.2, 9.1.2], while (ii) is a consequence of the main theorem of
[BL], Theorem 1.1 there (i) allows to define crystal operators on the set of simples
in
⊕

v Aθ
λv
(v) -mod. It also shows that if a simple in Aθ

λv
(v) -modf in does not lie in

the image of f̃α , then it is annihilated by ẽα and hence by Eα .
Now let σ be as in the construction of Eα, Fα that was recalled above. Let

v′ := σ · v. The condition |〈λ, α〉| � (ω0,α)
2 is easily seen to be equivalent to

|(σλ)i | = |〈σλ, αi〉| � 1
2 (σν, αi). The latter is nothing else but 1

2 w̃
′
i − v′i , where

w̃′i is constructed from v′. By Corollary 3.6, the functor RΓ annihilates all simple
Aθ

λ(nδ)-modules lying in the image of f̃α .
So, if RΓ (M) �= 0, then EαM = 0 for all simple roots α of aλ. However, this is

impossible by (ii): the weight ω0 − nδ cannot be extremal for g(Q). �
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3.6 Proof of the Main Theorem

We need to show that, under conditions (1) and (2) of Theorem 3.1, there are
no finite dimensional eW ′Hc(W

′)eW ′ -modules for any parabolic subgroup W ′ ⊂
W = G(�, 1, n). The parabolic subgroups of W have the form G(�, 1, n0)×Sn1 ×
. . . × Snk , where n0 + n1 + . . . + nk � n. The slice algebras are of the form
Aλ(n0δ)⊗Aκ(n1) . . .⊗Aκ(nk), where we write Aκ(ni) for the spherical subalgebra
in Hκ(Sni ). This follows from [BL, Section 5.4]. If (1) holds, then Aλ(n0δ) has no
finite dimensional irreducible representations (when n0 > 0). If (2) holds, then the
algebras Aκ(ni) do not. This completes the proof of Theorem 3.1.

Remark 3.9 One can state a sufficient condition for the algebra Aλ(v) to be simple
generalizing Theorem 3.1 for an arbitrary quiver of finite or affine type, thanks to
results of [BL, L4]. We are not going to do this explicitly.
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1 Introduction

1.1 Coxeter Categories

Let g be a semisimple Lie algebra and h a Cartan subalgebra. Let hreg ⊂ h be
the complement to the root hyperplane arrangement. For an integrable g-module
V , C. De Concini and C. Procesi [DCP] have introduced an integrable Casimir
connection with coefficients in the trivial vector bundle V ⊗ Ohreg (it was later
rediscovered by J. Millson and V. Toledano Laredo [MT] and J. Felder, Y. Markov,
V. Tarasov, and A. Varchenko [FMTV]) and conjectured that its monodromy can
be expressed in terms of the action of the quantum Weyl group [LU2, SO] on the
corresponding Weyl module WV over the corresponding quantum group Uv(g). This
conjecture was later independently formulated and proved by V. Toledano Laredo
for v in the formal neighborhood of 1. The key notion introduced in his proof was
the notion of a (quasi-)Coxeter category. The original definition of this notion is
of combinatorial nature. We suggest a more topological version of this definition
in Sect. 3. It is a collection of local systems of restriction functors on the open strata
of hyperplane arrangements arising from the root hyperplanes of a root system,
compatible under Verdier specialization. This approach makes it clear, for example,
that the category of representations of a rational Cherednik algebra carries a Coxeter
structure; see [BE].

One of the main examples of a Coxeter category is a category of integrable
representations of a quantum group. We consider the category C of representations
of Lusztig’s small quantum group. It has a geometric realization as the category FS

of factorizable sheaves [BFS]. This is the category of certain compatible collections
of perverse sheaves on the configuration spaces of a Riemann surface. One of our
key observations is that the category FS carries a natural Coxeter structure (in our
topological definition).

We conjecture that the equivalence Φ : FS ∼−→ C of [BFS] takes the Coxeter
structure on FS to the Coxeter structure on C. This is essentially a reformulation
of De Concini-Toledano Laredo conjecture (hence, it follows from the results of
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V. Toledano Laredo for v in the formal neighborhood of 1). Roughly, it says that
the monodromy in the vanishing cycles of factorizable sheaves acts by Lusztig’s
symmetries.

1.2 Vanishing Cycles and Lusztig’s Symmetries

Let us formulate the last point of Sect. 1.1 more precisely. We choose a Borel
subalgebra h ⊂ b ⊂ g. The corresponding set of simple roots is denoted by I ;
for i ∈ I , the corresponding simple root is denoted by αi . We fix a Weyl group
invariant symmetric bilinear form ?·? on h∗ such that the square length of a short
root is αi · αi = 2.

We fix a primitive root of unity ζ of degree �; for simplicity in this introduction,
we assume that � is not divisible by 2 and 3. We consider an integral dominant
weight λ ∈ h∗ such that 0 ≤ 〈λ, α̌i〉 < � for any i ∈ I (pairings with simple
coroots).

For β = ∑
i∈I biαi ∈ N[I ], we consider the configuration space A

β of colored

divisors on the complex affine line A1. The open subspace
♦
A

β ⊂ A
β of multiplicity

free divisors on A
1\{0} carries a one-dimensional local system J

β
λ with the following

monodromies: ζ−2αi ·αj when a point of color i goes counterclockwise around a
point of color j �= i; −ζ−αi ·αi when two points of color i trade their positions
going around a half circle counterclockwise; and ζ 2λ·αi when a point of color i goes
around 0 counterclockwise. We denote by I

β
λ the Goresky-MacPherson extension of

J
β
λ to A

β (a perverse sheaf).

We have a pairing 〈·, ·〉 : h × A
β → A

1 given in the coordinates (ti,r )
1≤r≤bi
i∈I

on A
β , and (zj )j∈I in the basis of fundamental coweights on h, as follows:

〈(zj ), (ti,r )〉 = ∑
i∈I zi

∑bi
r=1 ti,r . The vanishing cycle Φ

β
λ := Φ〈·,·〉 p◦ Iβλ of the

pullback of Iβλ to h× A
β is a perverse sheaf supported on h � h× {β · 0}.

We conjecture that Φ
β
λ is smooth along hreg ⊂ h. In order to describe its

monodromy on hreg, recall that one of the main results of [BFS] is a canonical
identification of the stalk (Φ

β
λ )C0 at the fundamental Weyl chamber in h

reg
R

with the
weight space Lλ

λ−β of the irreducible module with highest weight λ over Lusztig’s

big quantum group U̇ζ (note that the restriction of Lλ to Lusztig’s small quantum
group u̇ζ remains irreducible since λ is an �-restricted weight). We conjecture that

the local system Φ
β
λ |hreg is given by the following representation of the fundamental

groupoid of hreg: the stalk at a Weyl chamber wC0 in h
reg
R

is Lλ
w(λ−β) (w runs

through the Weyl group W ), and the half monodromies around the walls are given
by Lusztig’s symmetries T ′i,±1 and T ′′i,±1 (see Sect. 4 for details).
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1.3 Organization of the Paper

Here is the outline of the paper.
In Sect. 2, we consider an elementary example of type A2. We compare the

action of Lusztig’s symmetries in the “almost extremal” weight spaces of integrable
modules over the corresponding quantum group (i.e., the weights obtained from the
extremal ones by subtracting a root) with the monodromy action in the vanishing
cycles of related perverse sheaves on the plane.

In Sect. 3, we propose a topological reformulation of Toledano Laredo’s notion
of Coxeter category. It is very similar to Deligne’s topological reformulation [D] of
the notion of braided tensor category.

In Sect. 4, we recall the (algebraic) construction of the Coxeter structure on
the category of integrable modules over Lusztig’s big quantum group, in terms of
Lusztig’s symmetries. It gives rise to the Coxeter structure on the category C of
representations of Lusztig’s small quantum group.

In Sect. 5, we recall very concisely the category of factorizable sheaves FS

introduced in [BFS] and the equivalence Φ : FS ∼−→ C (see Sects. 5.2 and 5.3).
We also take an opportunity to correct a confusion in [BFS] between Langlands
dual types (see Sect. 5.1). Then we go on to construct a Coxeter structure on FS.
The construction goes through the De Rham realization of FS and works only for v
sufficiently close to 1, but we expect it to work for arbitrary v. The construction also
uses some results on iterated specialization and microlocalization over hyperplane
arrangements presented in Sect. 6 which might be of independent interest. A more
systematic approach to these questions is developed in [FKS].

Finally, in Sect. 7, we formulate the main conjecture that the equivalence
Φ : FS ∼−→ C intertwines the Coxeter structures on FS and on C.

2 An Example

2.1 Algebra

We follow the notations of [LU2]. Let U be the quantum universal enveloping
algebra of type A2, over the ring A = Z[v±1]. The positive (resp. negative)
subalgebra U+ (resp. U−) is generated by the divided powers E

(r)
i (resp.

F
(r)
i ), i = 1, 2, r ∈ N. Let Λ = (μ1, μ2) ∈ N

2 be a dominant
highest weight such that μ1 ≥ 1 ≤ μ2 and L(Λ) the corresponding
integrable U-module with the highest vector v. We will be interested in the
weight spaces L(Λ)(μ1−1,μ2−1), L(Λ)(−μ1+1,μ1+μ2−2), L(Λ)(μ1+μ2−2,−μ2+1),

L(Λ)(μ2−1,−μ1−μ2+2), L(Λ)(−μ1−μ2+2,μ1−1), and L(Λ)(−μ2+1,−μ1+1) (these
weights form a single Weyl group orbit). They have canonical bases (F1F2v, F2F1v),
(F

(μ1)
1 F2v, F2F

(μ1)
1 v), (F

(μ2)
2 F1v, F1F

(μ2)
2 v), (F (μ1+μ2−1)

2 F
(μ1)
1 v, F1F

(μ1+μ2−1)
2
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F
(μ1−1)
1 v), (F

(μ1+μ2−1)
1 F

(μ2)
2 v, F2F

(μ1+μ2−1)
1 F

(μ2−1)
2 v), and(F (μ2−1)

1 F
(μ1+μ2−1)
2

F
(μ1)
1 v = F

(μ1)
2 F

(μ1+μ2−1)
1 F

(μ2−1)
2 v, F (μ2)

1 F
(μ1+μ2−1)
2 F

(μ1−1)
1 v = F

(μ1−1)
2

F
(μ1+μ2−1)
1 F

(μ2)
2 v), respectively.

We are interested in the action of Lusztig’s symmetries T ′1,2,± on the above
weight spaces.

Lemma 2.2 T ′1±(F1F2v) = −v±(μ1+1)F
(μ1)
1 F2v, T ′1±(F2F1v) = −v±μ1F

(μ1)
1 F2v+ F2F

(μ1)
1 v;

T ′2±(F2F1v) = −v±(μ2+1)F
(μ2)
2 F1v, T ′2±(F1F2v) = −v±μ2F

(μ2)
2 F1v+ F1F

(μ2)
2 v;

T ′2±(F2F
(μ1)
1 v) = −v±(μ1+μ2)F

(μ1+μ2−1)
2 F

(μ1)
1 v,

T ′2±(F
(μ1)
1 F2v) = −v±μ2F

(μ1+μ2−1)
2 F

(μ1)
1 v+ F1F

(μ1+μ2−1)
2 F

(μ1−1)
1 v;

T ′1±(F1F
(μ2)
2 v) = −v±(μ1+μ2)F

(μ1+μ2−1)
1 F

(μ2)
2 v,

T ′1±(F
(μ2)
2 F1v) = −v±μ1F

(μ1+μ2−1)
1 F

(μ2)
2 v+ F2F

(μ1+μ2−1)
1 F

(μ2−1)
2 v;

T ′1±(F1F
(μ1+μ2−1)
2 F

(μ1−1)
1 v) = −v±(μ2+1)F

(μ2)
1 F

(μ1+μ2−1)
2 F

(μ1−1)
1 v,

T ′1±(F
(μ1+μ2−1)
2 F

(μ1)
1 v) = −v±1F

(μ2)
1 F

(μ1+μ2−1)
2 F

(μ1−1)
1 v+ F

(μ2−1)
1 F

(μ1+μ2−1)
2 F

(μ1)
1 v;

T ′2±(F2F
(μ1+μ2−1)
1 F

(μ2−1)
2 v) = −v±(μ1+1)F

(μ1)
2 F

(μ1+μ2−1)
1 F

(μ2−1)
2 v,

T ′2±(F
(μ1+μ2−1)
1 F

(μ2)
2 v) = −v±1F

(μ1)
2 F

(μ1+μ2−1)
1 F

(μ2−1)
2 v+ F

(μ1−1)
2 F

(μ1+μ2−1)
1 F

(μ2)
2 v.

Proof We consider two subalgebras U1,U2 ⊂ U of type A1: the first one is
generated by E

(r)
1 , F

(r)
1 , r ∈ N, and the second one is generated by E

(r)
2 , F

(r)
2 , r ∈

N. To prove the first formula, we consider the U1-submodule M1 of L(Λ) with
the highest vector F2v and canonical base F2v, F1F2v, . . . , F

(μ1)
1 F2v, F

(μ1+1)
1 F2v.

We also consider another U1-submodule M ′
1 of L(Λ) with the highest vector

w+ := (vμ1 − v−μ1)F1F2v − (vμ1+1 − v−μ1−1)F2F1v and the lowest vector (in
the same canonical base) w− = (v− v−1)F

(μ1)
1 F2v− (vμ1+1 − v−μ1−1)F2F

(μ1)
1 v.

In effect, it is straightforward that E1w+ = 0, and it follows from [LU2,
Lemma 42.1.2.(d)] that F1w− = 0; hence, F (μ1−1)

1 w+ = aw− for some a ∈ A.
The fact that a = 1 follows by comparing the coefficients of F1F2v in w+ and
of F

(μ1)
1 F2v in w−. Now according to [LU2, Proposition 5.2.2.(a)], T ′1±w+ =

w−, T ′1±F1F2v = −v±(μ1+1)F
(μ1)
1 F2v. From this, we deduce the first two

formulas. The other formulas are proved similarly. Say, to prove the fifth and sixth
formulas, we consider the U2-submodule M2 of L(Λ) with the highest vector F (μ1)

1 v

and canonical base F
(μ1)
1 v, F2F

(μ1)
1 v, . . . , F (μ1+μ2−1)

2 F
(μ1)
1 v, F (μ1+μ2)

2 F
(μ1)
1 v.

We also consider another U2-submodule M ′
2 of L(Λ) with the highest vector

x+ := (vμ1+μ2−v−μ1−μ2)F
(μ1)
1 F2v−(vμ2−v−μ2)F2F

(μ1)
1 v and the lowest vector

(in the same canonical base) x− = (vμ1+μ2 − v−μ1−μ2)F1F
(μ1+μ2−1)
2 F

(μ1−1)
1 v −

(vμ1 − v−μ1)F
(μ1+μ2−1)
2 F

(μ1)
1 v. Then T ′2±x+ = x−, T ′2±F2F

(μ1)
1 v =

−v±(μ1+μ2)F
(μ1+μ2−1)
2 F

(μ1)
1 v. From this, we deduce the fifth and sixth formulas.

And so on. �
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2.3 Topology

Let AR be a two-dimensional real vector space, and let A be its complexification
with coordinates (t1, t2) stratified by three lines: t1 = 0, t2 = 0, andt1−t2 = 0. Let
L be the shriek extension of the one-dimensional local system on the complement of
the three lines with monodromies v2μ1 , v2μ2 , andv2μ3 . In applications to algebra,
2μ3 = 2. The dual vector space A

∗ has coordinates (z1, z2), and the dual
stratification consists of the lines z1 = 0, z2 = 0, and z1 + z2 = 0. This is
the root hyperplane arrangement of type A2. There are six real chambers of this
arrangement: C0 is the dominant chamber containing an interior point z(e) = (1, 1);
the other chambers have interior points z(1) = (−1, 2), z(21) = (−2, 1), z(121) =
z(212) = (−1,−1), z(12) = (1,−2), and z(2) = (2,−1). The chambers are
naturally numbered by the Weyl group W of type A2 generated by simple reflections
s1ands2. For w ∈ W , we have Cw # z(w), say Cs1s2s1 (C121 for short) contains
z(121). We have six real affine lines �w, w ∈ W , in AR given by equations z(w) = 1.
For example, �e and �1 are given by the equations t1 + t2 = 1 and −t1 + 2t2 = 1,
respectively. More generally, for ε ∈ R, ε > 0, let us denote by �w,ε the real straight
line given by the equation z(w) = ε.

The microlocalization (Fourier transform) μL is a certain constructible complex
on A

∗. We will be interested only in its restriction to the complement of the three
lines in A

∗, which is a two-dimensional local system. Let us describe this local
system explicitly.

The stalk μ(w)L at z(w) equals the vanishing cycles Φz(w)L. Let iw denote the
inclusion �w ↪→ A. Then Φz(w)L may be identified with H 1(�w, i

∗
wL). It is a two-

dimensional vector space with the base dual to the basis �′w, �′′w of 1-cycles with
coefficients in i∗wL∗.

The 1-cycles are defined as follows: �′e is the interval between the points (1, 0)
and (1/2, 1/2); �′′e is the interval between the points (1/2, 1/2) and (0, 1); �′1 is the
interval between the points (1, 1) and (0, 1/2); �′′1 is the interval between the points
(0, 1/2) and (−1, 0); �′21 is the interval between the points (0, 1) and (−1/2, 0);
�′′21 is the interval between the points (−1/2, 0) and (−1,−1); �′121 is the interval
between the points (−1, 0) and (−1/2,−1/2); �′′121 is the interval between the
points (−1/2,−1/2) and (0,−1); �′2 is the interval between the points (0,−1)
and (1/2, 0); �′′2 is the interval between the points (1/2, 0) and (1, 1); �′12 is the
interval between the points (−1,−1) and (0,−1/2); �′′12 is the interval between
the points (0,−1/2) and (1, 0); �′212 is the interval between the points (−1, 0) and
(−1/2,−1/2); �′′212 is the interval between the points (−1/2,−1/2) and (0,−1).
Note that �′′212 = �′′121, �′212 = �′121. The dual basis to �′w, �′′w will be denoted by
φ′w, φ′′w (in particular, φ′′212 = φ′′121, φ′212 = φ′121).

More generally, for any ε > 0, we have canonical isomorphisms

Φz(w)L = H 1(�w, i
∗
wL)

∼−→ H 1(�w,ε, i
∗
w,εL)
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where iw,ε : �w,ε ↪→ A, and we can define similar parallelly transported bases in
H1(�w,ε, i

∗
w,εL

∗).
For two neighboring chambers Cy,Cw, y,w ∈ W , let γ±y,w be a path from Cy to

Cw obtained from a straight line interval modified near the wall between these two
chambers by going around it in the positive (resp. negative) imaginary halfspace.
We will keep the same notation for the induced operator (half monodromy along
γ±y,w) from Φz(y)L to Φz(w)L.

Lemma 2.4 γ±e,1φ′e = −v±(μ1+μ3)φ′′1 , γ±e,1φ′′e = −v±μ1φ′′1 + φ′1;
γ±e,2φ′′e = −v±(μ2+μ3)φ′2, γ±e,2φ′e = −v±μ2φ′2 + φ′′2 ;
γ±1,21φ

′
1 = −v±(μ2+μ1)φ′′21, γ±1,21φ

′′
1 = −v±μ2φ′′21 + φ′21;

γ±2,12φ
′′
2 = −v±(μ1+μ2)φ′12, γ±2,12φ

′
2 = −v±μ1φ′12 + φ′′12;

γ±21,121φ
′
21 = −v±(μ3+μ2)φ′′121, γ±21,121φ

′′
21 = −v±μ3φ′′121 + φ′121;

γ±12,212φ
′′
12 = −v±(μ3+μ1)φ′212, γ±12,212φ

′
12 = −v±μ3φ′212 + φ′′212.

Proof All the formulas being similar, we prove the first two. For the transposed map
between dual spaces, we must check that

γ±1,e�
′
1 = �′′e , γ±1,e�

′′
1 = −v±μ1�′′e − v±(μ1+μ3)�′e.

(Note that the second equality is equivalent to γ±1,e(�′1 + v∓μ1�′′1) = −v±μ3�′e.) To
prove it, we rotate the line �1 clockwise in AR with the point (0, 1/2) fixed and
observe what happens with the real cycles �′1 and �′′1. At some critical moment, the
rotated line becomes parallel to the t1-axis; at this moment, we must pass for a short
time into the complex upper (or lower) halfspace, and at the end, we get the line
parallel to �e. We see that at the end of this rotation, �′1 turns into �′′e , whereas �′′1
stretches and after the critical moment turns into the necessary linear combination
of �′e and �′′e . �
Remark 2.5 Writing down the composition γ±21,121 ◦ γ±1,21 ◦ γ±e,1 in our bases as the
product of matrices, we find

(
0 1

−v±(μ3+μ2) −v±μ3

)(
0 1

−v±(μ2+μ1) −v±μ2

)(
0 1

−v±(μ1+μ3) −v±μ1

)

=

(
v±(μ1+μ2+μ3) 0

0 v±(μ1+μ2+μ3)

)

,

cf. [LU1, Corollary 5.9].

Remark 2.6 In case μ1 = μ2 = μ3 = 1, all the six weight spaces considered
in Sect. 2.1 coincide with L(1, 1)(0,0) with the base F1F2v, F2F1v. In this base,
the operator T ′1± of the first line of Lemma 2.2 corresponding to the operator γ±e,1

of Lemma 2.4 has the matrix

(−v±2 −v±1

0 1

)

, while the operator T ′2± of the second
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line of Lemma 2.2 corresponding to the operator γ±e,2 of Lemma 2.4 has the matrix
(

1 0
−v±1 −v±2

)

. Note that (γ−e,1)−1 = γ+e,1 and (γ−e,2)−1 = γ+e,2.

2.7 Discussion

We set μ3 = 1. The theory of factorizable sheaves [BFS] provides a canonical
isomorphism Φz(e)L � L(Λ)(μ1−1,μ2−1). The stalks of microlocalization at the
other chambers Φz(w)L do not have an algebraic interpretation in the framework
of this theory.1 However, the comparison of Lemmas 2.2 and 2.4 shows that the
monodromy of the local system μL (as the automorphism group of Φz(e)L �
L(Λ)(μ1−1,μ2−1)) can be expressed in terms of Lusztig’s symmetries T ′1,2±, T ′′1,2±.
In fact, the comparison of Lemmas 2.2 and 2.4 suggests a much more precise
relation, in particular, between a natural topological basis in Φz(e)L and the
canonical basis on the algebraic side. Unfortunately, we have no clue how to define
such a topological basis in general. However, the relation between the monodromy
and Lusztig’s symmetries seems to generalize. This is the subject of the main body
of the note.

3 Coxeter Categories

3.1 Notations

Let us set up a few notations related to a simple Lie algebra g with Cartan subalgebra
h and Borel subalgebra h ⊂ b ⊂ g. The set of simple coroots is denoted by I ;
for i ∈ I , the corresponding simple coroot is denoted α̌i or sometimes simply i.
The corresponding simple root is denoted αi or sometimes i′. We fix a Weyl group
invariant symmetric bilinear form ?·? on h∗ such that the square length of a short
root is αi · αi = 2. This bilinear form gives rise to an isomorphism h

∼−→ h∗
so that the coroot lattice Y generated by {α̌i}i∈I embeds into h∗. We then have
α̌i · α̌i ∈ {2, 1, 2

3 } and αi · αi ∈ {2, 4, 6}. We set di = αi · αi/2. Let d be the
ratio of the square lengths of the long and short roots, so that d ∈ {1, 2, 3}. We set
ďi = d/di . Then

〈αi, α̌j 〉 = αi · αj

dj
= diα̌i · α̌j = d

α̌i · α̌j

ďi
.

1see Conjecture 7.3 however.
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3.2 The Fundamental Groupoid of hreg
D′

We follow the notations of [AT]. Let D be the Dynkin diagram of the simple Lie
algebra g with Cartan h (so that I is the set of vertices of D). The root system of
h ⊂ g is RD ⊂ h∗. The complement in h to the root hyperplanes is the open subset
hreg.

Given a subset D′ of the set of vertices of D, we denote by hD′ the quotient
of h by the center of the corresponding Levi subalgebra lD′ ⊂ g. In other words,
h∗
D′ ⊂ h∗D is spanned by the simple roots corresponding to the vertices from D′. We

denote by h
reg
D′ the complement in hD′ to the root hyperplanes of the root subsystem

RD′ corresponding to D′ ⊂ D.
We recall the Salvetti presentation of the fundamental groupoid of hreg

D′ , cf. [SA].
Let h

reg
D′,R denote the set of real points of h

reg
D′ . It is a union of the connected

components called chambers. We fix a chamber CD′
0 formed by the points with

positive coordinates (in the basis of fundamental coweights). The Weyl group WD′
acts on the set CD′ of chambers simply transitively on the left. The choice of CD′

0

identifies CD′ with WD′ and defines the right action of WD′ on CD′ (transferred
from the right action of WD′ on itself). The set of walls of CD′

0 is canonically

identified with the set of vertices of D′. The left action of WD′ on CD′ extends
this identification to any chamber. For i ∈ D′, the right action of a simple reflection
works as follows: C · si is a unique neighboring chamber C′ having the si-wall in
common with C.

The set of objects of the fundamental groupoid Π(h
reg
D′ ) is CD′ . Given a straight

line interval γ connecting the endpoints γ1 ∈ C1 and γ2 ∈ C2 and intersecting only
one wall at a time, we define the morphisms γ± ∈ MorΠ(h

reg
D′ )

(C1, C2) as follows.

The path γ+ (resp. γ−) coincides with γ away from the small neighborhoods of
its intersection with walls, where γ+ (resp. γ−) goes around the intersection in the
positive (resp. negative) imaginary direction in h

reg
D′ . According to Salvetti, Π(h

reg
D′ )

is generated by the set of morphisms γ± with relations β± = γ± provided γ1, β1
lie in the same chamber C1 and γ2, β2 lie in the same chamber C2.

3.3 The Fundamental Groupoid of N
reg
hD′/D′′/hD′

Given a third subdiagram D′′ ⊂ D′ ⊂ D, we consider the linear subspace hD′/D′′ ⊂
hD′ spanned by the fundamental coweights in D′−D′′ ⊂ D′. For example, hD/D′′ ⊂
hD is the center of the Levi lD′′ ⊂ g. We have an exact sequence

0 −→ hD′/D′′ −→ hD′ −→ hD′′ −→ 0

which may serve as another definition of hD′/D′′ .
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We denote by h
reg
D′/D′′ the complement in hD′/D′′ to the root hyperplanes (roots in

RD′ ) not containing hD′/D′′ . The connected components of the real part hreg
D′/D′′,R are

called chambers; the set of chambers is denoted CD′/D′′ . It is naturally isomorphic to
the set of parabolics in gD′ containing the standard Levi lD′′ ; see, e.g., [MW, I.1.10].
We say that a chamber C ∈ CD′ is adjacent to hD′/D′′ ⊂ hD′ if the intersection
of the closure C with hD′/D′′ has the maximal (real) dimension dim hD′/D′′ ; then
this intersection is the closure of a chamber in CD′/D′′ to be denoted π(C). The
set of chambers adjacent to hD′/D′′ is denoted AD′/D′′ . Thus, we have a projection
π : AD′/D′′ → CD′/D′′ .

The natural projection pr : hD′ → hD′′ (see Sect. 3.2) works in the bases of
fundamental coweights as follows: pr ω̌i = 0 if i ∈ D′ − D′′ ⊂ D′; and if
i ∈ D′′ ⊂ D′, then ω̌i goes to the corresponding fundamental coweight in hD′′ .
Given a chamber C ∈ AD′/D′′ , its projection prC is a chamber in CD′′ . Thus, we
have a projection pr : AD′/D′′ → CD′′ .

Lemma 3.4 The product pr×π : AD′/D′′ → CD′′ × CD′/D′′ establishes a one-to-
one correspondence. �
Definition 3.5

(a) For a chamber C ∈ CD′′ , we define a subgroupoid Πpr−1(C)(h
reg
D′ ) ⊂ Π(h

reg
D′ )

as follows: the objects are pr−1(C) ⊂ AD′/D′′ ⊂ CD′ , and the morphisms are
generated by γ± where γ is a straight line interval parallel to hD′/D′′ (i.e., such
that pr γ is a point).

(b) For a chamber C ∈ CD′/D′′ , we define a subgroupoid Ππ−1(C)(h
reg
D′ ) ⊂ Π(h

reg
D′ )

as follows: the objects are π−1(C) ⊂ AD′/D′′ ⊂ CD′ , and the morphisms are
generated by δ± where δ is a straight line interval inside the union of closures
of chambers adjacent to C.

(c) A subgroupoid ΠAD′/D′′ (h
reg
D′ ) ⊂ Π(h

reg
D′ ) is generated by all the groupoids

in (a,b) above. That is, its objects are AD′/D′′ , and the morphisms are all the
possible products of morphisms in (a,b) above (see Fig. 1).

Lemma 3.6

(a) For any C ∈ CD′′ , π induces an equivalence Πpr−1(C)(h
reg
D′ )

∼−→ Π(h
reg
D′/D′′).

(b) For any C ∈ CD′/D′′ , pr induces an equivalence Ππ−1(C)(h
reg
D′ )

∼−→ Π(h
reg
D′′).

(c) The natural projection morphisms π : ΠAD′/D′′ (h
reg
D′ ) → Π(h

reg
D′/D′′ and

pr : ΠAD′/D′′ (h
reg
D′ ) → Π(h

reg
D′′) give rise to an equivalence ΠAD′/D′′ (h

reg
D′ )

∼−→
Π(h

reg
D′/D′′)×Π(h

reg
D′′).

Proof (M. Kapranov) The relations in the Salvetti complex [SA] follow from a
cell decomposition of the complement which is glued out of intervals, 2n-gons (for
any codim 2 cell where n hyperplanes meet) and so on, and the relations in the
fundamental groupoid are obtained from the 2-skeleton, i.e., from these 2n-gons.
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Fig. 1 Topographical example

So the two-dimensional case implies the general one. See example with n = 3 in
Fig. 1. We keep “vertical” and “horizontal” 2k-gons (contributing to Ππ−1(C)(h

reg
D′ )

or Πpr−1(C)(h
reg
D′ )) intact and replace the remaining 2n-gons with rectangles like the

dotted one in Fig. 1. It follows that the “horizontal” and “vertical” morphisms com-
mute. This produces a two-dimensional CW-subcomplex of the complement which
is (the 2-skeleton of) the product of two separate two-dimensional subcomplexes.

�

3.7 Specialization

We consider the normal bundle NhD′/D′′/hD′
∼−→ hD′/D′′ × hD′′ and its open

subspace N
reg
hD′/D′′/hD′

= h
reg
D′/D′′ × h

reg
D′′ ⊂ NhD′/D′′/hD′ with Poincaré groupoid

ΠAD′/D′′ (h
reg
D′ ). Then the Verdier specialization of a local system on h

reg
D′ along

hD′/D′′ will be a well-defined local system on N
reg
hD′/D′′/hD′ . At the level of

representations of Poincaré groupoids, the specialization is nothing but restriction
to ΠAD′/D′′ (h

reg
D′ ).
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Definition 3.8

(A) A pure Coxeter category of type D is the collection of the following data:

(a) A category CD′ for any subset D′ ⊂ D;
(b) For D′′ ⊂ D′, a local system of restriction functors FD′D′′ : CD′ → CD′′

on h
reg
D′/D′′ ;

(c) For D′′′ ⊂ D′′ ⊂ D′, an isomorphism of local systems of functors:

φD′D′′D′′′ : SphD′/D′′ FD′D′′′
∼−→ FD′′D′′′ ◦ FD′D′′

on h
reg
D′/D′′ × h

reg
D′′/D′′′ which satisfy the natural “cocycle” or “pentagon”

identity associated with Div ⊂ D′′′ ⊂ D′′ ⊂ D′.
(d) In case D′′′ is disjoint from D′ (i.e., no vertex of D′′′ is connected by

an edge to a vertex of D′, and D′′′ ∩ D′ = ∅), we have a canonical
isomorphism h

reg
D′/D′′ = h

reg
(D′∪D′′′)/(D′′∪D′′′), and we are given a homo-

morphism of local systems of endomorphism algebras η : End(FD′D′′) →
End(F(D′∪D′′′)(D′′∪D′′′)).

(B) A tensor Coxeter category of type D is the additional datum of braided
balanced tensor structures on CD′ such that

(i) The pullback of FD′D′′ to the universal cover h̃
reg
D′/D′′ is a (trivial) local

system of functors equipped with tensor structures F̃D′D′′ : CD′ → CD′′ .
(But we do not require them to respect the balance and braiding. Also, the
monodromy isomorphisms of stalks γ∗ : (FD′D′′)x

∼−→ (FD′D′′)y where
γ : x −→ y is a path in Π(h

reg
D′/D′′) are not required to be morphisms

of tensor functors. Neither are the isomorphisms (Ad) above required to
respect the tensor structure.);

(ii) The isomorphisms of (c) above pulled back to h̃
reg
D′/D′′ × h̃

reg
D′′/D′′′ are

isomorphisms of tensor functors;
(iii) Let γ0 ∈ π1(h

reg
D′/D′′) be the generator of the center; geometrically, it is

a loop exp(2πiθ) · x, 0 ≤ θ ≤ 1, x ∈ h
reg
D′/D′′ . The automorphism

γ0∗ : FD′D′′
∼−→ FD′D′′ (it is the automorphism induced by the C

∗-
monodromic structure on the sheaf FD′D′′ ) is inverse to the ratio of the
balance automorphisms of the identity functors of CD′′ and CD′ .2

2We thank A. Appel and V. Toledano Laredo for correcting mistakes in the original version of the
definition.
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3.9 Comparison with the Appel-Toledano Laredo Coxeter
Braided Tensor Categories

If we impose an additional assumption that the local systems in Definition 3.8(Ab)
are lifted from h

reg
D′/D′′/WD′/D′′ (quotient with respect to the free action of the

finite group WD′/D′′ := NormLD′ (LD′′)/LD′′ (normalizer of the Levi subgroup
LD′′ in LD′ ⊂ G, modulo LD′′ )), then we get an equivalent version of [AT,
Definitions 3.10, 4.1].

In the example of factorizable sheaves FSD (Sect. 5.4), the balance on an
irreducible sheaf L(λ) is multiplication by ζ λ·(λ+2ρ). Factorizable sheaves FS∅ for
Levi=Cartan also have a nontrivial braiding and balance; namely, on an irreducible
sheaf L∅(μ), the balance is multiplication by ζμ·(μ+2ρ). The ratio of these two
balances on a weight component L(λ)α of L(λ) is ζ λ·(λ+2ρ)−(λ−α)·(λ−α+2ρ) and
coincides with the monodromy automorphism of the monodromic sheaf L(λ)α .

The identity Δi(Ti) = R21
i · (Ti ⊗ Ti), and, more generally, for any D′ ⊂

D, ΔD′(TwD′
0
) = R21

D′ · (TwD′
0
⊗ T

wD′
0
), implies ΔD′(TwD′

0
)2(T 2

wD′
0

⊗ T 2
wD′

0

)−1 =
R12

D′ ◦ R21
D′ , which in view of Definition 3.8(Biii) is nothing but the usual relation

between the braiding and the balance.

4 Algebra

4.1 Lusztig’s Symmetries

Given ζ ∈ C, ζ 6 �= 1, we consider Lusztig’s small quantum group uD′ (see,
e.g., [BFS, 0.2.12]). We extend it by the projectors to the weight spaces 1λ, λ ∈
X, to obtain the algebra u̇D′ such that Rep(u̇D′) = CD′ (notations of [BFS,
0.2.11-0.2.13]). The algebra u̇D′ is a subalgebra of Lusztig’s big quantum group
RU̇D′ [LU2, Chapter 31] (where R : Z[v±1] → C, v �→ ζ ), generated by Ei =
E

(1)
i , Fi = F

(1)
i , i ∈ D′, and 1λ, λ ∈ X. According to [LU2, Chapters 33,35],

if ζ is a root of unity (primitive of order �), there is a reductive algebraic group
ǦD′,ζ with Cartan torus ŤD′,ζ ⊂ ǦD′,ζ and a tensor functor Fr∗ : Rep(ǦD′,ζ ) →
Rep(RU̇D′) (pullback with respect to the quantum Frobenius homomorphism). Note
that the character lattice X∗(ŤD′,ζ ) is naturally a sublattice of the weight lattice X.

Lusztig’s symmetries T ′i,e, T ′′i,e, i ∈ D′, e = ±1, of RU̇D′ [LU2, 41.1.8] clearly
preserve the subalgebra u̇D′ and restrict to the same named symmetries of this
subalgebra. We define a functor Tu from Π(h

reg
D′ ) to the category of C-algebras on

generators as follows: Tu(C) = u̇D′ for any C ∈ C; for γ a straight line interval
connecting the endpoints in two neighboring chambers C1, C2 with the common
wall of type si, i ∈ D′, we set Tu(γ+) = T ′i,1 (resp. T ′′i,−1) and Tu(γ

−) = T ′i,−1
(resp. T ′′i,1), if γ goes from a Bruhat smaller chamber to the bigger one (resp. from
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a Bruhat bigger chamber to the smaller one). According to [LU2, Theorem 39.4.3],
Tu is well defined.

Given an integrable RU̇D′-module M with Lusztig’s symmetries T ′i,e, T ′′i,e : M →
M [LU2, 41.2.3], we define a functor TM from Π(h

reg
D′ ) to the category of C-vector

spaces on generators as follows: TM(C) = M for any C ∈ C; for γ a straight
line interval connecting the endpoints in two neighboring chambers C1, C2 with
the common wall of type si, i ∈ D′, we set TM(γ+) = T ′i,1 (resp. T ′′i,−1) and
TM(γ−) = T ′i,−1 (resp. T ′′i,1), if γ goes from a Bruhat smaller chamber to the bigger
one (resp. from a Bruhat bigger chamber to the smaller one). According to [LU2,
Proposition 41.2.4], TM is well defined.

Let RCD′ (resp. CD′ ) denote the category of integrable RU̇D′ -modules (resp. u̇D′ -
modules), and let Υ : RCD′ → CD′ stand for the restriction functor. In the previous
paragraph, we have defined the local system RFD′,∅ on h

reg
D′ of restriction functors

RCD′ → VectX = RC∅ to the category of X-graded C-vector spaces.

Proposition 4.2 There exists a unique local system FC
D′,∅ on h

reg
D′ of restriction

functors CD′ → VectX = C∅ such that RFD′,∅ = FC
D′,∅ ◦ Υ .

Proof According to [AG, Theorem 4.7], we view CD′ as the category of Hecke
eigen-objects in RCD′ . That is, an object of CD′ is an object M of RCD′ endowed

with a collection of isomorphisms αV : Fr∗(V )⊗M
∼−→ Res

ŤD′,ζ
ǦD′,ζ

(V )⊗M, V ∈

Rep(ǦD′,ζ ). Since Lusztig’s symmetries act on Fr∗(V ) and on Res
ŤD′,ζ
ǦD′,ζ

(V ), a

Hecke eigen-object (M, α) gives rise to a representation T(M,α) of Π(h
reg
D′ ). Hence,

the action of Π(h
reg
D′ ) on RFD′,∅ canonically extends to the action of Π(h

reg
D′ ) on

FD′,∅. �
Remark 4.3 For example, if λ ∈ X is a dominant �-restricted weight (recall that �
is the order of ζ ), then the irreducible u̇D′ -module Lλ

u with highest weight λ is the
restriction of the irreducible RU̇D′ -module Lλ

U with highest weight λ, and TLλ
u
=

TLλ
U

.

4.4 A Coxeter Structure on RC, C

We need to define the local systems of restriction functors FC
D′D′′ , not just FC

D′,∅ as
in the previous subsection. To this end, we restrict the action of the fundamental
groupoid Π(h

reg
D′ ) defined in Proposition 4.2 to the subgroupoid Πpr−1(CD′′

0 )
(h

reg
D′ ) ⊂

Π(h
reg
D′ ); see Definition 3.5(a). More precisely, we consider a wall between two

neighboring chambers c1, c2 of hreg
D′/D′′,R. Let C1 (resp. C2) be a (unique) chamber of

h
reg
D′,R adjacent to c1 (resp. c2) such that pr(C1) = pr(C2) = CD′′

0 (the fundamental

chamber of hreg
D′′,R). Let γ be a straight line interval going from c1 to c2, and let Γ
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be its lift going from C1 to C2 parallel to hD′/D′′ . In the notations of Sect. 4.1, we

set T D′/D′′
M (γ+) = IdM, T

D′/D′′
M (γ−) = T −1

M (Γ −) ◦ TM(Γ +).

Lemma 4.5 The action of Π(h
reg
D′/D′′) on a RU̇D′ -module M commutes with the

action of RU̇D′′ ⊂ RU̇D′ .

Proof Note that (since c1 and c2 are neighbors) the types of walls intersected by Γ

are all in D′′ except for exactly one d ∈ D′ −D′′. Let C′1 be the chamber adjacent

to c1 such that pr(C′1) = wD′′
0 CD′′

0 . Then C2 = wD′′�d
0 C′1. Let Δ be a straight line

interval going from C′1 to C1 and ending at the starting point of Γ , and let ΓΔ be
the concatenation of Γ and Δ. Then T −1

M (Γ −) ◦ TM(Γ +) = T −1
M (Δ+) ◦ TM(Δ−) ◦

T −1
M (ΓΔ−) ◦ TM(ΓΔ+). It suffices to prove that T −1

U (Γ −) ◦ TU(Γ
+) = Id

RU̇D′′ .

According to [LU1, Corollary 5.9] or [KT], we have T −1
U (Γ Δ−)◦TU(Γ Δ+)(Ei) =

K̃−2
i Ei, T −1

U (Γ Δ−) ◦ TU(Γ Δ+)(Fi) = FiK̃
2
i for any i ∈ D′′ � d and T −1

U (Δ−) ◦
TU(Δ

+)(Ei) = K̃−2
i Ei, T −1

U (Δ−) ◦ TU(Δ+)(Fi) = FiK̃
2
i for any i ∈ D′′. �

Now by Lemma 3.6(a) (and Proposition 4.2), we obtain the desired local system
of restriction functors RFD′D′′ : RCD′ → RCD′′ (resp. FC

D′D′′ : CD′ → CD′′ )
on h

reg
D′/D′′ . The isomorphisms of Lemma 3.6(c) give rise to the isomorphisms

of Definition 3.8(Ac). The conditions of Definition 3.8(B) are satisfied trivially.

Remark 4.6 The Coxeter structure on RC studied in [TL] differs from ours
by the twist by an invertible local system. More precisely, for a weight
component Mλ ⊂ M , in the setup of Sect. 4.1, the Coxeter structure of [TL,
4.1.3] T TL

Mλ
(γ+) = ζ di 〈α̌i ,λ〉2/4T ′′i,+1 = (−1)〈α̌i ,λ〉ζ di 〈α̌i ,λ〉ζ di 〈α̌i ,λ〉2/4T ′i,+1 =

(−1)〈α̌i ,λ〉ζ di 〈α̌i ,λ〉+di 〈α̌i ,λ〉2/4TMλ(γ
+) (the second equality is [LU2, 5.2.3.b)]) for

γ going through an si-wall from a Bruhat smaller chamber to a Bruhat bigger one;
T TL
Mλ

(γ−) = ζ di 〈α̌i ,λ〉2/4T ′′i,+1 = ζ di 〈α̌i ,λ〉2/4TMλ(γ
−) for γ going through an si-wall

from a Bruhat bigger chamber to a Bruhat smaller one; the remaining two half
monodromies are the inverses of the above two.

Note that if siλ = λ, then the scalar factors above are identically equal to one.
We define MWλ := ⊕

μ∈Wλ Mμ, the direct sum over the Weyl group orbit of λ.

Since T TL
MWλ

(γ±) arise from a local system on hreg/W [TL] (i.e., RF
TL
D∅ possesses

a W -equivariant structure), it follows that RFD∅ also possesses a W -equivariant
structure.

5 Topology

5.1 Erratum to [BFS]

We take this opportunity to correct a blunder pertaining to the non-simply laced case
of [BFS]. Let us define the quantities i′ · j ′ as αi · αj in the sense of Sect. 3.1. Then



72 M. Finkelberg and V. Schechtman

throughout [BFS] in all formulas, the occurrences of i · j should be replaced by
i′ · j ′.

For example:

– in [BFS, Part 0, 2.1]: 〈i, j ′〉 = 2i′ · j ′/i′ · i′, and di = i′ · i′/2;
– in the relation [BFS, Part 0, 2.7(d)], one should replace ζ i·j by ζ i′·j ′ ,

Thus, in [BFS, Part 0, 2.7] K̃i = K
di
i as before, and ζi = ζ di , but the meaning of

di should be changed: di is defined not as half the square length of the coroot α̌i

but as half the square length of the root αi .
– On the geometric side, the monodromy of the cohesive local system correspond-

ing to a full counterclockwise turn of a point i around j should be ζ−2i′·j ′ , cf.
[BFS, Part 0, 3.10] and Sect. 5.2

To summarize, the main assertion of [BFS] (reviewed below in more details)
consists of two parts: first, an equivalence of the geometric category FS with a
category of graded modules over the algebra u defined in [BFS, Part 0, 2.7]. This
assertion is true, and our correction just replaces the root system by the dual one
on both sides. The second assertion is an identification of u with Lusztig’s small
quantum group. This identification is described in [BFS, Part 0, 2.12, or Part II, 12.5]
and should be corrected: the “geometric” algebra u is isomorphic to the “Langlands
dual” Lusztig’s algebra connected with the dual root system.

This replacement of the root system by its dual is a rather subtle point. Its origin
lies in the definition of the braiding in [LU2], cf. the proof of [LU2, Lemma 32.2.3].

Also, there is a misprint in the definition of a balance in [BFS, IV.6.6]: n(λ) must
be replaced by 2n(λ) = λ · (λ+ 2ρ).

5.2 A Review of [BFS]: Cohesive System and Algebra u−

For β ∈ N[I ], we consider the configuration space A
β of colored divisors on

the complex affine line A
1. The open subspace

◦
A

β ⊂ A
β of multiplicity free

divisors carries a one-dimensional cohesive local system Jβ with the following
monodromies: ζ−2αi ·αj when a point of color i goes counterclockwise around
a point of color j �= i and −ζ−αi ·αi when two points of color i trade their
positions going around a half circle counterclockwise. We denote by Iβ the Goresky-
MacPherson extension of Jβ to A

β (a perverse sheaf). Given two disjoint open
discs A

1 ⊃ D(pi, εi), i = 1, 2, with centers in pi of radii εi , and β1,2 ∈ N[I ],
we have an open embedding m : D(p1, ε1)

β1 × D(p2, ε2)
β2 ↪→ A

β1+β2 and a
canonical isomorphism ψ : m∗Iβ1+β2

∼−→ Iβ1 � Iβ2 . We denote by r the closed
embedding A

β

R
↪→ A

β ; we keep the same notation for D(p, ε)
β

R
↪→ D(p, ε)β

in case p ∈ R. We consider the real hyperbolic stalk ΦR(I
β) := H •

c (A
β

R
, r∗Iβ).

According to [BFS, Theorem I.3.9], ΦR(I
β) lives in cohomological degree 0.

According to [BFS, Theorem I.3.5], we have a canonical isomorphism ΦR(I
β)∗ �
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ΦR(DIβ) where D stands for the Verdier duality. We have canonical isomorphisms
ΦR(I

β) � H •
c (D(p, ε)

β

R
, r∗Iβ) for arbitrary p ∈ R, ε ∈ R>0.

The isomorphism ψ−1 above gives rise to the multiplication map ΦR(I
β1) ⊗

ΦR(I
β2) � H •

c (D(1, ε1)
β1
R
, r∗Iβ1) ⊗ H •

c (D(0, ε2)
β2
R
, r∗Iβ2) → H •

c (A
β1+β2
R

,

r∗Iβ1+β2) = ΦR(I
β1+β2). The above self-duality gives rise to the comultiplication

map ΦR(I
β1+β2) → ΦR(I

β1) ⊗ ΦR(I
β2). According to [BFS, I,II], the twisted

graded Hopf algebra ΦR(I) := ⊕
β∈N[I ]ΦR(I

β) is naturally isomorphic to u−,
the negative part of the small quantum group at v = ζ .

5.3 A Review of [BFS]: Factorizable Sheaves

We have an open subset
◦
A

β ⊃ ♦
A

β of configurations of distinct colored points
in A

1 \ {0}. It carries a one-dimensional cohesive local system J
β
λ with the

monodromies around diagonals same as the ones of Jβ and also the monodromy
ζ 2λ·αi when a point of color i goes around 0 counterclockwise (here λ is a weight).
We denote by I

β
λ the Goresky-MacPherson extension of Jβλ to A

β (a perverse sheaf).
Denoting by A(p, ε) the complement in A

1 to the closure of D(p, ε) (an open
annulus), we have an open embedding m : A(0, ε)β1 × D(0, ε)β2 ↪→ A

β1+β2 and
a canonical isomorphism ψ : m∗Iβ1+β2

λ

∼−→ I
β1
λ−β2

� I
β2
λ . A factorizable sheaf

of highest weight λ is a collection of perverse sheaves Mβ on A
β equipped with

factorization isomorphisms m∗Mβ1+β2
∼−→ I

β1
λ−β2

� Mβ2 . In particular, since for
p1 ∈ R big enough, and ε1 small enough, D(p1, ε1) ⊂ A(0, ε), and the restriction
of Iβ1

λ−β2
from A(0, ε)β1 to D(p1, ε1)

β1 is canonically isomorphic to Iβ1 , we obtain
isomorphisms

Mβ1+β2 |D(p1,ε1)
β1×D(0,ε)β2

∼−→ Iβ1 �Mβ2 (5.1)

Let a : Aβ → A
1 be the addition and Φa(M

β) the corresponding vanishing
cycles. It is a perverse sheaf on the hypersurface a = 0, but since Mβ is smooth
along coordinate-diagonal stratification, Φa(M

β) is supported at the origin {β ·0} ⊂
A

β , so we will view Φa(M
β) just as a vector space. It is canonically isomorphic to

H •
c (A

β

R+, r∗+M
β) where r+ : Aβ

R+ ↪→ A
β is the closed embedding of the “real half-

space” formed by the real configurations in the preimage a−1(R≥0). Since the van-
ishing cycles commute with duality, we have a canonical isomorphism Φa(M

β)∗ �
Φa(DMβ) (see, e.g., [BFS, Theorem 0.6.3]). The isomorphism (5.1) gives rise to the
map ΦR(I

β1)⊗Φa(M
β2) � H •

c (D(p1, ε1)
β1
R
, r∗Iβ1)⊗H •

c (D(0, ε)β2
R+, r∗+M

β2)→
H •

c (A
β1+β2
R+ , r∗+Mβ1+β2) = Φa(M

β1+β2), i.e., to the action of u− � ΦR(I) on

Φa(M) := ⊕
β∈N[I ]Φa(M

β). The above self-duality gives rise to the coaction

Φa(M
β1+β2) → ΦR(I

β1) ⊗ Φa(M
β2); equivalently, ΦR(I

β1)∗ ⊗ Φa(M
β1+β2) →
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Φa(M
β2). Taking into account the isomorphism ΦR(I

β1)∗ = (u−−β1
)∗ � u

+
β1

, we

obtain an action of u+ on Φa(M). We assign to Φa(M
β) the weight λ − β. This,

together with the action of u±, defines the action of u̇ on Φa(M) (an isomorphism of
u̇ and Lusztig’s small quantum group u̇ = u̇D is established in [BFS, Theorem 2.13],
cf. Sect. 5.1). The resulting functor from the category FS of factorizable sheaves to
the category C of u̇-modules (to be denoted Φ) is an equivalence of categories.

5.4 A Coxeter Structure on FS

The diagram D is the Dynkin diagram of an irreducible Cartan datum (I, ·) of finite
type. The category of factorizable sheaves introduced in [BFS, 0.4.6] will be denoted
by FSD . For a subdiagram D′ ⊂ D, we denote by FSD′ a similarly defined category
with grading by the weight lattice X. That is, compared to the definition of FSD , the
lattice of weights is always X, while the set of colors is D′ ⊂ D = I . The braided
balanced tensor structure on FSD′ is introduced in [BFS, 0.5.9, 0.5.10, IV.6.6].

In order to construct the local systems FFS
D′D′′ of restriction functors FSD′ →

FSD′′ , we vary the definition [BFS, 0.6.7, 0.6.8] of the vanishing cycles functor Φ

in the following way. Let N[D′] # β =∑j∈D′ bjαj , and let Aβ = ∏j∈D′(A1)(bj )

be the configuration space of D′-colored effective divisors on the affine line A
1

with coordinate t , of degree ν. For D′′ ⊂ D′, we have a pairing 〈·, ·〉 : hD′/D′′ ×
A

β → A
1 given in the coordinates (tj,s)j∈D′, 1≤s≤bj on A

β and (zj )j∈D′−D′′
in the basis of fundamental coweights on hD′/D′′ as follows: 〈(zj ), (tj,s)〉 :=
∑

j∈D′−D′′ zj
∑bj

s=1 tj,s . The decomposition β = β ′′ + ′β := ∑
j∈D′′ bjαj +

∑
k∈D′−D′′ bkαk gives rise to the direct product decomposition A

β = A
β ′′ × A

′β .
Clearly, given a perverse sheaf Mβ on A

β , the vanishing cycle Φ〈·,·〉Mβ is a perverse
sheaf supported on hD′/D′′ × A

β ′′ × 0
′β � hD′/D′′ × A

β ′′ .
Let us write ζ in the form ζ = exp(πi�).

Theorem 5.5 IfMβ is a part of data of a factorizable sheafM and � is sufficiently
close to 0, then Φ〈·,·〉Mβ |

h
reg
D′/D′′×Aβ′′ is smooth along h

reg
D′/D′′ .

Proof It suffices to consider an irreducible M and hence an irreducible Mβ . We
may and will assume D′ = D. Then Mβ is isomorphic to the Goresky-MacPherson
sheaf Iβλ of Sect. 5.3 for a certain weight λ. For β = ∑

i∈I biαi , we consider an
unfolding π : J � I such that for any i ∈ I,  π−1(i) = bi . Then the product
of symmetric groups Σπ := ∏

i∈I Sbi acts on the affine space A
J , and A

β =
A

J /Σπ . We denote the natural projection A
J → A

β by π as well. We denote

by
♦
A

J ⊂ A
J the complement to the diagonals in (A1 \ {0})J . We consider the

one-dimensional local system JJλ on
♦
A

J with the following monodromies: ζ−2αi ·αj

when a point of color i goes counterclockwise around a point of color j �= i and
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ζ 2λ·αi when a point of color i goes around 0 counterclockwise. We denote by IJλ
the Goresky-MacPherson extension of JJλ to A

J . Then IJλ carries an evident Σπ -

equivariant structure, so Σπ acts on the perverse sheaf π∗IJλ , and I
β
λ is nothing but

the subsheaf (π∗IJλ )Σπ ,− of Σπ -antiinvariants in π∗IJλ (see [BFS, II.6.13]).
For D′′ ⊂ D = I , let J ′′ := π−1(D′′) ⊂ J and ′J = J \ J ′′, so that AJ ′′ ↪→ A

J

(we set the remaining coordinates to be all zeros). The construction of Sect. 5.4
gives rise to a linear map m : hD/D′′ ×A

J ′′ → T ∗
AJ ′′A

J = (A
′J )∗×A

J ′′ , and we have

Φ〈·,·〉Mβ = (π∗m◦μAJ ′′/AJ I
J
λ )

Σπ ,− where μ is the microlocalization functor [KS1].
Now by Kashiwara-Schapira theorem identifying the microlocalization and

the Fourier transform (see [KS1, Proposition 8.6.3], [BRYL, KS2]), we have
μ
AJ ′′/AJ I

J
λ � FT

AJ ′′ Sp
AJ ′′ IJλ . The specialization Sp

AJ ′′ IJλ is a Σπ -equivariant

perverse sheaf all of whose simple constituents are of the form I
′J1
λ1

� I
J ′′2
λ2

for certain
subsets ′J1 ⊂ ′J, J ′′2 ⊂ J ′′. It suffices to consider these simple constituents. We have

FT
AJ ′′ (I

′J1
λ1

� I
J ′′2
λ2

) � (FT0 I
′J1
λ1
)� I

J ′′2
λ2

.

The Fourier transform (′π∗(m◦ FT0 I
′J1
λ1
)|
h

reg
D/D′′

)Σ′π ,− in De Rham setting (i.e., the

corresponding D-module) is calculated in [FMTV, Theorem 3.2]. It is a version of
Casimir connection

∇ = d − �
∑

α∈′R+

α · α
2

dα

α
fαeα (5.2)

along h
reg
D/D′′ . In particular, the required smoothness assertion follows.

In fact, the authors of [FMTV] work with the De Rham complex of “flag
logarithmic forms,” but [KV, Corollary 6.10] implies that if � is sufficiently close
to 0, this subcomplex is quasi-isomorphic to the De Rham complex DR(I

′J
λ1
). �

Conjecture 5.6 The conclusion of Theorem 5.5 holds true for an arbitrary ζ ∈ C
∗.

5.7 Restriction Functors

The collection of perverse sheaves Φ〈·,·〉Mν |
h

reg
D′/D′′×Aν′′ , ν ∈ Y+, enjoys the D′′-

factorization property, i.e., may be viewed as a local system over hreg
D′/D′′ of objects

of FSD′′ . This provides the desired construction of the local systems FFS
D′D′′ of

restriction functors FSD′ → FSD′′ required by Definition 3.8(Ab), in the formal
neighborhood of 0 with respect to �.

If Conjecture 5.6 is true, we get these local systems for every ζ .
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5.8 Iterated Vanishing Cycles

The isomorphisms of Definition 3.8(Ac) are a particular case of the following
construction. Let 〈·, ·〉W : W × V → A

1 be a bilinear pairing between two complex
vector spaces. Let U ⊂ W be a linear subspace. We denote the restriction of 〈·, ·〉
to U × V by 〈·, ·〉U . Let M be a perverse sheaf on V smooth along a central
hyperplane arrangement. We will view Φ〈·,·〉WM as a perverse sheaf on W × W⊥
(where W⊥ ⊂ V is the annihilator of W ). Note that the pairing 〈·, ·〉W descends to
the well-defined pairing 〈·, ·〉W/U between W/U and U⊥.

Theorem 5.9 There is a canonical isomorphism

SpU×W⊥ Φ〈·,·〉WM
∼−→ Φ〈·,·〉W/U

Φ〈·,·〉UM

of perverse sheaves on U ×W/U ×W⊥.

Proof of Theorem 5.9. Let V ⊥ ⊂ W be the kernel of the bilinear pairing 〈, 〉 :
W × V → A

1. The smooth base change for the projection W → W/V ⊥ reduces
the claim to a construction of a canonical isomorphism

SpY×X⊥/Y×Y⊥ μY/VM
∼−→ μY×X⊥/X×X⊥μX/VM (5.3)

of perverse sheaves on Y × (X/Y )∗ × (V/X)∗, where Y := W⊥ ⊂ X := U⊥ ⊂ V ,
and μ is the microlocalization functor [KS1]. This isomorphism will be proved in
the next section; see Theorem 6.4. �

6 Iterated Specialization and Microlocalization

6.1 Iterated Specialization

Fix a complex or real vector space V equipped with a finite central hyperplane
arrangement H = {Hi}. A linear subspace V ′ ⊂ V is called a flat if it is an
intersection of some hyperplanes from H. A filtration

. . . ⊂ Vi+1 ⊂ Vi ⊂ . . . ⊂ V0 = V

is called admissible if all Vi are flats or 0.
Let V ′′ ⊂ V ′ ⊂ V be an admissible filtration. H induces a central arrangement

on V ′/V ′′. Let ShH(V ′/V ′′) denote the category of constructible sheaves smooth
along the corresponding stratification, and let Db

H
(V ′/V ′′) denote the bounded

derived category of complexes whose cohomology belongs to ShH(V ′/V ′′).
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If V is complex and H is real, which means that all Hi are given by real
equations, then the abelian subcategory PervH(V ) ⊂ Db

H
(V ) admits a description

in terms of linear algebra (quiver) data, cf. [KSCH].
Given a flat W ⊂ V , we have the specialization functor [V, KS1]

SpW : Db

H
(V ) −→ Db

H
(W ⊕ V/W)

whose value on M ∈ Db

H
(V ) can be described as follows [V, Section 9]. We fix

Hermitian metrics on V and on V/W . Let p denote the natural projection V →
V/W . Let ξ = (w, u) ∈ W ⊕V/W . We fix a sufficiently small ε > 0 and 0 < ρ )
ε. We set Uε,ρ = {v ∈ V : ρ‖w − v‖ + ‖ρu− p(v)‖ < ερ}: an open subset of V .
Then the stalk SpW(M)ξ = RΓ (Uε,ρ,M).

The following lemma is a consequence of this description of specialization,
cf. [FKS, Theorem 3.17].

Lemma 6.2

(a) Let V2 ⊂ V1 ⊂ V be an admissible filtration. We have a natural isomorphism
of functors Db

H
(V ) −→ Db

H
(V2 ⊕ V1/V2 ⊕ V/V1),

φ12 : SpV1/V2
SpV2

∼−→ SpV2
SpV1

.

Let us abbreviate the notation as φ12 : Sp1Sp2
∼−→ Sp2Sp1.

(b) Let V3 ⊂ V2 ⊂ V1 ⊂ V be an admissible filtration. The various isomor-
phisms φ from (a) satisfy the pentagon relation φ23 ◦ φ13 ◦ φ12 = φ12 ◦
φ23 : Sp1Sp2Sp3 −→ Sp3Sp2Sp1. �

6.2.1 Cube

Let us explain the relation (b). We have eight categories related to the subquotients
of V :

Db

H
(V )

Db

H
(V3 ⊕ V/V3) Db

H
(V2 ⊕ V/V2) Db

H
(V1 ⊕ V/V1)

Db

H
(V3⊕V2/V3⊕V/V2) Db

H
(V3⊕V1/V3⊕V/V1) Db

H
(V2⊕V1/V2⊕V/V1)

Db

H
(V3 ⊕ V2/V3 ⊕ V1/V2 ⊕ V/V1),

they are in bijection with the vertices of a cube. The functors Sp act from a category
to all the categories one level below it. There are six longest paths from the category
Db

H
(V ) to the category Db

H
((V3 ⊕ V2/V3 ⊕ V1/V2 ⊕ V/V1); these paths are in
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bijection with the symmetric group S3 (this is an instance of a well-known geometric
fact: the longest paths on an n-cube are in bijection with the symmetric group Sn).

The paths are connected by homotopies arising from the natural transformations
φ; this is a weak Bruhat order on S3. Among these six paths, there are two which are
equal. The pentagon (b) above is a hexagon where one of the natural transformations
on the right is the identity.

6.3 Iterated Microlocalization

We also have the microlocalization functor which may be defined as the composition

μW/V : Db

H
(V )

SpW−→ Db

H
(W ⊕ V/W)

FTW−→ Db

H
(W ⊕ (V/W)∗)

where FTW is the Fourier-Sato transformation [KS1]. In order to keep track of the
ambient space, from now on, we will use another notation for the specialization:
SpW = SpW/V .

Theorem 6.4 Let V be a complex vector space, and let Y ⊂ X ⊂ V be an
admissible filtration. For M ∈ PervH(V ), there exists a canonical isomorphism

ψXY : SpY×X⊥/Y×Y⊥ μY/VM
∼−→ μY×X⊥/X×X⊥μX/VM (6.1)

of perverse sheaves on Y × (X/Y )∗ × (V/X)∗.
These isomorphisms satisfy the pentagon relation connected with an admissible

filtration Y ⊂ X ⊂ Z ⊂ V .

6.5 Proof of Theorem 6.4

The rest of this section is devoted to the proof of this theorem.
The following properties are consequences of the definition.

6.5.1 Subspace

For a linear subspace Y ⊂ V and a perverse sheaf M on V , we have a canonical
isomorphism μY/VM

∼−→ μY/Y×(V/Y ) SpY/V M.



Microlocal Approach to Lusztig’s Symmetries 79

6.5.2 Product

For a perverse sheaf M on the product of two vector spaces Y × Z, monodromic
along the projection Y ×Z → Y , we have a canonical isomorphism μY/Y×ZM

∼−→
FSY/Y×ZM between the microlocalization and the Fourier-Sato transform on the
vector bundle Y × Z → Y .

6.5.3 D-modules

We will have to work on the D-module side of the Riemann-Hilbert correspondence,
so we recall the definition of the specialization functor in this context. Given a
linear subspace Y ⊂ V , we choose a complementary subspace Z ⊂ V, V �
Y ⊕ Z, with linear coordinates z1, . . . , zd . Then the ring of differential operators
DV has a grading such that deg zi = 1, deg ∂zi = −1, deg y = deg ∂y = 0
for any i = 1, . . . , d, and any linear coordinates y on Y . Let F •DV be the
corresponding descending filtration. Note that grF DV is canonically isomorphic
to DY×(V/Y ). Let M be a regular holonomic D-module on V . It possesses a unique
(descending) Malgrange-Kashiwara filtration . . . F−1M ⊃ F 0M ⊃ F 1M ⊃ . . .

compatible with the filtration on DV such that (a) for j > 0 and k , 0, we have
F±k±jM = F±jDV F±kM; (b) the generalized eigenvalues of the Euler vector
field

∑
1≤i≤d zi∂zi on FkM/Fk+1M have real parts in [k, k + 1) for any k ∈ Z.

The specialization of M is defined as a DY×(V/Y )-module SpY/V M := grF M .
We say that M is potentially monodromic along Y if the Malgrange-Kashiwara
filtration F •M is compatible with some grading G•M compatible with the grading
on DV . Equivalently, we can choose a complementary subspace Z ⊂ V such that
M is monodromic along the corresponding projection V → Y . Any such choice
defines the isomorphisms Y × Z

∼−→ V and SpY/V M
∼−→ M .

6.5.4 D-modules on a Product Space

For a regular holonomic D-module on the product of two vector spaces Y × Z,
monodromic along the projection Y×Z → Y , its microlocalization μY/Y×ZM

∼−→
FTY/Y×Z is the following regular holonomic DY×Z∗-module. We choose some
linear coordinates y1, . . . , ye on Y and z1, . . . , zd on Z. Let ξ1, . . . , ξd be the dual
coordinates on Z∗. Then we have an isomorphism DY×Z∗

∼−→ DY×Z : yi �→
yi, ∂yi �→ ∂yi , ξj �→ ∂zj , ∂ξj �→ −zj (independent of the choice of coordinates),
and μY/Y×ZM is nothing but M viewed as a DY×Z∗-module via this isomorphism.

Now we proceed to the construction of isomorphism (6.1) in the D-module
setting. All the DV -modules below are assumed to be regular holonomic and smooth
along some central hyperplane arrangement in V .
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Lemma 6.6 If a regular holonomicDV -moduleM is potentially monodromic along
both Y and X, then there is a canonical isomorphism (6.1).

Proof The microlocalization μY/VM is monodromic along the projection Y ×
Y⊥ → Y and potentially monodromic along Y × X⊥. Any choice of the
direct complement Z ⊂ X : X = Y ⊕ Z as in the definition of potential
monodromicity gives rise to the isomorphisms Y × Z∗ × X⊥ ∼−→ Y × Y⊥ and
SpY×X⊥/Y×Y⊥ μY/VM

∼−→ μY/VM . So it remains to construct an isomorphism

μY/VM
∼−→ μY×X⊥/X×X⊥μX/VM . We choose a direct complement S ⊂

V : V = X ⊕ S as in the definition of potential monodromicity. Then the required
isomorphism follows from the explicit formulas in Sect. 6.5.4. One can check that it
does not depend on the choices of the complements Z and S. �
Lemma 6.7 If a regular holonomicDV -moduleM is potentially monodromic along
Y , then there is a canonical isomorphism (6.1).

Proof By Sect. 6.5.1, we can replace the RHS of (6.1) by μY×X⊥/X×X⊥μX/V

SpX/V M . But SpX/V M is potentially monodromic along both Y and X. So it
remains to use Lemma 6.6 and construct an isomorphism

SpY×X⊥/Y×Y⊥ μY/VM
∼−→ μY/X×(V/X) SpX/V M (6.2)

We choose a direct complement Z ⊂ X : X = Y ⊕ Z and a direct complement
S ⊂ V : V = X ⊕ S such that Z ⊕ S is as in the definition of potential
monodromicity. We choose the linear coordinates z1, . . . , zd in Z, and s1, . . . , se
in S, and the dual coordinates ξ1, . . . , ξd in Z∗, and η1, . . . , ηe in S∗. The DV -
module M has a grading G•M compatible with the grading on DV such that
deg zi = deg sj = 1, deg ∂zi = deg ∂sj = −1, deg yk = deg ∂yk = 0.
According to Sect. 6.5.4, the microlocalization μY/VM amounts to the substitution
ξi �→ ∂zi , ηj �→ ∂sj , ∂ξi �→ −zi, ∂ηj �→ −sj , yk �→ yk, ∂yk �→ ∂yk . To
compute the specialization SpX/V M , we use the Malgrange-Kashiwara filtration
F •M as in Sect. 6.5.3. To compute the LHS of (6.2), we use the unique filtration
′F •M compatible as in Sect. 6.5.3 with the grading on DV such that deg zi =
−1, deg ∂zi = 1, deg sj = deg ∂sj = deg yk = deg ∂yk = 0 (note that it is not
the Malgrange-Kashiwara grading of DV , but rather the Fourier image of one).

The construction of the isomorphism (6.2) amounts to the construction of the
isomorphism

grF M
∼−→ gr

′F M (6.3)

Note that both F •M and ′F •M are compatible with the grading G•M , that is,
F iM = ⊕j (F

iM ∩ GjM) and ′F iM = ⊕j (
′F iM ∩ GjM) for any i ∈ Z. From

the uniqueness of ′F •M and F •M , it follows that ′FkM∩GjM = Fk+jM∩GjM .
Thus, the desired isomorphism (6.3) is the direct sum of natural isomorphisms
( ′FkM∩GjM)/( ′Fk+1M∩GjM) = (F k+jM∩GjM)/(F k+j+1M∩GjM). �
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6.8 The End of the Proof

Now we can finish the construction of isomorphism (6.1) for an arbitrary
DV -module M . It suffices to construct the isomorphism (6.2) for arbitrary
M (not necessarily potentially monodromic along Y ). By Sect. 6.5.1, we can
replace the RHS of (6.2) by μY/X×(V/X) SpY/X×(V/X) SpX/V M . By Lemma 6.2,
we can replace this by μY/X×(V/X) SpY×(X/Y )/Y×(V/Y ) SpY/V M . However,
SpY/V M is already potentially monodromic along Y , so by Lemma 6.7, we have

SpY×X⊥/Y×Y⊥ μY/V SpY/V M
∼−→ μY/X×(V/X) SpY×(X/Y )/Y×(V/Y ) SpY/V M .

One last application of Sect. 6.5.1 allows to replace the LHS by SpY×X⊥/Y×Y⊥
μY/VM .

This completes the proof of Theorem 6.4 and hence that of Theorem 5.9.

Remark 6.9 The statements of Lemma 6.2 and Theorem 6.4 look similar, but the
proofs are very different: one is topological; another is De Rham (via D-modules).
Let us comment on this discrepancy. On the one hand, Lemma 6.2 has an easy proof
in De Rham setting as well. On the other hand, let PervH(V ) ⊂ Db

H
(V ) denote

the subcategory of perverse sheaves. If all Hi ∈ H are given by real equations, then
PervH(V ) admits an explicit description in terms of linear algebra (quiver) data,
cf. [KSCH]. The specialization and microlocalization functors can be described in
this language, and a topological proof of Lemma 6.2 (resp. Theorem 6.4) is given
in [FKS, Theorem 3.17] (resp. [FKS, Theorem 5.6]).

7 Discussion

7.1 Desiderata

We have gone to all this trouble just to conjecture that the functor Φ of [BFS] takes
the Coxeter structure of Sect. 5.4 to the one of Sect. 4.4. By [FMTV, Theorem 3.2]
and Fourier=microlocalization, this would imply that the monodromy of the Casimir
connection is given by the Lusztig symmetries for any ζ . Note that the functor Φ

of [BFS] is nothing but the stalk at the fundamental chamber CD′
0 of the local system

of the restriction functors FFS
D′∅ : FSD′ → VectX of Sect. 5.4.

7.2 Tilted Functors Φ

Recall the setup of Sect. 5.3. Let us choose a point z(w) in a chamber Cw ⊂
h

reg
R

, w ∈ W . Instead of Φa(M
β), let us consider the spaces of “tilted” vanishing

cycles Φw(M
β) := Φ〈z(w),?〉(Mβ) � H •

c (A
β

Rw
, r∗wMβ) where rw : Aβ

Rw
↪→ A

β is
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the closed embedding of the “tilted halfspace” formed by the real configurations in
the preimage 〈z(w), ?〉−1(R≥0). In particular, Φa � Φe.

For a real p1 such that 〈z(w), β · p1〉 is positive and big enough, similar
to Sect. 5.3, we obtain the map

ΦR(I
β1)⊗Φw(M

β2) � H •
c (D(p1, ε1)

β1
R
, r∗Iβ1)⊗H •

c (D(0, ε)β2
Rw

, r∗wMβ2)→

H •
c (A

β1+β2
Rw

, r∗wMβ1+β2) = Φw(M
β1+β2),

i.e., the action of u− � ΦR(I) on Φw(M) :=⊕β∈N[I ]Φw(M
β).

The self-duality of Φw gives rise to the action of u+ on Φw(M) similar
to Sect. 5.3. We assign to Φw(M

β) the weight w(λ−β), and using the isomorphisms
T ′w± : u+ ∼−→ T ′w±(u+) ⊂ u, u− ∼−→ T ′w±(u−) ⊂ u, we obtain the action of
T ′w±(u+), T ′w±(u−) on Φw(M). This, together with the above grading, defines an
action of u̇ on Φw(M), i.e., gives rise to two functors Φw± : FS→ C.

Given a straight line interval γw from z(e) to z(w), we obtain the corresponding
“half monodromy” transformations γ±w,β(M) : Φe(M

β)
∼−→ Φw±(Mβ) (indepen-

dent of the choice of γ ) for any factorizable sheaf M and β ∈ N[I ].
The following conjecture is a reformulation of Sect. 7.1.

Conjecture 7.3 The maps {γ±w,β(M), M ∈ FS} define two natural transformations

of functors γ+w : Φ ∼−→ Φw+ and γ−w : Φ ∼−→ Φw−.

As we have already mentioned, the main theorem of [TL] implies this conjecture
for ζ = exp(h̄), h̄ being a formal parameter.
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1 Introduction

1.1 Setup and Goals

The theory of perverse sheaves can be said to provide an interpolation between
homology and cohomology (or to mix them in a self-dual way). Since homology,
sheaf-theoretically, can be understood as cohomology with compact support, inter-
esting operations on perverse sheaves usually combine the functors of the types f!
and f∗ or, dually, the functors of the types f ! and f ∗ in the classical formalism of
Grothendieck.

An important context when this point of view can be pushed quite far is that
of perverse sheaves F on a complex affine space C

n smooth with respect to the
stratification given by an arrangement H of hyperplanes with real equations [KS1].
Denoting by iR : Rn ↪→ C

n the embedding, we associate to such an F its hyperbolic
stalks

EA(F) = RΓ (A, i∗Ai!RF).

Here iA : A ↪→ R
n is the embedding of a face (stratum) of the real arrangement. It is

remarkable that the EA(F) reduce to single vector spaces, not complexes (while the
ordinary stalks of F are of course complexes, F being a complex of sheaves). This
type of phenomena was originally observed by T. Braden in the context of varieties
with a C

∗-action [Br, DG].
It was shown in [KS1] that the vector spaces EA(F) together with natural linear

maps γAB, δBA (“generalization and specialization”) connecting them determine the
perverse sheaf F uniquely. Moreover, the category Perv(Cn,H) of perverse sheaves
of the above type is equivalent to the category Hyp(H) formed by linear algebra data
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(EA, γAB, δBA) satisfying an explicit set of conditions. We call such linear algebra
data hyperbolic sheaves; see Sect. 2D.

The goal of this paper is to develop the beginnings of a “hyperbolic calculus,”
describing the effect of several standard operations on perverse sheaves directly in
terms of hyperbolic sheaves. These operations include forming vanishing cycles,
specialization, and Fourier-Sato transform. To illustrate the importance of such
questions, recall [BFS] that the weight components of the highest weight modules
(e.g., Verma, or their irreducible quotients) over quantized Kac-Moody algebras
have interpretation as the spaces of vanishing cycles Φf (F) for appropriate F ∈
Perv(Cn,H) and f . In this case, H is a so-called discriminantal arrangement,
F is an extension of a one-dimensional local system on the generic stratum,
and f is a linear function. The monodromy of Fourier-Sato transforms of these
sheaves is related to the action of Lusztig’s symmetries on the corresponding
representations [FS].

1.2 Pattern of the Results

To identify the effect of each operation on perverse sheaves above, we produce a
new hyperbolic sheaf out of a given one. Our constructions and results fall into the
following pattern.

(1) Each vector space of the new hyperbolic sheaf is identified with the 0th
cohomology space of an otherwise acyclic complex formed by some of the
vector spaces EA⊗ orA (here orA is the orientation space), with the differential
formed out of either the γAB or the δBA. So there are two versions of the answer,
the γ -answer and the δ-answer, in each case.

(2) The complexes in (1) are subquotients of the two fundamental complexes
(Proposition 2.12) calculating RΓc(C

n,F) and RΓ (Cn,F). These complexes
are sums over all the faces A of the spaces EA ⊗ orA, and their differentials are
formed out of the γAB and δAB , respectively. The RΓc(C

n,F) and RΓ (Cn,F)

typically have more than one nonzero cohomology, but the subquotients we take
turn out to be acyclic outside degree 0.

(3) The choice of subquotient is obtained by taking not all but some summands
EA ⊗ orA. The selection rule, depending on the problem, reflects the geometry
of the problem in some rough (“tropical”) way.

(4) In each case, there is also a companion real statement, about complexes of
sheaves on R

n constructible w.r.t. the stratification by the faces. This real
statement is proved first, and the statement for perverse sheaves is deduced
from it.
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1.3 Structure of the Paper

In § 1, we recall the basics of the description of Perv(Cn,H) by hyperbolic sheaves.
§ 2 is devoted to the calculation of the space of vanishing cycles Φf (F) in

terms of hyperbolic sheaves. Here f : C
n → C is a linear function with real

coefficients. The selection rule for subquotients of RΓc(C
n,F) and RΓ (Cn,F)

consists in taking all faces B ⊂ R
n on which f ≥ 0.

§ 3 describes the specialization of F ∈ Perv(Cn,H) along a C-vector subspace
LC ⊂ C

n with real equations. This is a perverse sheaf νL(F) on the normal bundle
TLC

n which is itself a vector space. In this case, we have the real subspace LR and
the product arrangement νL(H) in TLR

R
n. We further have the specialization at the

level of faces which is a monotone map of posets

ν : {faces of H
}→ {

faces of νL(H)
}
.

The selection rule for subquotients of RΓc(C
n,F) and RΓ (Cn,F) consists in

taking all faces A with ν(A) = B being a fixed face B of νL(H). This produces
complexes calculating the hyperbolic stalk of νL(F) at B.

We also give a description of the specialization for constructible sheaves of Rn

as the direct image under an appropriate cellular map q : R
n → TLR

R
n. This

allows us to identify (in our particular case) different possible (and, in general, non-
equivalent) definitions of the bispecialization functor [ST, T] for a flag of subspaces
N ⊂ M ⊂ V .

In § 4, we give a similar description of the Fourier-Sato transform FS(F) which is
a perverse sheaf on the dual space (Cn)∗. It is smooth with respect to an appropriate
arrangement H∨. Each face A∨ on H∨ gives a natural strictly convex cone V (A∨) ⊂
R

n. The selection rule for subquotients of RΓc(C
n,F) and RΓ (Cn,F) consists in

taking all faces B ⊂ V (A∨) for a fixed A∨. This produces complexes calculating
the hyperbolic stalk of FS(F) at A∨.

Combining the descriptions of the specialization and of the Fourier-Sato trans-
form at the level of hyperbolic sheaves, one obtains a description of the microlocal-
ization μL(F) along a linear subspace with real equations. The final §5 is dedicated
to comparison, in our linear case, of several possible definitions of the second
microlocalization of Kashiwara and Laurent; see [L, ST, T].

2 Real and Complex Data Associated with Perverse Sheaves

2.1 The Real Setup

Let VR = R
n be a finite-dimensional vector space over R and H be a finite central

arrangement of hyperplanes in VR. We denote by SR = SR,H the poset of faces of
H; see, e.g., [KS1], §2A. Faces form a real stratification of VR into (a disjoint union
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of) locally closed polyhedral cones. The order ≤ on SR is by inclusion of closures:
A ≤ B means A ⊂ B. For an integer p ≥ 0, we use the notation A <p B to signify
that A ≤ B and dim(B) = dim(A) + p, in particular, A <0 B means A = B. We
denote by iA : A→ VR the embedding of a face A.

Let k be a field and Vectk be the category of finite-dimensional k-vector spaces.
For any poset S, we denote by Rep(S) the abelian category of representations of S

over k, i.e., of covariant functors from S (considered as a category) to Vectk. By
Db(Rep(S)), we denote the bounded derived category of Rep(S).

For a topological space X, we denote by ShX the category of sheaves of k-vector
spaces on X and by Db(X) the derived category of ShX.

We denote by Sh(VR,SR) the abelian category formed by sheaves of k-vector
spaces on VR which are constructible with respect to the stratification SR. Let also
Db(VR,SR) be the full subcategory in the bounded derived category of sheaves of
k-vector spaces on VR formed by complexes with all cohomology sheaves lying in
Sh(VR,SR). For G ∈ Db(VR,SR) and a face A, we denote

GA = RΓ (A,G) := RΓ (A, i∗AG) ∈ Db(Vectk) (2.1)

the stalk of G at A. Thus, GA is a complex which is a single vector space, if G is a
single sheaf. The following is well known.

Proposition 2.2

(a) We have an equivalence of categories

Sh(VR,SR) −→ Rep(SR), G �→ (
GA, γAB : GA → GB, A ≤ B

)
.

Here γAB is the generalization map.
(b) The natural functor Db(Sh(VR,SR)) → Db(VR,SR) is an equivalence. In

particular:
(c) We have an equivalence of categories Db(Sh(VR,SR))→ Db(Rep(SR)).

In view of (b), we can interpret the equivalence in (c) as sending a complex of
sheaves G to the collection of complexes of vector spaces GA defined by (2.1) and
generalization maps (morphisms of complexes) γAB connecting them.

By a cell, we mean a topological space B homeomorphic to R
d for some d. For a

cell B, we denote by orB = H
dim(B)
c (B,k) the one-dimensional orientation vector

k-space of B. For two cells B,C, we set orB/C = orC ⊗ or∗B and call it the relative
orientation space of C and B.

In particular, any face B ∈ SR is a cell and so we have the space orB . When B,C

are two faces such that B <1 C, we have a canonical “incidence isomorphism”

εBC : orB → orC .

It can be seen as a canonical trivialization of orC/B . If B <1 C1, C2 <1 D is a
square of codimension 1 inclusion of faces, then the diagram
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orB

εB,C2

��

εB,C1
�� orC1

εC1,D

��
orC2

εC2,D

�� orD

(2.3)

is anti-commutative.
Let jA : A → VR be the embedding of a face A. If A <1 A′ are two faces of

H, we have a canonical morphism ξAA′ : jA!kA −→ jA′!kA′ [1] in Db(VR,SR).
Viewed as an element of Ext1(jA!kA, jA′!kA′), it represents the extension given by
the subsheaf in (jA′)∗ kA′ formed by sections which vanish on all codimension 1
faces of A′ except A. The morphisms ξAA′ anticommute in squares of codimension
1 embeddings, just like the morphisms εAA′ in (2.3).

Proposition 2.4 For G ∈ Db(VR,SR), the following are equivalent:

(i) G corresponds to the data (GA, γAB).
(ii) We have a resolution of G (a complex overDb(ShVR

) with total object G) of the
form

⊕

dim(A)=0

jA!(GAA
)
γ⊗ξ−→

⊕

dim(A)=1

jA!(GAA
)[1] γ⊗ξ−→

⊕

dim(A)=2

jA!(GAA
)[2] γ⊗ξ−→ · · · ,

the direct sums ranging over all faces of H of given dimension.

Proof See, e.g., [KS1] Eq. (1.12). �
Corollary 2.5 If G ∈ Db(VR,SR) corresponds to (GA, γAB), then

RΓc(VR,G) � Tot

{ ⊕

dim(A)=0

GA ⊗ orA
γ⊗ε−→

⊕

dim(A)=1

GA ⊗ orA
γ⊗ε−→ · · ·

}

(the cohomology with compact supports is calculated by the cellular cochain
complex).

Proof This follows because RΓc(VR, jA!kA) = or(A)[− dim(A)] (cohomology of
a cell with compact support). �

2.2 The Complex Setup

Let VC = C
n be the complexification of VR and HC the arrangement of hyperplanes

in VC formed by the HC, the complexifications of the hyperplanes H ∈ H. By a flat
of HC, we will mean a subspace of the form L = ⋂

H∈J HC for a subset J ⊂ H
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(with J = ∅ or J = H allowed). Flats form a poset Fl(HC) ordered by inclusion.
Because H is assumed central, Fl(HC) has 0 as the minimal element and VC as the
maximal element.

For a flat L, we denote its generic part by

L◦ = L \
⋃

H∈H, HC �⊃L

L ∩HC. (2.6)

The subsets L◦ form a stratification of VC which we denote by SC = SC,H. We
view it as a poset, isomorphic to the poset of flats.

Note that faces can be defined as connected components of L◦
R
= L◦ ∩ VR for

strata L◦ of SC. We therefore have the morphism of posets (“complexification”)

c : SR −→ SC.

We denote by Db(VC,SC) the full subcategory in the bounded derived category
of sheaves of k-vector spaces on VC formed by complexes whose cohomology
sheaves are constructible with respect to SC. This category has a perfect duality
given by passing from F to F∗, the Verdier dual complex. Inside it, we have
Perv(VC,SC) the abelian subcategory of perverse sheaves. We normalize the
conditions of (middle) perversity so that kVC

[n], the constant sheaf put in degree
(−n), is perverse. This normalization agrees with that of [BBD] and differs by
shift from that of [KS1]. The abelian category Perv(VC,SC) is closed under Verdier
duality.

2.3 Real Data: Stalks and Hyperbolic Stalks

Let iR;VR → VC be the embedding. It induces exact functors of triangulated
categories

i∗
R
, i!

R
: Db(VC,SC) −→ Db(VR,SR).

To every complex F ∈ Db(VC,SC) and every face A ∈ SR, we can associate
therefore two complexes of vector spaces, which we call the stalk and the hyperbolic
stalk of F at A:

FA = (i∗
R
F)A = RΓ (A, i∗Ai∗RF), EA(F) = (i!

R
F)A = RΓ (A, i∗Ai!RF).

For any pair of faces A ≤ B, we have the generalization maps (morphisms of
complexes) for i∗

R
F and i!

R
F :

�AB : FA −→ FB, γAB : EA(F) −→ EB(F). (2.7)
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By the Duality Theorem (see [KS1] Prop. 4.6 or [BFS] Pt. I, Thm. 3.9), we have
natural isomorphisms

EA(F∗) � EA(F)∗. (2.8)

which imply the following.

Proposition 2.9

(a) We have a canonical identification EA(F) � RΓ (A, i!Ai∗RF).
(b) The hyperbolic stalk EA(F) is identified with the complex

F≥A := Tot

{

FA
�⊗ε−→

⊕

B>1A

FB ⊗ orB/A
�⊗ε−→

⊕

B>2A

FB ⊗ orB/A
�⊗ε−→ · · ·

}

with the differential �⊗ ε having matrix elements �BC ⊗ εBC , B <1 C. �
For a dual statement, expressing ordinary stalks through hyperbolic stalks, see

Corollary 2.14.

Proof Part (a) follows from (2.8) and the fact that Verdier duality interchanges i∗
and i!. Part (b) follows by interpreting i!Ai∗RF as RΓ A(i

∗
R
F), the complex of sheaves

formed by (derived) sections with support in A. The stalk of this complex at any
a ∈ A can be seen as

RΓ{a}(D, i∗
R
F) = RΓc(D, i∗

R
F),

where D ⊂ VR is a small transverse open ball (of complementary dimension) to A

centered at a. The situation is similar to that of Corollary 2.5 (with a ball instead of
a vector space), and the same argument gives the result. �

It was proved in [KS1] Prop. 4.9(a) that for F ∈ Perv(VC,SC), the complex
i!
R
(F) is exact in degrees �= 0, and so the functor

Perv(VC,SC)→ Sh(VR,SR), F �→ E(F) := H 0(i!
R
F) = H

0
VR

(F)

(2.10)
is an exact functor of abelian categories. In particular, each EA(F) reduces to a
single vector space. Further, (2.8) allows us to define maps of vector spaces

δBA = δFBA : EB(F) −→ EA(F), A ≤ B, δFBA := (γF∗
AB )∗.

which form an anti-representation of SR, i.e., a contravariant functor
(SR,≤)→ Vectk. This leads to the following concept.
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2.4 Hyperbolic Sheaves

By a hyperbolic sheaf on H, we will mean a datum

Q = (
EA, γAB : EA → EB, δBA : EB → EA,A ≤ B

)

where EA,A ∈ SR, are finite-dimensional k-vector spaces, (γAB) form a represen-
tation of SR, and (δBA) form an anti-representation so that the following additional
conditions hold:

(i) For each B ≤ A, γBAδAB = IdEA
. This allows us to define for arbitrary A,B ∈

SR, the “flopping operator”

φAB := γCBδAC : EA −→ EB.

Here C ∈ SR is any face such that C ≤ A,B, and the definition does not
depend on the choice of C.

(ii) Let us call a triple of faces (A,B,C) collinear if there exist points x ∈ A, y ∈
B, z ∈ C lying on the same straight line, with y ∈ [x, z]. Then for any such
collinear triple, we must have

φAC = φBC φAB.

(iii) Let A,B be two faces. Let us say that they are neighbors if they have the same
dimension d, and there exists a face C ≤ A,C ≤ B, with dimC = d − 1 (a
wall separating A and B). Such a wall is unique if it exists. For any such pair
of neighbors, we require that φAB is an isomorphism.

We denote by Hyp(H) the abelian category formed by hyperbolic sheaves on H.
This category has a perfect duality

Q = (EA, γAB, δBA) �→ Q∗ = (E∗A, δ∗BA, γ
∗
AB).

The main result of [KS1] can be formulated as follows.

Theorem 2.11 The functor

F �→ Q(F)= (EA(F), γAB : EA(F)→ EB(F), δBA : EB(F)→ EA(F), A ≤ B
)

defines an equivalence Perv(VC,SC)→ Hyp(H). This equivalence commutes with
duality: Q(F∗) � Q(F)∗. �

The goal of this paper is to describe various features of perverse sheaves
explicitly, in terms of the linear algebra data given by the associated hyperbolic
sheaves.

Let us first note the following.
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Proposition 2.12 If F ∈ Perv(VC,SC) corresponds to a hyperbolic sheaf
Q(EA, γAB, δBA), then

RΓc(VC,F) �
{ ⊕

dim(A)=0

EA ⊗ orA
γ⊗ε−→

⊕

dim(A)=1

EA ⊗ orA
γ⊗ε−→ · · ·

}

,

RΓ (VC,F) �
{ ⊕

codim(A)=0

EA ⊗ orA
δ⊗ε−→

⊕

codim(A)=1

EA ⊗ orA
δ⊗ε−→ · · ·

}

.

Proof The first quasi-isomorphism follows from Corollary 2.5 and the lemma
below. The second quasi-isomorphism follows from the first one by applying the
Verdier duality. �
Lemma 2.13 For any F ∈ Db(VC,SC), we have

RΓc(VC,F) � RΓc(VR, i
!
R
F).

Proof of the Lemma: Let i0,C : {0} → VC and i0,R : {0} → VR be the embeddings
of the origin. Any F ∈ Db(VC,SC) is R+-conic, i.e., each cohomology sheaf of F
is locally constant on each orbit of the scaling action of R>0 on VC. This implies
that

RΓc(VC,F) � RΓ{0}(VC,F) = RΓ (VC, i
!
0,CF).

Similarly, i!
R
F is R+-conic on VR and

RΓc(VR, i
!
R
F) � RΓ{0}(VR, i

!
R
F) = RΓ (VC, i

!
0,Ri

!
R
F),

which is the same as the above because iRi0,R = i0,C. �
We can now complement Proposition 2.9 by a “Koszul dual” statement.

Corollary 2.14 For F ∈ Perv(VC,SC) the ordinary stalk FA, A ∈ SR is expressed
through hyperbolic stalks as follows:

FA �
{ ⊕

B≥A
codim(B)=0

EB ⊗ orB/A
δ⊗ε−→

⊕

B≥A
codim(B)=1

EB ⊗ orB/A
δ⊗ε−→ · · ·

}

.

Proof For A = 0, this is the second identification of Proposition 2.12, since F0 =
RΓ (U,F) for a small convex open U # 0, and this complex is independent of U ,
so is the same for U = VC.

For an arbitrary A, the statement reduces to the above by considering the quotient
arrangement H/LR in VR/LR, where LR is the R-linear span of A. Faces of H/LR

are in bijection with faces B of H such that B ≥ A.
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The arrangement H/LR represents the transversal slice M to A; the restriction
F |MC

to the complexified transversal slice is, by Kapranov and Schechtman [KS1]
Prop. 5.3, represented by the hyperbolic sheaf Q≥A formed by EB,B ≥ A, so the
calculation of

FA = RΓ (MC,F |MC
) = (F |MC

)0

reduces to the above case. �

3 Vanishing Cycles in Terms of Hyperbolic Sheaves

The standard microlocal approach to the study of perverse sheaves on any strati-
fication is in terms of the local systems of vanishing cycles on the generic parts
of conormal bundles to the strata; see [MV, KS2]. Our first result provides an
explicit description of the fibers of these local systems for perverse sheaves from
Perv(VC,SC).

3.1 Background on Vanishing Cycles

We recall that for any (polynomial) function f : VC → C and any perverse sheaf
F on VC, we have a perverse sheaf Φf (F) on VC supported on the hypersurface
{f = 0} and known as the perverse sheaf of vanishing cycles; see [Be, De]. We
will use the following real analytic interpretation of this perverse sheaf [KS2]. This
interpretation reflects the intuitive meaning of the term “vanishing cycles.”

Proposition 3.1 We have an isomorphism in the derived category of sheaves on VC:

Φf (F) � i∗RΓ {-(f )≥0}(F),

where i is the closed embedding of the subset {f = 0} into {-(f ) ≥ 0}. �
We will be interested in the case when f is linear. More precisely, let L◦ ∈ SC

be a stratum, i.e., the generic part of a flat L, as in (2.6). The conormal bundle to
L◦ is

T ∗L◦VC = L◦ × (VC/L)∗ ⊂ VC × V ∗
C
= T ∗VC.

A hyperplane Π ⊂ VC is said to be transversal to SC at L if L ⊂ Π , and L′ ∈
Fl(HC) with L′ ⊂ Π implies L′ ⊂ L. Let us call a polarization at L a linear
function f : VC → C such that Π := Ker f is transversal to SC at L. Polarizations
of L form an open subset Pol(L) ⊂ (VC/L)∗, and we define the generic part of the
conormal bundle to L◦ as
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(T ∗L◦VC)
◦ = L◦ × Pol(L).

Proposition 3.2 Let F ∈ Perv(VC,SC). If L ∈ Fl(HC) and f ∈ Pol(L), then
Φf (F) is supported on L. In particular, being perverse, it reduces to a local system
in degree (− dim(L)) on L◦.

Proof Let x ∈ {f = 0} ⊂ VC, and suppose x /∈ L. Since f ∈ Pol(L), the
hyperplane Π = {f = 0} cannot contain any flats L′ which are not contained in L.
So x is not contained in any flat other than VC itself, which means that near x the
perverse sheaf F is reduced to a local system in degree (−n), and so Φf (F)x = 0.

�
We now describe the stalks of the local system Φf (F) at the maximal faces

of LR.

3.2 The Complex Result

Theorem 3.3 Let F ∈ Perv(VC,SC) and Q = (EA, γAB, δBA) be the correspond-
ing hyperbolic sheaf as in Theorem 2.11. Suppose further that f ∈ Pol(L) is real,
i.e., takes VR to R. Let A be a connected component of L◦

R
, so A is a face of H.

Consider the complex

E•f,A =
{

EA
γ⊗ε→

⊕

B>1A, f |B≥0

EB⊗orB/A
γ⊗ε→

⊕

B>2A, f |B≥0

EB⊗orB/A
γ⊗ε→ · · ·

}

with the differential γ ⊗ ε having matrix elements γBC ⊗ εBC , B >1 C. Then E•f,A
is exact outside of the leftmost term, and its leftmost cohomology is identified with
the vector space Φf (F)a[− dim(L)] for any a ∈ A.

The theorem implies that the shifted space of vanishing cycles is identified with
the subspace

Ef,A = H 0(E•f,A) =
⋂

B>1A, f |B≥0

Ker(γAB) ⊂ EA.

It also implies the following.

Corollary 3.4 Consider the complex

E

∧•
f,A =

{

· · · δ⊗ε→
⊕

B>2A, f |B≥0

EB ⊗ orB/A
δ⊗ε→

⊕

B>1A, f |B≥0

EB ⊗ orB/A
δ⊗ε→ EA

}

with the differential δ⊗ε having matrix elements δCB⊗εCB , B >1 C. Then E•f,A is
exact outside of the rightmost term, and its rightmost cohomology is identified with
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the vector space Φf (F)a[− dim(L)] for any a ∈ A. In other words,

Ef,A � Coker

(∑
δBA :

⊕

B>1A, f |B≥0

EB −→ EA

)

.

Proof of the Corollary: The vanishing cycle functor commutes with Verdier dual-
ity. Therefore, the vector spaces Φf (F)a[− dim(L)] and Φf (F∗)a[− dim(L)] are
canonically dual to each other. On the other hand, the hyperbolic sheaf correspond-
ing to F∗ is, by Theorem 2.11, identified with Q∗ = (E∗A, δ∗BA, γ

∗
AB). Our statement

follows by combining this with Theorem 3.3 for F and F∗. �
Remark 3.5 Theorem 3.3 and Corollary 3.4 can be interpreted as follows. The same
graded space E•f,A possesses two differentials going in the opposite directions: one
induced by the maps γ and the other one induced by the maps δ. It is natural
therefore to form the “Laplacian” Δ = δγ + γ δ out of them.

In the examples we have calculated, Δ : Ei
f,A → Ei

f,A is an isomorphism for
i > 0. This of course implies the acyclicity statements above. One may wonder
if this stronger property (Laplacian being an isomorphism for i > 0) holds more
generally.

3.3 The Real Analog

Before proving Theorem 3.3, we establish its real counterpart.
Let G ∈ Db(VR,SR), and let (GA, γAB) be the complex of representations of SR

corresponding to G by Proposition 2.2. That is, GA is the ordinary stalk of G at A,
and γAB is the generalization map.

Given a nonzero f ∈ V ∗
R

, we have the real hyperplane Π = {f = 0} ⊂ VR.
The arrangement H cuts out an arrangement H ∩Π in Π . We denote by SR,Π the
stratification of Π into cells of H∩Π . We then have the real version of the vanishing
cycle sheaf. It is the complex of sheaves

i∗ΠRΓ f≥0(G) ∈ Db(Π,SR,Π ).

Here iΠ : Π → VR is the embedding.

Proposition 3.6

(a) Let C′ be a cell ofH∩Π and C be the unique cell ofH such that C′ = C ∩Π .
The stalk of RΓ f≥0(G) at C′ is quasi-isomorphic to the total complex of the
double complex

{

GC
γ⊗ε−→

⊕

D>1C, f |D≥0

GD ⊗ orD/C
γ⊗ε−→

⊕

D>2C, f |D≥0

GD ⊗ orD/C
γ⊗ε−→ · · ·

}
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(b) Let C′1 ≤ C′2 be an inclusion of cells of H ∩Π . The generalization map

γC′1,C′2 : RΓ f≥0(G)C1 −→ RΓ f≥0(G)C2

is given by the maps γDD′ for G which induce a morphism of complexes in (a).

Proof Let x ∈ C′ and U be a small open ball centered at x. By definition,

RΓ f≥0(G)C′ = RΓ (U,U ∩ {f < 0};G)

The relative cellular cochain complex representing this is precisely the complex in
(a). Part (b) also follows immediately. �

3.4 Proof of Theorem 3.3

Let f be as in the theorem. Considering f as a complex functional on VC, we have
the complex hyperplane ΠC = {f = 0} ⊂ V ∗

C
and the perverse sheaf Φf (F) on

ΠC. By Proposition 3.1, we can express the hyperbolic stalk of Φf (F) at a cell
C′ ∈ SR,Π as

EC′(Φf (F)) = (RΓ ΠR
RΓ -(f )≥0(F))C′ = (RΓ f≥0 RΓ VR

(F))C′ .

Now, the complex (actually a sheaf) G = RΓ VR
(F) on VR is given by the

stalks EB and generalization maps γBC from the hyperbolic sheaf Q. So applying
Proposition 3.6 to this G and to the cell C′ = A as in the formulation of theorem,
we get the statement. �
Remark 3.7 It is worth noticing the following contrast between Proposition 3.6 and
Theorem 3.3. If G is an arbitrary sheaf (not a complex) on VR, then Proposition 3.6
gives, in general, a complex with several nontrivial cohomology spaces, because
RΓ f≥0(G) need not reduce to a single sheaf. However, in the case when G has the
form G = RΓ VR

(F) for a perverse sheaf F ∈ Perv(VC,SC), this complex is, by
Theorem 3.3, quasi-isomorphic to a single vector space in degree 0.

A more immediate instance of such special behavior of the sheaves RΓ VR
(F)

can be seen from the property (i) of hyperbolic sheaves in Sect. 2D: the condition
δABγBA = Id implies that each γBA is surjective.
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4 Specialization and Hyperbolic Sheaves

4.1 Generalities on Specialization

We recall the necessary material from [KS2] §4.1-4.2. Let X be a C∞-manifold,
M ⊂ X a locally closed submanifold, and TMX the normal bundle to M in X.
Any subset S ⊂ X gives rise to its normal cone with center M , which is a closed
subset CMS ⊂ TMX depending only on the closure S. We will need the following
example.

Example 4.1 Let X be a finite-dimensional R-vector space and M ⊂ X be an R-
vector subspace. Then TMX = M×(X/M). If S is also an R-vector subspace, then,
with respect to the above identification,

CM(S) = (M ∩ S)× (S/(M ∩ S)
)
.

For any complex of sheaves G ∈ Db(ShX), we have its specialization at M

which is an R>0-conic complex of sheaves νM(G) ∈ Db(TMX). We will later recall
its definition in the case we need.

4.2 The Case of Sheaves on Arrangements

We will study this construction in two related cases, related to the data of a real
arrangement (VR,H).
Complex case: X = VC, M = LC a complex flat of H and G = F ∈ Perv(VC,SC)

a perverse sheaf smooth with respect to SC.
Real case: X = VR, M = LR is a real flat and G ∈ Db(VR,SR) is any complex
smooth with respect to the cell decomposition SR.

In each of these cases, the normal bundle is itself a vector space:

TLC
VC = LC × (VC/LC), TLR

VR = LR × (VR/LR). (4.2)

The subspace LR carries the induced arrangement H ∩ LR formed by the hyper-
planes H ∩LR for H ∈ H, H �⊃ LR. The quotient space VR/LR carries the quotient
arrangement H/LR formed by the hyperplanes H/LR for H ∈ H, H ⊃ LR. We
equip TLR

VR with the product arrangement

νLH := (H ∩ LR)⊕ (H/LR) =
{
(H ∩ LR)× VR/LR, H �⊃ LR

} ∪ {
LR × (HR/LR), H ⊃ LR

}
.
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We have a surjective map H → νL(H) between (the sets of hyperplanes of) the
two arrangements. Two hyperplanes H,H ′ of H can give the same hyperplane of
νL(H), if H ∩ LR = H ′ ∩ LR is the same hyperplane in LR.

We denote by

Sν
R
= S1,R × S2,R, Sν

C
= S1,C × S2,C (4.3)

the stratification of TLR
VR by the faces of νL(H) and the stratification of TLC

VC by
the generic parts of the complex flats of νL(H). Here S1,R is the stratification of LR

by the faces of H∩L, while S2,R is the stratification of VR/LR by the faces of H/L

and similarly for Si,C.

Proposition 4.4

(a) If F ∈ Db(VC,SC), then νLC
F ∈ Db(TLC

VC,Sν
C
).

(b) If G ∈ Db(VR,SR), then νLR
G ∈ Db(TLR

VR,Sν
R
).

Proof We treat only the real case (b), the complex case (a) being identical. In the
proof, we simply write V for the ambient vector space VR, as well as L for a real
flat and so on. We denote by SS(G) ⊂ T ∗V the microsupport of the complex G and
similarly for complexes of sheaves on other spaces; see [KS2] Ch. VI. The statement
that G ∈ Db(V,S), resp. that νL(G) ∈ Db(TLV,Sν), is equivalent to

SS(G) ⊂
⋃

P∈Fl(H)

T ∗P V, resp. SS(νL(G)) ⊂
⋃

Q∈Fl(νL(H))

T ∗Q(L× (V/L)).

So we deduce the second inclusion from the first. By Theorem 6.4.1 of [KS2], for
any manifold X, a submanifold M , and a complex of sheaves G on X, we have

SS(νM(G)) ⊂ CT ∗MX(SS(G)) ⊂ TT ∗MXT ∗X
(!)� T ∗(TMX).

Here CT ∗MX(SS(G)) is the normal cone to SS(G) ⊂ T ∗X, and the identification (!)
looks, in our concrete case, as follows.

We have T ∗V = V × V ∗, and T ∗LV = L× L⊥. Therefore,

TT ∗LV T ∗V = TL×L⊥(V × V ∗) = (L× L⊥)× ((V/L)× L∗
)
,

T ∗(TLV ) = T ∗
(
L× (V/L)

) = (
L× (V/L)

)× (L∗ × L⊥),

and (!) identifies factors number 1, 2, 3, 4 of the first product with factors number 1,
4, 2, 3 of the second one.

With this understanding, we need to prove that for any flat P of H, the normal
cone CT ∗LV (T ∗P V ) is contained in the union of T ∗Q

(
L × (V/L)

)
over flats Q of the

product arrangement in L×(V/L). In fact, it is contained in a single T ∗Q
(
L×(V/L)

)
,

where Q is the product flat (P ∩ L)× (P/(P ∩ L)
)
, as follows from Example 4.1.

This finishes the proof of Proposition 4.4. �
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4.3 Specialization of Faces as a Continuous Map

Given a face A of H, the intersection A ∩ LR is the closure of a unique face of the
arrangement H∩LR which we denote by ν′L(A). Further, the image of A in VR/LR

is a face of the quotient arrangement H/LR which we denote by ν′′L(A). The pair
νL(A) = (ν′L(A), ν′′L(A)) is then a face of the product arrangement νL(H) which
we call the specialization of A.

Proposition 4.5 The closure of νL(A) is identified with the normal cone CLR
(A).

Thus, νL(A) is the interior (complement of the boundary) of CLR
(A).

Proof This is similar to Example 4.1. �
Example 4.6 The concept of specialization is illustrated in Fig. 1, where H consists
of f ive lines in the plane, LR is the horizontal line, and H/LR is the coordinate
arrangement of two lines in R

2. The three open sectors (colored red) on top, together
with the open half-lines bounding them, specialize to the upward half-line (also
colored red) in R

2. The open sector (colored blue) with one side being the positive
part of LR specializes to the first quadrant in R

2 (also colored blue).

The following is obvious.

Proposition 4.7 The correspondence A �→ νL(A) defines a surjective monotone
map νL : SR → Sν

R
between the posets of faces of H and νL(H) such that

dim νL(A) ≤ dimA. �
We now form the “geometric realization” of the morphism of posets νL to

construct a continuous map q : VR → LR × (VR/LR) from VR to the normal
bundle. That is, choose a point xA in each face A of H. Then we have the barycentric
subdivision of V into based simplicial convex cones

C(A1, · · · , Ap) = R>0 · xA1 + · · · + R>0 · xAp

Fig. 1 Specialization of faces
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corresponding to all increasing chains A1 < · · · < Ap in SR. In particular, each
A is the union of the C(A1, · · · , Ap) with Ap = A. Similarly, choose a point yB
in each face B of νL(H). Then we have the barycentric subdivision of L × (V/L)

into similarly defined based simplicial convex cones C(B1, · · · , Bp) for all chains
B1 < · · · < Bp in Sν

R
. For each chain A1 < · · · < Ap, we define

pA1,··· ,Ap : C(A1, · · · , Ap) −→ C(νL(A1), · · · , νL(Ap))

to be the unique R-linear map taking xAi
to yνL(Ai).

Proposition 4.8 q is a continuous, proper, piecewise linear surjective map. Fur-
ther, each face A of H is mapped by q to νL(A) in a surjective, piecewise-linear
way.

Proof Clear from construction. �

4.4 The Real Result

In this subsection, we deal only with the real situation so we write V for VR, etc.
Let G ∈ Db(V,S) be a constructible complex.

Theorem 4.9 The specialization νL(G) is identified with the topological direct
image Rq∗G where q is the map from Proposition 4.8.

Proof We first recall the definition [KS2, §4.1-2] of νL(G) in terms of the normal
deformation ṼL which, in our linear case, reduces to a single chart.

Choose a linear complement L′ to L in V so V = L⊕ L′. Then L′ is identified
with V/L, and TLV is also identified with L⊕ L′, i.e., with V . We write a general
vector of V as v = (l, l′) with l ∈ L and l′ ∈ L′. Then we define the commutative
diagram with Cartesian squares:

TLV = V × {0}

��

s
�� ṼL := V × R

p
��

τ

��

Ω
j

��
p̃

��

τ̃

��

V

0 �� R R>0.��

(4.10)

where

p(l, l′, t) = (l, t · l′), τ (l, l′, t) = t, l ∈ L, l′ ∈ L′, t ∈ R.

The space Ω is defined as τ−1(R>0) = V ×R>0, and p̃ is the restriction of p to Ω .
After that, the specialization is defined by
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νL(G) = s∗Rj∗p̃∗(G) ∈ Db(ShTMX).

Let now ξ = (l, l′) be a point of L⊕ L′ = TLV = τ−1(0). By definition, the stalk
of νL(G) at ξ is

νL(G)ξ = RΓ (D ∩Ω,p∗G)

where D ⊂ V ×R is a small (n+1)-dimensional open ball around (ξ, 0) = (l, l′, 0).
Now, Ω = V × R>0. For each t > 0, consider the slice Dt = D ∩ (V × {t}). The
restriction of p to Dt is the dilation dt : (l, l′) �→ (l, t · l′) in the direction of L′.

Since D is a ball, the intersections Dt ∩Ω are nonempty for t lying in an open
interval of the form (0, ε) for some ε > 0 (the radius of D). For such t , we have
that Dt ∩Ω = Dt is the slice over t . Since D is a small ball, these nonempty slices
together with the complexes d∗t G form a topologically trivial family over (0, ε).
This means that we can replace the cohomology of D ∩ Ω (the union of all slices
Dt, t ∈ (0, ε)) by the cohomology of any single slice, i.e.,

νL(G)ξ � RΓ (Dt , d
∗
t G)

for any sufficiently small t > 0. We can further replace Dt for such t with 0th slice
D0 = D∩(V×{0}). This slice is just a small n-dimensional open ball in L⊕L′ = V

around (l, l′). This gives

νL(G)ξ � RΓ (D0, d
∗
t G) = RΓ (dt (D0),G), 0 < t ) 1.

When t → 0, the open sets dt (D0) become more and more flattened. We compare
them with open sets of the form q−1(U) where U is a small ball in TLV = L ⊕
L′ around dt (ξ) = (l, t · l′). More precisely, we notice that dt (D0) and q−1(U)

become homotopy equivalent relatively to the stratification by the faces; see Fig. 1.
This means that we have identifications (the last one expressing the conic nature of
Rq∗(G)):

νL(G)ξ � RΓ (q−1(U),G) = Rq∗(G)dt (ξ) � Rq∗(G)ξ .

This identifies the stalks. The same considerations show that the generalization maps
between the stalks match as well. The theorem is proved. �

Assume now that G is given by a complex of representations G = (GA, γAA′)
of SR. So the complexes GA are the stalks of G, and the γAA′ are the generalization
maps. For any face B ∈ Sν

R
of νL(H), define a complex

GL,B = Tot

{ ⊕

νL(A)=B

dim(A)=dim(B)

GA ⊗ orA/B
γ⊗ε−→

⊕

νL(A)=B

dim(A)=dim(B)+1

GA ⊗ orA/B
γ⊗ε−→ · · ·

}

.

(4.11)
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Let B <d B ′ be two faces of νL(H). We define a morphism of complexes

γ L
B,B ′ : GL,B → GL,B ′

as follows. Let A ∈ SR be such that νL(A) = B and dim(A) = dim(B)+p, so that
GA ⊗ orA/B is a summand in the pth term of GL,B . Similarly, let A′ ∈ SR be such
that νL(A′) = B ′ and dim(A′) = dim(B ′) + p, so that G′A ⊗ orA′/B ′ is a summand
in the pth term of GL,B ′ . If A ≤ A′, then A <d A′, and the identification of the
quotient spaces

LinR(A
′)/LinR(A)

�−→ LinR(B
′)/LinR(B)

gives, passing to the determinants and transposing, an isomorphism

σ ∗AA′ : orA/B −→ orA′/B ′ .

We define the matrix element

(γ L
B,B ′)

A′
A : GA ⊗ orA/B −→ GA′ ⊗ orA′/B

to be equal to γAA′ ⊗ σ ∗
AA′ if A < A′ and to 0 otherwise.

Corollary 4.12 Each γ L
BB ′ is indeed a morphism of complexes, and the data

(GL,B, γ
L
BB ′) is a complex of representations of Sν,R, the poset of faces of the

arrangement νL(H). This complex of representations describes the constructible
complex νL(G).
Proof Choose any point b ∈ B. Since q is a proper map, the stalk of Rq∗(G) at
b is identified with RΓ (q−1(b),G). Now GL,B is nothing but the cellular cochain
complex calculating RΓ (q−1(b),G). We similarly identify the generalization maps.

�
Remark 4.13 At the formal algebraic level, the property that γ L

BB ′ is indeed a
morphism of complexes simply reflects the fact that the differential in RΓ (V,G),
the cellular cochain complex, satisfies d2 = 0. More precisely, we have an
identification (isomorphism, not just a quasi-isomorphism) of cellular cochain
complexes

RΓ (V,G) � RΓ (L× (V/L),Rq∗(G)) � RΓ (L× (V/L), νL(G)).

The RHS of this identification represents the same complex in a “block” form, with
blocks (stalks of νL(G)) parameterized by faces B of νL(H). The fact that the maps
γ L
BB ′ between the blocks are morphisms of complexes is implied by the fact that the

total differential squares to 0.
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4.5 Bispecialization

We first consider the general situation studied in [ST, T]. Let N ⊂ M ⊂ X be
a flag of C∞ submanifolds in a C∞ manifold X. In the normal bundle TNX, we
have the submanifold (subbundle) TNM . In the normal bundle TMX, we have the
submanifold N , embedded into M (the zero section of TMX). It turns out that the
normal bundles of these new submanifolds are identified.

Proposition 4.14 We have identifications1

TTNM(TNX)
(1)� TNM ⊕ (TMX)|N (2)� TN(TMX).

Proof The statement is a part of Prop. 2.1 of [T]. For convenience of the reader,
we give a sketch of the proof. The identification (1) is a particular case of the well-
known fact which generalizes, to vector bundles, the identification (4.2) for vector
spaces: If L ⊂ V is a C∞ vector subbundle in a C∞ vector bundle over a C∞-
manifold B, then TLV � L ⊕ (V/L). To see (2), we recognize, inside TN(TMX),
two subbundles: first, TNM (the normal bundle to N inside the zero section of TMX)
and, second, (TMX)|N (the restriction to N of the normal bundle). Inspection in
local coordinates shows that these two subbundles form a direct sum decomposition.

�
In this context, Schapira and Takeuchi [ST, T] defined a functor

νNM : Db(X) −→ Db(TN ⊕ (TXM)|N)

called bispecialization. It is defined, similar to the usual specialization, through the
binormal deformation X̃NM , recalled below. On the other hand, we can iterate the
specialization functors, getting a diagram of functors between derived categories of
sheaves on the manifolds in question:

Db(X)

νM

��

νN
��

νNM

����
���

���
���

��
Db(TNX)

νTNM

��

Db(TMX)
νN

�� Db(TNM ⊕ (TMX)|N).

(4.15)

This diagram is not (2-)commutative, i.e., the two composite functors (iterated
specializations) are not isomorphic.

1The notation ⊕ here and below means direct sum of vector bundles, i.e., fiber product over N .
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Example 4.16 Let X = R
2 with coordinates x, y, let M be the line y = 0, and let N

be the origin (0, 0). Let P ⊂ X be the parabola y = x2 and G = kP be the constant
sheaf on P . We identify all three manifolds TNX, TMX, and TNM ⊕ (TMX)|N
back with R

2 with the same coordinates. Then νN(G) is the constant sheaf on the
horizontal line y = 0 (the tangent line to P ), and νTNM(νN(G)) is again the constant
sheaf on the line y = 0. On the other hand, νM(G) is supported on the vertical half-
line x = 0, y ≥ 0 (since P is contained in the upper half plane y ≥ 0 and does not
meet M except for x = 0). So νN(νM(G)) will be again supported on this half-line.

Nevertheless, in the linear case, all three possible functors are identified.

Theorem 4.17 Let X = V be an R-vector space and N ⊂ M ⊂ V be a flag
of R-linear subspaces. Let H be an arrangement of hyperplanes in V and SR the
corresponding stratification by faces. Then for G ∈ Db(V,SR), we have canonical
quasi-isomorphisms

νN(νM(G)) � νTNM(νN(G)) � νNM(G).

In other words, the diagram (4.15) becomes 2-commutative if the top left corner is
replaced by Db(V,SR).

Proof Enlarging H if necessary, we can assume that N and M are flats of H. The
space TNM⊕ (TMX)|N is identified with vector space V ′′ = N⊕ (M/N)⊕ (V/M)

which carries the triple product arrangement

νNM(H) := (H ∩N)⊕ ((H ∩M)/N)⊕ (H/M).

Denote by SνNM

R
the stratification given by the faces of this arrangement. Also

denote SνN
R

and SνM
R

the stratifications given by the faces of the arrangements νN(H)

and νM(H). Now notice that specialization of faces gives a commutative diagram of
morphisms of posets which we then use to construct a commutative diagram of
proper piecewise linear maps:

SR

νM

��

νN
�� SνN

R

νTNM

��

SνM
R

ν′N

�� SνNM

R

V
qN

��

qM

��

TNV

qTNM

��
TMV

q ′N
�� TNM ⊕ (TMV )|N.

The direct images in this second diagram correspond, by Theorem 4.9, to the
specialization functors on the outer edges of the diagram (4.15). This shows that
the outer rim of (4.15) is 2-commutative.

We now show that the composite functor given by the outer rim of (4.15) is
isomorphic to νNM . (This will also give another proof of the commutativity of the
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outer rim.) For this, we recall the explicit form of the binormal deformation diagram;
see [T] Eq. (2.20). We choose a complement L′ to N in M and a complement L′′ to
M in V , thus identifying V , as well as TNM ⊕ (TMV )|N , with N ⊕ L′ ⊕ L′′. So
we write elements of either of this spaces as (n, l′, l′′). Then the “bi”-analog of the
diagram (4.10) has the form

TNM ⊕ (TMV )|N = V × {(0, 0)}

��

s
�� ṼNM = V × R

2

p
��

τ

��

Ω
j

��
p̃

��

τ̃

��

V

0 �� R2
R

2
>0,

��

with

p((n, l′, l′′), (t ′, t ′′)) = (n, t ′l′, t ′t ′′l′′), τ ((n, l′, l′′), (t ′, t ′′)) = (t ′, t ′′),

so the restriction of p to V × {(t ′, t ′′)} is the map

p(t ′,t ′′) : (n, l′, l′′) �→ (n, t ′l′, t ′t ′′l′′).

The bispecialization is defined as νNM(G) = s∗Rj∗p̃∗G with respect to this
diagram, so its stalk at (n, l′, l′′) is RΓ (D ∩ Ω,p∗G) where D is a small open
(n+ 2)-dimensional ball around ((n, l′, l′′), (0, 0)). We slice D into n-dimensional
balls D(t ′,t ′′) = D ∩ τ−1(t ′, t ′′). �
Lemma 4.18 For sufficiently small ε > 0, the slices D(t ′,t ′′), together with the
restrictions p∗G|D(t ′,t ′′) = p∗

(t ′,t ′′)G, form a topologically trivial family over the
product of open intervals (0, ε)× (0, ε).

Proof of the Lemma: For u′, u′′ > 0, let

d(u′,u′′) : V → V, (n, l′, l′′) �→ (n, u′l′, u′′l′′)

be the bi-dilation in the last two variables. Then p(t ′,t ′′) = dc(t ′,t ′′), where c : R2 →
R

2 is the map

(t ′, t ′′) �→ (u′, u′′) = (t ′, t ′t ′′).

Now, c maps the open square (0, ε)2 homeomorphically onto the open triangular
wedge ∇ε of slope ε; see Fig. 2.

For small t ′, t ′′ > 0, we can identify the slices D(t ′,t ′′) with D(0,0) (alternatively,
we could have taken D to be the product of balls in V and in R

2 so that the slices
would not change at all).
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Fig. 2 The wedge ∇ε

We recall that G is smooth with respect to a hyperplane arrangement H (so the
slopes of the hyperplanes are fixed). On the other hand, the slope of the wedge ∇ε

is shrinking as ε → 0. Therefore, for sufficiently small ε, we will have that for all
(u′, u′′) ∈ ∇ε , the topological structure of d∗

(u′,u′′)G on D(0,0) will stabilize. This
proves the lemma.

The lemma implies that the stalk of νNM(G) at (n, l′, l′′) can be written as

RΓ (D(0,0), p
∗
(t ′,t ′′)G) = RΓ (p(t ′,t ′′)(D(0,0)),G)

for any sufficiently small positive t ′, t ′′.
It remains to similarly analyze the two outer composite functors (iterated

specializations) in (4.15) and to find that they correspond to the choice of 0 < t ′ )
t ′′ ) 1, resp. 0 < t ′′ ) t ′ ) 1. Because of the topological triviality of the family
over all (t ′, t ′′) ∈ (0, ε)× (0, ε), all three results are the same. �

4.6 The Complex Result

We now consider the complex situation: that of a perverse sheaf F ∈
Perv(VC,SC) and the corresponding hyperbolic sheaf Q = (EA, γAA′ , δA′A).
Let Qν = (Eν

B, γ
ν
BB ′ , δ

ν
B ′B) be the hyperbolic sheaf corresponding to νLC

(F) ∈
Perv(TLC

VC,Sν,C). Here B,B ′ are faces of the product arrangement νL(H).

Theorem 4.19

(a) The hyperbolic stalk Eν
B is identified as

Eν
B �

{ ⊕

νL(A)=B

dim(A)=dim(B)

EA ⊗ orA/B
γ⊗ε−→

⊕

νL(A)=B

dim(A)=dim(B)+1

EA ⊗ orA/B
γ⊗ε−→ · · ·

}

That is, the complex in the RHS is exact everywhere except the leftmost term,
where the kernel is identified with Eν

B .
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(a’) We also have an identification

Eν
B �

{

· · · δ⊗ε−→
⊕

νL(A)=B

dim(A)=dim(B)+1

EA ⊗ orA/B
δ⊗ε−→

⊕

νL(A)=B

dim(A)=dim(B)

EA ⊗ orA/B

}

.

That is, the complex in the RHS is exact everywhere except the rightmost term,
where the cokernel is identified with Eν

B .
(b) The maps γ ν

BB ′ are induced by the maps γAA′ which induce morphisms of
complexes in (a), similar to Corollary 4.12.

(b’) The maps δν
B ′B are induced by the map δA′A which induce morphisms of

complexes in (a’).

Proof We first prove parts (a) and (b). Let iR : VR → VC and iR,ν : TLR
VR →

TLC
VC be the embeddings of the real parts. Put

G = i!
R
F , Gν = i!

R,ν νLC
(F).

These are ordinary sheaves (not just complexes) on VR and TLR
VR, smooth with

respect to SR and Sν
R

, respectively. Their stalks are given by the EA and Eν
B , and

their generalization maps are given by the γAA′ and γ ν
BB ′ , respectively. Note that we

have a canonical morphism

νLR
(G) = νLR

(i!
R
F)

β−→ i!
R,ννLC

(F) = Gν;

see [KS2] Prop. 4.2.5. So our statements will follow from Corollary 4.12 if we
establish the following. �
Proposition 4.20 For any F ∈ Db(VC,SC), the morphism β : νLR

(i!
R
F) →

i!
R,ν

νLC
(F) is a quasi-isomorphism.

Proof of Proposition 4.20 Since νLR
and νLC

commute with Verdier duality, it
is enough to show that for any F ∈ Db(VC,SC), the dual morphism α :
i∗
R,ν

νLC
(F) → νLR

(i∗
R
F) is a quasi-isomorphism. Such a morphism is defined for

any F ∈ Db(ShVC
) whatsoever; see [KS2] Prop. 4.2.5. So we show that it is a quasi-

isomorphism for a more general class of complexes. Namely, VC has the product
stratification SR×SR formed by the cells of the form A′ + iA′′ ⊂ VC = VR+ iVR,
where A′ and A′′ are arbitrary faces of H and i = √−1. This stratification refines
SC, so Db(VC,SC) ⊂ Db(VC,SR × SR). Therefore, it suffices to prove: �
Lemma 4.21 For any F ∈ Db(VC,SR × SR), the morphism α : i∗

R,ν
νLC

(F) →
νLR

(i∗
R
F) is a quasi-isomorphism.

Proof of Lemma 4.21 The stratification on VR induced by iR from SR × SR is SR.
This means that the specializations maps of the posets of faces are compatible, and
therefore we have a commutative diagram
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VR

qR
��

iR

��

LR × (VR/LR)

iR,ν

��
VC

qC

�� LC × (VC/LC),

where qR and qC are the proper maps constructed in Proposition 4.8. So our
statement follows from Theorem 4.9 by proper base change. �

This finishes the proof of Proposition 4.20 and of parts (a) and (b) of Theo-
rem 4.19.

Now, parts (a’) and (b’) of Theorem 4.19 follow from (a) and (b) because νLC

commutes with Verdier duality whose effect on hyperbolic sheaves exchanges γ and
δ; see Theorem 2.11. Theorem 4.19 is proved.

5 Fourier Transform and Hyperbolic Sheaves

5.1 Generalities on the Fourier-Sato Transform

Let W be a finite-dimensional R-vector space and W ∗ the dual space. We denote by
Db

con(E) ⊂ Db(E) the full subcategory formed by complexes G which are conic,
i.e., such that each sheaf Hj(G) is locally constant on any orbit of the scaling action
of R>0 on W .

Set

P = {
(x, f ) ∈ W ×W ∗ ∣∣ f (x) ≥ 0

} iP
↪→ W ×W ∗

and denote by p1, p2 the projections of P to W and W ∗, respectively. The Fourier-
Sato transform is an equivalence of categories

FS : Db
con(W) −→ Db

con(W
∗), FS(G) = Rp2!(p∗1G);

see [KS2] Def. 3.7.8. The base change theorem implies at once the following.

Proposition 5.1 Let f ∈ W ∗. The stalk of FS(G) at f is found as

FS(G)f � RΓc(Pf ,G),

where Pf = p−1
2 (f ) = {x ∈ W |f (x) ≥ 0}. (Thus, Pf is a closed half-space for

f �= 0 and Pf = W for f = 0.) �
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5.2 The Dual Arrangement

We specialize the above to the two situations related to an arrangement of hyper-
planes H in VR. We denote n = dimR VR.

(1) W = VR and G ∈ Db(VR,SR). In this case, we would like to find the stalks of
FS(G).

(2) W = VC and G ∈ Perv(VC,SC). We identify W ∗ = HomC(V ,C) with the real
dual HomR(VC,R) by means of the form

(x, f ) �→ -(f (x)), x ∈ VC, f ∈ V ∗
C
.

In this case, it is known (see [KS2] Ch. X) that FS(G)[−n] is a perverse
sheaf on V ∗

C
with respect to some stratification. We would like to relate this

stratification to an arrangement of hyperplanes and to find the hyperbolic stalks
of FS(G).

This leads to the following definition.

Definition 5.2 The dual arrangement H∨ of hyperplanes in V ∗
R

consists of orthog-
onals l⊥ where l is a one-dimensional flat of H. We denote by S∨

R
the stratification

of V ∗
R

into faces of H∨ and by S∨
C

the stratification of V ∗
C

into generic parts of the
complex flats of H∨.

Proposition 5.3 We have an inclusion H ⊂ H∨∨ (as sets of hyperplanes in VR).

Proof One-dimensional flats of H∨ are the orthogonals M⊥, where M runs over
hyperplanes in VR which are sums of one-dimensional flats of H. Such M are
therefore precisely the hyperplanes of H∨∨. Now the statement means that each
hyperplane H ∈ H can be obtained as a sum of one-dimensional flats of H. This is
indeed the case, since we have assumed from the outset that H is central, i.e., the
intersection of all H ∈ H is 0. �
Example 5.4

(a) Call an arrangement H reflexive, if H∨∨ = H. A sufficient condition for this
is that the set of flats of H is closed not only under intersections but also under
sums, i.e., it forms a lattice. This follows from the proof of Proposition 5.3.
Examples of reflexive arrangements include any arrangement with dim(VR) ≤
2, as well as any direct sum of such arrangements.

(b) In general, forming the union of the arrangements

H ⊂ H∨∨ ⊂ H∨∨∨∨ ⊂ · · ·

amounts to closing H under the operations of sum and intersection, i.e., to
forming the lattice of subspaces generated by H and taking all (n − 1)-
dimensional elements of it. Such a lattice (and therefore the above union) is
typically infinite. For instance, for n = 3, we start with a finite set of lines in
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RP 2, form all their intersection points, and then draw new lines through these
points and so on.

(c) Let VR = R
n with coordinates x1, · · · , xn. Take H to be the arrangement of the

following hyperplanes:

{xi = 0}, i = 1, · · · , n, {xi = xi+1}, i = 1, · · · , n− 1.

There are
(
n+1

2

)
one-dimensional flats of H; they have the form

L[i,j ] =
{
x
∣
∣ xi = xi+1 = · · · = xj ; xk = 0, k /∈ [i, j ]}, 1 ≤ i ≤ j ≤ n.

On the other hand, consider Rn+1 with coordinates y0, · · · , yn, and let WR =
R

n+1/R · (1, · · · , 1). Thus, WR = h∗ is the space of weights for the Lie algebra
sln+1(R). We have an isomorphism VR → W ∗

R
which takes the ith basis vector

ei ∈ VR, i = 1, · · · , n, to the functional y �→ yi−1 − yi (simple co-root). This
isomorphism takes L[i,j ] to the co-root hyperplane {yi−1 = yj }. Therefore, the
dual arrangement H∨ is the co-root arrangement in h∗.

Next, flats of H∨ are in bijection with equivalence relations R on the set
{0, 1, · · · , n}. The flat corresponding to R has the form

MR = {
y
∣
∣ yi = yj whenever i ≡R j.

}
.

It is one-dimensional if and only if R has only 2 equivalence classes, both non-
empty. Thus, there are 2n−1 − 1 one-dimensional flats of H∨, and so the double
dual arrangement H∨∨ consists of 2n−1 − 1 hyperplanes and is much bigger than
H.

Proposition 5.5

(a) If G ∈ Db(VR,SR), then FS(G) ∈ Db(V ∗
R
,S∨

R
).

(b) If F ∈ Perv(VC,SC), then FS(F)[−n] ∈ Perv(V ∗
C
,S∨

C
).

Proof As in the proof of Proposition 4.4, the real and complex case are completely
parallel, so we treat the real case, dropping the subscript R. The microsupport of G
is contained in the union of the T ∗LV = L×L⊥ over L ∈ Fl(H). Now, the effect of
FS on microsupports is via the identification (“Legendre transform”)

T ∗V = V × V ∗ −→ V ∗ × V = T ∗V ∗.

This identification takes T ∗LV to T ∗
L⊥V

∗. This means that FS(G) is smooth with
respect to the stratification S∗ formed by the generic parts

L⊥◦ = L⊥ \
⋃

L⊥1 �⊃L⊥
L⊥1 , L ∈ Fl(H).

Now, S∨ refines S∗, so FS(G) is smooth with respect to S∨. �
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5.3 Big and Small Dual Cones

Let A∨ ∈ S∨
R

be a face. Its big dual cone is defined as

U(A∨) = {
x ∈ V

∣
∣f (x) ≥ 0, ∀f ∈ A∨

} ⊂ VR. (5.6)

It is a closed polyhedral cone in V with nonempty interior, the union of the closures
of (in general, several) chambers of H.

The small dual cone of A∨ is defined as

V (A∨) =
⋂

B∨≥A∨ chamber

U(B∨). (5.7)

It is a strictly convex (not containing R-linear subspaces) closed polyhedral cone in
VR. Note that U(A∨) = V (A∨) if A∨ is a chamber but U(A∨) can be strictly larger
than V (A∨) in general. For example, if A∨ is a half-line (one-dimensional face) of
H∨, then U(A∨) is a closed half-space in VR, while VA is strictly convex, cf. Fig. 3.

The next statement is clear from the definitions.

Proposition 5.8 If A∨1 ≤ A∨2 , then U(A∨1 ) ⊃ U(A∨2 ) and V (A∨1 ) ⊂ V (A∨2 ). �
Proposition 5.9 Let f ∈ A∨ be arbitrary. Then:

(a) U(A∨) is the union of all faces B of H such that f |B ≥ 0 (non-strict
inequality).

(b) V (A∨) is the union of 0 and all the faces B of H such that f |B > 0 (strict
inequality everywhere).

Proof

(a) Since A∨ is a face of H∨, for each f ∈ A∨, the pattern of signs (positive,
negative or zero) of f on faces of H is the same. So the requirement that f |B ≥

Fig. 3 Small dual cones
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0 for each f ∈ A∨ (appearing in the definition of U(A∨)) is equivalent to the
requirement that f |B ≥ 0 for any particular choice of f ∈ A∨ (appearing in the
statement of the proposition).

(b) Let V ′ be the union of the faces in question. If B �= 0 is a face of H such
that B ⊂ V ′, i.e., that f |B > 0, then g|B > 0 for any g ∈ A∨, by definition
of the dual arrangement. This means that for any B∨ ≥ A∨ and any g ∈ B∨
sufficiently close to A∨, we still have g|B > 0. This further implies (again, by
the definition of the dual arrangement) that for any B∨ ≥ A∨ and any g ∈ B∨
whatsoever, we still have g|B > 0. This means that B ⊂ V (B∨) for any B∨ ≥
A∨, in other words, that B ⊂ V (A∨). We proved that V ′ ⊂ V (A∨).

Conversely, suppose B ⊂ V (A∨). For any chamber B∨ ≥ A∨ and any g ∈
B∨, the restriction g|B cannot vanish, since that would mean that g is not inside a
chamber of a dual arrangement. Therefore, g|B > 0 everywhere. Now, if f ∈ A∨
and A∨ is not a chamber, then looking at g varying in a small transverse ball to A∨
near f in V ∗

R
, we see that all such g|B must be positive and therefore f |B must be

positive. In other words, we proved that V (A∨) ⊂ V ′. �
Corollary 5.10 We have

U(A∨) =
⋃

B∨≥A∨
U(B∨) =

⋃

B∨≥A∨
V (B∨).

�
We now analyze the nature of the covering of U(A∨) by the U(B∨), B∨ ≥ A∨.

All B∨ ≥ A∨ are in bijection with faces of the quotient arrangement H∨/A∨ in
the quotient space V ∗

R
/LinR(A∨), cf. [KS1] §2B. We denote by B∨/A∨ the face of

H∨/A∨ corresponding to B∨ ≥ A∨.

Proposition 5.11 Let A∨ ∈ S∨
R
and B ∈ SR. Then:

(a) There is a closed convex polyhedral cone K(A∨, B) ⊂ V ∗
R
/LinR(A∨), a union

of faces of H∨/A∨, which has the following property:

For B∨ ≥ A∨ we have B ⊂ U(B∨) if and only B∨/A∨ ⊂ K(A∨, B).

(b) The cone K(A∨, B) coincides with the whole V ∗
R
/LinR(A∨) if and only if B ⊂

V (A∨).

Proof

(a) Let U(B) ⊂ V ∗
R

be the dual cone to B, i.e., the set of f ∈ V ∗
R

such that f |B ≥ 0.
It is a convex, closed polyhedral cone in V ∗

R
which is a union of faces of H∨. In

fact, the condition B∨ ⊂ U(B) is equivalent to B ⊂ U(B∨), both meaning that
(b∨, b) ≥ 0 for each b∨ ∈ B∨ and b ∈ B.
Let also (V ∗

R
)≥A∨ ⊂ V ∗

R
be the union of all faces B∨ of H∨ such that B∨ ≥ A∨.

It is a convex, open polyhedral cone in V ∗
R

. The intersection U(B) ∩ (V ∗
R
)≥A∨



Fourier-Sato Transform on Hyperplane Arrangements 117

is then a convex polyhedral cone which is closed in (V ∗
R
)≥A∨ . Since this cone

is a union of faces B∨ ≥ A∨, it projects to a convex closed polyhedral cone
in V ∗

R
/LinR(A∨) which we denote K(A∨, B). By construction, K(A∨, B)

satisfies the required property.
(b) This is a reformulation of the formula (5.7) defining V (A∨). �

Note an appealing numerical corollary of Proposition 5.11. For any subset Z ⊂
V , we denote by 1Z : V → R its characteristic function, equal to 1 on Z and to 0
elsewhere. �
Corollary 5.12 (Inclusion—Exclusion Formulas) We have the identities

1U(A∨) =
∑

B∨⊃A∨
(−1)dim(B∨)−dim(A∨)1V (A∨), (a)

1V (A∨) =
∑

B∨⊃A∨
(−1)dim(B∨)−dim(A∨)1U(A∨). (b)

Identities of this general nature (representing the characteristic function of a convex
polytope as an alternating sum of characteristic functions of simplices or cones) are
familiar in the theory of convex polytopes [V, FL] and the theory of automorphic
forms; see, e.g., [Ar], §11.

We note the similarity of the identities (a) and (b) with Proposition 2.9(b) and
Corollary 2.14 relating the usual stalks and hyperbolic stalks of a perverse sheaf. In
fact, we will use a “categorified” version of these identities to relate the usual and
hyperbolic stalks of the Fourier-Sato transform.

Proof of Corollary 5.12 (b) Write the RHS of the proposed identity as
∑

B cB1B
with B running over faces of H. Part (a) of Proposition 5.11 implies that

cB =
∑

B∨≥A∨
B∨/A∨⊂K(A∨,B)

(−1)dim(B∨)−dim(A∨) = (−1)n−dim(A∨)χ
(
H •

c (K(A∨, B),k
)

is the signed (calculated from the top) Euler characteristic of the cohomology with
compact support of the cone K(A∨, B). This signed Euler characteristic is equal
to 0 unless K(A∨, B) is the entire vector space, in which case it is 1. By Part (b)
of Proposition 5.11, this happens precisely when B ⊂ V (A∨), so the identity is
proved.

(a) is a formal consequence of (b) in virtue of the identity

∑

B∨≥A∨
(−1)dim(B∨)−dim(A∨) = 1

(the Euler characteristic of the link of A∨). �
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5.4 The Real Result

Theorem 5.13 Let G ∈ Db(VR,SR) be represented by a complex (GA, γAB) of
representations of (SR,≤).

(a) The stalk FS(G)A∨ of FS(G) at a face A∨ ∈ S∨
R
is identified with the complex

UA∨ := Tot

{ ⊕

dim(B)=0,
B⊂U(A∨)

GB ⊗ or(B)
γ⊗ε−→

⊕

dim(B)=1,
B⊂U(A∨)

GB ⊗ or(B)
γ⊗ε−→ · · ·

}

.

(b) Let A∨1 ≤ A∨2 be two faces of H∨. Then the inclusion U(A∨1 ) ⊃ U(A∨2 )
(Proposition 5.8) exhibits U(A∨2 ) as a quotient complex of U(A∨1 ), and the the
generalization map γA∨1 ,A∨2 : FS(G)A∨1 → FS(G)A∨2 of FS(G) is identified with
the quotient map UA∨1 → UA∨2 .

Proof

(a) Let f ∈ A∨. By Proposition 5.1, we have

FS(G)A∨ � FS(G)f � RΓc(Pf ,G).

We now use the resolution of G given by Proposition 2.4(ii). The pth term of
this resolution is the direct sum of jB! GBB

[p]where B runs over p-dimensional
faces of H.

�
Lemma 5.14 Let B be a face of H and E be any k-vector space. We have natural
quasi-isomorphisms

RΓc(Pf , jB!EB)[dimB] �
{
E ⊗ or(B), if B ⊂ Pf ,

0, if B �⊂ Pf .

Proof of the Lemma: The case B ⊂ Pf follows from the canonical identification
RΓc(B,k) � or(B)[− dim(B)] (compactly supported cohomology of a cell with
constant coefficients). Suppose B �⊂ Pf . If B does not meet Pf at all, then
the statement is obvious. If B does meet Pf , then the intersection B ∩ Pf is
homeomorphic to a closed half-space in a Euclidean space, i.e., to a Cartesian
product of several open intervals (0, 1) and one half-open interval [0, 1). So our
statement follows from the fact that H •

c ([0, 1),k) = 0. �
Applying this lemma to the resolution of G given by Proposition 2.4(ii), we obtain

a complex representing RΓc(Pf ,G) whose pth term is the sum of the GB ⊗ orB for
B running over p-dimensional faces B ⊂ Pf and the differential is formed by
the maps γ ⊗ ε. By Proposition 5.11 (a), the condition B ⊂ Pf is equivalent to
B ⊂ U(A∨). This proves part (a) of Theorem 5.13.
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We now prove part (b). Let f1 ∈ A∨1 and f2 ∈ A∨2 be a small deformation of f1.
As in the proof of (a), we can write our generalization map as

γA∨1 ,A∨2 : RΓc(Pf1 ,G) −→ RΓc(Pf2 ,G).

As before, consider first the case G = jB!EB for some face B and some k-vector
space E. In this case, we find that γA∨1 ,A∨2 is equal to the identity map, if B is
contained in Pf2 (and therefore in Pf1 ), and it is equal to 0 otherwise (since the
target is the zero vector space). That is, claim (b) obviously holds in this case. The
case of general G is now obtained from this by considering the resolution of G given
by Proposition 2.4(ii). Theorem 5.13 is proved.

5.5 The Complex Result

Let F ∈ Perv(VC,SC) correspond to a hyperbolic sheaf Q = (EA, γAB, δBA).
By Proposition 5.5, FS(F)[−n] lies in Perv(V ∗

C
,S∨

C
) and so is described by a

hyperbolic sheaf which we denote Q∨ = (E∨
A∨ , γA∨,′A∨ , δ′A∨,A∨). Here A∨ ≤ ′A∨

are faces of the arrangement H∨.
It turns out that the hyperbolic stalks E∨

A∨ are governed by the small dual cones
V (A∨).

Theorem 5.15

(a) The space E∨
A∨ is quasi-isomorphic to the complex

VA∨ =
{ ⊕

dim(B)=0,
B⊂V (A∨)

EB ⊗ orV/B
γ⊗ε−→

⊕

dim(B)=1,
B⊂V (A∨)

EB ⊗ orV/B
γ⊗ε−→ · · ·

}

.

In other words, VA∨ is exact everywhere except the leftmost term, where the
cohomology (kernel) is identified with E∨

A∨ .
(a’) The space E∨

A∨ is also quasi-isomorphic to the complex

V†
A∨ =

{

· · · δ⊗ε−→
⊕

dim(B)=1,
B⊂V (A∨)

EB ⊗ orV/B
δ⊗ε−→

⊕

dim(B)=0,
B⊂V (A∨)

EB ⊗ orV/B

}

.

In other words, V†
A∨ is exact everywhere except the rightmost term, where the

cohomology (cokernel) is identified with E∨
A∨ .

(b) Let A∨1 ≤ A∨2 be two faces of H∨. Then the embedding V (A∨1 ) ⊂ V (A∨2 )
realizes VA∨1 as a quotient complex of VA∨2 , and the map δA∨2 ,A∨1 : E∨A∨2 → E∨

A∨1
is identified with the quotient map VA∨2 → VA∨1 .
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(b’) In the situation of (b), the embedding V (A∨1 ) ⊂ V (A∨2 ) realizes V†
A∨1

as a

subcomplex of V†
A∨2

, and the map γA∨1 ,A∨2 is identified with the embedding

V†
A∨1
→ V†

A∨2
.

Remark 5.16

(a) Note that for A∨ = 0, the cone V (A∨) is equal to {0}; therefore, E∨0 is identified
with E0.

(b) Let A∨ �= 0. Then, by Proposition 5.9(b), one can re-write the complex VA∨ as

E0 ⊗ orV
γ⊗ε−→

⊕

dim(B)=1
f |B>0

EB ⊗ orV/B
γ⊗ε−→

⊕

dim(B)=2
f |B>0

EB ⊗ orV/B
γ⊗ε−→ · · · ,

where f ∈ A∨ is an arbitrary element. Similarly for V†
A∨ .

The proof of Theorem 5.15 is based on the following preliminary result which
shows that the big dual cones U(A∨) govern the ordinary stalks, not hyperbolic
stalks of FS(F),

Proposition 5.17

(a) If A∨ ∈ SR is any face, then the ordinary stalk FS(F)A∨ is quasi-isomorphic to
the complex

FS(F)A∨ �
{ ⊕

dim(B)=0,
B⊂U(A∨)

EB ⊗ orV/B
γ⊗ε−→

⊕

dim(B)=1,
B⊂U(A∨)

EB ⊗ orV/B
γ⊗ε−→ · · ·

}

.

(b) The generalization maps for the FS(F)A∨ are induced by the projections of the
complexes in (a), similar to Theorem 5.13(b).

Proof of Proposition 5.17: Our statement will follow from Theorem 5.13, if we
establish the following. �
Proposition 5.18 For any F ∈ Perv(VC,SC), we have an identification

FS(i!
R
F) � i∗

R
FS(F),

where iR on the right means the embedding V ∗
R
→ V ∗

C
.

Proof of Proposition 5.18: We first recall the behavior of the Fourier-Sato trans-
form with respect to an arbitrary R-linear map φ : W1 → W2 of R-vector spaces.
Denoting t φ : W ∗

2 → W ∗
1 the transposed map, we have, for any conic complex G

on W2:

FS(φ!G) � R(tφ)∗ FS(G)
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see [KS2] Prop. 3.7.14.
We specialize this to φ = iR : VR → VC and G = F . In this case,

t φ = - : V ∗
C
−→ V ∗

R

is the real part map. So after replacing V ∗ by V and FS(F) by F , Proposition 5.18
reduces to the following. �
Lemma 5.19 For any F ∈ Db(VC,SC), we have an identification i∗

R
F �

R-∗(F), where - : VC → VR is the real part map for V .

Proof of Lemma 5.19: We consider - : VC → VR as a real vector bundle over
VR. The complex F , being constructible with respect to the complexification of a
real hyperplane arrangement, is conic with respect to this vector bundle structure.
Therefore, the stalk at x ∈ VR of i∗

R
F which is RΓ (U,F) for a small open U ⊂ VC

containing x is equal to RΓ (-−1(U ∩ VR),F) which is the stalk of R-∗(F) at x.
�

This finishes the proof of Propositions 5.18 and 5.17.

Proof of Theorem 5.15: We prove (a’) and (b’). Parts (a) and (b) follow by Verdier
duality.

We denote K = FS(F), and let L = K∗ = FS(F∗) be the Verdier dual perverse
sheaf. By definition, E∨

A∨ is the stalk at A∨ of

i!
R
K � (i∗

R
L)∗ � (

i∗
R

FS(F∗)
)∗
.

First, we recall that F∗ is represented by the hyperbolic sheaf (E∗A, δ∗BA, γ
∗
AB).

Applying Proposition 5.17 to F∗, we write the stalk of i∗
R
L at A∨ as

LA∨ �
{ ⊕

dim(B)=0
B⊂U(A∨)

E∗B ⊗ orV/B
δ∗⊗ε−→

⊕

dim(B)=1
B⊂U(A∨)

E∗B ⊗ orV/B
δ∗⊗ε−→ · · ·

}

. (5.20)

Further, for A∨1 ≤ A∨2 , we have U(A∨1 ) ⊃ U(A∨2 ), and Proposition 5.17 implies
that the generalization map �A∨1 ,A∨2 : LA∨1 → LA∨2 is given by the projection of the
corresponding complexes in (5.20).

We now recall the following general procedure on finding the stalks and
generalization maps of the Verdier dual complex. See, e.g., [KS1] Prop. 1.11. We
formulate it here for complexes on V ∗

R
constructible with respect to S∨

R
. �

Lemma 5.21 Let M ∈ Db(V ∗
R
,S∨

R
) correspond to a complex (MA∨ ,�A∨1 ,A∨2 ) of

representations of S∨
R
. Then:
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(a) The stalk of M∗ at A∨ is identified with the complex

DA∨ = Tot

{

· · · �∗⊗ε∗−→
⊕

C∨>1A
∨
(MC∨)

∗ ⊗ orC∨
�
∗⊗ε∗−→ (MA∨)

∗ ⊗ orA∨
}

,

with the horizontal grading associating to the summand (MA∨)∗⊗orA∨ degree
− dim(A∨). The horizontal differential �∗ ⊗ ε∗ has, as the matrix element
corresponding to C∨2 >1 C∨1 ≥ A∨, the tensor product of the dual maps to
�C∨1 ,C∨2 and to εC∨1 ,C∨2 .

(b) For two faces A∨1 ≤ A∨2 , the generalization map (M∗)A∨1 → (M∗)A∨2 of M∗
is identified with the projection of the complexes DA∨1 → DA∨2 . �

Applying part (a) of the lemma to M = L and substituting, instead of each LC∨ ,
its expansion (5.20), we identify (quasi-isomorphically) E∨

A∨ with the total complex
of the following double complex. We denote this total complex EA∨ .

· · ·
emb⊗ε

�� ⊕
C∨>1A

∨
⊕

dim(B)=0
B⊂U(C∨)

EB ⊗ orV/B ⊗ orC∨
emb⊗ε

�� ⊕ dim(B)=0
B⊂U(C∨)

EB ⊗ orV/B ⊗ orA∨

· · ·
emb⊗ε

�� ⊕
C∨>1A

∨
⊕

dim(B)=1
B⊂U(C∨)

EB ⊗ orV/B ⊗ orC∨

δ⊗ε⊗Id

��

emb⊗ε

�� ⊕ dim(B)=1
B⊂U(C∨)

EB ⊗ orV/B ⊗ orA∨

δ⊗ε⊗Id

��

· · ·
emb⊗ε

�� ⊕
C∨>1A

∨
⊕

dim(B)=2
B⊂U(C∨)

EB ⊗ orV/B ⊗ orC∨

δ⊗ε⊗Id

��

emb⊗ε

�� ⊕ dim(B)=2
B⊂U(C∨)

EB ⊗ orV/B ⊗ orA∨

δ⊗ε⊗Id

��

.

.

.

δ⊗ε⊗Id

��

.

.

.

δ⊗ε⊗Id

��

Here the vertical differentials are dual to those in LC∨ , i.e., given by the δ maps.
Matrix elements of the horizontal differential are dual to the � maps for L, and
those � maps are given by the projections. So each matrix element in question is
in fact the product of an embedding of δ-complexes and the ε map of orientation
torsors.

For two faces A∨1 ≤ A∨2 , the generalization map γA∨1 ,A∨2 : E∨
A∨1

→ E∨
A∨2

is

identified, by part (b) of Lemma 5.21, with the projection EA∨1 → EA∨2 .

We now compare EA∨ with the complex V†
A∨ from the formulation of Theo-

rem 5.15(a’). Let B be a face of H. The summand corresponding to B in V†
A∨ is

either EB ⊗ orV/B or 0 depending on whether B ⊂ V (A∨) or not. On the other
hand, EA∨ has many summands associated with B; they are labeled by C∨ > A∨
such that B ⊂ U(C∨). By Proposition 5.11, such C∨ are in bijection with faces
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of the closed polyhedral cone K(A∨, B). So in the double complex above, the
summand EB ⊗ orV/B is multiplied by a combinatorial complex which is easily
found to calculate the cohomology with compact support H •

c (K(A∨, B),k). If
B �⊂ V (A∨), then, by the same Proposition 5.11, K(A∨, B) is a proper closed
cone with nonempty interior in V ∗

R
/LinR(A∨), and so its cohomology with compact

support vanishes entirely. If B ⊂ V (A∨), then K(A∨, B) = V ∗
R
/LinR(A∨) so

it has the top cohomology with compact support identified with orV/A∨ , so the
part of EA∨ corresponding to B is quasi-isomorphic to EB ⊗ orV/B . Moreover,
we see that these quasi-isomorphisms combine into a quasi-isomorphism between
EA∨ and V†

A∨ . This shows part (a’) of Theorem 5.17. Part (b’) follows by noticing
that the projection EA∨1 → EA∨2 corresponds, under our quasi-isomorphism, to the

embedding V†
A∨1
→ V†

A∨2
. Theorem 5.17 is proved.

6 Applications to Second Microlocalization

6.1 Microlocalization

If M ⊂ X is a C∞ submanifold of a C∞ manifold, as in §Sect. 4A, then for any
G ∈ Db(X), the microlocalization of G along M is defined as

μM(G) = FSM(νM(G)) ∈ Db(T ∗MX);

see [KS2] Ch. 4. Here FSM is the relative Fourier-Sato transform on the vector
bundle TMX → M .

If X = V is a real vector space with an arrangement H, if G ∈ Db(V,SR)

and M is a vector subspace, then our descriptions of the Fourier-Sato transform and
the specialization functors can be combined to obtain a combinatorial description
of μM(G). We leave this to the reader, establishing instead some compatibility
properties of various approaches to “second microlocalization” of Kashiwara and
Laurent; see [L] and references therein. For convenience, we give a brief general
introduction.

6.2 Iterated Microlocalization

Lemma 6.1 Let (W,ω) be a symplectic R-vector space and L1, L2 ⊂ W be
Lagrangian vector subspaces. Then the restriction of ω gives an identification

(
L1

L1 ∩ L2

)∗
�
(

L2

L1 ∩ L2

)

.
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Proof Consider the restriction of ω to the subspace L1 + L2. Its kernel on this
subspace is

(L1 + L2)
⊥ = L⊥1 ∩ L⊥2 = L1 ∩ L2.

Therefore, the restriction of ω makes

L1 + L2

L1 ∩ L2
= L1

L1 ∩ L2
⊕ L2

L1 ∩ L2

into a symplectic vector space decomposed into the direct sum of two Lagrangian
subspaces. So these Lagrangian subspaces become dual to each other. �

Let now (S, ω) be a C∞ symplectic manifold and Λ1,Λ2 ⊂ S be two
(smooth) Lagrangian submanifolds. We say that Λ1 and Λ2 intersect cleanly (in the
symplectic sense), if, locally, near each x ∈ Λ1∩Λ2, there is a symplectomorphism
of a neighborhood of x in S to a neighborhood of 0 in a symplectic vector space W ,
sending Λi to linear Lagrangian subspaces Li as above. This implies that Λ1 ∩Λ2
is smooth.

Corollary 6.2 If Λ1,Λ2 intersect cleanly, then the restriction of ω gives an
identification

T ∗Λ1∩Λ2
Λ1 � TΛ1∩Λ2Λ2.

�
Now let X be a C∞ manifolds and M,N ⊂ X be two smooth submanifolds.

We assume that they intersect cleanly in the sense that they can locally be brought
by a diffeomorphism to two vector subspaces in a vector space. Then S = T ∗X
has two Lagrangian submanifolds Λ1 = T ∗MX, Λ2 = T ∗NX which intersect
cleanly in the symplectic sense. Given a complex of sheaves G ∈ Db(X), we have
microlocalizations

μM(G) ∈ Db(Λ1), μN(G) ∈ Db(Λ2)

and we can specialize and microlocalize further, getting two complexes of sheaves

μΛ1∩Λ2μM(G) ∈ Db(T ∗Λ1∩Λ2
Λ1), νΛ1∩Λ2μN(G) ∈ Db(TΛ1∩Λ2Λ2)

on two spaces which are identified by Corollary 6.2, so we can consider them as
living on the same space. One can then formulate

Second Microlocalization Problem 6.3 Under which conditions on M,N and G
can we guarantee that

μΛ1∩Λ2 μM(G) � νΛ1∩Λ2 μN(G) ?
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6.3 Bi-microlocalization

Let us restrict to the case N ⊂ M . In this case, we have

Proposition 6.4 We have identifications

T ∗Λ1∩Λ2
Λ1 = TΛ1∩Λ2Λ2 � T ∗NM ⊕ (T ∗MX)|N.

Proof Obviously, Λ1∩Λ2 projects, under T ∗X → X, to N . Looking at the fibers of
this projection, we find that Λ1 ∩Λ2 = (T ∗MX)|N . Looking at the Cartesian square

Λ1 ∩Λ2 ��

ρ

��

T ∗MX = Λ1

π

��
N �� M

with π being a smooth fibration (projection of a vector bundle), we find that

T ∗Λ1∩Λ2
Λ1 � ρ∗T ∗NM � T ∗NM ⊕ (T ∗MX)|N. �

We already considered the situation of a flag N ⊂ M ⊂ X in discussing
bispecialization νNM(G) in Sect. 4E. Further, in this context, Schapira and Takeuchi
[ST, T] have defined the bimicrolocalization

μNM(G) = FSN(νNM(G)) ∈ Db(T ∗NM ⊕ (T ∗MX)|N).

Here FSN is the relative Fourier-Sato transform on the vector bundle TNM ⊕
(TMX)|N → N . So we have the following specialization-microlocalization dia-
gram:

Db(X)
μM

��

μN

��

μNM

������
�����

�����
�����

�����
��� Db(T ∗MX = Λ1)

μΛ1∩Λ2

��

Db(T ∗NX = Λ2)
νΛ1∩Λ2

�� Db
(
(T ∗NX ⊕ (T ∗MX)|N)) = T ∗Λ1∩Λ2

Λ1 = TΛ1∩Λ2Λ2
)

(6.5)
which gives three possible “second microlocalizations.”
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6.4 Comparisons in the Linear Case

Theorem 6.6 Let X = V be an R-vector space, N ⊂ M ⊂ V be vector
subspaces, andH an arrangement of hyperplanes in V with the corresponding face
stratification SR. Then the diagram (6.5) is canonically 2-commutative if we replace
Db(V ) with Db(V,SR).

In the complex situation, when V = VC is a C-vector space, N ⊂ M ⊂ VC are
C-subspaces, and Db(V,SR) is replaced by Perv(VC,SC), the commutativity of the
outer square of (6.5) was proved in [FS] using the D-module techniques.

We will deduce Theorem 6.6 from the following result.

Theorem 6.7 (P. Schapira) Let B be a C∞-manifold and V be a smooth R-vector
bundle on B. Let M ⊂ V be a vector subbundle. Then, the Fourier-Sato transforms
on V and TM(V ) = M ⊕ (V/M) are compatible with specializations. In other
words, the following diagram of functors is canonically 2-commutative:

Db
con(V )

FSV
��

νM

��

Db(V ∗)

ν
M⊥

��

Db(M ⊕ (V/M))
P12◦FSM⊕(V/M)

�� Db(M⊥ ⊕M∗).

Here P12 is the permutation of the two direct summands in M∗ ⊕M⊥.

The notation ⊕ here and below means direct sum of vector bundles, i.e., fiber
product over B.

We note that the diagram in Theorem 6.7 can be seen as a particular case of the
outer rim of the diagram (6.5) for the case when X = V , when M ⊂ V is our
subbundle and N = B is the zero section of V . In other words, Theorem 6.7 can
be seen as a parameterized version (with arbitrary base B instead of B = pt) of a
particular case of Theorem 6.6 corresponding to N = 0.

6.5 Proof of Theorem 6.7

The following proof is an adaptation of the argument communicated to us by P.
Schapira.

We consider three pairs

M⊥ ⊂ V ∗, M ⊕M⊥ ⊂ V ⊕ V ∗, M ⊂ V,
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and the corresponding normal deformations which are related by the natural
projections:

Ṽ ∗
M⊥ ←− Ṽ ⊕ V ∗M⊕M⊥ −→ ṼM. (6.8)

Each of the three normal deformations fits into its own diagram of the form (4.10)
whose spaces and maps will be decorated by the subscripts M⊥, M ⊕ M⊥, and
M . In particular, the projections of the three spaces in (6.8) to the line R will be
denoted τM⊥ , τM×M⊥ , and τM . These projections commute with the maps in (6.8).
The coordinate in R will be denoted t .

Now, the Fourier-Sato transform on any vector bundle W is defined using the
region

P = PW = {
(x, f ) ∈ W ⊕W ∗∣∣ f (x) ≥ 0

}
,

cf. Sect. 5A. We apply this to W = V and W = M ⊕ (V/M) and denote the
corresponding regions

PV ⊂ V ⊕ V ∗, PM⊕(V/M) ⊂ M ⊕ (V/M)⊕M∗ ⊕ (V/M)∗.

We want to lift PV into a region P ⊂ Ṽ ⊕ V ∗M⊕M⊥ which specializes, for t > 0,
to PV and, for t = 0, to PM⊕(V/M).

For this, we consider the region ΩM⊕M⊥ ⊂ Ṽ ⊕ V ∗M⊕M⊥ , defined as the
preimage τ−1

M⊕M⊥(R>0), cf. (4.10). It is identified with V ⊕ V ∗ ×R>0. Let P ⊂ Ω

be the image of PV × R>0.

Proposition 6.9 The closure P of P in Ṽ ⊕ V ∗M⊕M⊥ is the union of P and
PM⊕(V/M) ⊂ τ−1

M⊕M⊥(0).

Proof The statement is local in B. So we can assume that there exists a complement
M ′ to M and to write V = M ⊕M ′. We then identify, as in (4.10),

Ṽ ⊕ V ∗M⊕M⊥ = M ⊕M ′ ⊕M∗ ⊕M ′∗ × R

and the projection pM⊕M⊥ : Ṽ ⊕ V ∗M⊕M⊥ → V ⊕ V ∗ can be written as

pM⊕M⊥ : M ⊕M ′ ⊕M∗ ⊕M ′∗ × R −→ M ⊕M ′ ⊕M∗ ⊕M ′∗,
(
m,m′, φ, φ′, t

) �→ (
m, tm′, tφ, φ′

)
.

(6.10)

Recall that the identification ΩM⊕M⊥ → V ⊕ V ∗ × R>0 is given by the map
(pM⊕M⊥ , τM⊕M⊥), the second component being projection to t . It follows from
(6.10) that for any t > 0, the image, under pM⊕M⊥ , of PV × {t} is PV . Therefore,
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the inverse of pM⊕M⊥ , τM⊕M⊥) identifies PV × R≥0 with PV × R≥0, where for
t = 0 our choice of complement has identified PV with PM⊕M ′ = PM⊕(V/M). �

We now consider the following diagram:

V ∗ PV

p2,V
��

p1,V
�� V

ΩM⊥

p̃
M⊥

��

j
M⊥

��

P
ρ2

��

��

ρ1
��

��

ΩM

p̃M

��

jM
��

Ṽ ∗
M⊥ P̃

π2
��

π1
�� ṼM

M⊥ ⊕M∗

s
M⊥

��

PM⊕(V/M)
p2,M⊕(V/M)

��
p1,M⊕(V/M)

��

��

M ⊕ (V/M)

sM

��

Given G ∈ Db
con(V ), we have that

νM⊥FSV (G) = s∗
M⊥R(jM⊥)∗ p̃∗M⊥ (p2,V )! p−1

1,V (G),

FSM⊕(V/M)νM(G) = (p2,M⊕(V/M))! p∗1,M⊕(V/M) s
∗
M R(jM)∗ p̃∗M(G)

are given by moving along the two boundary paths of this diagram from the
northeast to the southwest corner. We identify these functors using the base change
theorem for the Cartesian squares forming this diagram.

6.6 Proof of Theorem 6.6

We write the diagram (6.5) in our case as follows:

Db(V,SR)
μM

��

μN

��

μNM

������
�����

�����
�����

���
Db

con(M × (V/M)∗)

μN×(V/M)∗
��

Db
con(N × (V/N)∗)

νN×(V/M)∗
�� Db

bicon(N × (M/N)∗ × (V/M)∗).

(6.11)
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Here and below, the subscript “con” means complexes which are R>0-conic with to
the second argument, and “bico” means complexes which are (R>0)

2-biconic with
respect to the second and third arguments.

We recall that μNM is the composition

Db(V,SR)
νNM−→ Db

bicon(N × (M/N)× (V/M))
FS(M/N)×(V/M)−→ Db

bicon(N × (M/N)∗ × (V/M)∗).

We now prove the 2-commutativity of each of the two triangles in (6.11).

Upper Triangle We write each μ as the composition of the corresponding FS
and ν and apply Theorem 4.17 to decompose νNM as the composition of two
specializations. After this, we represent the two paths in the triangle as the two
boundary paths in the following diagram:

Db(V,SR)

νM

��

μM

������
����

����
����

����

Db
con(M × (V/M))

FSV/M

��

νN

��

Db
con(M × (V/M)∗)

νN

��

Db
bicon(N × (M/N)× (V/M))

FSV/M

��

FS(M/N)×(V/M) 		����
����

����
����

��
Db

bicon(N × (M/N)× (V/M)∗))

FSM/N

��

Db
bicon(N × (M/N)∗ × (V/M)∗).

In this diagram, the top triangle commutes by definition of μM , and the commu-
tativity of the bottom triangle expresses the fact that the Fourier-Sato transform of
biconic sheaves on the direct sum of vector bundles can be done in stages, cf. [KS2]
Prop. 3.7.15. The commutativity of the middle square follows because specialization
along N and the Fourier-Sato transform along V/M operate in different factors so
they are independent of each other and can be permuted.

Lower Triangle As before, by unraveling the definitions of various μ and applying
Theorem 4.17, we represent the two paths in the triangle as the two boundary paths
in the following diagram:
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Db(V,SR)

νN

��

μN



�����
�����

�����
�����

�����
�

Db
con(N × (V/N)∗)

νN×(V/M)∗
��

Db
con(N × (V/N))

FSV/N

��

νN×(M/N)

��

Db
bicon(N × (M/N)× (V/M)) Db

bicon(N × (M/N)× (V/M))
FS(M/N)×(V/M)

��

The commutativity of the top triangle in this diagram is the definition of μN . The
commutativity of the lower square is an instance of Theorem 6.7 for the trivial vector
bundle over B = N with fiber V/N and the trivial subbundle with fiber M/N .
Theorem 6.6 is proved.
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1 Introduction and Statement of the Results

1.1 General Notation

In general, we work over C.
For a (derived) stack Y, we denote by QCoh(Y) the derived category of quasi-

coherent sheaves on Y and by D -mod(Y) the derived category of D-modules on
Y. In addition, we are going to denote by IndCoh(Y) the derived category of ind-
coherent sheaves on Y; this category coincides with QCoh(Y) when Y is a classical
(non-derived) smooth stack, but in general, the two are different (we are going to use
[AG15] as our main reference for the notion and properties of ind-coherent sheaves).

Let O = C[[z]],K = C((z)). Set D = Spec(O),D∗ = Spec(K). By a local
system of rank n on D∗, we shall mean a vector bundle E on D∗ of rank n endowed
with a connection ∇ : E→ E⊗Ω1

D
∗ . We denote by LocSysn(D

∗) the stack of local

systems of rank n on D∗.
For an algebraic group G over C, we denote by GrG = G(K)/G(O) the affine

Grassmannian of G (viewed as an ind-scheme).

1.2 The Main Conjecture: GL(n)-case

Let Wn denote the stack which classifies the following data:

(1) A local system Ei on D∗ of rank i for any i = 1, . . . , n.
(2) A morphism κi : Ei → Ei+1 for any i < n.

This stack maps naturally to the stack LocSysn(D
∗)) (this map sends the above

data to En). The trivial local system defines a map pt/GL(n) → Wn, and we let
Wtriv

n product

Wtriv
n −−−−→ Wn
⏐
⏐
�

⏐
⏐
�

pt/GL(n) −−−−→ LocSysn(D
∗).

It is worthwhile to note that Wtriv
n is a dg-stack.
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The following is a slightly corrected version of a conjecture formulated in
[BF19]:

Conjecture 1.3 The category IndCoh(Wtriv
n ) is equivalent to the category

D -mod(GrGL(n)). This equivalence respects the natural action of the tensor
category Rep(GL(n)) on both sides.

It is explained in [BF19] how to “deduce” Conjecture 1.3 from quantum field theory
considerations. In this paper, we are not going to discuss this physical motivation at
all: instead, we are going to present some mathematical evidence for it (mostly in
the case n = 2).

1.4 The Main Conjecture: GL(2)-case

In this subsection, we would like to strengthen Conjecture 1.3 in the case of GL(2).
First, let us ask a natural question for arbitrary n. Namely, it is clear that the
category IndCoh(Wtriv

n ) lives over
∏n−1

i=1 LocSysi (D
∗). How to see this structure

on D -mod(GrGL(n))?
We don’t know the answer to this question except for the case n = 2. To explain

the answer, we need to recall the statement of geometric local class field theory (due
to G. Laumon, cf. [Lau]):

Theorem 1.5 There is a natural equivalence of monoidal categoriesD -mod(K×) �
QCoh(LocSys1(D

∗)).1

Theorem 1.5 implies that the structure of “living over LocSys1(D
∗)” on a category C

is the same as a strong action of K× on C (see, e.g., [Gai17, 4.1.2]). Thus, to answer
our question for n = 2, it is enough to describe a strong action of K× on the category
D -mod(GrGL(n)). Since the group GL(2,K) acts strongly on D -mod(GrGL(2)), it
is enough to describe a map K× → GL(2,K). The relevant map is given by

x
η�→
(
x 0
0 1

)

So, we get the following conjecture:

Conjecture 1.6 The category IndCoh(Wtriv
2 ) is equivalent to the category

D -mod(GrGL(2)). This equivalence respects the natural action of the tensor
category Rep(GL(2)) on both sides. In addition, the action of the tensor category
QCoh(LocSys1(D

∗)) � D -mod(K×) onD -mod(GrGL(2)) coming from the natural

1In this case, the equivalence actually holds on the level of abelian categories, but the equivalence
of Conjecture 1.3 only has a chance to hold on the derived level. Also in this case, there is no
difference between QCoh and IndCoh.
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projectionWtriv
2 /GL(2)→ LocSys1(D

∗) under the above equivalence corresponds
to the action of D -mod(K×) coming from the embedding η : K× → GL(2,K)

defined above.

1.7 Fiberwise Version

We don’t know how to prove Conjecture 1.6 either. The purpose of this paper is
to prove a weaker statement: namely, we are going to show that the fibers both of
IndCoh(Wtriv

2 ) and of D -mod(GrGL(2)) over any E ∈ LocSys1(D
∗) are equivalent.

Let us look at these fibers in more detail.
Denote by π the natural projection Wtriv

2 → LocSys1(D
∗). Let E ∈

LocSys1(D
∗). Let us first work with QCoh instead of IndCoh. Then the fiber

of QCoh(Wtriv
2 ) over E (which we shall denote by QCoh(Wtriv

2 )E) is equivalent to
QCoh(π−1(E)).2 Assume that E is non-trivial. Then any morphism from E to the
trivial local system of rank 2 is 0; in other words, away from the trivial local system
(of rank 1), the natural map Wtriv

2 → LocSys1(D
∗)× pt/GL(2) is an isomorphism.

Hence, π−1(E) = pt/GL(2), and in this case, QCoh(Wtriv
2 )E is equivalent to

Rep(GL(2)).
On the other hand, assume that E is trivial. Then π−1(E) is a dg-stack equivalent

to (V × V[−1])/GL(V) where V is a two-dimensional vector space over C (this
follows from the fact the dg-scheme classifying f ∈ OD

∗ such that df = 0 is
A

1 × A
1[−1]).

Let us go back to the IndCoh story. Assume that we have a morphism π : Y→ X

of (dg) stacks; assume moreover that X is a smooth classical stack. In this case, the
fiber of IndCoh(Y) over a point x ∈ X is described in Section 2 of [AG15]. We are
not going to reproduce that general answer here as it will require introducing more
cumbersome notation; let us just explain what this answer amounts to in the case
when Y =Wtriv

2 and X = LocSys1(D
∗).

Let E be a rank 1 local system on D∗ as above. First, if E is non-trivial, then
it is easy to see that the fiber IndCoh(Wtriv

2 )E of IndCoh(Wtriv
2 ) over E is just

Rep(GL(2)) as before. Let now E be trivial. Then, as was noted above, we have
the isomorphism

π−1(E) � (V× V[−1])/GL(V),

where V is a two-dimensional vector space. By Koszul duality, the category
IndCoh((V × V[−1])/GL(V)) is equivalent to the derived category of GL(V)-
equivariant dg-modules over OV×V∗[2]. On the other hand, the sought-for fiber
IndCoh(Wtriv

2 )E is equivalent to the derived category of GL(V)-equivariant dg-

2Here π−1(E) should be understood in dg-sense.
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modules over OV×V∗[2] which are set-theoretically supported on ZV ⊂ V × V
∗[2]

consisting of pairs (v, v∗) with v∗(v) = 0. We shall denote this category by
IndCohZV

((V× V[−1])/GL(V)).

Now, any E as above defines a character D-module L on K×, i.e., a rank 1 local
system endowed with an isomorphism m∗L � L�L (here m : K××K× → K× is
the multiplication map) satisfying the standard associativity constraint. Under this
correspondence, trivial E corresponds to trivial L, i.e., L isomorphic to OK

× (note

that L is trivial if and only if it is trivial when restricted to O×). Given any L as
above, and a category C with a strong action of K×, it makes sense to consider
the category of (K×,L)-equivariant objects in C. When L is trivial, this is just the
category of K×-equivariant objects.

Thus, the following result is exactly the “fiberwise version” of Conjecture 1.6:

Theorem 1.8 Let K× act on GrGL(2) by means of the map η. Then

(1) Let L be a non-trivial character D-module on K×. Then the category of
(K×,L)-equivariant D-modules on GrGL(2) is equivalent to Rep(GL(2)).

(2) Let Db

K
×(GrGL(2)) denote the full subcategory of the derived category of

K×-equivariant D-modules on GrGL(2) whose restriction to any connected
component of GrGL(2) is a bounded complex whose cohomology D-modules
have finite-dimensional support and are coherent. Then Db

K
×(GrGL(2)) is

equivalent to Coh((V × V[−1])/GL(V)) (here V is again a two-dimensional
vector space over C).

(3) Let DK
×(GrGL(2)) denote the derived category of K×-equivariant D-modules

on GrGL(2). Then an object of DK
×(GrGL(2)) is compact if and only if

(a) It lies in Db

K
×(GrGL(2));

(b) Its image under the equivalence (2) lies in CohZV
((V× V[−1])/GL(V)).

In particular, the equivalence (ii) extends to the equivalence between
DK

×(GrGL(2)) and IndCohZV
((V× V[−1])/GL(V)).

The rest of the paper is devoted to the proof of Theorem 1.8.

Remarks The fact that usually not all objects of the bounded equivariant derived
category of D-modules (or constructible sheaves) are compact was first observed
and studied by V. Drinfeld and D. Gaitsgory, cf. [DG13]. Also the reader should
compare the last two assertions of Theorem 1.8 with, respectively, Theorem 12.3.3
and Corollary 12.5.5 of [AG15].
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2 Proof of Theorem 1.8(1)

2.1 Sketch of the Proof

In what follows, we denote by Λ = Z⊕ Z the coweight lattice of GL(2) and by

Λ+ = {(a, b) ∈ Λ| a ≥ b}

the cone of dominant coweights. Fix now a non-trivial character D-module L on
K×. We claim that in order to prove Theorem 1.8(1), it is enough to construct an
embedding ιL from Λ+ into the set of K×-orbits on GrGL(2) such that the following
three properties hold:

(i) A K×-orbit on GrGL(2) supports a (K×,L)-equivariant D-module if and only
if it lies in the image of ιL.
In what follows, for every λ ∈ Λ+, let us denote by Fλ

! and Fλ∗ the !
and ∗-extensions to all of GrGL(2) of the corresponding irreducible (K×,L)-
equivariant D-module on the orbit ιL(λ).

(ii) For any λ ∈ Λ+, we have

F0
! & ICλ � Fλ

! ; F0∗ & ICλ � Fλ∗.

(iii) The natural morphism F0
! → F0∗ is an isomorphism.

Indeed, (ii) and (iii) together imply that the map Fλ
! → Fλ∗ is an isomorphism

for any λ. Hence, the category of (K×,L)-equivariant D-modules on GrGL(2) is
semi-simple with simple objects Fλ := Fλ

! � Fλ∗. Now (ii) implies that the functor
S �→ F0 & S from D -modGL(2,O)(GrGL(2)) to the (abelian) category of (K×,L)-
equivariant D-modules on GrGL(2) is an equivalence which is exactly what we had
to prove.

So, it remains to define the map ιL and to check the properties (i)–(iii).

2.2 The Map ιL

There exists unique k > 0 such that L is pulled back from O×/1 + zkO but not
pulled back from O×/1 + zk−1O. The corresponding map ιL will only depend on
k which will be fixed till the end of this section. To simplify the notation, we shall
simply write Yλ for the K×-orbit of zιL(λ). Also we set Xλ to be the intersection of
Yλ with GrSL(2).

Let λ = (n1, n2) with n1 ≥ n2. Then we set Yλ to be the K×-orbit of the (image
in GrGL(2) of the) matrix
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(
1 z−k−n

0 1

)

·
(
z−n2 0

0 zn2

)

Here n = n1 + n2.

2.3 Proof of (i)

It is enough to deal with O×-orbits on GrSL(2) instead of K×-orbits on GrGL(2). Such
orbits are in one-to-one correspondence with pairs (m, l) ∈ Z×Z with l− 2m ≤ 0;
the O×-orbit corresponding to a given (m, l) is the orbit of the matrix

(
1 zl

0 1

)

·
(
zm 0
0 z−m

)

The stabilizer of the above point in O× is 1 + z2m−lO. Hence, this orbit supports
a (O×,L)-equivariant D-module if and only if 2m − l ≥ k. This is exactly the
condition that there exists a pair (n1, n2) ∈ Z × Z such that n1 ≥ n2 satisfying the
equations

l = −k − n, m = −n2.

2.4 Proof of (ii)

Let us compute the convolution of F0
! with ICλ where λ = (n1, n2) (the

corresponding calculation for F0∗ is completely analogous). We need to show the
following two things:

(1) The ∗-restriction F0
! & ICλ to Xλ is equal to IC-sheaf of Xλ;

(2) The ∗-restriction F0
! & ICλ to any O∗-orbit on GrSL(2) different from Xλ is equal

to 0.

For this, it is enough to compute the stalk of F0
! & ICλ at any point of the form

g =
(

1 zl

0 1

)

·
(
zm 0
0 z−m.

)

Let us fix λ = (n1, n2),m, l, and k, and let

Z = {x ∈ X0| x−1g ∈ Gr
λ

GL(2)}.
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Let i denote the natural map from Z to X0 � O∗/1 + zkO. Then the above stalk is
equal to H ∗

c (Z, i∗L[dimX0 + dim GrλGL(2)]). We can assume that x is of the form

x =
(
z−n az−n−k

0 1

)

where a ∈ O×. Then

x−1g =
(
zn+m zn+l−m − az−k−m

0 z−m

)

.

This matrix defines a point in Gr
λ

GL(2) if n + m,−m ≥ n2 and z−m(zn+l −
az−k) ∈ zn2O. Let a = ∑

aizi . We see that if −m > n2, then changing ak−1
does not affect the above conditions; so, “integrating out” ak−1 first, we see that
H ∗

c (Z, i∗L[dimX0 + dim GrλGL(2)]) = 0. Assume now that −m = n2. Then unless
n + l = −k, the above equations have no solutions; hence, the sought-for stalk is
again 0. The case −m = n2, n + l = −k is precisely the case g ∈ Xλ. In this
case, we must have a0 = 1 and aj = 0 for 0 < j < k. So Z consists of just one
point and H ∗

c (Z,C[dimX0+dim GrλGL(2)] = C[dimXλ] (since it is easy to see that

dimX0 + dim GrλGL(2) = dimXλ).

2.5 Proof of (iii)

It follows from the discussion in the beginning of Sect. 2.3 that

(a) If an O×-orbit X on GrSL(2) carries a non-zero (O×,L)-equivariant sheaf, then
dimX ≥ k;

(b) dimX0 = k.

It follows from (b) that X0\X is a union of O×-orbits of dimension < k. Thus, (a)
implies that the natural morphism F0

! → F0∗ is an isomorphism.

3 Proof of Theorem 1.8(2)

In this section, we prove the second assertion of Theorem 1.8. It is in fact a mild
variation on the proof of the derived geometric Satake equivalence (cf. [BF08]).
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3.1 Reduction to SL(2)

We are supposed to study the derived category of K×-equivariant D-modules on
GrGL(2). We claim that it is the same as the derived category of O×-equivariant D-
modules on GrSL(2) (here O× is embedded into SL(2,K) via the identification of the
standard Cartan subgroup of SL(2) with Gm). Indeed, we have K× = O× ×Z. The
last factor acts simply transitively on the set of connected components of GrGL(2),
and the first factor preserves every connected component. Hence, a K×-equivariant
D-module on GrGL(2) is the same as an O×-equivariant D-module on the connected
component of 1, which is equal to GrSL(2). The reader must be warned that the action
of O× on GrSL(2) coming from our usual K×-action on GrGL(2) is not the same as
the action coming from the Cartan torus of SL(2), but the latter is obtained from the
former by means of the map x �→ x2 which doesn’t change the equivariant derived
category.

For the remainder of this section, we shall write Gr instead of GrSL(2).

3.2 Koszul Duality

We let DO
×(Gr) denote the corresponding equivariant derived category; since orbits

of O× on Gr are parameterized by discrete set, we can work with constructible
sheaves instead of D-modules.

We let Db

O
×(Gr) denote the bounded derived category of O×-equivariant con-

structible sheaves on Gr. Recall that we need to show the following:

Theorem 3.3 Db

O
×(Gr) � Coh((V× V

∗[2])/GL(V)).

3.4 Equivariant Cohomology

Let λ ∈ Z+, μ ∈ Z. We are going to think about λ as a dominant coweight of
PGL(2) and about μ as an arbitrary coweight of PGL(2). Let us also assume that

λ − μ ∈ 2Z. Then we define Fλ,μ to be the IC-sheaf of zμGr
λ

(note that because

λ and μ have the same parity, it follows that zμGr
λ ⊂ GrSL(2) = Gr). This is an

object of Db

O
×(Gr). We would like to describe H ∗

O
×(Gr,Fλ,μ) as a module over

H ∗
O
×(Gr,C).

First, let us describe H ∗
O
×(Gr,C). Namely, let Det denote the standard determi-

nant line bundle on Gr. Then we have

H ∗
O
×(Gr,C) = C[a, c]
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where a is the standard generator of H ∗
O
×(pt) = H ∗

C×(pt) and c = c1(Det)
(equivariant first Chern class).

We can now describe H ∗
O
×(Gr,Fλ,μ).

Proposition 3.5 Let V (λ) denote the irreducible representation of SL(2) with
highest weight λ (it has dimension λ + 1). Let πλ : sl2 → End(V (λ)) denote the
corresponding map. Then the H ∗

O
×(Gr,C) = C[a, c]-module H ∗

O
×(Gr,Fλ,μ) is

isomorphic to C[a] ⊗ V (λ) where

(a) c acts by

πλ

(
0 1
a2 0

)

+ μa. (1)

(b) The grading on C[a] ⊗ V (λ) is equal to the tensor product of the standard
grading on C[a] (recall that a has degree 2) and the grading on V (λ) by
eigenvalues of h (here we use the standard basis (e, h, f ) of the Lie algebra
of SL(2)). Note that the endomorphism of C[a] ⊗ V (λ) given by the element 1
is homogeneous of degree 2 with respect to this grading.

Proof This statement is well-known when μ = 0. To prove it for general μ, it is
enough to show that c1((z

μ)∗Det) = c+μa. It is enough to check this equality after
restricting to every O×-fixed point on Gr where it is obvious. �
Let us slightly reformulate this answer. Given λ and μ as above, let V (λ,μ) denote
the (unique) irreducible representation of GL(2), such that its restriction to SL(2)
is isomorphic to V (λ) and its central character is given by μ (note that such a
representation exists precisely when λ− μ ∈ 2Z). In what follows, we shall regard
it as a graded vector space, where the grading as before is given by the eigenvalues
of h ∈ sl2. Let πλ,μ : gl2 → End(V (λ, μ)) denote the corresponding map. Then (1)
is equal to

πλ,μ

(
a 1
a2 a

)

. (2)

Let us make yet another reformulation of the answer. Let

S(a) =
(
a 1
a2 a

)

, T (a) =
(

0 1
0 2a

)

Then T (a) = g(a)−1S(a)g(a) where

g(a) =
(

1 0
−a 1

)

.

Hence, we get the following equivalent version of Proposition 3.5:
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Proposition 3.6 TheH ∗
O
×(Gr,C) = C[a, c]-moduleH ∗

O
×(Gr,Fλ,μ) is isomorphic

to C[a] ⊗ V (λ,μ) where c acts by πλ,μ(T (a)).

3.7 The Functor

We can now describe the functor F : Db

O
×(Gr) → Coh((V × V

∗[2])/GL(2)).

Namely, it has the property that

F(Fλ,μ) = OV×V∗[2] ⊗ V (λ,μ)

where the group GL(2) acts on the RHS diagonally. We claim that in order to check
existence of F , it is enough to construct isomorphisms

ExtDb

O
× (Gr)(F

λ,μ,Fλ′,μ′) �

ExtOV×V∗[2]�GL(2)(OV×V∗[2] ⊗ V (λ,μ),OV×V∗[2] ⊗ V (λ′, μ′))
(3)

for any (λ, μ) and (λ′, μ′) as above (these isomorphisms must be compatible
with compositions). Indeed, if we have such isomorphisms, then a word-by-word
repetition of the arguments of [BF08, Section 6] constructs the functor F (and also
proves that it is an equivalence).

3.8 Computing Ext’s

The next result allows us to compute Ext’s between O×-equivariant IC-sheaves on
Gr; it is analogous to a theorem of V. Ginzburg from [Gin91], but we do not know
how to prove it by any general argument.

Proposition 3.9

ExtDb

O
× (Gr)(F

λ,μ,Fλ′,μ′) = HomH ∗
O
× (Gr,C)(H

∗
O
×(Gr,Fλ,μ),H ∗

O
×(Gr,Fλ′,μ′)).

(4)

Here we use the following convention: when we write Hom between two graded
modules over a graded ring, we consider all homomorphisms (not just those that
preserve the grading).

Proof Obviously, we have a map from the LHS of (4) to the RHS of (4). First, we
claim that this map is injective. For this, it is enough to show the following:
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(1) Both sides are free modules over H ∗
O
×(pt);

(2) The map in question becomes an isomorphism after tensoring with the field of
fractions of H ∗

O
×(pt).

�
The first assertion is known to follow from the fact that the corresponding non-
equivariant Ext’s and cohomologies are pure (which follows from the fact that
these are Ext’s between pure sheaves on a projective variety). The second assertion
follows from localization theorem since the set of fixed points of C× ⊂ O× in the
closure of any O×-orbit on Gr is finite.

Now let us show that the above map is surjective. It follows from Proposition 3.6
that H ∗

O
×(Gr,Fλ,μ) is a cyclic H ∗

O
×(Gr,C) = C[a, c]-module generated by one

vector vλ,μ of degree −λ whose annihilator is generated by the element

λ∏

i=0

(c− a(2i + μ− λ)). (5)

Let now (λ, μ) and (λ′, μ′) be as in (4). Let S(λ, μ) be the set {μ− λ,μ− λ+
2, · · · , λ} (respectively, let S(λ′, μ′) = {μ′ − λ′, μ− λ+ 2, · · · , λ′}). Let k be the
cardinality of S(λ, μ) ∩ S(λ′, μ′). Then the RHS of (4) is

(a) equal to 0 if k = 0;
(b) generated by one element of degree 2(λ′ + 1− k) whose annihilator in C[a, c]

is generated by
∏

i∈S(λ,μ)∩S(λ′,μ′)
(c− ai) for k > 0.

We now want to compare this to the LHS of (4). Let Gr
λ,μ

denote the support of

Fλ,μ. Since Fλ,μ (resp. Fλ′,μ′ ) is the constant sheaf on Gr
λ,μ

(resp. on Gr
λ′,μ′

)

shifted by λ (resp. by λ′), it follows that the LHS of (4) is equal to H ∗
O
∗(Gr

λ,μ ∩
Gr

λ′,μ′
,C)[λ′ − λ]. Thus, Proposition 3.9 follows from the following:

Lemma 3.10

(1) Gr
λ,μ ∩ Gr

λ′,μ′ = ∅ if k = 0.

(2) Gr
λ,μ ∩ Gr

λ′,μ′ = Gr
λ′′,μ′′

, where λ′′, μ′′ are such that S(λ, μ) ∩ S(λ′, μ′) =
S(λ′′, μ′′) (for k > 0).

Proof The assignment μ �→ zμ defines a bijection between 2Z and GrC
×

. Any
closed O∗-invariant subset of Gr is uniquely determined by its intersection with

GrC
× = 2Z. It is easy to see that Gr

λ,μ ∩ GrC
× = S(λ, μ); hence, the lemma

follows.
The proposition is proved. �
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3.11 The End of the Proof

We need to construct an isomorphism between the RHS of (3) and the RHS of (4).
Note that the latter is equal to Hom between two explicit modules over the ring
C[a, c] over the polynomial ring in two variables of degree 2. We would like to
rewrite the former in a similar way. For this, let us do the following.

First, let P denote the stabilizer of the vector (1, 0) in V. Then we claim that

ExtOV×V∗[2]�GL(2)(OV×V∗[2] ⊗ V (λ,μ),OV×V∗[2] ⊗ V (λ′, μ′)) =
HomOV∗[2]�P (OV∗[2] ⊗ V (λ,μ),OV∗[2] ⊗ V (λ′, μ′)).

Indeed, since we are computing Hom’s between free modules, we can replace V by
V\{0}. Since GL(2) acts transitively on the latter with P being the stabilizer of one
element, we obtain the above isomorphism.

Now we would like to describe a functor from the category of P -equivariant
coherent sheaves on V

∗[2] to the category of graded modules over C[a, c] which
is fully faithful on free modules. The category of P -equivariant coherent sheaves
on V

∗[2] can be thought of as the category of P -equivariant graded modules over
C[x, y] where x and y both have degree 2. The group P consists of matrices

g =
(

1 α

0 β

)

. (6)

Such a matrix acts on a vector (x, y) by means of (gt )−1 (here gt stands for the
transposed matrix). Thus, the Lie algebra of P consists of matrices of the form

A =
(

0 u

0 v

)

and A(x, y) = (0,−ux − vy).
Let us take a module M as above, and let us restrict it to the line y = −1, i.e.,

consider the quotient M/(y+1)M . This quotient is endowed with a natural action of
C
× which comes from the C

×-action on M coming from the grading on M and the
action coming from the embedding C

× ↪→ P corresponding to matrices as in (6)
with α = 0. We would like to extend this to a structure of a graded C[a, c]-module
on it.

The action of a just comes from the action of x/2 on M . The action of c is
characterized by the property that its action on the fiber over the point (x,−1) =
(2a,−1) is given by the action of the matrix

(
0 1
0 2a

)

∈ Lie(P ). (7)
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This makes sense because this matrix kills the vector (2a,−1) and hence the
corresponding one-parametric subgroup (and hence also its Lie algebra) acts on the
fiber of any P -equivariant coherent sheaf over (2a,−1).

Let us denote the resulting functor from P -equivariant coherent sheaves on V
∗[2]

to graded C[a, c]-modules by F̃ . It follows from Proposition 3.6 that this functor
sends the module OV∗[2]⊗V (λ,μ) to H ∗

O
×(Gr,Fλ,μ). To finish the proof, it remains

to show that F̃ is fully faithful on free modules. This immediately follows from the
following two (easy) statements:

(1) P · {(x,−1)} = V
∗\{0};

(2) The stabilizer of the point (2a,−1) in P is equal to the one-parametric subgroup
generated by the matrix (7).

3.12 Abelian Equivalence

We would like to conclude this section with a variant of Theorem 1.8(2)
which in particular will give rise to certain equivalence of abelian categories
(this is not strictly speaking needed for the purposes of this paper, but it is
important for some future work). Namely, first of all, we claim that the category
Coh((V × V[−1])/GL(V)) is equivalent to the derived category of GL(V)-
equivariant finitely generated modules over the algebra Λ(V) ⊗ Λ(V∗). Indeed,
Coh((V × V[−1])/GL(V)) is the derived category of GL(V)-equivariant dg-
modules over Sym(V∗) ⊗ Λ(V∗[−1]) (considered as a dg-algebra with trivial
differential).3

Let now M be any GL(V)-equivariant dg-module over Sym(V∗)⊗Λ(V∗[−1]).
Define a new grading of M which is equal to the sum of the old grading and the
grading coming from the action of the center of GL(V). This makes it into a GL(V)-
equivariant dg-module over Sym(V∗[1])⊗Λ(V∗). By applying Koszul duality with
respect to the first factor, we can now associate to M a finitely generated GL(V)-
equivariant module over Λ(V)⊗Λ(V∗). It is easy to see that this procedure defines
an equivalence between the derived category of GL(V)-equivariant dg-modules over
Sym(V∗) ⊗ Λ(V∗[−1]) and the derived category of GL(V)-equivariant modules
over Λ(V)⊗Λ(V∗). The advantage of the latter model is that it comes equipped with
an obvious t-structure, whose heart is the abelian category of GL(V)-equivariant
modules over the algebra Λ(V)⊗Λ(V∗).

On the other hand, the category Db

K
×(GrGL(2)) also has an obvious t-structure

whose heart can be identified with the category PervK×(GrGL(2)) of K×-equivariant

3Here when we write Λ(W [d]) (for a vector space W and d ∈ Z), we just mean the dg-algebra
with trivial differential which is equal to the exterior algebra generated by elements of W which
have homological degree −d, i.e., we are NOT using the “super-notation” here with respect to the
homological degree. Same goes for the notation Sym(W [d]).
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perverse sheaves on GrGL(2) (the latter category is the same as PervO×(GrSL(2))

which is just the full subcategory of the category of perverse sheaves (with finite-
dimensional support) on GrSL(2) which are constant along O×-orbits).

The following statement is an easy corollary of the proof of Theorem 1.8(2); we
leave the details to the reader.

Theorem 3.13 The equivalence between Db

K
×(GrGL(2)) and the derived category

of GL(V)-equivariant finitely generated modules over Λ(V) ⊗ Λ(V∗) (obtained
by combining Theorem 1.8(2) and the equivalence described in the beginning
of this subsection) preserves the above t-structures. In particular, the category
PervK×(GrGL(2)) is equivalent to the abelian category of GL(V)-equivariant finitely
generated modules over the algebra Λ(V)⊗Λ(V∗).

4 Proof of Theorem 1.8(3)

4.1 Compact Objects in D -modH(X)

Let X be a scheme of finite type over C. Let also H be a pro-algebraic group
over C acting on X; we assume that H has a normal pro-unipotent subgroup
with finite-dimensional quotient. As before, we denote by D -modH(X) the derived
category of strongly H-equivariant D-modules on X. We also denote by Db

H(X) its
full subcategory consisting of bounded complexes with coherent cohomology. We
would like to get a characterization of compact objects in D -modH(X) (under some
additional assumptions). This question is studied in detail in [DG13]. The following
lemma is an easy consequence of the results of loc. cit.:

Lemma 4.2

(1) Assume that F ∈ D -modH(X) is compact. Then F ∈ Db
H(X).

(2) Assume that F ∈ D -modH(X) is compact. Then its equivariant de Rham
cohomology H ∗

H(X,F) is finite-dimensional (i.e., it is a bounded complex of
vector spaces with finite-dimensional cohomology).

(3) Assume that X = pt. Then conditions (1) and (2) above are also sufficient for
compactness.

(4) Let H = C
× ×H0 where H0 is (pro)unipotent. Then F ∈ Db

H(X) is compact if
and only if for any embedding ix : {x} → X of C×-fixed point x inX, the object
i!xF is a compact object of D -modC×(pt).

4.3 The Cohomology Functor

In view of assertion (2) of Lemma 4.2, we would like to describe what happens to
the functor of equivariant de Rham cohomology under the equivalence constructed
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in Sect. 3. Let us denote this equivalence by Φ (this is a functor from Db

O
×(Gr) to

Coh((V× V
∗[2])/GL(V)).

Let us consider the closed dg-subscheme S of V × V
∗[2] consisting of pairs

(v, v∗) where v = (1, 0) and v∗ is of the form (x,−1). Then we claim the following:

Lemma 4.4 We have canonical isomorphism

H ∗
O
×(Gr,F) � F|S (8)

for any F ∈ Db

O
×(Gr). Here the grading on the RHS of (8) is defined in the same

way as in Sect. 3.11.

The proof follows immediately from the construction of the functor Φ described
in Sect. 3.

4.5 Compact Objects in D
O

×(Gr)

Let us now go back to the proof of Theorem 1.8(3). We want to show that
an object F in DO

×(Gr) is compact if and only if it is a bounded complex
of coherent D-modules (which in this case is the same as a bounded complex
of constructible sheaves) and Φ(F) is supported on ZV. Let us first show the
“only if” direction. According to assertion (2) of Lemma 4.2, compactness of F

implies that H ∗
O
×(Gr,F) is finite-dimensional. This condition is equivalent to the

condition dim supp(Φ(F)) ∩ S = 0; here, we regard both supp(Φ(F)) and S as
closed subvarieties of V × V

∗ (i.e., we disregard the cohomological grading on
the second factor). However, the fact that Φ(F) is actually an object of Coh((V ×
V
∗[2])/GL(V)) implies that supp(Φ(F)) is

(a) GL(V)-invariant.
(b) C

×-invariant where the C
×-action on V × V

∗ comes from dilating the second
factor.

It is easy to see that a closed subvariety of V×V
∗ which satisfies conditions (a) and

(b) above has zero-dimensional intersection with S if and only if it is contained in
ZV, which finishes the proof of the “only if” direction.

4.6 End of the Proof

To prove the “if” direction, we are going to use the fourth assertion of Lemma 4.2
(note that O× is a product of C× and a pro-unipotent group). Let us assume that
supp(Φ(F)) ⊂ ZV. Combining the third and fourth assertions we see that (using the
notation of Sect. 3), we just need to check that for any even integer μ, we have
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dim Ext∗(F0,μ,F) <∞ (9)

(here we compute Ext in the equivariant derived category). Indeed, the sheaves F0,μ

are exactly the sky-scraper sheaves at the C
×-fixed points in Gr.

First of all, we claim that it is enough to assume that μ = 0. Indeed, we have

Ext∗(F0,μ,F) = Ext∗(F0,0, (z−μ)∗F)

and Φ((z−μ)∗F) = Φ(F)⊗V (0,−μ); hence, if Φ(F) is supported inside ZV, then
the same is true for Φ((z−μ)∗F)).

Now, since Φ(F0,0) = OV×V∗[2], it follows that

RHom(F0,0,F) = Φ(F)GL(V).

To show that the RHS of the above equation has finite-dimensional cohomology
(assuming that Φ(F) is supported inside ZV), it is enough to show OGL(V)

ZV

is

finite-dimensional (since Φ(F) is a finite extension of quotients of OZV
). This

immediately follows from the fact that OGL(V)
V×V∗ = C[v∗(v)] which is obvious (here

we regard v∗(v) as a function V× V
∗ → C).
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1 Introduction

1.1 What Are Trying to Do?

1.1.1

This paper is a sequel of [Ga1]. In loc. cit., an attempt was made to construct a
certain object, denoted IC

∞
2 , in the (derived) category Shv(GrG) of sheaves on the

affine Grassmannian, whose existence had been predicted by G. Lusztig.
Notionally, IC

∞
2 is supposed to be the intersection cohomology complex on the

closure S0 of the unit N((t))-orbit S0 ⊂ GrG. Its stalks are supposed to be given by
periodic Kazhdan–Lusztig polynomials. Ideally, one would want the construction of
IC

∞
2 to have the following properties:

• It should be local, i.e., only depend on the formal disc, where we are thinking of
GrG as G((t))/G[[t]].
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• When our formal disc is the formal neighborhood of a point x in a global
curve X, then IC

∞
2 should be the pullback along the map S0 → BunN of the

intersection cohomology sheaf of BunN , where the latter is Drinfeld’s relative
compactification of the stack of G-bundles equipped with a reduction to N

(which is an algebraic stack locally of finite type, so ICBunN
is well defined).

The construction in [Ga1] indeed produced such an object, but with the following
substantial drawback: in loc. cit., IC

∞
2 was given by an ad hoc procedure; namely, it

was written as a certain explicit direct limit. In particular, IC
∞
2 was not the middle

extension of the constant1 sheaf on S0 with respect to the natural t-structure on
Shv(GrG) (however, IC

∞
2 does belong to the heart of this t-structure).

1.1.2

In this paper, we will construct a variant of IC
∞
2 , denoted IC

∞
2

Ran, closely related

to IC
∞
2 , which is actually given by the procedure of middle extension in a certain

t-structure.
Namely, instead of the single copy of the affine Grassmannian GrG, we will

consider its Ran space version, denoted GrG,Ran. We will equip the corresponding

category Shv(GrG,Ran) with a t-structure, and we will define IC
∞
2

Ran as the middle
extension of the dualizing sheaf on S0

Ran ⊂ GrG,Ran.

Remark 1.1.3 Technically, the Ran space is attached to a smooth (but not neces-
sarily complete) curve X, and one may think that this somewhat compromises the

locality property of the construction of IC
∞
2

Ran. However, if one day a formalism
becomes available for working with the Ran space of a formal disc, the construction

of IC
∞
2

Ran will become purely local.

1.1.4

For a fixed point x ∈ X, we have the embedding

GrG � {x} ×
Ran

GrG,Ran ↪→ GrG,Ran,

and we will show that the restriction of IC
∞
2

Ran along this map recovers IC
∞
2 from

[Ga1].

1Technically, not constant but rather dualizing.



154 D. Gaitsgory

1.1.5

Our IC
∞
2

Ran retains the relation to ICBunN
. Namely, we have a natural map

S
0
Ran → BunN

and we will prove that IC
∞
2

Ran identifies with the pullback of ICBunN
along this map.

In particular, this implies the isomorphism

IC
∞
2 � ICBunN

|
S

0 ,

which had been established in [Ga1] by a different method.

1.1.6

To summarize, we can say that we still do not know how to intrinsically characterize
IC

∞
2 on an individual GrG as an intersection cohomology sheaf, but we can do it,

once we allow the point of the curve to move along the Ran space.

But ce n’est pas grave: as was argued in [Ga1, Sect. 0.4], our IC
∞
2

Ran, equipped
with its factorization structure, is perhaps a more fundamental object than the
original IC

∞
2 .

1.2 What Is Done in This Paper?

The main constructions and results of this paper can be summarized as follows:

1.2.1

We define the semi-infinite category on the Ran version of the affine Grassmannian,
denoted SIRan, and equip it with a t-structure. This is largely parallel to [Ga1].

We define IC
∞
2

Ran ∈ SIRan as the middle extension of the dualizing sheaf on
the stratum S0

Ran ⊂ GrG,Ran. (We will also show that the corresponding !- and *-
extensions both belong to the heart of the t-structure, see Proposition 3.2.2; this
contrasts with the situation for IC

∞
2 , see [Ga1, Theorem 1.5.5]).

We describe explicitly the !- and *-restrictions of IC
∞
2

Ran to the strata Sλ
Ran ⊂

S0
Ran ⊂ GrG,Ran (here λ is an element of 'neg, the negative span of positive

simple coroots), see Theorem 3.4.5. These descriptions are given in terms of the
combinatorics of the Langlands dual Lie algebra: more precisely, in terms of the
factorization algebras attached to O(Ň) and U(ň−).
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We give an explicit presentation of IC
∞
2

Ran as a colimit (parallel to the definition

of IC
∞
2 in [Ga1]), see Theorem 3.7.2. This implies the identification IC

∞
2

Ran |GrG �
IC

∞
2 , where IC

∞
2 ∈ Shv(GrG) is the object constructed in [Ga1].

1.2.2

We show that IC
∞
2

Ran identifies canonically (up to a cohomological shift by [d], d =
dim(BunN)) with the pullback of ICBunN

along the map

S0 → BunN, (1.1)

see Theorem 4.3.3.
In fact, we show that the above pullback functor is t-exact (up to the shift by [d]),

when restricted to the subcategory SI≤0
glob ⊂ Shv(BunN) that consists of objects

equivariant with respect to the action of the adelic N , see Corollary 4.6.7.
The proof of this t-exactness property is based on applying Braden’s theorem to

GrG,Ran and the Zastava space.
We note that, unlike [Ga1], the resulting proof of the isomorphism

ICBunN
|S0

Ran
[d] � IC

∞
2

Ran (1.2)

does not use the computation of ICBunN
from [BFGM], but rather reproves it.

As an aside we prove an important geometric fact that the map (1.1) is universally
homologically contractible (=the pullback functor along any base change of this
map is fully faithful), see Theorem 4.4.4.

1.2.3

We show that IC
∞
2 has a unitality property: it stays invariant under the operation of

“throwing in” more points in Ran without altering the G-bundle.
We use the unitality property of IC

∞
2 to equip it with a factorization structure.

1.2.4

We show that IC
∞
2

Ran has an eigen-property with respect to the action of the Hecke
functors for G and T , see Theorem 6.5.7.

In the course of the proof of this theorem, we give yet another characterization

of IC
∞
2

Ran (which works for IC
∞
2 as well):
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We show that the δ-function δ1Gr,Ran ∈ Shv(GrG,Ran) on the unit section Ran →
GrG,Ran possesses a natural Drinfeld–Plucker structure with respect to the Hecke

actions of G and T (see Sect. 6.4 for what this means), and that IC
∞
2

Ran can be
obtained from δ1Gr,Ran by applying the functor from the Drinfeld–Plücker category
to the graded Hecke category, left adjoint to the tautological forgetful functor (see
Sect. 6.5).

Finally, we establish the compatibility of the isomorphism (1.2) with the Hecke

eigen-structures on IC
∞
2

Ran and ICBunN
, respectively (see Theorem 7.3.5).

1.3 Organization

1.3.1

In Sect. 2, we recall the definition of the Ran space Ran, the Ran version of the
affine Grassmannian GrG,Ran, and the stratification of the closure S0

Ran of the adelic
N -orbit S0

Ran by locally closed substacks Sλ
Ran.

We define the semi-infinite category SIRan and study the standard functors that
link it to the corresponding categories on the strata.

1.3.2

In Sect. 3, we define the t-structure on SI≤0
Ran and our main object of study, IC

∞
2

Ran.

We state Theorem 3.4.5 that describes the *- and !- restrictions of IC
∞
2

Ran to the
strata Sλ

Ran. The proof of the statement concerning *-restrictions will be given in this
same section (it will result from Theorem 3.7.2 mentioned below). The proof of the
statement concerning !-restrictions will be given in Sect. 4.

We state and prove Theorem 3.7.2 that gives a presentation of IC
∞
2

Ran as a colimit.

1.3.3

In Sect. 4, we recall the definition of Drinfeld’s relative compactification BunN .
We define the global semi-infinite category SI≤0

glob ⊂ Shv(BunN). We prove that
the pullback functor along (1.1), viewed as a functor

SI≤0
glob → SI≤0

Ran,

is t-exact (up to the shift by [d]). From here we deduce the identification (1.2), which
is Theorem 4.3.3.

We also state Theorem 4.4.4, whose proof is given in Appendix 7.4.4.
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1.3.4

In Sect. 5, we introduce the notion of unital subcategory inside Shv(GrG,Ran),

Shv(S
0
Ran), and SI≤0

Ran, and we show that IC
∞
2 belongs to SI≤0

Ran.

We use this property of IC
∞
2 to equip it with a factorization structure.

1.3.5

In Sect. 6, we establish the Hecke eigen-property of IC
∞
2

Ran. In the process of doing
so, we discuss the formalism of lax central objects and Drinfeld–Plücker structures,
and their relation to the Hecke eigen-structures.

In Sect. 7, we prove the compatibility between the eigen-property of IC
∞
2

Ran and
that of ICBunN

.

1.4 Background, Conventions, and Notation

The notations and conventions in this follow closely those of [Ga1]. Here is a
summary:

1.4.1

This paper uses higher category theory. It appears already in the definition of our
basic object of study, the category of sheaves on the Ran Grassmannian, GrG,Ran.

Thus, we will assume that the reader is familiar with the basics of higher
categories and higher algebra. The fundamental reference is [Lu1, Lu2], but shorter
expositions (or user guides) exist as well, for example, the first chapter of [GR].

1.4.2

Our algebraic geometry happens over an arbitrary algebraically closed ground
field k. Our geometric objects are classical (i.e., this paper does not need derived
algebraic geometry).

We let Schaff
ft denote the category of (classical) affine schemes of finite type

over k.
By a prestack (locally of finite type), we mean an arbitrary functor

(Schaff
ft )op → Groupoids (1.3)

(we do not need to consider higher groupoids).
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We let PreSklft denote the category of such prestacks. It contains Schaff
ft via the

Yoneda embedding. All other types of geometric objects (schemes, algebraic stacks,
ind-schemes) are prestacks with some specific properties (but not additional pieces
of structure).

1.4.3

We let G be a connected reductive group over k. We fix a Borel subgroup B ⊂ G

and the opposite Borel B− ⊂ G. Let N ⊂ B and N− ⊂ B− denote their respective
unipotent radicals.

Set T = B ∩ B−; this is a Cartan subgroup of G. We use it to identify the
quotients

B/N � T � B−/N−.

We let ' denote the coweight lattice of G, i.e., the lattice of cocharacters of
T . We let 'pos ⊂ ' denote the sub-monoid consisting of linear combinations of
positive simple roots with non-negative integral coefficients. We let '+ ⊂ ' denote
the sub-monoid of dominant coweights.

1.4.4

While our geometry happens over a field k, the representation-theoretic categories
that we study are DG categories over another field, denoted e (assumed alge-
braically closed and of characteristic 0). For a crash course on DG categories, the
reader is referred to [GR, Chapter 1, Sect. 10].

All our DG categories are assumed presentable. When considering functors, we
will only consider functors that preserve colimits. We denote the ∞-category of
DG categories by DGCat. It carries a symmetric monoidal structure (i.e., one can
consider tensor products of DG categories). The unit object is the DG category of
complexes of e-vector spaces, denoted Vect.

We will use the notion of t-structure on a DG category. Given a t-structure
on C, we will denote by C≤0 the corresponding subcategory of cohomologically
connective objects, and by C>0 its right orthogonal. We let C♥ denote the heart
C≤0 ∩ C≥0.

1.4.5

The source of DG categories will be a sheaf theory, which is a functor

Shv : (Schaff
ft )op → DGCat, Y �→ Shv(Y ).
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For a morphism of affine schemes f : Y0 → Y1, the corresponding functor

Shv(Y1)→ Shv(Y0)

is the !-pullback f !.
We will work with the following particular examples sheaf theories:

(i) We take e = Q�, and we take Shv(Y ) to be the ind-completion of the (small)
DG category of constructible Q�-sheaves.

(ii) When k = C and e arbitrary, we take Shv(Y ) to be the ind-completion of
the (small) DG category of constructible e-sheaves on Y (C) in the analytic
topology.

(iii) If k has characteristic 0, we take e = k and we take Shv(Y ) to be the DG
category of holonomic D-modules on S.

(iv) If k has characteristic 0, we take e = k and we take Shv(Y ) to be the DG
category of D-modules on Y .

We will refer to examples (i), (ii), and (iii) as a constructible sheaf theories.
In the constructible case, the functor f ! always has a left adjoint, denoted f!. In

example (iv), this is not the case. However, the partially defined left adjoint f! is
defined on holonomic objects. It is defined on the entire category if f is proper.

1.4.6 Sheaves on Prestacks

We apply the procedure of right Kan extension along the embedding

(Schaff
ft )op ↪→ (PreStklft)

op

to the functor Shv and thus obtain a functor (denoted by the same symbol)

Shv : (PreStklft)
op → DGCat .

By definition, for Y ∈ PreStklft, we have

Shv(Y) = lim
S∈Schaff

ft ,y:S→Y
Shv(S), (1.4)

where the transition functors in the formation of the limit are the !-pullbacks.2

For a map of prestacks f : Y0 → Y1, we thus have a well-defined pullback
functor

2Note that even though the index category (i.e., (Schaff
ft )/Y) is ordinary, the above limit is formed

in the∞-category DGCat. This is how∞-categories appear in this paper.



160 D. Gaitsgory

f ! : Shv(Y1)→ Shv(Y0).

We denote by ωY the dualizing sheaf on Y, i.e., the pullback of

e ∈ Vect � Shv(pt)

along the tautological map Y→ pt.

1.4.7

We let X be a smooth, connected (but not necessarily proper) curve over k.
Whenever we need X to be proper, we will explicitly say so.

1.4.8

This paper is closely related to the geometric Langlands theory, and the geometry
of the Langlands dual group Ǧ makes it appearance.

By definition, Ǧ is a reductive group over e and geometric objects constructed
out of Ǧ give rise to e-linear DG categories by considering quasi-coherent (resp.,
ind-coherent) sheaves on them.

The most basic example of such a category is

QCoh(pt /Ǧ) =: Rep(Ǧ).

2 The Ran Version of the Semi-infinite Category

In this section, we extend the definition of the semi-infinite category given in [Ga1]
from the affine Grassmannian GrG,x corresponding to a fixed point x ∈ X to the
Ran version, denoted GrG,Ran.

2.1 The Ran Grassmannian

2.1.1

We recall that the Ran space of X, denoted Ran, is the prestack that assigns to an
affine test scheme Y the set of finite non-empty subsets

I ⊂ Hom(Y,X).
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One can explicitly exhibit Ran as a colimit (in PreStk) of schemes:

Ran � colim
I

XI ,

where the colimit is taken over the category opposite to the category Finsurj of finite
non-empty sets and surjective maps, where to a map φ : I � J we assign the
corresponding diagonal embedding

XJ
*φ

↪→ XI .

This description implies, in particular, that if X is proper, then Ran is pseudo-
proper as a prestack (see Sect. A.2.4 for what it means).

Another key feature of Ran is that it is homologically contractible (see Sect. A.1.8
for what this means).

2.1.2

We will consider the Ran version of the affine Grassmannian, denoted GrG,Ran,
defined as follows.

It assigns to an affine test scheme Y , the set of triples (I,PG, α), where I is a
Y -point of Ran, PG is a G-bundle on Y × X, and α is a trivialization of PG on the
open subset of Y ×X equal to the complement of the union +I of the graphs of the
maps Y → X that comprise I.

The projection GrG,Ran → Ran is pseudo-proper.
We will also consider the Ran versions of the loop and arc groups (ind)-schemes,

denoted

L+(G)Ran ⊂ L(G)Ran.

The Ran Grassmannian GrG,Ran identifies with the étale (equivalently, fppf) sheafi-
fication of the prestack quotient L(G)Ran/L

+(G)Ran.

2.1.3

For a fixed finite non-empty set I , we denote

GrG,I := XI ×
Ran

GrG,Ran, L(G)I := XI ×
Ran

L(G)Ran, L+(G)I := XI ×
Ran

L+(G)Ran.

For a map of finite sets φ : I � J , we will denote by *φ the corresponding map
GrG,J → GrG,I , so that we have the Cartesian square:



162 D. Gaitsgory

GrG,J

*φ−−−−→ GrG,I
⏐
⏐
�

⏐
⏐
�

XJ
*φ−−−−→ XI .

2.1.4

We introduce also the following closed (resp., locally closed) subfunctors

S0
Ran ⊂ S0

Ran ⊂ GrG,Ran.

Namely, for an affine test scheme Y , a Y -point (I,PG, α) belongs to S0
Ran if for

every dominant weight λ̌, the composite meromorphic map of vector bundles on
Y ×X

O→ Vλ̌

P
0
G

α−→ Vλ̌

PG
(2.1)

is regular. In the above formula, the notations are as follows:

• Vλ̌ denotes the Weyl module over G with highest weight λ̌.

• Vλ̌

PG
(resp., Vλ̌

P
0
G

) denotes the vector bundles associated with Vλ̌ and the G-

bundle PG (resp., the trivial G-bundle P0
G).

• O→ Vλ̌

P
0
G

is the map coming from the highest weight vector in Vλ̌.

A point as above belongs to S0
Ran if the above composite map is an injective

bundle map (i.e., the cokernel is flat over Y ×X).

2.2 The Semi-infinite Category

2.2.1

Since GrG,Ran a prestack locally of finite type, we have a well-defined category

Shv(GrG,Ran).

We have

Shv(GrG,Ran) := lim
I

Shv(GrG,I ),

where the limit is formed using the !-pullback functors.
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2.2.2

Although the group ind-scheme L(N)Ran is not locally of finite type, we have a
well-defined full subcategory

SIRan := Shv(GrG,Ran)
L(N)Ran ⊂ Shv(GrG,Ran).

Namely, for every fixed finite non-empty set I , we consider the full subcategory

SII := Shv(GrG,I )
L(N)I ⊂ Shv(GrG,I ),

defined as in [Ga1, Sect. 1.2].
We say that the object of Shv(GrG,Ran) belongs to Shv(GrG,Ran)

L(N)Ran if its
restriction to any GrG,I yields an object of Shv(GrG,I )

L(N)I . By construction, we
have an equivalence

SIRan := lim
I

SII .

2.2.3

Let SI≤0
Ran ⊂ SIRan be the full subcategory consisting of objects supported on S0

Ran,
i.e.,

SI≤0
Ran = SIRan ∩Shv(S0

Ran),

while

Shv(S0
Ran) � lim

I
Shv(S0

I ).

2.3 Stratification

In order to study the structure of SI≤0
Ran, we will now describe a certain natural

stratification of S0
Ran, whose open stratum will be S0

Ran.

2.3.1

For λ ∈ 'neg, let Xλ denote the corresponding partially symmetrized power of X.
That is, if
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λ = -
i
(−ni) · αi, ni ≥ 0

where αi are simple positive coroots, then

Xλ = 0
i
X(ni).

In other words, Y -points of Xλ are effective 'neg-valued divisors on X.
For λ = 0, we by definition have X0 = pt.

2.3.2

Let

(Xλ × Ran)⊂ ⊂ Ran×Xλ

be the ind-closed subfunctor, whose S-points are pairs (I,D) for which the support
of the divisor D is set-theoretically supported on the union of the graphs of the maps
S → X that comprise I.

In other words,

(Xλ × Ran)⊂ = colim
I

(Xλ ×XI )⊂,

where

(Xλ ×XI )⊂ ⊂ XI ×Xλ

is the formal completion of the corresponding incidence subvariety.
For future use, we note:

Lemma 2.3.3 The map

prλRan : (Xλ × Ran)⊂ → Xλ

is universally homologically contractible.3

The proof in the case when X is proper will be given in Sect. A.2.8. For the proof
in the general case, see Remark 5.1.3.

Corollary 2.3.4 The pullback functor

(prλRan)
! : Shv(Xλ)→ Shv((Xλ × Ran)⊂)

is fully faithful.

3The notion of universal local contractibility is recalled in Sect. A.1.8.
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2.3.5

We let

Sλ
Ran ⊂ (Xλ × Ran)⊂ ×

Ran
GrG,Ran

be the closed subfunctor defined by the following condition:
An S-point (I,D,PG, α) of the fiber product (Xλ × Ran)⊂ ×

Ran
GrG,Ran belongs

to Sλ
Ran if for every dominant weight λ̌ the map (2.1) extends to a regular map

O(−λ̌(D))→ Vλ̌

PG
. (2.2)

We denote by iλ the composite map

Sλ
Ran → (Xλ × Ran)⊂ ×

Ran
GrG,Ran → GrG,Ran.

This map is proper, and its image is contained in S0
Ran.

Note that for λ = 0, the map i0 is the identity map on S0
Ran.

Let pλ
Ran denote the projection

Sλ
Ran → (Xλ × Ran)⊂.

2.3.6

We define the open subfunctor

Sλ
Ran ⊂ Sλ

Ran

to correspond to those quadruples (I,D,PG, α) for which the map (2.2) is an
injective bundle map (i.e., the cokernel is flat over Y ×X).

The projection

pλ
Ran := pλ

Ran|Sλ
Ran
: Sλ

Ran → (Xλ × Ran)⊂ (2.3)

admits a canonically defined section

sλRan : (Xλ × Ran)⊂ → Sλ
Ran. (2.4)

Namely, it sends (I,D) to the quadruple (I,D,PG, α), where PG is the G-
bundle induced from the T -bundle PT := P0

T (D), and α is the trivialization of
PG induced by the tautological trivialization of PT away from the support of D.
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2.3.7

We let

jλ : Sλ
Ran ↪→ Sλ

Ran, iλ = iλ ◦ jλ : Sλ
Ran → GrG,Ran

denote the resulting maps.
For a fixed finite non-empty set I , we obtain the corresponding subfunctors

Sλ
I ⊂ (Xλ ×XI )⊂ ×

XI
GrG,I

and

Sλ
I ⊂ Sλ

I ,

and maps, denoted by the same symbols jλ, iλ, iλ. Let pλ
I (resp., pλ

I ) denote the
resulting map from Sλ

I (resp., Sλ
I ) to (Xλ ×XI )⊂.

Let sλI denote the resulting section

sλI : (Xλ ×XI )⊂ → Sλ
I .

2.3.8

The following results easily from the definitions:

Lemma 2.3.9 The maps

iλ : Sλ
Ran → S0

Ran and Sλ
I → S0

I

are locally closed embeddings. Every field-valued point of S0
Ran (resp., S0

I ) belongs
to the image of exactly one such map.

2.3.10

In what follows, we will denote by

SI≤λ
Ran ⊂ Shv(Sλ

Ran) and SI=λ
Ran ⊂ Shv(Sλ

Ran) (2.5)

and also

SI≤λ
I ⊂ Shv(Sλ

I ) and SI=λ
I ⊂ Shv(Sλ

I ),

the corresponding full subcategories.
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2.4 The Category on a Single Stratum

2.4.1

We have the following explicit description of the category on each stratum sepa-
rately:

Proposition 2.4.2 Pullback along the map pλ
Ran of (2.3) defines an equivalence

Shv((Xλ × Ran)⊂)→ SI=λ
Ran .

The inverse equivalence is given by restriction to the section sλRan of (2.4), and
similarly for Ran replaced by XI for an individual I .

2.4.3 Proof of Proposition 2.4.2

Follows from the fact that the action of the group ind-scheme

(Xλ × Ran)⊂ ×
Ran

L(N)Ran

on Sλ
Ran is transitive along the fibers of the map (2.3), with the stabilizer of the

section sλRan being a pro-unipotent group scheme over (Xλ × Ran)⊂.
�

2.5 Interaction Between the Strata

2.5.1

Consider the subcategories (2.5). The maps jλ, iλ and iλ induce functors

(iλ)! := (iλ)∗ : SI≤λ
Ran → SI≤0

Ran,

(iλ)! : SI≤0
Ran → SI≤λ

Ran;

(jλ)∗ := (jλ)! : SI≤λ
Ran → SI=λ

Ran;

(jλ)∗ : SI=λ
Ran → SI≤λ

Ran;

(iλ)! � (jλ)! ◦ (iλ)! : SI≤0
Ran → SI=λ

Ran;

(iλ)∗ � (iλ)∗ ◦ (jλ)∗ : SI=λ
Ran → SI≤0

Ran .

The same applies to Ran replaced by XI for a fixed finite non-empty set I .
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2.5.2

In Sect. 2.7, we will prove:

Proposition 2.5.3

(a) For a fixed finite set I , the left adjoint of

(iλ)∗ : SI=λ
I → SI≤0

I

is defined as a functor

SI≤0
I → SI=λ

I ,

to be denoted by (iλ)∗.
(b) For F ∈ SI≤0

I and F′ ∈ Shv(XI ), the map4

(iλ)∗((p0
I )
!(F′)

!⊗ F)→ (pλ
I )
!(F′|(Xλ×XI )⊂

!⊗ (iλ)∗(F))

is an isomorphism.
(c) For a map of finite sets φ : I � J , the natural transformation

(iλ)∗ ◦ (*φ)
! → (*φ)

! ◦ (iλ)∗, SI≤0
I ⇒ SI=λ

J

is an isomorphism.

Remark 2.5.4 Let F ∈ SI≤0
I , be such that the partially defined left adjoint (iλ)∗ of

(iλ)∗ : Shv(Sλ
I )→ Shv(S0

I ) (2.6)

is defined on F, viewed as an object of Shv(S0
I ).

(Note that the condition of point (a’) of Proposition 2.5.3 is always satisfied in
the context of constructible sheaves. In the context of D-modules, it is satisfied if,
for example, F is ind-holonomic.)

Then it follows formally that the resulting object of Shv(Sλ
I ) equals

(iλ)∗(F) ∈ SI=λ
I ⊂ Shv(Sλ

I ),

where (iλ)∗ is understood in the sense of point (a) of Proposition 2.5.3.
In other words, for such F, the notation (iλ)∗(F) is unambiguous.
A similar remark applies to the functor (iλ)! studied in Corollary 2.5.6 below.

4In the formula below−|(Xλ×XI )⊂ denotes the !-pullback along the projection (Xλ×XI )⊂ → XI .
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2.5.3

From Proposition 2.5.3, by a formal Cousin argument, we obtain:

Corollary 2.5.6

(a) For a fixed finite set I , the left adjoint of

(iλ)! : SI≤0
I → SI=λ

I

is defined as a functor

SI=λ
I → SI≤0

I ,

to be denoted (iλ)!.
(b) For F ∈ SI=λ

I and F′ ∈ Shv(XI ), the map

(iλ)!((pλ
I )
!(F′|(Xλ×XI )⊂))

!⊗ F)→ (p0
I )
!(F′)

!⊗ (iλ)!(F)

is an isomorphism.
(c) For a map of finite sets φ : I � J , the natural transformation

(iλ)! ◦ (*φ)
! → (*φ)

! ◦ (iλ)!, SI=λ
I ⇒ SI≤0

J .

2.5.7

Passing to the limit over I ∈ Finsurj, we obtain:

Corollary 2.5.8

(a) The left adjoint of

(iλ)∗ : SI=λ
Ran → SI≤0

Ran

is defined as a functor

SI≤0
Ran → SI=λ

Ran,

to be denoted by (iλ)∗.
(b) The left adjoint of

(iλ)! : SI≤0
Ran → SI=λ

Ran

is defined as a functor
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SI=λ
Ran → SI≤0

Ran,

to be denoted (iλ)!.
(c) For F ∈ SI≤0

Ran and F′ ∈ Shv(Ran), the map

(iλ)∗((p0
Ran)

!(F′)
!⊗ F)→ (pλ

Ran)
!(F′|(Xλ×Ran)⊂))

!⊗ (iλ)∗(F)

is an isomorphism.
(d) For F ∈ SI=λ

Ran and F′ ∈ Shv(Ran), the map

(iλ)!((pλ
Ran)

!(F′|(Xλ×Ran)⊂))
!⊗ F)→ (p0

Ran)
!(F′)

!⊗ (iλ)!(F)

is an isomorphism.

Remark 2.5.9 A slight variation of the proof of Proposition 2.5.3 shows that the
assertions of Corollary 2.5.8 remain valid for iλ replaced by iλ. Similarly, the
assertion of Corollary 2.5.6 remains valid for iλ replaced by jλ, and the same is
true for their Ran variants.

2.6 An Aside: The ULA Property

Consider the object

(j0)!(ωS0
I
) ∈ SI≤0

I ⊂ Shv(S0
I ).

Here (j0)! is understood as the (partially defined) left adjoint of

(j0)! : Shv(S0
I )→ (j0)!(ωS0

I
);

it is always defined in constructible contexts; in the context of D-modules, it is
defined since ωS0

I
is ind-holonomic.

We will now formulate a certain strong acyclicity property of the above object
that it enjoys with respect to the projection

p0
I : S0

I → XI .

2.6.1

Let Y be a scheme, and let C be a DG category equipped with an action of the

Shv(Y ), viewed as a monoidal category with respect to
!⊗.
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We shall say that an object c ∈ C is ULA with respect to Y if for any compact
F ∈ Shv(Y )c, and any c′ ∈ C, the map

HomC(F
!⊗ c, c′)→ Hom(D(F)

!⊗ F
!⊗ c,D(F)

!⊗ c′)→ Hom(eY

!⊗ c,D(F)
!⊗ c′)

is an isomorphism.
In the above formula, D(−) denotes the Verdier duality anti-equivalence of

Shv(Y )c,

(Shv(Y )c)op → Shv(Y )c,

and eY is the “constant sheaf” on Y , i.e., eY := D(ωY ). Note that when Y is smooth
of dimension d, we have eY � ωY [−2d].

2.6.2

We regard Shv(S0
I ) as tensored over Shv(XI ) via

F ∈ Shv(XI ), F′ ∈ Shv(S0
I ) �→ (p0

I )
!(F)

!⊗ F′.

We claim:

Proposition 2.6.3 The object (j0)!(ωS0
I
) ∈ Shv(S0

I ) is ULA with respect to XI .

Proof For F ∈ Shv(XI ) and F′ ∈ Shv(S0
I ), we have a commutative square

Hom((p0
I
)!(F), (j0)!(F′)) −−−−−→ Hom((p0

I
)!(e

XI ), (p
0
I
)!(D(F))

!⊗ (j0)!(F′))

∼
⏐
⏐
�

⏐
⏐
�∼

Hom((j0)! ◦ (p0
I
)!(F),F′) Hom((j0)! ◦ (p0

I
)!(e

XI ), (p
0
I
)!(D(F))

!⊗ F′)
�
⏐
⏐

�
⏐
⏐

Hom((p0
I
)!(F)

!⊗ (j0)!(ωS0
I
),F′) −−−−−→ Hom((p0

I
)!(eXI )

!⊗ (j0)!(ωS0
I
), (p0

I
)!(D(F))

!⊗ F′).

In this diagram, the lower vertical arrows are isomorphisms by Corol-
lary 2.5.6(b). The top horizontal arrow is an isomorphism because S0

I can be
exhibited as a union of closed subschemes, each being smooth over XI . (Indeed,
write L(N)I as a union of group subschemes Nα

I pro-smooth over XI ; then S0
I is a

union of the quotients Nα
I /L

+(N)I .)
Hence, the bottom horizontal arrow is an isomorphism, as required.

�
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2.7 An Application of Braden’s Theorem

In this subsection, we will prove Proposition 2.5.3.

2.7.1

Let

S
−,λ
I

j−,λ

↪→ S
−,λ
I

i−λ→ GrG,I

be the objects defined in the same way as their counterparts

Sλ
I

jλ
↪→ Sλ

I

iλ→ GrG,I ,

but where we replace N by N−.
Choose a regular dominant coweight Gm → T . It gives rise to an action of Gm

on S0
I along the fibers of the projection p0

I . We have:

Lemma 2.7.2 The attracting (resp., repelling) locus of the above Gm action
identifies with

�
λ∈'neg

Sλ
I and �

λ∈'neg
S
−,λ
I ,

respectively. The fixed-point locus identifies with

�
λ∈'neg

sλI ((X
λ ×XI )⊂).

2.7.3

Let us now prove point (a) of Proposition 2.5.3.5

By Proposition 2.4.2, it suffices to show that the functor

Shv((Xλ ×XI )⊂)
(pλ

I )
!

−→ SI=λ
I

(iλ)∗−→ SI≤0
I

admits a left adjoint.
For this, it suffices to show that the partially defined left adjoint to

5We are grateful to Lin Chen for pointing out a mistake in the statement of Proposition 2.5.3 in the
previous version of the paper. The corrected argument is due to him.
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Shv((Xλ ×XI )⊂)
(pλ

I )
!

−→ Shv(Sλ
I )

(iλ)∗−→ Shv(S0
I )

is defined on objects that belong to SI≤0
I ⊂ Shv(S0

I ).
It is easy to see that every object in Shv(S0

I ) is Gm-monodromic. Now, the
result follows from Braden’s theorem6 (see [DrGa, Theorem 3.3.4]), combined with
Lemma 2.7.2.

2.7.4

Note that Braden’s theorem also implies the existence of a canonical isomorphism

(sλI )
! ◦ (iλ)∗ � (p

−,λ
I )∗ ◦ (i−,λ)!. (2.7)

This implies point (b) of Proposition 2.5.3 by base change.
Point (c) is a formal corollary of point (b).

�
Remark 2.7.5 For future use, we note that (2.7) and Proposition 2.5.3(c) imply that
an analogous formula holds over the Ran space:

(sλRan)
! ◦ (iλ)∗(F) � (p

−,λ
Ran )∗ ◦ (i−,λ)!(F), F ∈ SI≤0

Ran . (2.8)

3 The t-Structure and the Semi-infinite IC Sheaf

In this section, we define a t-structure on SI≤0
Ran and define the main object of study

in this paper— the Ran version of the semi-infinite intersection cohomology sheaf,

denoted IC
∞
2

Ran.

We will also give a presentation of IC
∞
2

Ran as a colimit and describe explicitly its
*- and !-restrictions to the strata Sλ

Ran.

3.1 The t-Structure on the Semi-infinite Category

3.1.1

We introduce a t-structure on the category Shv((Xλ × Ran)⊂) as follows.
We declare an object F ∈ Shv((Xλ × Ran)⊂) to be connective if

6Braden’s theorem extends from schemes to ind-schemes by an easy colimit argument.
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Hom(F, (prλRan)
!(F′)) = 0

for all F′ ∈ Shv(Xλ) that are strictly coconnective (in the perverse t-structure).

Remark 3.1.2 The above t-structure on Shv((Xλ × Ran)⊂) is quite pathological in
that it is non-local, see also Remark 3.1.7.

3.1.3

By construction, the functor

(prλRan)
! : Shv(Xλ)→ Shv((Xλ × Ran)⊂)

is left t-exact.
However, we claim:

Proposition 3.1.4 The functor (prλRan)
! : Shv(Xλ)→ Shv((Xλ×Ran)⊂) is t-exact.

Proof Follows from Corollary 2.3.4. �

3.1.5

We define a t-structure on SI=λ
Ran as follows. We declare an object F ∈ SI=λ

Ran to be
connective/coconnective if

(sλRan)
!(F)[〈λ, 2ρ̌〉] ∈ Shv((Xλ × Ran)⊂)

is connective/coconnective.
In other words, this t-structure is transferred from Shv((Xλ × Ran)⊂) via the

equivalences

(sλRan)
! : SI=λ

Ran → Shv((Xλ × Ran)⊂) : (pλ
Ran)

!

of Proposition 2.4.2, up to the cohomological shift [〈λ, 2ρ̌〉].

3.1.6

We define a t-structure on SI≤0
Ran by declaring that an object F is coconnective if

(iλ)!(F) ∈ SI=λ
Ran

is coconnective in the above t-structure.
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Remark 3.1.7 The above t-structure on SI≤0
Ran is a somewhat artificial construct,

since the t-structure on the individual strata

SI=λ
Ran � Shv((Xλ × Ran)⊂)

was transferred from a pathological t-structure on Shv(Xλ × Ran)⊂, see
Remark 3.1.2.

This drawback will be cured in Sect. 5.4: we will single out a (naturally defined)
full subcategory

SI≤0
Ran,unital ⊂ SI≤0

Ran,

such that for each stratum Sλ
Ran, the functor (prλRan ◦pλ

Ran)
! defines an equivalence

Shv(Xλ)→ SI=λ
Ran,unital .

3.1.8

By construction, the subcategory of connective objects in SI≤0
Ran is generated under

colimits by objects of the form

(iλ)! ◦ (pλ
Ran)

!(F)[−〈λ, 2ρ̌〉], λ ∈ 'neg (3.1)

where F is a connective object of Shv((Xλ × Ran)⊂).
We claim:

Lemma 3.1.9 An object F ∈ SI≤0
Ran is connective if and only if (iλ)∗(F) ∈ SI≤λ

Ran is
connective for every λ ∈ 'neg.

Proof It is clear that for objects of the form (3.1), their *-pullback to any Sλ
Ran is

connective. Hence, the same is true for any connective object of SI≤0
Ran.

Vice versa, let 0 �= F be a strictly coconnective object of SI≤0
Ran. We need to show

that if all (iλ)∗(F) are connective, then F = 0. Let λ be the largest element such that
(iλ)!(F) �= 0. On the one hand, since F is strictly coconnective, (iλ)!(F) is strictly
coconnective. On the other hand, by the maximality of λ, we have

(iλ)!(F) � (iλ)∗(F),

and the assertion follows.
�
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3.2 Definition of the Semi-infinite IC Sheaf

When considering the semi-infinite IC sheaf, we will assume that G is semi-simple
and simply connected.

3.2.1

By construction, the object (iλ)!(ωSλ
Ran

)[−〈λ, 2ρ̌〉] (resp., (iλ)∗(ωSλ
Ran

)[−〈λ, 2ρ̌〉]) of

SI≤0
Ran is connective (resp., coconnective).
However, in Sect. 4.6.10, we will prove:

Proposition 3.2.2 The objects

(iλ)!(ωSλ
Ran

)[−〈λ, 2ρ̌〉] and (iλ)∗(ωSλ
Ran

)[−〈λ, 2ρ̌〉]

both belong to (SI≤0
Ran)

♥.

3.2.3

Consider the canonical map

(i0)!(ωS0
Ran

)→ (i0)∗(ωS0
Ran

).

According to Proposition 3.2.2, both sides belong to (SI≤0
Ran)

♥. We let

IC
∞
2

Ran ∈ (SI≤0
Ran)

♥

denote the image of this map.
The above object is the main object of study of this paper.

3.2.4

Our goal in this section and the next is to describe IC
∞
2

Ran as explicitly as possible.
Specifically, we will do the following:

• We will describe the !- and *- restrictions of IC
∞
2

Ran to the strata Sλ
Ran (see

Theorem 3.4.5).

• We will exhibit the values of IC
∞
2

Ran in Shv(GrG,I ) explicitly as colimits (see
Theorem 3.7.2).
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• We will relate IC
∞
2

Ran to the intersection cohomology sheaf of Drinfeld’s compact-
ification BunN (see Theorem 4.3.3).

3.3 Digression: From Commutative Algebras to Factorization
Algebras

Let A be a commutative algebra, graded by 'neg with A(0) � e. To A, we can
attach an object

Factalg(A)Xλ ∈ Shv(Xλ),

characterized by the property that its !-fiber at a divisor

-
k
λk · xk ∈ Xλ, 0 �= λk ∈ 'neg, -

k
λk = λ, k′ �= k′′ ⇒ xk′ �= xk′′

equals
⊗

k

A(λk).

In the present subsection, we recall this construction.

3.3.1

Consider the category TwArrλ whose objects are diagrams

'neg − 0
λ←− J

φ
� K, -

j∈J λ(j) = λ, (3.2)

where I and J are finite non-empty sets. A morphism between two such objects is
a diagram

'neg − 0
λ1←−−−− J1

φ1−−−−→ K1

id

⏐
⏐
� ψJ

⏐
⏐
�

�
⏐
⏐ψK

'neg − 0
λ2←−−−− J2

φ2−−−−→ K2,

where:

• The right square commutes.
• The maps ψJ and ψK are surjective.
• λ2(j2) = -

j1∈ψ−1
J (j2)

λ1(j1).
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3.3.2

The algebra A defines a functor

TwArr(A) : TwArrλ → Shv(Xλ),

constructed as follows.
For an object (3.2), let *K,λ denote the map XK → Xλ that sends a point

{xk, k ∈ K} ∈ XK to the divisor

-
k∈K ( -

j∈φ−1(k)
λ(j)) · xk ∈ Xλ.

Then the value of TwArr(A) on (3.2) is

(*K,λ)∗(ωXK )
⊗(

⊗
j∈J

A(λj )

)

,

where λj = λ(j).
The structure of functor on TwArr(A) is provided by the commutative algebra

structure on A.

3.3.3

We set

Factalg(A)Xλ := colim
TwArrλ

TwArr(A) ∈ Shv(Xλ).

3.3.4 An Example

Let V be a 'neg-graded vector space with V (0) = 0. Let us take A = Sym(V ). In
this case, Factalg(A)Xλ can be explicitly described as follows:

It is the direct sum over all ways to write λ as a sum

λ = -
k
nk · λk, nk > 0, λk ∈ 'neg − 0

of the direct images of

⊗

k

(ωX ⊗ V (λk))
(nk)

along the maps
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0
k
X(nk) → Xλ,

where (−)(n) denotes the n-th symmetric power of a given local system.

3.3.5

Dually, if A is a co-commutative co-algebra, graded by 'neg with A(0) � e, then to
A we attach an object Factcoalg(A)Xλ ∈ Shv(Xλ) characterized by the property that
its *-fiber at a divisor

-
k
λk · xk ∈ Xλ, 0 �= λk ∈ 'neg, -

k
λk = λ, k′ �= k′′ ⇒ xk′ �= xk′′

equals
⊗

k

A(λk).

If all the graded components of A are finite-dimensional, we can view the dual
A∨ of A as a 'neg-graded algebra, and we have

D(Factcoalg(A)Xλ) � Factalg(A∨)Xλ, (3.3)

where we remind that D stands for the Verdier duality functor.

3.4 Restriction of IC
∞
2
Ran to Strata

3.4.1

We apply the construction of Sect. 3.3 to A being the (classical) algebra O(Ň) (resp.,
co-algebra U(ň−)).

Thus, we obtain the objects

Factalg(O(Ň))Xλ and Factcoalg(U(ň−))Xλ

in Shv(Xλ).
Note also that U(ň−) is the graded dual of O(Ň), and so the objects

Factalg(O(Ň))Xλ and Factcoalg(U(ň−))Xλ are Verdier dual to each other, see (3.3).

3.4.2

From the construction, it follows that for λ �= 0,

Factalg(O(Ň))Xλ ∈ Shv(Xλ)<0,
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and hence,

Factcoalg(U(ň−))Xλ ∈ Shv(Xλ)>0.

Remark 3.4.3 Note that by the PBW theorem, when viewed as a co-commutative
co-algebra, U(ň−) is canonically identified with Sym(ň−); in this paper, we will not
use the algebra structure on U(ň−), which allows to distinguish it from Sym(ň−).

Dually, when viewed just as a commutative algebra (i.e., ignoring the Hopf alge-
bra structure), O(Ň) is canonically identified with Sym(ň∗). So Factalg(O(Ň))Xλ

falls into the paradigm of Example 3.3.4.

3.4.4

In Sect. 4.9, we will prove:

Theorem 3.4.5 The objects

(iλ)!(IC
∞
2

Ran) and (iλ)∗(IC
∞
2

Ran)

of Shv(Sλ
Ran) identify with the !-pullback along

Sλ
Ran

pλ
Ran−→ (Xλ × Ran)⊂

prλRan−→ Xλ

of Factcoalg(U(ň−))Xλ [−〈λ, 2ρ̌〉] and Factalg(O(Ň))Xλ [−〈λ, 2ρ̌〉], respectively.

3.5 Digression: Categories over the Ran Space

We will now discuss a variant of the construction in Sect. 3.3 that attaches to a
symmetric monoidal category A a category spread over the Ran space, denoted
Factalg(A)Ran.

3.5.1

Consider the category TwArr whose objects are

I
φ
� J, (3.4)

where I and J are finite non-empty sets. A morphism between two such objects is
is a commutative diagram
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J1
φ1−−−−→ K1

ψJ

⏐
⏐
�

�
⏐
⏐ψK

J2
φ2−−−−→ K2,

(3.5)

where the maps ψJ and ψK are surjective.

3.5.2

To A, we attach a functor

TwArr(A) : TwArr → DGCat

by sending an object (3.4) to Shv(XK) ⊗ A⊗J , and a morphism (3.5) to a functor
comprised of

Shv(XK1)
(*ψJ

)∗−→ Shv(XK2)

and the functor

A⊗J1 → A⊗J2 ,

given by the symmetric monoidal structure on A.

3.5.3

We set

Factalg(A)Ran := colim
TwArr

TwArr(A) ∈ DGCat . (3.6)

3.5.4

Let us consider some examples:

(i) Let A = Vect. Then Factalg(A)Ran � Shv(Ran).
(ii) Let A be the (non-unital) symmetric monoidal category consisting of vector

spaces graded by the semi-group 'neg − 0. We have a canonical functor

Factalg(A)Ran → Shv( �
λ∈'neg−0

Xλ), (3.7)

and it follows from [Ga2, Lemma 7.4.11(d)] that this functor is an equivalence.
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3.5.5

Similarly, if A is a symmetric co-monoidal category, we can form the limit of the
corresponding functor

TwArr(A) : TwArrop → DGCat

and obtain a category that we denote by Factcoalg(A)Ran.

3.5.6

Recall that whenever we have a diagram of categories

t �→ Ct

indexed by some category T , then

colim
t∈T Ct

is canonically equivalent to

lim
t∈T op

Ct ,

where the transition functors are given by the right adjoints of those in the original
family.

3.5.7

Let A be again a symmetric monoidal category. Applying the observation of
Sect. 3.5.6 to the colimit (3.6), we obtain that Factalg(A)Ran can also be written
as a limit.

Assume now that A is such that the functor

A→ A⊗A,

right adjoint to the tensor product operation, is continuous. In this case, the above
tensor co-product operation makes A into a symmetric co-monoidal category, and
we can form Factcoalg(A)Ran.

We note however that the limit presentation of Factalg(A)Ran tautologically
coincides with the limit defining Factcoalg(A)Ran. That is, we have a canonical
equivalence:
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Factalg(A)Ran � Factcoalg(A)Ran.

Hence, in what follows, we will sometimes write simply Fact(A)Ran, having both
of the above realizations in mind.

3.5.8

Let I be a fixed finite non-empty set. The above constructions have a variant,
where instead of TwArr we use its variant, denoted TwArrI/, whose objects are
commutative diagrams

I � J
φ
� K,

and whose morphisms are commutative diagrams

I −−−−→ J1
φ1−−−−→ K1

id

⏐
⏐
� ψJ

⏐
⏐
�

�
⏐
⏐ψK

I −−−−→ J2
φ2−−−−→ K2.

We denote the resulting category by Factalg(A)I , i.e.,

Factalg(A)I := colim
TwArrI/

TwArr(A)|TwArrI/ .

3.5.9

For a surjective morphism φ : I1 � I2, we have the corresponding functor

TwArrI2/ → TwArrI1/,

which induces a functor

(*φ)∗ : Factalg(A)I2 → Factalg(A)I1 . (3.8)

An easy cofinality argument shows that the resulting functor

colim
I

Factalg(A)I → Factalg(A)Ran (3.9)

is an equivalence.
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3.5.10

Note also that push-out defines a functor

TwArrI1/ → TwArrI2/,

and we have a natural transformation from the composite

TwArrI1/ → TwArr
TwArr(A)−→ DGCat

to the composite

TwArrI1/ → TwArrI2/ → TwArr
TwArr(A)−→ DGCat,

inducing a functor

Factalg(A)I1 := Factalg(A)I1 → Factalg(A)I2 =: Factalg(A)I2 ,

to be denoted (*φ)
!.

By unwinding the constructions, it follows that the above functor (*φ)
! is the

right adjoint of the functor (*φ)∗ of (3.8).
In particular, by Sect. 3.5.6, we can also write

Factalg(A)Ran � lim
I

Factalg(A)I , (3.10)

where the limit is taken with respect to the functors (*φ)
!.

3.6 Presentation of IC
∞
2 as a Colimit

Consider the symmetric monoidal category Rep(Ǧ).

3.6.1

For a fixed finite non-empty set I and a map λ : I → '+, we consider the following
object of Fact(Rep(Ǧ))I , denoted V λ.

Informally, V λ is designed so its !-fiber at a point

I → X, I = �
k
Ik, Ik �→ xk, xk′ �= xk′′
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is
⊗

k

V λk ∈ Rep(Ǧ)⊗k, λk = -
i∈Ik

λ(i),

where for λ ∈ '+, we denote by V λ the corresponding irreducible highest weight
representation of Ǧ, normalized so that its highest weight line is identified with e.

3.6.2

In terms of the presentation of Fact(Rep(Ǧ))I as a colimit

Fact(Rep(Ǧ))I = colim
TwArrI/

TwArr(Rep(Ǧ)),

the object V λ corresponds to the colimit over TwArrI/ of the functor

TwArrI/ → Fact(Rep(Ǧ))I

that sends

(I � J � K) ∈ TwArrI/ 	 V
λ

I�J�K ∈ Shv(XK)⊗Rep(Ǧ)⊗J → Fact(Rep(Ǧ))I ,

(3.11)
where

V
λ

I�J�K = ωXK

⊗(

⊗
j∈J

V λj

)

, λj = -
i∈I,i �→j

λ(i).

The structure of a functor TwArrI/ → Fact(Rep(Ǧ))I on (3.11) is given by the
Plücker maps

⊗
i
V λi → V λ, λ = -

i
λi.

3.6.3

Denote

SphG,I := Shv(L+(G)I\GrG,I ) and SphG,Ran := Shv(L+(G)Ran\GrG,Ran).

Consider the symmetric monoidal category Rep(Ǧ). Geometric Satake defines
functors

SatG,I : Fact(Rep(Ǧ))I → SphG,I
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that glue to a functor

SatG,Ran : Fact(Rep(Ǧ))Ran → SphG,Ran .

3.6.4

Consider the object

SatG,I (V
λ) ∈ SphG,I .

The element λ gives rise to a section

s
−,λ

I : XI → GrT ,I ⊂ GrG,I .

Denote

δ−λ := (s
−,λ

I )!(ωXI ) ∈ Shv(GrG,I ).

Consider the object

δ−λ & SatG,I (V
λ)[〈λ, 2ρ̌〉] ∈ Shv(GrG,I ).

In the above formula, λ = -
i∈I λ(i), and & denotes the (right) convolution action of

SphG,I on Shv(GrG,I ).

3.6.5

Consider now the set Maps(I,'+) of maps

λ : I → '+.

We equip it with a partial order by declaring

λ1 ≤ λ2 ⇔ λ2(i)− λ1(i) ∈ '+, ∀i ∈ I.

The assignment

λ �→ δ−λ & SatG,I (V
λ)[〈λ, 2ρ̌〉] ∈ Shv(GrG,I )

has a structure of a functor
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Maps(I,'+)→ Shv(GrG,I ),

see Sects. 6.4.6 and 6.5.2.
Set

IC
∞
2
I := colim

λ∈Maps(I,'+)
δ−λ & SatG,I (V

λ)[〈λ, 2ρ̌〉] ∈ Shv(GrG,I ).

As in [Ga1, Proposition 2.3.7(a,b,c)], one shows:

Lemma 3.6.6 The object IC
∞
2
I has the following properties:

(a) It is supported on S0
I .

(b) It belongs to SI≤0
I = Shv(S0

I )
L(N)I ⊂ Shv(S0

I ).
(c) Its restriction to S0

I is identified with ωS0
I
.

3.6.7

For a surjective map

φ : I2 � I1

and the corresponding map

*φ : GrG,I1 → GrG,I2 ,

we have a canonical identification

(*φ)
!(IC

∞
2
I2

) � IC
∞
2
I1

.

One endows this system of isomorphisms with a homotopy-coherent system of
compatibilities, thus making the assignment

I �→ IC
∞
2
I

into an object of SI≤0
Ran, see Sect. 6.4.8.

We denote this object by ′IC
∞
2

Ran. By Lemma 3.6.6(c), we have a canonical
identification

′IC
∞
2

Ran |S0
Ran
� ωS0

Ran
. (3.12)
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3.6.8

Fix a point x ∈ X and consider the restriction of ′IC
∞
2

Ran along the map

GrG,x � {x} ×
Ran

GrG,Ran → GrG,Ran.

It follows from the construction that this restriction identifies canonically with
the object

IC
∞
2
x ∈ Shv(GrG,x),

constructed in [Ga1, Sect. 2.3].

3.7 Presentation of IC
∞
2
Ran as a Colimit

3.7.1

The rest of this section will be devoted to the proof of the following result:

Theorem 3.7.2 There exists a unique isomorphism ′IC
∞
2

Ran � IC
∞
2

Ran, extending the
identification

′IC
∞
2

Ran |S0
Ran

(3.12)� ωS0
Ran
� IC

∞
2

Ran |S0
Ran

.

The proof of Theorem 3.7.2 will amount to the combination of the following two
assertions:

Proposition 3.7.3 For μ ∈ 'neg, the object

(iμ)∗(′IC
∞
2

Ran) ∈ SI=μ
Ran

identifies canonically with the !-pullback along

S
μ
Ran

p
μ
Ran−→ (Xμ × Ran)⊂

prμRan−→ Xμ

of Factalg(O(Ň))Xμ [−〈μ, 2ρ̌〉].
Proposition 3.7.4 For 0 �= μ ∈ 'neg, the object

(iμ)!(′IC
∞
2

Ran)[〈μ, 2ρ̌〉] ∈ SI=μ
Ran
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is a pullback along prμRan ◦pμ
Ran of an object of Shv(Xμ) that is strictly coconnective.

Proof of Theorem 3.7.2 Modulo the Propositions By the definition of the t-structure
on SI≤0

Ran and Lemma 3.1.9, it suffices to show that for μ ∈ 'neg−0, the !-restriction

(resp., *-restriction) of ′IC
∞
2

Ran to S
μ
Ran is cohomologically > 0 (resp., < 0).

Now, Proposition 3.7.4 (resp., Proposition 3.7.3) implies the required cohomo-
logical estimate by Proposition 3.1.4. �
Remark 3.7.5 Note that Theorem 3.7.2 and Proposition 3.7.3 imply the assertion of
Theorem 3.4.5 about the *-fibers.

We will use this observation in the sequel, for the proof of the assertion of
Theorem 3.4.5 about the !-fibers.

3.7.6

Let us assume Theorem 3.7.2 for a moment. As a corollary, and taking into account
Sect. 3.6.8, we obtain:

Corollary 3.7.7 The restriction of IC
∞
2

Ran along the map

GrG,x � {x} ×
Ran

GrG,Ran → GrG,Ran

identifies canonically with the object IC
∞
2
x ∈ Shv(GrG,x) of [Ga1, Sect. 2.3].

3.7.8

Before we proceed with the proof of Propositions 3.7.3 and 3.7.4, let us make the

following observation concerning the object ′IC
∞
2

Ran (it will be used in the proof
of 3.7.4):

By construction,

′IC
∞
2

Ran ∈ Shv(S0
Ran)

has the following factorization property with respect to Ran:
Let (Ran×Ran)disj denote the disjoint locus. That is, for an affine test scheme Y ,

Hom(Y, (Ran× Ran)disj) ⊂ Hom(Y,Ran)× Hom(Y,Ran)

consists of those pairs I1, I2 ∈ Hom(Y,X), for which for every i1 ∈ I1 and i2 ∈ I2,
the corresponding two maps Y ⇒ X have non-intersecting images.

It is well known that we have a canonical isomorphism
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(GrG,Ran×GrG,Ran) ×
Ran×Ran

(Ran×Ran)disj � GrG,Ran ×
Ran

(Ran×Ran)disj, (3.13)

where

(Ran× Ran)disj → Ran× Ran → Ran

is the map

I1, I2 �→ I1 ∪ I2.

Then, in terms of the identification (3.13), we have a canonical isomorphism

(′IC
∞
2

Ran �
′IC

∞
2

Ran)|(GrG,Ran×GrG,Ran) ×
Ran×Ran

(Ran×Ran)disj �

� ′IC
∞
2

Ran |GrG,Ran ×
Ran

(Ran× Ran)disj. (3.14)

3.8 Description of the *-Restriction to Strata

The goal of this subsection is to prove Proposition 3.7.3.

3.8.1

We will compute

(iμ)∗(′IC
∞
2
I ) ∈ SI≤0

I

for each individual finite non-empty set I and obtain the !-pullback of

(prμRan ◦pμ
Ran)

!(Factalg(O(Ň))Xμ)[−〈μ, 2ρ̌〉]

along S
μ
I → S

μ
Ran.

Thus, by Proposition 2.4.2, we need to construct an identification

(p
μ
I )! ◦ (iμ)∗(′IC

∞
2
I )[〈μ, 2ρ̌〉] � (prμI )

!(Factalg(O(Ň))Xμ), (3.15)

where prμI denotes the map

(Xμ ×XI )⊂ → Xμ.
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3.8.2

We will compute

(p
μ
I )! ◦ (iμ)∗(δ−λ & SatG,I (V

λ))[〈λ+ μ, 2ρ̌〉] ∈ Shv((Xμ ×XI )⊂) (3.16)

for each individual λ : I → '+ with λ = -
i∈I λ(i).

Namely, we will show that (3.16) identifies with the following object, denoted

V λ(λ+ μ) ∈ Shv((Xμ ×XI )⊂),

described below.

3.8.3

Before we give the definition of V λ(λ+μ), let us describe what its !-fibers are. Fix
a point of (Xμ ×XI )⊂. By definition, a datum of such a point consists of:

• A partition I = �
k
Ik

• A collection of distinct points xk of x
• An assignment xk �→ μk ∈ 'neg − 0, so that -

k
μk = μ

Then the !-fiber of V λ(λ+ μ) at a such a point is

⊗
k
V λk (λk + μk),

where λk = -
i∈Ik

λ(i), and where V (ν) denotes the ν-weight space in a Ǧ-

representation V .

3.8.4

Consider the category, denoted TwArrμ,I/, whose objects are commutative diagrams

I
υ−−−−→ J

ψ−−−−→ K

φJ

⏐
⏐
�

⏐
⏐
�φK

J̃
ψ̃−−−−→ K̃

φ′J
�
⏐
⏐

�
⏐
⏐φ′K

'neg
μ←−−−− J̃ ′ ψ̃ ′−−−−→ K̃ ′,
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where the maps υ,ψ, ψ̃, ψ̃ ′, φJ , φK are surjective (but φ′J and φ′K are not necessar-
ily so), and

-
j̃ ′∈J̃ ′

μ(j̃ ′) = μ.

Morphisms in this category are defined by the same principle as in TwArrμ and
TwArrI/ introduced earlier, i.e., the sets J , J̃ , J̃ ′ map forward and the sets K , K̃ ,
K̃ ′ map backward.

Let *K̃,I,λ denote the map

XK̃ → Xμ ×XI ,

comprised of

*φK◦ψ◦υ : XK̃ → XI

and

XK̃
*φ′

K−→ XK̃ ′ *K̃′,μ−→ Xμ.

We let V λ(λ+ μ) be the colimit over TwArrμ,I/ of the objects

(*K̃,I,λ)∗(ωXK̃ )
⊗

(

⊗̃
j∈J̃

V
λj̃ (λj̃ + μj̃ )

)

,

where

λj̃ = -
i∈I,i �→j̃

λ(i) and μj̃ = -
j̃ ′∈J̃ ′,j̃ ′ �→j̃

μ(j̃ ′).

3.8.5

Applying Braden’s theorem (see Sect. 2.7.1), we obtain a canonical isomorphism

(p
μ
I )! ◦ (iμ)∗(δ−λ & SatG,I (V

λ)) � (p
−,μ
I )∗ ◦ (i−,μ)!(δ−λ & SatG,I (V

λ)).

The key property of the geometric Satake functor SatG,I for I = {1} is that for
V ′ ∈ Rep(Ǧ) and μ′ ∈ '

(p
−,μ′
{1} )∗ ◦ (i−,μ′)!(SatG,{1}(V ′))[〈μ, 2ρ̌〉] � ωX ⊗ V ′(μ′).
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Unwinding the construction of its multi-point version SatG,I , we obtain a
canonical isomorphism

(p
−,μ
I )∗ ◦ (i−,μ)!(δ−λ & SatG,I (V

λ))[〈λ+ μ, 2ρ̌〉] � V λ(λ+ μ),

giving rise to the desired expression for (3.16).

3.8.6

To finish the proof of Proposition 3.7.3, we have to show that

colim
λ∈Maps(I,'+)

V λ(λ+ μ)

identifies canonically with (prμI )
!(Factalg(O(Ň))Xλ).

Indeed, this follows from the fact that we have a canonical identification

colim
λ∈'+

V λ(λ+ μ) � O(Ň)(μ),

where '+ is endowed with the order relation

λ1 ≤ λ2 ⇔ λ2 − λ1 ∈ '+.

3.9 Proof of Coconnectivity

In this subsection, we will prove Proposition 3.7.4, thereby completing the proof of
Theorem 3.7.2.

3.9.1

Consider the diagonal stratification of Xμ. For each parameter β of the stratification,
let Xμ

β denote the corresponding stratum, and denote by

(X
μ
β × Ran)⊂ := X

μ
β ×

Xμ
(Xμ × Ran)⊂)

ιβ
↪→ (Xμ × Ran)⊂

and

(X
μ
β × Ran)⊂

prμRan,β−→ X
μ
β
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the resulting maps.
Let Fμ ∈ Shv((Xμ × Ran)⊂) be such that

(iμ)!(′IC
∞
2

Ran) � (p
μ
Ran)

!(Fμ).

Since the functor (prμRan)
! is left t-exact and fully faithful (the latter by Corol-

lary 2.3.4), in order to prove Proposition 3.7.4, it suffices to show that each

(ιβ)
! ◦ Fμ ∈ Shv((Xμ

β × Ran)⊂)

is of the form

(prμRan,β)
!(Fμ

β ),

where F
μ
β ∈ Shv(Xμ

β ) is such that Fμ
β [〈μ, 2ρ̌〉] is strictly coconnective.

3.9.2

By the factorization property of ′IC
∞
2

Ran (see (3.14)), it suffices to prove the above
assertion for β corresponding to the main diagonal X → Xμ. Denote the
corresponding stratum in (Xμ × Ran)⊂ by

(X × Ran)⊂.

Denote the corresponding map prμRan,β by

prμ
(X×Ran)⊂ : (X × Ran)⊂ → X.

Denote the restriction of the section

s
μ
Ran : (Xμ × Ran)⊂ → S

μ
Ran

to this stratum by s
μ

(X×Ran)⊂ .
We claim that

(s
μ

(X×Ran)⊂)
!(′IC

∞
2

Ran) � (prμ
(X×Ran)⊂)

!(ωX)⊗Wμ[−〈μ, 2ρ̌〉],

where Wμ ∈ Vect lives in cohomological degrees ≥ 2.

Remark 3.9.3 One can show that there is a canonical identification

Wμ � Sym(ň−[−2])(μ),
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where ň is the unipotent radical of the Langlands dual Lie algebra. In fact, such an
identification would follow once we prove Theorem 3.4.5 for the !-restrictions.

3.9.4

In fact, we claim that for every I , we have

(s
μ

(X×XI )⊂)
!(′IC

∞
2
I ) � (prμ

(X×XI )⊂)
!(ωX)⊗Wμ[−〈μ, 2ρ̌〉],

where

prμ
(X×XI )⊂ := prμ

(X×Ran)⊂ |(X×XI )⊂ .

3.9.5

Indeed, it follows from the definitions that for any λ : I → '+,

(s
μ

(X×XI )⊂)
!(δ−λ & SatG,I (V

λ))[〈λ, 2ρ̌〉] � (prμ
(X×XI )⊂)

!(ωX)⊗Wλ,μ[−〈μ, 2ρ̌〉],

where Wλ,μ is the cohomogically graded vector space such that

Sat(V λ)|Grλ+μ
G

� ICGrλ+μ
G

⊗Wλ,μ, Wλ,μ ∈ Vect,

where −|− means !-restriction. By parity vanishing, Wλ,μ lives in cohomological
degrees ≥ 2.

Finally,

Wμ = colim
λ∈'+

Wλ,μ,

and the cohomological estimate holds for Wμ because the poset '+ is filtered (here
we use the assumption that G is semi-simple and simply connected).

4 The Semi-infinite IC Sheaf and Drinfeld’s
Compactification

In this section, we will express IC
∞
2

Ran in terms of an actual intersection cohomology
sheaf, i.e., one arising in finite-dimensional algebraic geometry (technically, on an
algebraic stack locally of finite type).

Throughout this section, the curve X is assumed to be proper.
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4.1 Drinfeld’s Compactification

4.1.1

Let BunB Drinfeld’s relative compactification of the stack BunB along the fibers of
the map BunB → BunG.

That is, BunB is the algebraic stack that classifies triples (PG,PT , κ), where:

(i) PG is a G-bundle on X.
(ii) PT is a T -bundle on X.

(iii) κ is a Plücker data, i.e., a system of non-zero maps

κλ̌ : λ̌(PT )→ Vλ̌

PG
,

(here Vλ̌ denotes the Weyl module with highest weight λ̌ ∈ '̌+) that satisfy
Plücker relations, i.e., for λ̌1 and λ̌2 the diagram

λ̌1(PT )⊗ λ̌2(PT )
κλ̌1⊗κλ̌2−−−−−→ V

λ̌1

PG
⊗ V

λ̌2

PG

∼
�
⏐
⏐

�
⏐
⏐

(λ̌1 + λ̌2)(PT )
κλ̌1+λ̌2−−−−→ V

λ̌1+λ̌2

PG

must commute.

The open substack

BunB

jglob
↪→ BunB (4.1)

corresponds to the condition that the maps κλ̌ be injective bundle maps.
We denote by p (resp., q) resulting map from BunB to BunG (resp., BunT ), which

sends (PG,PT , κ) to PG (resp., PT ).
Its restriction to BunB ⊂ BunB is the usual map q : BunB → BunG (resp.,

q : BunB → BunT ) induced by the map of groups B → G (resp., B → T ).

4.1.2

For λ ∈ 'neg, we let iλglob denote the map

Bun
≤λ

B := BunB ×Xλ → BunB,

given by
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(PG,PT , κ,D) �→ (P′G,P′T , κ ′)

with P′G = PG, P′T = PT (D), and κ ′ given by precomposing κ with the natural
maps

λ̌(P′T ) = λ̌(PT )(λ̌(D)) ↪→ λ̌(PT ).

It is known that iλglob is a finite morphism.

4.1.3

Let jλglob denote the open embedding

Bun
=λ

B := BunB ×Xλ ↪→ BunB ×Xλ =: Bun
≤λ

B .

Denote

iλglob = iλglob ◦ jλglob.

Note that by definition i0glob = j0glob = jglob is the embedding (4.1).
The following is known:

Lemma 4.1.4 The maps iλglob are locally closed embeddings. Every field-valued

point of BunB belongs to the image of exactly one such map.

4.2 The Global Semi-infinite Category

4.2.1

Denote

BunN := BunB ×
BunT

pt, Bun
≤λ

N := Bun
≤λ

B ×
BunT

pt, Bun
=λ

N := Bun
=λ

B ×
BunT

pt,

where pt → BunT corresponds to the trivial bundle and the map Bun
≤λ

B → BunT is

Bun
≤λ

B = BunB ×Xλ q×id−→ BunT ×Xλ id×AJ−→ BunT ×BunT
mult−→ BunT ,

where AJ is the Abel–Jacobi map,

D �→ O(D).
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In particular,

Bun
=λ

N � BunB ×
BunT

Xλ,

where Xλ → BunT is the composition of the map AJ and inversion on BunT .
We will denote by the same symbols the corresponding maps

iλglob : Bun
≤λ

N → BunN, jλglob : Bun
=λ

N → Bun
≤λ

N , iλglob : Bun
=λ

N → BunN.

Denote by pλ
glob (resp., pλ

glob) the projection from Bun
=λ

N (resp., Bun
≤λ

N ) to Xλ.

4.2.2

We define

SI≤0
glob ⊂ Shv(BunN) (4.2)

to be the full subcategory defined by the following condition:
An object F ∈ Shv(BunN) belongs to SI≤0

glob if and only if for every λ ∈ 'neg,
the object

(iλglob)
!(F) ∈ Shv(Bun

=λ

N )

belongs to the full subcategory

SI=λ
glob ⊂ Shv(Bun

=λ

N ), (4.3)

equal by definition to the essential image of the pullback functor

(pλ
glob)

! : Shv(Xλ)→ Shv(Bun
=λ

N ).

We note that the above pullback functor is fully faithful, since the map pλ
glob,

being a base change of BunB → BunT , is smooth with homologically contractible
fibers.

4.2.3

Proceeding as in [Ga4, Sects. 4.5–4.7], one shows that the full subcategory (4.2)
(resp., (4.3)) can also be defined by an equivariance condition with respect to a
certain pro-unipotent groupoid.
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In particular, the embedding (4.2) (resp., (4.3)) admits a right adjoint,7 to be
denoted AvSI∗ .

4.2.4

The functors

(iλglob)
! : Shv(BunN)→ Shv(Bun

=λ

N ) (4.4)

and

(iλglob)∗ : Shv(Bun
=λ

N )→ Shv(BunN) (4.5)

induce (same-named) functors

(iλglob)
! : SI≤0

glob → SI=λ
glob (4.6)

and

(iλglob)∗ : SI=λ
glob → SI≤0

glob . (4.7)

Moreover, the diagram

SI≤0
glob

AvSI∗←−−−− Shv(BunN)

(iλglob)
!
⏐
⏐
�

⏐
⏐
�(iλglob)

!

SI=λ
glob

AvSI∗←−−−− Shv(Bun
=λ

N ),

(4.8)

and similarly for (iλglob)∗.

Proposition 4.2.5

(a) The partially defined left adjoint (iλglob)! of (4.4)

(iλglob)
! : Shv(BunN)→ Shv(Bun

=λ

N )

is defined on

7The corresponding assertion would be false for the corresponding embedding SI≤0
Ran ⊂ Shv(S0

Ran);
this is a geometric counterpart of the fact that the local field is not compact, while the quotient of
adeles by principal adeles is compact.



200 D. Gaitsgory

SI=λ
glob ⊂ Shv(Bun

=λ

N ).

(b) The resulting functor

SI=λ
glob → Shv(BunN)

takes values in

SI≤0
glob ⊂ Shv(BunN)

and thus provides a left adjoint to (4.6).

Proof To prove point (a), it suffices to do so for the map jλglob. We claim that the
objects

(jλglob)!(ωBun
=λ
N

) ∈ Shv(Bun
≤λ

N ))

and

ω
Bun

=λ
N

∈ Shv(Bun
=λ

N ))

are ULA with respect to the maps pλ
glob and pλ

glob, respectively. This would imply

that for F ∈ Shv(Xλ), we have

(jλglob)! ◦ (pλ
glob)

!(F) � (pλ
glob)

!(F),

in particular, giving a formula for the left-hand side as an object of Shv(Bun
≤λ

N )).
To prove the required ULA property, it suffices to do so for the embedding

jglob : BunB ↪→ BunB,

in which case this is the assertion of [BG1, Theorem 5.1.5].
Point (b) follows from the commutativity of the diagram (4.8) by passing to left

adjoints.
�

By a Cousin argument, it follows formally from Proposition 4.2.5 that the
partially defined functor (iλglob)

∗, left adjoint to (4.5), is defined on SI≤0
glob ⊂

Shv(BunN) and takes values in SI=λ
glob ⊂ Shv(Bun

=λ

N ), thus providing a left adjoint
to (4.7).
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4.2.6

The embeddings

SI=λ
glob ↪→ Shv(Bun

=λ

N ) and SI≤0
glob ↪→ Shv(BunN)

are compatible with the t-structure on the target categories. This follows from the
fact that the right adjoints AvSI∗ (see Sect. 4.2.3) are right t-exact.

Hence, the categories SI=λ
glob and SI≤0

glob acquire t-structures. By construction, an

object F ∈ SI≤0
glob is connective (resp., coconnective) if and only if (iλglob)

∗(F) (resp.,

(iλglob)
!(F) is connective (resp., coconnective) for every λ ∈ 'neg.

4.2.7

We will denote by

IC
∞
2

glob ∈ (SI≤0
glob)

♥

the minimal extension of ICBunN ∈ (SI=0
glob)

♥ along j0glob.

4.3 Local vs. Global Compatibility for the Semi-infinite IC
Sheaf

4.3.1

For every finite set I we have a canonically defined map

πI : S0
I → BunN.

Together these maps combine to a map

πRan : S0
Ran → BunN.

4.3.2

Let d = dim(BunN) = (g − 1) · dim(N). The main result of this section is:

Theorem 4.3.3 There exists an (unique) isomorphism

(πRan)
!(IC

∞
2

glob)[d] = IC
∞
2

Ran,

extending the tautological identification over BunN .
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4.3.4

The next few subsections are devoted to the proof of this theorem. Modulo auxiliary
assertions, the proof will be given in Sect. 4.6.8.

4.4 The Local vs. Global Compatibility for the Semi-infinite
Category

This subsection contains some preparatory material for the proof of Theorem 4.3.3.

4.4.1

First, we observe:

Lemma 4.4.2 For every λ, we have a commutative diagram

S
≤λ
Ran

iλ−−−−→ S0
Ran

⏐
⏐
�

⏐
⏐
�πRan

Bun
≤λ

N

iλglob−−−−→ BunN.

The corresponding diagram

S=λ
Ran

iλ−−−−→ S0
Ran

πλ
Ran

⏐
⏐
�

⏐
⏐
�πRan

Bun
=λ

N

iλglob−−−−→ BunN

(4.9)

is Cartesian, and we have a commutative diagram

S=λ
Ran

pλ
Ran−−−−→ (Xλ × Ran)⊂

πλ
Ran

⏐
⏐
�

⏐
⏐
�prλRan

Bun
=λ

N

pλ
glob−−−−→ Xλ.

The assertions parallel to those in the above lemma hold for Ran replaced by XI

for an individual finite set I .
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4.4.3

The following assertion is not necessary for the needs of this paper, but we will
prove it for the sake of completeness (see Sect. A.1.11):

Theorem 4.4.4 The functor

(πRan)
! : Shv(BunN)→ Shv(S0

Ran)

is fully faithful.

When working with an individual stratum, a stronger assertion is true (to be
proved in Sect. 4.5): Consider the map

(pλ
Ran × πλ

Ran) : Sλ
Ran → (Xλ × Ran)⊂ ×

Xλ
Bun

=λ

N .

Proposition 4.4.5 The functor

(pλ
Ran × πλ

Ran)
! : Shv((Xλ × Ran)⊂ ×

Xλ
Bun

=λ

N )→ Shv(Sλ
Ran)

is fully faithful.

Combining with Lemma 2.3.3, we obtain:

Corollary 4.4.6 The functor

(πλ
Ran)

! : Shv(Bun
=λ

N )→ Shv(Sλ
Ran)

is fully faithful.

4.4.7

Next we claim:

Proposition 4.4.8 For every finite set I , the functor

(πI )
! : Shv(BunN)→ Shv(S0

I )

sends SI≤0
glob to SI≤0

I .

Proof Note that an object F ∈ Shv(S0
I ) belongs to SI≤0

I if and only if (iλ)!(F)
belongs to SI=λ

I for every λ. Now the result follows from the identification

prλI ◦pλ
I = pλ

glob ◦ πλ
I .

�
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We will now deduce:

Corollary 4.4.9 An object of Shv(BunN) belongs to SI≤0
glob if and only if its pullback

under (πRan)
! belongs to SI≤0

Ran ⊂ Shv(S0
Ran).

Proof The “only if” direction is the content of Proposition 4.4.8.

For the “if” direction, we need to show that if an object F ∈ Shv(Bun
=λ

N ) is such
that

(πλ
Ran)

!(F) � (pλ
Ran)

!(F′)

for some F′ ∈ Shv((Xλ × Ran)⊂), then F is the pullback of an object in Shv(Xλ)

along pλ
glob.

By Proposition 4.4.5, in the diagram

Sλ
Ran

pλ
Ran×πλ

Ran

⏐
⏐
�

(Xλ × Ran)⊂ ×
Xλ

Bun
=λ

N

id
(Xλ×Ran)⊂ ×pλ

glob−−−−−−−−−−−→ (Xλ × Ran)⊂

prλRan× id
Bun=λ

N

⏐
⏐
�

⏐
⏐
�prλRan

Bun
=λ

N

pλ
glob−−−−→ Xλ

we have

F
Lemma 2.3.3� (prλRan× id

Bun
=λ
N

)! ◦ (prλRan× id
Bun

=λ
N

)!(F)
Proposition 4.4.5�

� (prλRan× id
Bun

=λ
N

)! ◦ (pλ
Ran × πλ

Ran)! ◦ (pλ
Ran × πλ

Ran)
! ◦ (prλRan× id

Bun
=λ
N

)!(F) �

� (prλRan× id
Bun

=λ
N

)! ◦ (pλ
Ran × πλ

Ran)! ◦ (πλ
Ran)

!(F)
assumption�

� (prλRan× id
Bun

=λ
N

)! ◦ (pλ
Ran × πλ

Ran)! ◦ (pλ
Ran)

!(F′) �

� (prλRan× id
Bun

=λ
N

)! ◦ (pλ
Ran × πλ

Ran)! ◦ (pλ
Ran × πλ

Ran)
! ◦ (id(Xλ×Ran)⊂ ×pλ

glob)
!(F′) �

Proposition 4.4.5� (prλRan× id
Bun

=λ
N

)!◦(id(Xλ×Ran)⊂ ×pλ
glob)

!(F′) � (pλ
glob)

!◦(prλRan)!(F′),



The Semi-infinite IC Sheaf-II 205

as required (the last isomorphism is base change, which holds due to the fact that
the map prλRan is pseudo-proper8). �

4.5 Proof of Proposition 4.4.5

4.5.1

Consider the morphism

(pλ
Ran × πλ

Ran) : Sλ
Ran → (Xλ × Ran)⊂ ×

Xλ
Bun

=λ

N .

A point of Sλ
Ran is the following data:

(i) A B-bundle PB on X (denote by PT the induced T -bundle)
(ii) A 'neg-valued divisor D on X (we denote by O(D) the corresponding T -

bundle)
(iii) An identification PT � O(D)

(iv) A finite non-empty set I of points of X that contains the support of D
(v) A trivialization α of PB away from I, such that the induced trivialization of

PT |X−I agrees with the tautological trivialization of O(D)|X−I

4.5.2

The map (pλ
Ran × πλ

Ran) amounts to forgetting the data of (v) above. It is clear that
for an affine test scheme Y and a Y -point of

(Xλ × Ran)⊂ ×
Xλ

Bun
=λ

N ,

the set of its lifts to a Y -point of Sλ
Ran is non-empty and is a torsor for the group

Maps(Y ×X − +I, N).

For a given Y and I ⊂ Maps(Y,X), let MapsY (X − I, N) be the prestack over
Y that assigns to Y ′ → Y the set of maps

Maps(Y ′ ×X − (Y ′ ×
Y
+I), N).

8See Sect. A.2.4, where this notion is recalled.
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Thus, it suffices to show that the projection MapsY (X−I, N)→ Y is universally
homologically contractible, see Sect. A.1.8 for what this means.

4.5.3

Since N is unipotent, it is isomorphic to A
m, where m = dim(N). Hence, it suffices

to show that the map

MapsY (X − I,A1)→ Y

is universally homologically contractible.
However, the latter is clear: the prestack MapsY (X− I,A1) is isomorphic to the

ind-scheme A
∞ × Y , where

A
∞ � colim

n
A

n.

�

4.6 The Key Isomorphism

4.6.1

The base-change isomorphism

(πI )
! ◦ (iλglob)∗ � (iλ)∗ ◦ (πI )

!

in the diagram (4.9) gives rise to a natural transformation

(iλ)∗ ◦ (πI )
! → (πλ

I )
! ◦ (iλglob)

∗ (4.10)

as functors

SI≤0
glob ⇒ SI=λ

I ,

see Proposition 2.5.3(a) for the notation (iλ)∗.

4.6.2

In Sect. 4.7, we will prove:

Proposition 4.6.3 The natural transformation (4.10) is an isomorphism.

We will now deduce some corollaries of Proposition 4.6.3; these will easily imply
Theorem 4.3.3, see Sect. 4.6.8.
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First, combining Proposition 4.6.3 with Proposition 2.5.3(c), we obtain:

Corollary 4.6.4 The natural transformation

(iλ)∗ ◦ (πRan)
! → (πλ

Ran)
! ◦ (iλglob)

∗

as functors

SI≤0
glob ⇒ SI=λ

Ran

is an isomorphism.

Next, by a Cousin argument, from Proposition 4.6.3, we formally obtain:

Corollary 4.6.5 The natural transformation

(iλ)! ◦ (πλ
I )
! → (πI )

! ◦ (iλglob)!,

arising by adjunction from

(πλ
I )
! ◦ (iλglob)

! � (iλ)! ◦ (πI )
!,

is an isomorphism of functors

SI=λ
glob ⇒ SI≤0

I .

Combining Corollary 4.6.5 with Corollary 2.5.6(c), we obtain:

Corollary 4.6.6 The natural transformation

(iλ)! ◦ (πλ
Ran)

! → (πRan)
! ◦ (iλglob)!

is an isomorphism of functors

SI=λ
glob ⇒ SI≤0

Ran .

Finally, we claim:

Corollary 4.6.7 The functor

π ![d] : SI≤0
glob → SI≤0

Ran

is t-exact.

Proof This follows from Corollary 4.6.4, combined with the (tautological) isomor-
phism

(iλ)! ◦ (πRan)
! � (πλ

Ran)
! ◦ (iλglob)

!.

�
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4.6.8

Note that Corollary 4.6.7 immediately implies Theorem 4.3.3.

Remark 4.6.9 In Sect. 7.4, we will present another construction of the map in one
direction

IC
∞
2

Ran → π !(IC
∞
2

glob)[d],

where we will realize IC
∞
2

Ran as ′IC
∞
2

Ran.

4.6.10

Let us now prove Proposition 3.2.2.

Proof By Corollary 4.6.7, it suffices to show that the objects

(iλglob)!(ICBun
=λ
N

) and (iλglob)∗(ICBun
=λ
N

)

belong to the heart of the t-structure (i.e., are perverse sheaves on BunN ).
We claim that the morphism iλglob is affine, which would imply that the functors

(iλglob)! and (iλglob)∗ are t-exact.

Indeed, iλglob is the base change of the morphism

iλglob : BunB ×Xλ → BunB,

which we claim to be affine.
Indeed, iλglob = iλglob ◦ jλglob, where iλglob is a finite morphism, and jλglob is known

to be an affine open embedding (see [FGV, Proposition 3.3.1]). �

4.7 Proof of Proposition 4.6.3

4.7.1

Let F be an object of SI≤0
glob. We need to show that the map

(sλI )
! ◦ (iλ)∗ ◦ (πI )

!(F) � (sλI )
! ◦ (πλ

I )
! ◦ (iλglob)

∗(F) (4.11)

is an isomorphism.
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4.7.2

We first rewrite the left-hand side in (4.11).
As a first step, we note that by (2.7), we have

(sλI )
! ◦ (iλ)∗ ◦ (πI )

!(F) � (p
−,λ
I )∗ ◦ (i−,λ)! ◦ (πI )

!(F). (4.12)

4.7.3

For λ ∈ 'neg, let Zλ be the Zastava space, i.e., this is the open substack of

BunN ×
BunG

Bun−λ
B− ,

corresponding to the condition that the B−-reduction and the generalized N -
reduction of a given G-bundle are generically transversal.

Let q denote the forgetful map Zλ → BunN . Let p denote the projection

Zλ → Xλ,

and let s denote its section

Xλ → Zλ.

4.7.4

Note that we have a canonical identification

(Xλ ×XI )⊂ ×
Xλ

Zλ � S0
I ∩ S

−,λ
I , (4.13)

so that the projection

(id(Xλ×XI )⊂ ×p) : (Xλ ×XI )⊂ ×
Xλ

Zλ → (Xλ ×XI )⊂

identifies with

S0
I ∩ S

−,λ
I → S

−,λ
I

p
−,λ
I−→ (Xλ ×XI )⊂.

4.7.5

Hence, the right-hand side in (4.12) can be rewritten as

(id(Xλ×XI )⊂ ×p)∗ ◦ (prλI × id
Z

λ)! ◦ q!(F), (4.14)
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where the maps are as shown in the diagram

(Xλ ×XI )⊂ ×
Xλ

Zλ
prλI × id

Z
λ

−−−−−−→ Zλ q−−−−→ BunN

id
(Xλ×XI )⊂ ×p

⏐
⏐
�

⏐
⏐
�p

(Xλ ×XI )⊂
prλI−−−−→ Xλ.

By base change, we rewrite (4.14) as

(prλI )
! ◦ p∗ ◦ q!(F). (4.15)

4.7.6

The adjoint action of T on N defines an action of T on BunN . It is easy to see that
every object of SI≤0 is monodromic for this action. Hence, the same is true for its
pullback to Zλ.

Choose a dominant coweight as in Sect. 2.7.1. Applying the contraction principle
for the action of Gm along the fibers of p (see [DrGa, Proposition 3.2.2]), we
rewrite (4.15) as

(prλI )
! ◦ s∗ ◦ q!(F). (4.16)

To summarize, we have rewritten the left-hand side in (4.11) as (4.16).

4.7.7

We now rewrite the right-hand side in (4.11).
Note that we have a Cartesian diagram

Xλ s−−−−→ Zλ

qλ

⏐
⏐
�

⏐
⏐
�q

Bun
=λ

N

iλglob−−−−→ BunN,

(4.17)

where the map qλ is given by

Xλ � Xλ ×
BunT

BunT → Xλ ×
BunT

BunB � Bun
=λ

N .
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Note also that the map

(Xλ ×XI )⊂
sλI−→ Sλ

I

πλ
I−→ Bun

=λ

N

identifies with

(Xλ ×XI )⊂
prλI−→ Xλ qλ

−→ Bun
=λ

N .

Hence, the right-hand side in (4.11) identifies with

(prλI )
! ◦ (qλ)! ◦ (iλglob)

∗(F). (4.18)

4.7.8

Unwinding the identifications, we obtain that the map in (4.11) is induced by the
natural transformation

s∗ ◦ q! → (qλ)! ◦ (iλglob)
∗, (4.19)

coming from the Cartesian square (4.17).
Thus, it suffices to show that the natural transformation (4.19) is an isomorphism,

when evaluated on objects from SI≤0
glob.

However, the latter is done by repeating the argument of [Ga1, Sect. 3.9]:
We first consider the case when −λ is sufficiently dominant, in which case the

morphism q is smooth, being the base change of Bun−λ
B− → BunG. In this case, the

fact that (4.19) is an isomorphism follows by smoothness.
Then we reduce the case of a general λ to one above using the factorization

property of Zλ.
�

4.7.9

Thus, we have completed the proof of Proposition 4.6.3 and hence also of
Theorem 4.3.3.

4.8 Relation to the IC Sheaf on Zastava Spaces

4.8.1

Recall the Zastava spaces

Zλ ⊂ BunN ×
BunG

Bun−λ
B− ,
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introduced in Sect. 4.7.3.

Let
◦
Zλ ⊂ Zλ denote the open subscheme equal to

BunN ×
BunN

Zλ.

4.8.2

Note now that the identification (4.13) gives rise to a map

q′ : (Xλ × Ran)⊂ ×
Xλ

Zλ → S
0
Ran. (4.20)

Let prλRan× id
Z

λ denote the projection

(Xλ × Ran)⊂ ×
Xλ

Zλ → Zλ.

We claim:

Proposition 4.8.3 There exists a canonical isomorphism

(prλRan× id
Z

λ)!(ICZλ) � (q′)!(IC
∞
2 )[〈λ, 2ρ̌〉],

extending the tautological identification of the restriction of either side to

(Xλ × Ran)⊂ ×
Xλ

◦
Zλ

with ω
(Xλ×Ran)⊂ ×

Xλ

◦
Zλ
[〈λ, 2ρ̌〉].

4.8.4 Proof of Proposition 4.8.3

We have a commutative diagram

(Xλ × Ran)⊂ ×
Xλ

Zλ q′−−−−→ S
0
Ran

prλRan× id
Z

λ

⏐
⏐
�

⏐
⏐
�πRan

Zλ q−−−−→ BunN.

According to [Ga1, Prop. 3.6.5(a)], we have a canonical isomorphism
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q!(IC
∞
2

glob)[(g − 1) · dim(N)+ 〈λ, 2ρ̌〉] � IC
Z

λ .

Now the assertion follows from Theorem 4.3.3.
�

4.9 Computation of Fibers

In this subsection, we will prove Theorem 3.4.5. One possible proof follows from
the description of the objects

(iλglob)
!(IC

∞
2

glob) and (iλglob)
∗(IC

∞
2

glob)

in [BG2, Proposition 4.4], combined with Theorem 4.3.3.
Instead, we will actually reprove [BG2, Proposition 4.4], see Theorem 4.9.3

below, using our Theorem 4.3.3.

Remark 4.9.1 Let us add a clarification on the order of the argument proving
Theorems 3.4.5 and 4.9.3:

(1) In Sect. 3.6, we defined the object ′IC
∞
2

Ran.

(2) In Proposition 3.7.4, we showed that the !-restrictions of ′IC
∞
2

Ran to the strata
Sλ

Ran are strictly coconnective.

(3) In Proposition 3.7.3, we calculated the *-restrictions of ′IC
∞
2

Ran to the
@strata Sλ

Ran and showed that they are isomorphic to (the pullbacks of)
Factalg(O(Ň))Xλ [−〈λ, 2ρ̌〉]; in particular, they are strictly connective.

(4) Points (2) and (3) imply that ′IC
∞
2

Ran is isomorphic to IC
∞
2

Ran.

(5) Points (3) and (4) imply that the *-restrictions of IC
∞
2

Ran to the strata Sλ
Ran are

isomorphic to (the pullbacks of) Factalg(O(Ň))Xλ [−〈λ, 2ρ̌〉], thus proving the
part of Theorem 3.4.5 about *-restrictions.

(6) Point (5) above, combined with Theorem 4.3.3 and Corollary 4.6.4, will imply
Theorem 4.9.3(a) (see below).

(7) Point (a) of Theorem 4.9.3 will imply point (b) by a duality argument (see
below).

(8) Point (b) of Theorem 4.9.3 will imply the assertion of Theorem 3.4.5 about
!-restrictions (see below).

4.9.2

We first prove:
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Theorem 4.9.3

(a) (iλglob)
∗(IC

∞
2

glob) � (pλ
glob)

!(Factalg(O(Ň))Xλ)[−d − 〈λ, 2ρ̌〉].
(b) (iλglob)

!(IC
∞
2

glob) � (pλ
glob)

!(Factcoalg(U(ň−))Xλ)[−d − 〈λ, 2ρ̌〉].
Proof We first prove point (a). Let Fλ ∈ Shv(Xλ) be such that

(iλglob)
∗(IC

∞
2

glob) � (pλ
glob)

!(Fλ)[−d − 〈λ, 2ρ̌〉]. (4.21)

We will show that

Fλ � Factalg(O(Ň))Xλ.

Applying (πλ
Ran)

! to both sides in (4.21), we obtain

(πλ
Ran)

! ◦ (iλglob)
∗(IC

∞
2

glob) �
� (πλ

Ran)
! ◦ (pλ

glob)
!(Fλ)[−d − 〈λ, 2ρ̌〉] � (pλ

Ran)
! ◦ (prλRan)

!(Fλ)[−d − 〈λ, 2ρ̌〉]
(4.22)

By Corollary 4.6.4 and Theorem 4.3.3, we have

(πλ
Ran)

! ◦ (iλglob)
∗(IC

∞
2

glob) � (iλ)∗(IC
∞
2

Ran)[−d].

Further, by Remark 3.7.5, we have

(iλ)∗(IC
∞
2

Ran) � (pλ
Ran)

! ◦ (prλRan)
!(Factalg(O(Ň))Xλ)[−〈λ, 2ρ̌〉].

Combining with (4.22), we obtain

(pλ
Ran)

! ◦ (prλRan)
!(Fλ) � (pλ

Ran)
! ◦ (prλRan)

!(Factalg(O(Ň))Xλ).

Since the functor (pλ
Ran)

! ◦ (prλRan)
! is fully faithful, we obtain the desired

Fλ � Factalg(O(Ň))Xλ,

proving point (a).

Since IC
∞
2

glob is Verdier self-dual, and using the fact that

D(Factcoalg(U(ň−))Xλ) � Factalg(O(Ň))Xλ,

from the isomorphism of point (a), we obtain
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(iλglob)
!(IC

∞
2

glob) � (pλ
glob)

∗(Factcoalg(U(ň−))Xλ)[d + 〈λ, 2ρ̌〉] �
� (pλ

glob)
!(Factcoalg(U(ň−))Xλ)[−d − 〈λ, 2ρ̌〉],

the latter isomorphism because pλ
glob is smooth of relative dimension d + 〈λ, 2ρ̌〉.

This proves point (b).
�

4.9.4

Let us now prove Theorem 3.4.5.

Proof By Remark 3.7.5, it remains to prove the assertion regarding (iλ)!(IC
∞
2

Ran).
Let Gλ ∈ Shv((Xλ × Ran)⊂) be such that

(iλ)!(IC
∞
2

Ran) � (pλ
Ran)

!(Gλ)[−〈λ, 2ρ̌〉].

Let us show that

Gλ � (prλRan)
!(Factcoalg(U(ň−))Xλ).

Indeed, by Theorem 4.3.3 and Theorem 4.9.3(b), we have

(pλ
Ran)

!(Gλ)[−〈λ, 2ρ̌〉] = (iλ)!(IC
∞
2

Ran) � (iλ)! ◦ (πRan)
!(IC

∞
2

glob)[d] �

� (πλ
Ran)

!◦(iλglob)
!(IC

∞
2

glob)[d] � (πλ
Ran)

!◦(pλ
glob)

!(Factcoalg(U(ň−))Xλ)[−〈λ, 2ρ̌〉] �
� (pλ

Ran)
! ◦ (prλRan)

!(Factcoalg(U(ň−))Xλ)[−〈λ, 2ρ̌〉].

Since (pλ
Ran)

! is fully faithful, this gives the desired isomorphism.
�

5 Unital Structure and Factorization

The goal of this section is to explore an additional property of IC
∞
2 , which we will

refer to as unitality. It has to do with the following additional structure on GrG,Ran:
one can “throw in” more points in Ran without altering the G-bundle.

The unital property of IC
∞
2 will allow us to construct on it a factorization

structure.
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5.1 Unital Structure on the Affine Grassmannian

In this subsection, we introduce the geometric structure on GrG,Ran that would allow
us to talk about unitality.

5.1.1

Let (Ran × Ran)⊂ be the following subfunctor of Ran × Ran: for an affine test
scheme Y , the set Hom(Y, (Ran× Ran)⊂) consists of those

I, I′ ⊂ Hom(Y,X)

for which

I ⊆ I′ ⊂ Hom(Y,X). (5.1)

The diagonal map

*Ran : Ran → Ran× Ran

factors through a map Ran → (Ran× Ran)⊂, which, by a slight abuse of notation,
we denote by the same symbol *Ran.

There are two obvious projections

obsmall,obbig : (Ran× Ran)⊂ → Ran

that send a point (5.1) to

I ⊂ Hom(Y,X) and I′ ⊂ Hom(Y,X),

respectively.
We have

obsmall ◦*Ran = id and obbig ◦*Ran = id .

For future use, we note:

Lemma 5.1.2 The map obsmall is universally homologically contractible.

Remark 5.1.3 One proof of Lemma 5.1.2 can be obtained by mimicking the
argument in Sect. A.2.8. We will now give a different argument, which does not
use the properness of X (we note that the argument below can also be used to give
an alternative proof of Lemma 2.3.3, see Proposition 5.2.7 below).
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Proof Let Y be an affine scheme and let us be given a Y -point J ⊂ Hom(Y,X) of
Ran. We need to show that the pullback functor

Shv(Y )→ Shv(Y ×
Ran

(Ran× Ran)⊂)

is fully faithful, where the map (Ran× Ran)⊂ → Ran is obsmall.
To show this, it suffices to show that the map obsmall can be obtained as a retract

of a map that is universally homologically contractible. We let this other map be the
projection

Ran× Ran → Ran, (I1, I2) �→ I1.

It is universally homologically contractible because the Ran space is homologically
contractible (i.e., universally homologically contractible over pt).

We realize (Ran × Ran)⊂ → Ran as a retract of Ran × Ran → Ran as follows.
The map

(Ran× Ran)⊂ → Ran× Ran

sends

(I ⊂ I′) �→ (I, I′).

The retraction Ran× Ran → (Ran× Ran)⊂ sends

(I1, I2) �→ (I1 ⊆ I1 ∪ I2).

�

5.1.4

Consider the fiber product

GrG,(Ran×Ran)⊂ := GrG,Ran ×
Ran

(Ran× Ran)⊂,

where the map (Ran × Ran)⊂ → Ran is obsmall. By a slight abuse of notation, we
will denote by the same symbol obsmall the projection

GrG,(Ran×Ran)⊂ → GrG,Ran.

Note, however, that we have another map, denoted

obbig : GrG,(Ran×Ran)⊂ → GrG,Ran
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that makes the following diagram commute:

GrG,(Ran×Ran)⊂
obbig−−−−→ GrG,Ran

⏐
⏐
�

⏐
⏐
�

(Ran× Ran)⊂
obbig−−−−→ Ran.

(5.2)

Namely, it sends a quadruple (I ⊆ I′,PG, α) to (I′,PG, α′), where α is a
trivialization of PG on the complement of +I and α′ is the restriction of α to the
complement of +I′ .

Warning Note, however, that the diagram (5.2) is not Cartesian.

Denote by *Ran the natural map

GrG,Ran → GrG,(Ran×Ran)⊂ .

We have

obsmall ◦*Ran � id and obbig ◦*Ran � id .

5.1.5

We shall say that an object

F ∈ Shv(GrG,Ran)

is unital if there exists an isomorphism

ob!small(F) � ob!big(F)

for which the composition

F � *!Ran ◦ ob!small(F) � *!Ran ◦ ob!big(F) � F

is the identity map.
Note that it follows from Lemma 5.1.2 that if such an isomorphism exists, then

it is unique.

5.1.6

Let

Shv(GrG,Ran)unital ⊂ Shv(GrG,Ran)
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be the full subcategory formed by unital objects.
From Lemma 5.1.2, we obtain:

Corollary 5.1.7 The subcategory Shv(GrG,Ran)unital ⊂ Shv(GrG,Ran) is closed
under colimits.

In particular, we obtain that Shv(GrG,Ran)unital is a (cocomplete) DG subcategory
of Shv(GrG,Ran).

5.1.8

Set:

SIRan,unital := SIRan ∩Shv(GrG,Ran)unital ⊂ Shv(GrG,Ran).

Our next goal is to characterize SIRan,unital more explicitly as a full subcategory
of SIRan.

5.2 Unital Structure on the Strata

In this subsection, we will extend the discussion of Sect. 5.1 from GrRan to the
prestacks Sλ

Ran and (Xλ × Ran)⊂.
We will see that the unital subcategory of Shv((Xλ × Ran)⊂) is actually

equivalent to Shv(Xλ).

5.2.1

For a fixed λ, consider the functors

Sλ
Ran ↪→ S

λ

Ran → GrG,Ran,

and consider the corresponding diagram of prestacks

Sλ
(Ran×Ran)⊂

jλ−−−−→ S
λ

(Ran×Ran)⊂
i
λ

−−−−→ GrG,(Ran×Ran)⊂

obbig

⏐
⏐
� obbig

⏐
⏐
�

⏐
⏐
�obbig

Sλ
Ran

jλ−−−−→ S
λ

Ran
i
λ

−−−−→ GrG,Ran.

The discussion in Sect. 5.1 applies to the present situation as well. In particular,
we obtain the full subcategories
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Shv(S
λ

Ran)unital ⊂ Shv(S
λ

Ran) and Shv(Sλ
Ran)unital ⊂ Shv(Sλ

Ran)

as well as

SI≤λ
Ran,unital ⊂ SI≤λ and SI=λ

Ran,unital ⊂ SI=λ .

It is clear that the functors (i
λ
)!, (jλ)! and (i

λ
)∗, (jλ)∗ send the corresponding

unital subcategories to one another. In particular, from Lemma 5.1.2, we obtain:

Corollary 5.2.2 An object F ∈ SI≤0
Ran belongs to SI≤0

Ran,unital if and only if (iλ)!(F)
belongs to SI=λ

Ran,unital for all λ.

Finally, from (2.8), one obtains:

Corollary 5.2.3

(a) The functor (iλ)∗ : SI≤0
Ran → SI=λ

Ran sends SI≤0
Ran,unital to SI=λ

Ran,unital.

(b) The functor (iλ)! : SI=λ
Ran → SI≤0

Ran sends SI=λ
Ran,unital to SI≤0

Ran,unital.

5.2.4

For a fixed λ, consider the prestack

(Xλ × Ran× Ran)⊂ := (Xλ × Ran)⊂ ×
Ran

(Ran× Ran)⊂,

where the map (Ran × Ran)⊂ → Ran is obsmall. By a slight abuse of notation, we
will denote by the same symbol obsmall the projection

(Xλ × Ran× Ran)⊂ → (Xλ × Ran)⊂, (D, J, J′) �→ (D, J).

Let us denote by obbig the map

(Xλ × Ran× Ran)⊂ → (Xλ × Ran)⊂, (D, J, J′) �→ (D, J′).

Using this map, we define a full subcategory

Shv((Xλ × Ran)⊂)unital ⊂ Shv((Xλ × Ran)⊂).

From Proposition 2.4.2, we obtain:

Corollary 5.2.5 The equivalence

(pλ
Ran)

! : Shv((Xλ × Ran)⊂)→ SI=λ
Ran
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restricts to an equivalence

Shv((Xλ × Ran)⊂)unital → SI=λ
Ran,unital .

5.2.6

We now claim:

Proposition 5.2.7 The pullback functor

(prλRan)
! : Shv(Xλ)→ Shv((Xλ × Ran)⊂)

defines an equivalence

Shv(Xλ)
∼→ Shv((Xλ × Ran)⊂)unital.

Proof The fact that the functor (prλRan)
! sends Shv(Xλ) to Shv((Xλ × Ran)⊂)unital

is immediate from the definition.9

Choose a finite set I so that we have a surjective symmetrization map symI→λ :
XI → Xλ. Since the map symI→λ is finite and surjective, it satisfies descent for
Shv(−). So it is sufficient to prove the assertion of the proposition when the original
map

prλRan : (Xλ × Ran)⊂ → Xλ

is base-changed by the Čech nerve of the map XI → Xλ.
We will prove that the pullback functor

(prIRan)
! : Shv(XI )→ Shv((XI × Ran)⊂)

defines an equivalence onto Shv((XI × Ran)⊂)unital. That is, we will prove the
assertion for the 0-simplices of the Čech nerve; for higher simplices, the proof is
the same.

Note that the map

prIRan : (XI × Ran)⊂ → XI

admits a section, denoted rI . Namely, for an affine test scheme Y and a Y -point of
XI , which is a map I → Hom(Y,X), we assign its image, denoted I in Hom(Y,X).

9Note also that the fully faithfulness of (prλRan)
! has been already stated in Lemma 2.3.3; however,

the argument given below will give an alternative proof of this fact.
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Pullback with respect to rI defines a functor Shv((XI × Ran)⊂) → Shv(XI ).
We claim that the restriction of (rI )! to Shv((XI × Ran)⊂)unital is a functor inverse
to (prIRan)

!.
Indeed, the fact that (rI )! ◦(prIRan)

! � Id is obvious. To construct an isomorphism

(prIRan)
! ◦ (rI )!|Shv((XI×Ran)⊂)unital

� Id,

we note that there exist canonically defined maps

′′rI ; ′rI : (XI × Ran)⊂ → (XI × Ran× Ran)⊂

such that

obbig ◦ ′rI = obbig ◦ ′′rI ,

while

obsmall ◦ ′rI = id and obsmall ◦ ′′rI = rI ◦ prIRan .

The maps ′rI ; ′′rI are given by sending a pair (x, I′) to

(x, I′, I ∪ I′) and (x, I, I ∪ I′),

respectively, where x ∈ Hom(Y,XI ), and I denotes the image of the resulting map
I → Hom(Y,X).

�

5.3 Local-to-Global Comparison, Revisited

Once we have defined the category SI≤0
Ran,unital, we can sharpen the assertion of

Theorem 4.4.4, by directly comparing the global semi-infinite category and the
unital Ran version of the local one.

5.3.1

We claim:

Theorem 5.3.2 The pullback functor

(πRan)
! : SI≤0

glob → SI≤0
Ran
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defines an equivalence onto SI≤0
Ran,unital.

The rest of this subsection is devoted to the proof of this theorem.

5.3.3

First off, it is clear that the essential image of the functor

(πRan)
! : Shv(BunN)→ Shv(S

≤0
Ran)

belongs to the full subcategory

Shv(S
≤0
Ran)unital ⊂ Shv(S

≤0
Ran).

Indeed, this follows from the fact that the following diagram commutes:

GrG,(Ran×Ran)⊂
obsmall−−−−→ GrG,Ran

obbig

⏐
⏐
�

⏐
⏐
�πRan

GrG,Ran
πRan−−−−→ BunN.

5.3.4

Second, the fact that the functor in question is fully faithful follows from Theo-
rem 4.4.4.

Thus, it remains to show that the functor

(πRan)
! : SI≤0

glob → SI≤0
Ran,unital

is essentially surjective.
Taking into account Corollary 4.6.6, it suffices to show that the functor

(πλ
Ran)

! : SI=λ
glob → SI=λ

Ran

defines an equivalence onto SI=λ
Ran,unital ⊂ SI=λ

Ran.
However, this follows from Corollary 5.2.5 and Proposition 5.2.7 using the

commutative diagram
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Sλ
Ran

pλ
Ran−−−−→ (Xλ × Ran)⊂

πλ
Ran

⏐
⏐
�

⏐
⏐
�prλRan

Bun
=λ

N −−−−→ Xλ.

5.4 The t-Structure on the Unital Category

In this subsection, we will show that the t-structure on SI≤0
Ran restricts to a t-structure

on SI≤0
Ran,unital.

5.4.1

We define a t-structure on SI=λ
Ran,unital by transferring the (perverse) t-structure on

Shv(Xλ) via the equivalences

Shv(Xλ)
(prλRan)

!
−→ Shv((Xλ × Ran)⊂)unital

(pλ
Ran)

!
−→ SI=λ

Ran,unital

and applying the shift [〈λ, 2ρ̌〉].

5.4.2

We define a t-structure on SI≤0
Ran,unital by declaring that an object F is coconnective

if

(iλ)!(F) ∈ SI=λ
Ran,unital

is coconnective for each λ.
As in Lemma 3.1.9, one shows that an object F ∈ SI≤0

Ran,unital is connective if and
only if

(iλ)∗(F) ∈ SI=λ
Ran,unital

is connective for each λ.
From here, we obtain:

Corollary 5.4.3 The inclusion SI≤0
Ran,unital ↪→ SI≤0

Ran is compatible with t-structures
(i.e., is t-exact).
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5.4.4

We now claim:

Proposition 5.4.5 The object IC
∞
2 ∈ (SI≤0

Ran)
♥ belongs to (SI≤0

Ran,unital)
♥.

Proof The assertion follows from Corollary 5.4.3 and the fact that both

(i0)!(ωS0
Ran

) and (i0)∗(ωS0
Ran

)

belong to SI≤0
Ran,unital. �

5.5 Comparison with IC on Zastava Spaces, Continued

Recall the isomorphism

(prλRan× id
Z

λ)!(ICZλ) � (q′)!(IC
∞
2 )[〈λ, 2ρ̌〉]

established in Proposition 4.8.3.
In this subsection, we will sharpen this assertion by showing that it is uniquely

characterized by the property that its restriction to the open substack

(Xλ × Ran)⊂ ×
Xλ

◦
Zλ ⊂ (Xλ × Ran)⊂ ×

Xλ
Zλ

is the tautological identification of both sides with the dualizing sheaf.

5.5.1

First off, we note that the recipe in Sect. 5.2 allows to introduce a full subcategory

Shv((Xλ × Ran)⊂ ×
Xλ

Zλ)unital ⊂ Shv((Xλ × Ran)⊂ ×
Xλ

Zλ),

and the functor (q′)! (see (4.20)) sends

SI≤0
unital → Shv((Xλ × Ran)⊂ ×

Xλ
Zλ)unital.

Moreover, an analog of Proposition 5.2.7 applies, and the functor (prλRan× id
Z

λ)!
defines an equivalence

Shv(Zλ)
∼→ Shv((Xλ × Ran)⊂ ×

Xλ
Zλ)unital. (5.3)
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5.5.2

We define a t-structure on Shv((Xλ×Ran)⊂×
Xλ
Zλ)unital by transferring the t-structure

on Shv(Zλ) via the equivalence of (5.3).
In particular, we obtain that the object

(prλRan× id
Z

λ)!(ICZλ) ∈ Shv((Xλ × Ran)⊂ ×
Xλ

Zλ)unital

lies in the heart of the t-structure and is the minimal extension of

(prλRan× id
Z

λ)!(ICZλ)|
(Xλ×Ran)⊂ ×

Xλ

◦
Zλ
∈ Shv((Xλ × Ran)⊂ ×

Xλ

◦
Zλ)unital.

5.5.3

Hence, we obtain:

Corollary 5.5.4 The isomorphism

(prλRan× id
Z

λ)!(ICZλ) � (q′)!(IC
∞
2 )[〈λ, 2ρ̌〉]

of Proposition 4.8.3 is uniquely characterized by the property that it extends the

tautological isomorphism over (Xλ × Ran)⊂ ×
Xλ

◦
Zλ.

5.6 Factorization Structure on IC
∞
2

We now arrive to the key point of this section. We will show that unitality allows
one to construct the factorization structure on the semi-infinite cohomology sheaf
IC

∞
2 .

5.6.1

Recall that identification

(GrG,Ran×GrG,Ran) ×
Ran×Ran

(Ran×Ran)disj � GrG,Ran ×
Ran

(Ran×Ran)disj (5.4)

of (3.13).
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Our current goal is to show that, with respect to this identification, we have a
canonical isomorphism

(IC
∞
2 � IC

∞
2 )(GrG,Ran×GrG,Ran) ×

Ran×Ran
(Ran×Ran)disj � IC

∞
2

GrG,Ran ×
Ran

(Ran×Ran)disj
.

(5.5)
Note that we already know that such an isomorphism takes place, due to the

identification

(′IC
∞
2 �′IC∞

2 )(GrG,Ran×GrG,Ran) ×
Ran×Ran

(Ran×Ran)disj � ′IC
∞
2

GrG,Ran ×
Ran

(Ran×Ran)disj

of (3.14) and the isomorphism

IC
∞
2 � ′IC

∞
2 . (5.6)

However, we would like to present a different construction of the isomor-
phism (5.5). It will be based on “abstract” t-structure considerations rather the
identification of IC

∞
2 with the (explicitly constructed) object ′IC∞

2 .

5.6.2

Let Ran⊂,• be the simplicial prestack whose prestack of n-simplices Ran⊂,n attaches
to an affine test scheme Y the set of

I0 ⊆ . . . ⊆ In ⊂ Hom(Y,X).

Let

(Ran⊂,• × Ran⊂,•)disj ⊂ Ran⊂,• × Ran⊂,•

be an open simplicial sub-prestack equal to

(Ran⊂,• × Ran⊂,•) ×
Ran×Ran

(Ran× Ran)disj,

where the map

Ran⊂,• × Ran⊂,• → Ran× Ran

sends

(I′0 ⊆ . . . ⊆ I′n, I′′0 ⊆ . . . ⊆ I′′n) �→ (I′n, I′′n).

Consider the simplicial prestack
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(GrG,Ran × GrG,Ran) ×
Ran×Ran

(Ran⊂,• × Ran⊂,•)disj,

where the map

(Ran⊂,• × Ran⊂,•)disj → (Ran× Ran)

sends

(I′0 ⊆ . . . ⊆ I′n, I′′0 ⊆ . . . ⊆ I′′n) �→ (I′0, I′′0). (5.7)

Note also that the identification (5.4) extends to an identification of simplicial
prestacks

(GrG,Ran×GrG,Ran) ×
Ran×Ran

(Ran⊂,•×Ran⊂,•)disj � GrG,Ran ×
Ran

(Ran⊂,•×Ran⊂,•)disj,

(5.8)
where the map

(Ran⊂,• × Ran⊂,•)disj → (Ran× Ran)

is again (5.7), and the map

(Ran⊂,• × Ran⊂,•)disj → Ran

is

(I′0 ⊆ . . . ⊆ I′n, I′′0 ⊆ . . . ⊆ I′′n) �→ (I′0 ∪ I′′0).

We define

Shv((GrG,Ran × GrG,Ran) ×
Ran×Ran

(Ran× Ran)disj)unital :=

= Tot

(

Shv((GrG,Ran × GrG,Ran) ×
Ran×Ran

(Ran⊂,• × Ran⊂,•)disj)

)

.

Warning Unlike the case of the functor Shv(GrG,Ran)unital → Shv(GrG,Ran), it is
no longer true that the functor of restriction to 0-simplices

Shv((GrG,Ran × GrG,Ran) ×
Ran×Ran

(Ran× Ran)disj)unital →

→ Shv((GrG,Ran × GrG,Ran) ×
Ran×Ran

(Ran× Ran)disj)

is fully faithful.
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5.6.3

Proceeding as in Sect. 2.2, we define a full subcategory

SI(Ran×Ran)disj ⊂ Shv((GrG,Ran × GrG,Ran) ×
Ran×Ran

(Ran× Ran)disj)

and a full subcategory

SI(Ran×Ran)disj,unital ⊂ Shv((GrG,Ran × GrG,Ran) ×
Ran×Ran

(Ran× Ran)disj)unital.

5.6.4

It is clear that if F1,F2 are objects in SIRan,unital, then

(F1 � F2)|(GrG,Ran×GrG,Ran) ×
Ran×Ran

(Ran×Ran)disj ∈ SI(Ran×Ran)disj

naturally upgrades to an object of SI(Ran×Ran)disj,unital.
Similarly, it is clear that if F is an object of SIRan,unital, then

F|GrG,Ran ×
Ran

(Ran⊂×Ran⊂)disj
∈ SI(Ran×Ran)disj

naturally upgrades to an object of SI(Ran×Ran)disj,unital.
In particular, we obtain that both sides in (5.5) are naturally objects of

SI(Ran×Ran)disj,unital.

5.6.5

Similar definitions apply to GrG,Ran×GrG,Ran replaced by S
0
Ran× S

0
Ran and also by

Sλ
Ran × S

μ
Ran

for a pair of elements λ,μ ∈ '. Denote the resulting categories by

SI≤0
(Ran×Ran)disj,unital and SI=λ,μ

(Ran×Ran)disj,unital,

respectively.
As in Corollary 5.2.5, we have:

Corollary 5.6.6 The pullback functor along the map p
λ,μ

(Ran×Ran)disj
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(Sλ
Ran × S

μ
Ran) ×

Ran×Ran
(Ran× Ran)disj → ((Xλ × Ran)⊂ × (Xμ × Ran)⊂) ×

Ran×Ran
(Ran× Ran)disj

defines equivalences

Shv(((Xλ × Ran)⊂ × (Xμ × Ran)⊂) ×
Ran×Ran

(Ran× Ran)disj)→ SI=λ,μ

(Ran×Ran)disj

and

Shv(((Xλ × Ran)⊂ × (Xμ × Ran)⊂) ×
Ran×Ran

(Ran× Ran)disj)unital → SI=λ,μ
(Ran×Ran)disj,unital .

In addition, by repeating the argument of Proposition 5.2.7, one shows:

Proposition 5.6.7 The pullback functor along the map prλ,μ(Ran×Ran)disj

((Xλ × Ran)⊂ × (Xμ × Ran)⊂) ×
Ran×Ran

(Ran× Ran)disj → (Xλ ×Xμ)disj

defines an equivalence

Shv((Xλ ×Xμ)disj)→ Shv(((Xλ × Ran)⊂ × (Xμ × Ran)⊂) ×
Ran×Ran

(Ran× Ran)disj)unital.

5.6.8

Using Corollary 5.6.6 and Proposition 5.6.7, proceeding as in Sect. 5.4, we define a
t-structure on the categories SI=λ,μ

(Ran×Ran)disj,unital and SI≤0
(Ran×Ran)disj,unital.

It is clear that in the situation of Sect. 5.6.4, if F1,F2 ∈ SI≤0
Ran,unital (resp., F ∈

SI≤0
Ran,unital) are connective/coconnective, then so are the corresponding objects

(F1 � F2)|(GrG,Ran×GrG,Ran) ×
Ran×Ran

(Ran×Ran)disj ∈ SI≤0
(Ran×Ran)disj,unital

and

F|GrG,Ran ×
Ran

(Ran⊂×Ran⊂)disj
∈ SI≤0

(Ran×Ran)disj,unital .

connective/coconnective.
This implies that both sides in (5.5) are minimal extensions of the object

ω(S0
Ran×S0

Ran) ×
Ran×Ran

(Ran×Ran)disj
∈ SI=0,0

(Ran×Ran)disj,unital .

This implies the sought-for canonical isomorphism (5.5).
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5.7 Factorization and Zastava Spaces

In this subsection, we will establish the compatibility of the factorization structure
on IC

∞
2 given by (5.5) and the factorization property of the IC sheaf on Zastava

spaces.

5.7.1

Recall again the Zastava spaces Zλ.
According to [BFGM, Prop. 2.4], we have canonical isomorphisms

(Zλ × Zμ) ×
Xλ×Xμ

(Xλ ×Xμ)disj � Zλ+μ ×
Xλ+μ

(Xλ ×Xμ)disj. (5.9)

Since the composite map

(Xλ ×Xμ)disj → Xλ ×Xμ → Xλ+μ

is étale, we have a canonical isomorphism

(IC
Z

λ � ICZμ)|
(Z

λ×Zμ
) ×
Xλ×Xμ

(Xλ×Xμ)disj
� IC

Z
λ+μ |

Z
λ+μ ×

Xλ+μ
(Xλ×Xμ)disj

.

(5.10)

5.7.2

Note that we have an identification

(

((Xλ × Ran)⊂ ×
Xλ

Zλ)× ((Xμ × Ran)⊂ ×
Xμ

Zμ)

)

×
Ran×Ran

(Ran× Ran)disj �

�
(

(Xλ+μ × Ran)⊂ ×
Xλ+μ

Zλ+μ)

)

×
(Xλ+μ×Ran)⊂

(
(Xλ × Ran)⊂ × (Xμ × Ran)⊂

)

disj
,

(5.11)

where

(
(Xλ × Ran)⊂ × (Xμ × Ran)⊂)

)
disj :=

=
(

((Xλ × Ran)⊂ × (Xμ × Ran)⊂) ×
Ran×Ran

(Ran× Ran)disj

)

.
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Consider the maps

(

((Xλ × Ran)⊂ ×
Xλ

Zλ)× ((Xμ × Ran)⊂ ×
Xμ

Zμ)

)

×
Ran×Ran

(Ran× Ran)disj →

→ (S
0
Ran × S

0
Ran) ×

Ran×Ran
(Ran× Ran)disj

and

(

(Xλ+μ × Ran)⊂ ×
Xλ+μ

Zλ+μ)

)

×
(Xλ+μ×Ran)⊂

(
(Xλ × Ran)⊂ × (Xμ × Ran)⊂

)

disj
→

→ S
0
Ran ×

Ran
(Ran× Ran)disj.

They are compatible with respect to the identifications (5.11) and

(S
0
Ran × S

0
Ran) ×

Ran×Ran
(Ran× Ran)disj � S

0
Ran ×

Ran
(Ran× Ran)disj. (5.12)

Hence, from (5.9), we obtain an isomorphism:

IC
∞
2 � IC

∞
2 |(

((Xλ×Ran)⊂ ×
Xλ
Z

λ
)×((Xμ×Ran)⊂ ×

Xμ
Z

μ
)

)

×
Ran×Ran

(Ran×Ran)disj

�

�
� IC

∞
2 |(

(Xλ+μ×Ran)⊂ ×
Xλ+μ

Z
λ+μ

)

)

×
(Xλ+μ×Ran)⊂

((Xλ×Ran)⊂×(Xμ×Ran)⊂)disj

(5.13)

5.7.3

Consider now the maps

(

((Xλ × Ran)⊂ ×
Xλ

Zλ)× ((Xμ × Ran)⊂ ×
Xμ

Zμ)

)

×
Ran×Ran

(Ran× Ran)disj →

→ (Zλ × Zμ) ×
Xλ×Xμ

(Xλ ×Xμ)disj

and

(

(Xλ+μ × Ran)⊂ ×
Xλ+μ

Zλ+μ)

)

×
(Xλ+μ×Ran)⊂

(
(Xλ × Ran)⊂ × (Xμ × Ran)⊂

)

disj
→

→ Zλ+μ ×
Xλ+μ

(Xλ ×Xμ)disj.
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They are compatible with respect to the identifications (5.11) and (5.9). Hence,
from (5.10), we obtain the isomorphism

IC
Z

λ � ICZμ |(
((Xλ×Ran)⊂ ×

Xλ
Z

λ
)×((Xμ×Ran)⊂ ×

Xμ
Z

μ
)

)

×
Ran×Ran

(Ran×Ran)disj

�

� IC
Z

λ+μ |(
(Xλ+μ×Ran)⊂ ×

Xλ+μ
Z

λ+μ
)

)

×
(Xλ+μ×Ran)⊂

((Xλ×Ran)⊂×(Xμ×Ran)⊂)disj

.

(5.14)

5.7.4

We claim:

Proposition 5.7.5 The isomorphisms (5.13) and (5.14) are compatible with respect
to the isomorphisms

(prλRan× id
Zλ )

!(ICZλ) � (q′)!(IC
∞
2 )[〈λ, 2ρ̌〉], (prμRan× idZμ)!(ICZμ) � (q′)!(IC

∞
2 )[〈μ, 2ρ̌〉]

and

(prλ+μ
Ran × id

Z
λ+μ)!(ICZλ+μ) � (q′)!(IC

∞
2 )[〈λ+ μ, 2ρ̌〉]

of Proposition 4.8.3.

Proof By mimicking the procedure in Sect. 5.6.4, we introduce the category

Shv

((

((Xλ × Ran)⊂ ×
Xλ

Zλ)× ((Xμ × Ran)⊂ ×
Xμ

Zμ)

)

×
Ran×Ran

(Ran× Ran)disj

)

unital

,

(5.15)
and we show that the object

IC
Z

λ � ICZμ |(
((Xλ×Ran)⊂ ×

Xλ
Z

λ
)×((Xμ×Ran)⊂ ×

Xμ
Z

μ
)

)

×
Ran×Ran

(Ran×Ran)disj

∈

Shv

((

((Xλ × Ran)⊂ ×
Xλ

Zλ)× ((Xμ × Ran)⊂ ×
Xμ

Zμ)

)

×
Ran×Ran

(Ran× Ran)disj

)

naturally upgrades to an object of (5.15).
Furthermore, by mimicking the procedure in Sect. 5.6.8, we introduce a t-

structure on (5.15) and we show that the above object
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IC
Zλ � ICZμ |(

((Xλ×Ran)⊂ ×
Xλ

Zλ
)×((Xμ×Ran)⊂ ×

Xμ
Zμ

)

)

×
Ran×Ran

(Ran×Ran)disj

∈

Shv

((

((Xλ × Ran)⊂ ×
Xλ

Zλ)× ((Xμ × Ran)⊂ ×
Xμ

Zμ)

)

×
Ran×Ran

(Ran× Ran)disj

)

unital

is the minimal extension of its restriction to
(

((Xλ × Ran)⊂ ×
Xλ

◦
Zλ)× ((Xμ × Ran)⊂ ×

Xμ

◦
Zμ)

)

×
Ran×Ran

(Ran× Ran)disj.

(5.16)
Now the compatibility stated in Sect. 5.7.5 follows from the fact that it does so

after restriction to (5.16).
�

6 The Hecke Property of the Semi-infinite IC Sheaf

The goal of this section is to show that the object IC
∞
2

Ran that we have constructed
satisfies the (appropriately formulated) Hecke eigen-property.

6.1 Pointwise Hecke Property

6.1.1

Consider the category Shv(L+(T )Ran\GrG,Ran), i.e., we impose the structure of
equivariance with respect to group scheme of arcs into T over the base prestack
Ran.

The action of L(T )Ran on GrG,Ran by left multiplication defines an action of
SphT ,Ran on Shv(L+(T )Ran\GrG,Ran).

We consider Shv(L+(T )Ran\GrG,Ran) as acted on by the monoidal category
SphG,Ran on the right by convolutions.

This action commutes with the left action of SphT ,Ran.

6.1.2

Since L(T )Ran normalizes L(N)Ran, the category

(SIRan)
L+(T )Ran := Shv(GrG,Ran)

L+(T )Ran·L(N)Ran

inherits an action of SphT ,Ran and a commuting SphG,Ran-action.
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Working with this version of the semi-infinite category, we can define a t-
structure on it in the same way as for

SIRan := Shv(GrG,Ran)
L(N)Ran ,

so that the forgetful functor

(SIRan)
L+(T )Ran → SIRan

is t-exact.
Thus, we obtain that the object IC∞Ran ∈ SIRan ⊂ Shv(GrG,Ran) naturally lifts to

an object of

(SIRan)
L+(T )Ran := Shv(GrG,Ran)

L(N)Ran·L+(T )Ran ⊂ Shv(L+(T )Ran\GrG,Ran);

by a slight abuse of notation we denote it by the symbol IC∞Ran.

6.1.3

Fix a point x. Let Ranx be the version of the Ran space with x as a marked point.
By definition, for an affine test scheme Y , the set Hom(Y,Ranx) consists of finite
subsets

I ⊂ Hom(Y,X)

equipped with distinguished element ∗ ∈ I such that the corresponding map Y → X

is

X → pt
x→ X.

6.1.4

We have the natural forgetful map Ranx → Ran, and we can use it to base change
all the objects considered above.

In particular, we consider the prestack

GrG,Ranx := GrG,Ran ×
Ran

Ranx,

the category

Shv(L+(T )Ranx\GrG,Ranx ),
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acted on by

SphG,Ranx := Shv(L+(G)Ranx \GrG,Ranx ) and SphT ,Ranx := Shv(L+(T )Ranx \GrT ,Ranx ),

etc.
We can consider the corresponding object

IC∞Ranx ∈ Shv(GrG,Ranx )
L(N)Ranx ·L+(T )Ranx ⊂ Shv(L+(T )Ranx\GrG,Ranx ),

equal to the !-pullback of IC∞Ran along the projection GrG,Ranx → GrG,Ran.

6.1.5

Note that we have a tautologically defined map

Ranx × GrG,x → GrG,Ranx . (6.1)

From (6.1), we obtain a canonically defined monoidal functor

SphG,x → SphG,Ranx .

Composing with the geometric Satake functor

SatG,x : Rep(Ǧ)→ SphG,x,

we obtain a monoidal functor

SphG,x → SphG,Ranx .

We modify the geometric Satake functor for T by applying the cohomological
shift by [−〈λ, 2ρ̌〉] on eλ ∈ Rep(Ť ). Denote the resulting functor by

Sat′T ,x : Rep(Ť )→ SphT ,x .

Precomposing with

SphT ,x → SphT ,Ranx ,

we obtain a monoidal functor

Rep(Ť )→ SphT ,Ranx .
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6.1.6

Thus, we obtain that Shv(L+(T )Ranx\GrG,Ranx ) is a bimodule category for
(Rep(Ť ),Rep(Ǧ)). In this case, we can talk about the category of graded Hecke
objects in Shv(L+(T )Ranx\GrG,Ranx ), denoted

Hecke
Ǧ,Ť

(Shv(L+(T )Ranx\GrG,Ranx )),

see [Ga1, Sect. 4.3.5], and also Sect. 6.4.1 below.
These are objects F ∈ Shv(L+(T )Ranx\GrG,Ranx ), equipped with a system of

isomorphisms

F & SatG,x(V )
φ(V,F)−→ Sat′T ,x(ResǦ

Ť
(V )) & F, V ∈ Rep(Ǧ)

that are compatible with the monoidal structure on Rep(Ǧ) in the sense that the
diagrams

F & SatG,x(V1) & SatG,x(V2)
φ(V1,F)−−−−−→ Sat′T ,x(ResǦ

Ť
(V1)) & F & SatG,x(V2)

∼
⏐
⏐
�

⏐
⏐
�φ(V2,F)

F & SatG,x(V1 ⊗ V2) −−−−→ Sat′T ,x(ResǦ
Ť
(V1)) & Sat′T ,x(ResǦ

Ť
(V2)) & F

φ(V1⊗V2,F)

⏐
⏐
�

⏐
⏐
�∼

Sat′T ,x(ResǦ
Ť
(V1 ⊗ V2)) & F

∼−−−−→ Sat′T ,x(ResǦ
Ť
(V1)⊗ ResǦ

Ť
(V2)) & F,

along with a coherent system of higher compatibilities.

6.1.7

We will prove:

Theorem-Construction 6.1.8 The object IC∞Ranx
∈ Shv(L+(T )Ranx\GrG,Ranx )

naturally lifts to an object of Hecke
Ǧ,Ť

(Shv(L+(T )Ranx\GrG,Ranx )).

Several remarks are in order.

Remark 6.1.9 In the proof of Theorem 6.1.8, the object IC∞Ran will come in its
incarnation as ′IC∞Ran, constructed in Sect. 3.6.

Remark 6.1.10 Consider the restriction

IC∞x � IC∞Ranx |GrG,x
.
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The Hecke structure on IC∞Ranx
induces one on IC∞x . It will follow from the

construction and [Ga1, Sect. 6.2.5] that the resulting Hecke structure on IC∞x
coincides with one constructed in [Ga1, Sect. 5.1].

Remark 6.1.11 In order to prove Theorem 6.1.8, we will need to consider the Hecke
action of Rep(Ǧ) on Shv(L+(T )Ran\GrG,Ran) over the entire Ran space. The next
few subsections are devoted to setting up the corresponding formalism.

6.2 Categories over the Ran Space, Continued

6.2.1

Recall the construction

A 	 Factalg(A)I (6.2)

of Sect. 3.5, viewed as a functor DGCatSymMon → Shv(XI )-mod.
Note that the functor (6.2) has a natural right-lax symmetric monoidal structure,

i.e., we have the natural transformation

Factalg(A′)I ⊗
Shv(XI )

Factalg(A′′)I → Factalg(A′ ⊗A′′)I .

In particular, since any A ∈ DGCatSymMon can be viewed as an object in
ComAlg(DGCatSymMon), we obtain that Factalg(A)I itself acquires a structure of
symmetric monoidal category.

6.2.2

For a surjection of finite sets φ : I1 � I2, the corresponding functor

(*φ)
! : Factalg(A)I1 → Factalg(A)I2 (6.3)

(see Sect. 3.5.10) is naturally symmetric monoidal. In particular, we obtain that

Factalg(A)Ran � lim
I

Fact(A)I

(see (3.10)) acquires a natural symmetric monoidal structure.
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6.2.3

Let A′ → A′′ be a right-lax symmetric monoidal functor. The functor (6.2) gives
rise to a right-lax symmetric monoidal functor

Factalg(A′)I → Factalg(A′′)I ,

compatible with the restriction functors (6.3). Varying I , we obtain a right-lax
symmetric monoidal functor

Factalg(A′)Ran → Factalg(A′′)Ran.

In particular, a commutative algebra object A in A, viewed as a right-lax
symmetric monoidal functor Vect → A, gives rise to a commutative algebra

Factalg(A)I ∈ Factalg(A)I .

These algebra a objects are compatible under the restriction functors (6.3).
Varying I , we obtain a commutative algebra object

Factalg(A)Ran ∈ Fact(A)Ran.

6.2.4 Examples

Let us consider the two examples of A from Sect. 3.5.4:

(i) Let A = Vect. We obtain that to A ∈ ComAlg(Vect) we can canonically assign
an object Factalg(A)Ran ∈ Shv(Ran).

(ii) Let A be the category of 'neg−0-graded vector spaces. Note that a commutative
algebra A in A is the same as a commutative 'neg-algebra with A(0) = k. On
the one hand, the construction of Sect. 3.3 assigns to such an A a collection of
objects

Factalg(A)Xλ ∈ Shv(Xλ), λ ∈ 'neg − 0.

On the other hand, we have the above object

Factalg(A)Ran ∈ Factalg(A)Ran.

By unwinding the constructions, we obtain that these two objects match up under
the equivalence (3.7).
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6.3 Digression: Right-Lax Central Structures

6.3.1

Let A and A′ be symmetric monoidal categories, and let C be a (A′,A)-bimodule
category. Let F : A→ A′ be a right-lax symmetric monoidal functor.

A right-lax central structure on an object c ∈ C with respect to F is a system of
maps

F(a)⊗ c
φ(a,c)−→ c ⊗ a, a ∈ A

that make the diagrams

F(a1)⊗ (F (a2)⊗ c)
φ(a2,c)−−−−→ F(a1)⊗ (c ⊗ a2)

∼
⏐
⏐
�

⏐
⏐
�∼

(F (a1)⊗ F(a2))⊗ c (F (a1)⊗ c)⊗ a2
⏐
⏐
�

⏐
⏐
�φ(a1,c)

F (a1 ⊗ a2)⊗ c (c ⊗ a1)⊗ a2

φ(a1⊗a2,c)

⏐
⏐
�

⏐
⏐
�∼

c ⊗ (a1 ⊗ a2)
id−−−−→ c ⊗ (a1 ⊗ a2)

commute, along with a coherent system of higher compatibilities.
Denote the category of objects of C equipped with a right-lax central structure on

an object with respect to F by ZF (C).

6.3.2

From now on, we will assume that A is rigid (see [GR, Chapter 1, Sect. 9.1] for
what this means).

If A is compactly generated, this condition is equivalent to requiring that the
class of compact objects in A coincides with the class of objects that are dualizable
with respect to the symmetric monoidal structure on A.

6.3.3

Assume for a moment that F is strict (i.e., is a genuine symmetric monoidal functor).
We have:
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Lemma 6.3.4 If c ∈ ZF (C), then the morphisms φ(a, c) are isomorphisms.

In other words, this lemma says that if F is genuine, then any right-lax central
structure is a genuine central structure (under the assumption that A is rigid).

6.3.5

Let RA ∈ A ⊗ A be the (commutative) algebra object, obtained by applying the
right adjoint

A→ A⊗A

of the monoidal operation A⊗A→ A, to the unit object 1A ∈ A.
Consider the (commutative) algebra object

RF

A
:= (F ⊗ id)(RA) ∈ A′ ⊗A.

We have:

Lemma 6.3.6 A datum of right-lax central structure on an object c ∈ C is
equivalent to upgrading c to an object of RF

A
-mod(C).

6.3.7

Let F ′ be another right-lax symmetric monoidal functor, and let F → F ′ be a
right-lax symmetric monoidal natural transformation. Restriction defines a functor

ZF ′(C)→ ZF (C). (6.4)

In addition, we have a homomorphism of commutative algebra objects in A′ ⊗A

RF

A
→ RF ′

A
.

It is easy to see that with respect to the equivalence of Lemma 6.3.6, the diagram

ZF ′(C) −−−−→ ZF (C)

∼
⏐
⏐
�

⏐
⏐
�∼

RF ′
A

-mod(C) −−−−→ RF

A
-mod(C)

commutes, where the bottom arrow is given by restriction.
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In particular, we obtain that the functor (6.4) admits a left adjoint, given by

RF ′
A
⊗
RF

A

−.

6.3.8

We now modify our context, and we let C be a module category for

Factalg(A′ ⊗A)I .

We have the corresponding category of right-lax central objects, denoted by the
same symbol ZF (C), which can be identified with

Factalg(RF

A
)I -mod(C).

For a right-lax symmetric monoidal natural transformation F → F ′, the left
adjoint to the restriction functor ZF ′(C)→ ZF (C) is given by

Factalg(RF ′
A
)I ⊗

Factalg(RF

A
)I

−. (6.5)

6.3.9

Let

I 	 CI , I ∈ Finsurj

be a compatible family of module categories over Fact(A′ ⊗A)I .
Set

CRan := lim
I∈Finsurj

CI .

We can thus talk about an object c ∈ CRan being equipped with a right-lax central
structure with respect to F . Denote the corresponding category of right-lax central
objects by ZF (CRan).

The functors (6.5) provide a left adjoint to the forgetful functor

ZF ′(CRan)→ ZF (CRan).

This follows from the fact that for a surjective map of finite sets φ : I1 � I2, the
natural transformation in the diagram
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ZF (CI1)
*!φ−−−−→ ZF (CI2)

Factalg(RF ′
A

)I1 ⊗
Factalg(RF

A
)I1

−⏐⏐
�

⏐
⏐
�

Factalg(RF ′
A

)I2 ⊗
Factalg(RF

A
)I2

−

ZF ′(CI1)
*!φ−−−−→ ZF ′(CI2)

is an isomorphism.

6.4 Hecke and Drinfeld–Plücker Structures

We will be interested in the following particular cases of the above situation.10

6.4.1

Take A = Rep(Ǧ) and A′ = Rep(Ť ) with F ′ being given by restriction along
Ť → Ǧ. We denote the corresponding category ZF ′(C) by

Hecke
Ǧ,Ť

(C).

By Lemma 6.3.4, its objects are c ∈ C, equipped with a system of isomorphisms

ResǦ
Ť
(V )⊗ c � c ⊗ V, V ∈ Rep(Ǧ),

compatible with tensor products of the V ’s.
For this reason, we call a (right-lax) central structure on an object of C in this

case a graded Hecke structure.
Equivalently, these are objects of C equipped with an action of the algebra

RF ′
A
:= (Res(Ǧ

Ť
)⊗ id)(R

Ǧ
),

where R
Ǧ
∈ Rep(Ǧ)⊗ Rep(Ǧ) is the regular representation.

6.4.2

Let us now take A = Rep(Ǧ) and A′ = Rep(Ť ), but the functor F is given by the
non-derived functor of Ň -invariants

10The formalism described in this subsection (as well as the term) was suggested by S. Raskin.
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V λ �→ V λ(λ) = eλ.

The corresponding algebra object

RF

A
∈ Rep(Ť )⊗ Rep(Ǧ)

is O(Ň\Ǧ), where Ň\Ǧ is the base affine space of Ǧ, viewed as acted on the left
by Ť and on the right by Ǧ.

We denote the corresponding category ZF (C) by

DrPl(C).

By definition, its objects are c ∈ C, equipped with a collection of maps

eλ ⊗ c
φ(λ,c)−→ c ⊗ V λ

that make the diagrams

eλ ⊗ (eμ ⊗ c)
φ(μ,c)−−−−→ eλ ⊗ (c ⊗ V μ)

∼
⏐
⏐
�

⏐
⏐
�∼

(eλ ⊗ eμ)⊗ c (eλ ⊗ c)⊗ V μ

∼
⏐
⏐
�

⏐
⏐
�φ(λ,c)

eλ+μ ⊗ c (c ⊗ V λ)⊗ V μ

φ(λ+μ,c)

⏐
⏐
�

⏐
⏐
�∼

c ⊗ V λ+μ −−−−→ c ⊗ (V λ ⊗ V μ)

commute, along with a coherent system of higher compatibilities.
We will call a right-lax central structure on an object of C in this case a Drinfeld–

Plücker structure.

6.4.3

We have a right-lax symmetric monoidal natural transformation F → F ′,

eλ → ResǦ
Ť
(V λ).

The corresponding morphism of commutative algebra objects in Rep(Ť ) ⊗
Rep(Ǧ) is given by pullback along the projection map
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Ǧ→ Ň\Ǧ.

Consider the forgetful functor

Res
Hecke

Ǧ,Ť

DrPl : Hecke
Ǧ,Ť

(C)→ DrPl(C),

and its left adjoint

Ind
Hecke

Ǧ,Ť

DrPl : DrPl(C)→ Hecke
Ǧ,Ť

(C).

6.4.4

Let us now recall the statement of [Ga1, Proposition 6.2.4] that describes the
composition

DrPl(C)
Ind

Hecke
Ǧ,Ť

DrPl−→ Hecke
Ǧ,Ť

(C)→ C, (6.6)

where the second arrow is the forgetful functor.
Given an object c ∈ DrPl(C), the construction of [Ga1, Sect. 2.7] defines a

functor '+ → C, which at the level of objects sends λ ∈ '+ to

e−λ ⊗ c ⊗ V λ.

The assertion [Ga1, Proposition 6.2.4] says that the value of (6.6) on the above c

is canonically identified with

colim
λ∈'+

e−λ ⊗ c ⊗ V λ.

6.4.5

We now place ourselves in the context of Sect. 6.3.8. Let C be a module category for

Factalg(Rep(Ť )⊗ Rep(Ǧ))I .

We denote the corresponding categories ZF ′(C) and ZF (C) by Hecke
Ǧ,Ť

(C) and
DrPl(C), respectively.

Let c ∈ C be an object of ZF (C). We wish to describe the value on c of the
composite functor
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DrPl(C)
Ind

Hecke
Ǧ,Ť

DrPl−→ Hecke
Ǧ,Ť

(C)→ C (6.7)

6.4.6

For λ ∈ Maps(I,'+), recall the object V λ ∈ Fact(Rep(Ǧ))I , see Sect. 3.6.1.
Similarly, we have the object

eλ ∈ Fact(Rep(Ť ))I .

The construction of [Ga1, Sect.2.7] defines on the assignment

λ �→ e−λ ⊗ c ⊗ V λ

a structure of a functor

Maps(I,'+)→ C.

Generalizing [Ga1, Proposition 6.2.4], one shows:

Proposition 6.4.7 The value of the composite functor (6.7) on c ∈ DrPl(C)
identifies canonically with

colim
λ∈Maps(I,'+)

λ �→ e−λ ⊗ c ⊗ V λ.

6.4.8

Let I 	 CI be as in Sect. 6.3.9. Consider the corresponding categories DrPl(CRan)

and Hecke
Ǧ,Ť

(CRan).

The compatibility of the functors Ind
Hecke

Ǧ,Ť

DrPl for surjections of finite sets gives
rise to a well-defined functor

Ind
Hecke

Ǧ,Ť

DrPl : DrPl(CRan)→ Hecke
Ǧ,Ť

(CRan),

left adjoint to the restriction functor.
For c ∈ DrPl(CRan), the value of the composite functor

DrPl(C)
Ind

Hecke
Ǧ,Ť

DrPl−→ Hecke
Ǧ,Ť

(C)→ C→ CI

is given by
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colim
λ∈Maps(I,'+)

e−λ ⊗ cI ⊗ V λ,

where cI is the value of c in CI .

6.5 The Hecke Property-Enhanced Statement

6.5.1

The key property of the geometric Satake functor

SatG,I : Factalg(Rep(Ǧ))I → SphG,I

is that it is has a natural monoidal structure.
The same applies to the modified geometric Satake functor Sat′T ,I for T .
Thus, we obtain that the category Shv(L+(T )I\GrG,I ) is as acted on by the

monoidal category Factalg(Rep(Ť )⊗ Rep(Ǧ))I .
These actions are compatible under surjective maps of finite sets I1 � I2.

6.5.2

Consider the object

δ1Gr,I := (sI )!(ωXI ) ∈ Shv(L+(T )I\GrG,I ),

where sI : XI → GrG,I is the unit section.
It follows from the construction of the functor SatG,I that δ0,I lifts canonically

to an object of

DrPl(Shv(L+(T )I\GrG,I )).

6.5.3

Consider the corresponding object

Ind
Hecke

Ǧ,Ť

DrPl (δ1Gr,I ) ∈ Hecke
Ǧ,Ť

(Shv(L+(T )I\GrG,I )).

It follows from Proposition 6.4.7 that its image under the forgetful functor

Hecke
Ǧ,Ť

(Shv(L+(T )I\GrG,I ))→ Shv(L+(T )I\GrG,I )→ Shv(GrG,I )
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identifies canonically with the object IC
∞
2
I , constructed in Sect. 3.6.5.

6.5.4

Consider now the object

δ1Gr,Ran := (sRan)!(ωRan) ∈ Shv(L+(T )Ran\GrG,Ran),

where sRan : Ran → GrG,Ran is the unit section.
It naturally lifts to an object of

DrPl(Shv(L+(T )Ran\GrG,Ran)).

Consider the corresponding object

Ind
Hecke

Ǧ,Ť

DrPl (δ1Gr,Ran) ∈ Hecke
Ǧ,Ť

(Shv(L+(T )Ran\GrG,Ran)).

By Sect. 6.4.8, the image of Ind
Hecke

Ǧ,Ť

DrPl (δ1Gr,Ran) under the forgetful functor

Hecke
Ǧ,Ť

(Shv(L+(T )Ran\GrG,Ran))→ Shv(L+(T )Ran\GrG,Ran)→ Shv(GrG,Ran)

identifies canonically with the object ′IC
∞
2

Ran, constructed in Sect. 3.6.7.

Remark 6.5.5 The latter could be used to define on the assignment

I 	 IC
∞
2
I

a homotopy-coherent system of compatibilities as I varies over Finsurj.

6.5.6

Using the isomorphism

′IC
∞
2

Ran � IC
∞
2

Ran

of Theorem 3.7.2, we thus obtain a lift of IC
∞
2

Ran to an object of Hecke
Ǧ,Ť

(Shv(L+(T )Ran\GrG,Ran)).
Summarizing, we obtain:
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Theorem 6.5.7 The object IC
∞
2

Ran ∈ Shv(L+(T )Ran\GrG,Ran)) naturally lifts to an
object of Hecke

Ǧ,Ť
(Shv(L+(T )Ran\GrG,Ran)).

6.6 Recovering the Pointwise Hecke Structure

In this subsection, we will finally complete the proof of Theorem 6.1.8.

6.6.1

The constructions in Sects. 6.2–6.4 carry over to the situation when Ran is replaced
by Ranx . From Theorem 6.5.7, we obtain that the object

IC
∞
2

Ranx
∈ Shv(L+(T )Ranx\GrG,Ranx ))

naturally lifts to an object of Hecke
Ǧ,Ť

(Shv(L+(T )Ranx\GrG,Ranx )).

6.6.2

Now, we have a symmetric monoidal functor

Rep(Ť )⊗ Rep(Ǧ)→ Fact(Rep(Ť )⊗ Rep(Ǧ))Ranx .

Restricting, we obtain that IC
∞
2

Ranx
lifts to an object of Hecke

Ǧ,Ť
(Shv(L+(T )Ranx

\GrG,Ranx )), as stated in Theorem 6.1.8.

7 Local vs. Global Compatibility of the Hecke Structure

In this section, we will establish a compatibility between the Hecke structure on

IC
∞
2

Ran constructed in the previous section and the corresponding structure on IC
∞
2

glob
established in [BG1].
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7.1 The Relative Version of the Ran Grassmannian

7.1.1

We introduce a relative version of the prestack GrG,Ran over BunT , denoted
GrG,Ran×̃BunT , as follows.

Let (Ran×BunT )
level be the prestack that classifies the data of (PT , I, β), where:

(i) I is a finite non-empty collection of points on X.
(ii) PT is a T -bundle on X.

(iii) β is a trivialization of PT on the formal neighborhood of +I.

The prestack (Ran× BunT )
level is acted on by L(T )Ran, and the map

(Ran× BunT )
level → BunT ×Ran

is a L+(T )Ran-torsor, locally trivial in the étale (in fact, even Zariski, since T is a
torus) topology.

We set

GrG,Ran×̃BunT := L+(T )Ran\
(

GrG,Ran ×
Ran

(Ran× BunT )
level

)

.

We have a tautological projection

r : GrG,Ran×̃BunT → L+(T )Ran\GrG,Ran.

7.1.2

The right action of the groupoid

L+(G)Ran\L(G)Ran/L
+(G)Ran (7.1)

on GrG,Ran naturally lifts to an action on GrG,Ran×̃BunT , in a way compatible with
the projection r .

In addition, by construction, we have an action of the groupoid

L+(T )Ran\L(T )Ran/L
+(T )Ran (7.2)

on GrG,Ran×̃BunT , also compatible with the projection r .
In particular, we obtain that Shv(GrG,Ran×̃BunT ) is a bimodule category for

(SphT ,Ran,SphG,Ran), and hence for (Fact(Rep(Ť )Ran,Fact(Rep(Ǧ))Ran), via the
Geometric Satake functor, where we use the functor Sat′T ,Ran to map
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Factalg(Rep(Ť ))Ran → SphT ,Ran .

Base-changing along XI → Ran, we obtain a compatible family of module
categories for (Factalg(Rep(Ť )I ,Factalg(Rep(Ǧ))I ), for I ∈ Finsurj.

7.1.3

Denote:

IC
∞
2

Ran,BunT
:= r !(IC

∞
2

Ran).

From Theorem 6.5.7, we obtain that IC
∞
2

Ran,BunT
naturally lifts to an object of

Hecke
Ǧ,Ť

(Shv(GrG,Ran×̃BunT ));

moreover, we have

IC
∞
2

Ran,BunT
� Ind

Hecke
Ǧ,Ť

DrPl (δ1Gr,Ran,BunT ), (7.3)

where

δ1Gr,Ran,BunT = (sRan,BunT )!(ωRan×BunT ),

and where sRan,BunT is the unit section

Ran× BunT → GrG,Ran×̃BunT .

7.2 Hecke Property in the Global Setting

7.2.1

Consider the stack BunB , and consider its version

(BunB × Ran)poles

defined as follows:
A point of (BunB × Ran)poles is a quadruple (PG,PT , κ, I), where:

(i) PG is a G-bundle on X.
(ii) PT is a T -bundle on X.

(iii) I is a finite non-empty collection of points on X.
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(iv) κ is a datum of maps

κλ̌ : λ̌(PT )→ Vλ̌

PG

that are allowed to have poles on +I and that satisfy the Plücker relations.

Note that we have a closed embedding

BunB × Ran ↪→ (BunB × Ran)poles,

corresponding to the condition that the maps κλ̌ have no poles.

7.2.2

Hecke modifications of the G-bundle (resp., T -bundle) define a right (resp., left)
action of the groupoid (7.1) (resp., (7.2)) on (BunB × Ran)poles.

In particular, the category Shv((BunB × Ran)poles) acquires a natural
structure of bimodule category for (SphT ,Ran,SphG,Ran), and hence for

(Factalg(Rep(Ť ))Ran,Factalg(Rep(Ǧ))Ran).
Base-changing along XI → Ran, we obtain a compatible family of module

categories for (Factalg(Rep(Ť ))I ,Factalg(Rep(Ǧ))I ), for I ∈ Finsurj.

7.2.3

Denote

IC
∞
2

glob,BunT
:= ICBunB

�ωRan ⊂ Shv((BunB × Ran)poles).

The following assertion is (essentially) established in [BG1, Theorem 3.1.4]:

Theorem 7.2.4 The object IC
∞
2

glob,BunT
naturally lifts to an object of the category

Hecke
Ǧ,Ť

(Shv((BunB × Ran)poles)).

7.3 Local vs. Global Compatibility

7.3.1

Note now that the map
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πRan : S0
Ran → BunN

naturally extends to a map

πRan,BunT : GrG,Ran×̃BunT → (BunB × Ran)poles.

We consider the functor

(πRan,BunT )
′! : Shv((BunB × Ran)poles)→ Shv(GrG,Ran×̃BunT )

obtained from (πRan,BunT )
! by applying the shift by [d−〈λ, 2ρ̌〉] over the connected

component Bunλ
T of BunT .

A relative version of the calculation performed in the proof of Theorem 4.3.3
shows:

Theorem 7.3.2 There exists a canonical isomorphism in Shv(GrG,Ran×̃BunT )

(πRan,BunT )
′!(IC

∞
2

glob,BunT
) � IC

∞
2

Ran,BunT
.

7.3.3

The map r is compatible with the actions of the groupoids (7.1) and (7.2). In
particular, the pullback functor

(πRan,BunT )
! : Shv((BunB × Ran)poles)→ Shv(GrG,Ran×̃BunT )

is a map of bimodule categories for (SphT ,Ran,SphG,Ran).
Hence, we obtain that the functor (πRan,BunT )

′! can be thought of as a map of
bimodule categories for (Factalg(Rep(Ť ))Ran,Factalg((Rep(Ǧ))Ran).

7.3.4

We are now ready to state the main result of this section:

Theorem 7.3.5 The isomorphism (πRan,BunT )
′!(IC

∞
2

glob,BunT
) � IC

∞
2

Ran,BunT
of The-

orem 7.3.2 canonically lifts to an isomorphism of objects of Hecke
Ǧ,Ť

(Shv(GrG,Ran

×̃BunT )).
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7.4 Proof of Theorem 7.3.5

7.4.1

Consider the tautological map

δ1Gr,Ran,BunT → Ind
Hecke

Ǧ,Ť

DrPl (δ1Gr,Ran,BunT ). (7.4)

Under the isomorphism

Ind
Hecke

Ǧ,Ť

DrPl (δ1Gr,Ran,BunT ) � IC
∞
2

Ran,BunT

of (7.3), this map corresponds to the map

δ1Gr,Ran,BunT → IC
∞
2

Ran,BunT
, (7.5)

arising, by the ((sRan,BunT )!, (sRan,BunT )
!) adjunction, from the isomorphism

ωRan×BunT → (sRan,BunT )
!(IC

∞
2

Ran,BunT
).

7.4.2

Consider the composite

δ1Gr,Ran,BunT → Ind
Hecke

Ǧ,Ť

DrPl (δ1Gr,Ran,BunT ) � IC
∞
2

Ran,BunT
→ (πRan,BunT )′!(IC

∞
2

glob,BunT
).

(7.6)

We obtain that the data on the morphism

IC
∞
2

Ran,BunT
→ (πRan,BunT )

′!(IC
∞
2

glob,BunT
)

of a map of objects of Hecke
Ǧ,Ť

(Shv(GrG,Ran×̃BunT )) is equivalent to the data
on (7.6) of a map of objects of DrPl(Shv(GrG,Ran×̃BunT )).

7.4.3

The map (7.6) can be explicitly described as follows. By the ((sRan,BunT )!,
(sRan,BunT )

!) adjunction, it corresponds to the (iso)morphism

ωRan×BunT → (sRan,BunT )
! ◦ (πRan,BunT )

′!(IC
∞
2

glob,BunT
) (7.7)
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constructed as follows:
We note that the map

πRan,BunT ◦ sRan,BunT : Ran× BunT → (BunB × Ran)poles

factors as

Ran× BunT → Ran× BunB → Ran× BunB → (BunB × Ran)poles.

Now, the map (7.7) is the natural isomorphism coming from the identification

IC
∞
2

glob,BunT
|Ran×BunλB

[d − 〈λ, 2ρ̌〉] � ωRan×BunλB
.

7.4.4

Now, by unwinding the construction of the Hecke structure on IC
∞
2

glob,BunT
in [BG1,

Theorem 3.1.4], one shows that the map (7.6) indeed canonically lifts to a map in
DrPl(Shv(GrG,Ran×̃BunT )).

�

Appendix A: Proof of Theorem 4.4.4

With future applications in mind, we will prove a generalization of Theorem 4.4.4.
The proof is a paraphrase of the theory developed in [Bar].

Throughout this appendix, the curve X will be assumed proper.

A.1 The Space of G-Bundles with a Generic Reduction

A.1.1

Let Y be a test affine scheme. We shall say that an open subset of Y ×X is a domain
if it is dense in every fiber of the projection Y ×X → X. Note that the intersection
of two domains is again a domain.

Observe that for I ∈ Maps(Y,Ran), the subscheme Y ×X − +I is a domain.
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A.1.2

Let BunG -gen be the prestack that assigns to an affine test scheme Y the groupoid,
whose objects are pairs:

(i) A domain U ⊂ Y ×X

(ii) A G-bundle PG defined on U .

An (iso)morphism between two such points is by definition an isomorphism of
G-bundles defined over a sub-domain of the intersection of their respective domains
of definition.

Remark A.1.3 In particular, given (PG,U), if U ′ ⊂ U is a sub-domain, then the
points (PG,U) and (PG|U ′, U ′) are canonically isomorphic. Hence, in the definition
of BunG -gen, we can combine points (i) and (ii) into:

(i’) A G-bundle PG defined over some domain in Y ×X.

A.1.4

Let H → G be a homomorphism of algebraic groups. Consider the prestack

BunH -gen ×
BunG -gen

BunG .

By definition, for a test affine scheme Y , its groupoid of Y -points has as objects
triples:

(i) A G-bundle PG on Y ×X

(ii) A domain U ⊂ Y ×X

(iii) A reduction β of PG to H defined over U ⊂ Y ×X

An (iso)morphism between two such points is by definition an isomorphism of
G-bundles, compatible with the reductions over the intersection of the correspond-
ing domains.

Remark A.1.5 As in Remark A.1.3 above, we can combine (ii) and (iii) into:

(ii’) A reduction β of PG to H defined over some domain in Y ×X.

A.1.6

For H = {1}, we will use the notation

GrG,gen := pt ×
BunG -gen

BunG .
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By definition, for an affine test scheme Y , the set Maps(Y,GrG,gen) consists of
pairs (PG, α), where PG is a G-bundle on Y × X, and α is a trivialization of PG

defined on some domain in Y ×X.

A.1.7

We have a canonically defined map

GrG,gen → BunH -gen ×
BunG -gen

BunG,

obtained by base change along BunG → BunG -gen from the map

pt → BunH -gen .

In addition, we have a canonical map

GrG,Ran → GrG,gen.

Composing, we obtain a map

GrG,Ran → BunH -gen ×
BunG -gen

BunG . (A.8)

A.1.8

We recall the following definition from [Ga2, Sect. 2.5.1]:
A map between prestacks X1 → X2 is said to be universally homologically

contractible if for any affine test scheme Y and a map Y → X2, the !-pullback
functor

Shv(Y )→ Shv(Y ×
X2

X1)

is fully faithful.
If this happens, a formal argument shows that for any prestack Y and a map

Y→ X2, the !-pullback functor

Shv(Y)→ Shv(Y ×
X2

X1)

is also fully faithful. In particular, the pullback functor

f ! : Shv(X2)→ Shv(X1)
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is fully faithful.
We shall call a prestack X homologically contractible if the map X→ pt induces

a fully faithful embedding

Vect → Shv(Y);

this is equivalent to the trace map

C•(Y) := C•c(Y, ωY)→ e

being an isomorphism. It is not difficult to see that this condition implies a stronger
one, namely, that X→ pt is universally homologically contractible.

A.1.9

The goal of this section is to prove:

Theorem A.1.10 Assume that H is connected. Then the map (A.8) is universally
homologically contractible.

A.1.11

Let us show how Theorem A.1.10 implies Theorem 4.4.4. We take H = N . Note
that there is a canonically defined map (in fact, a closed embedding)

BunN → BunN -gen ×
BunG -gen

BunG .

Indeed, a Y -point of BunN -gen ×
BunG -gen

BunG can be thought of as a data of

(PG, κ), where PG is a G-bundle on Y ×X, and κ is a system of bundle maps

κλ̌ : OX → Vλ̌

PG
, λ̌ ∈ '̌+

defined over some domain U ⊂ T ×X, and satisfying the Plücker relations.

Such a point belongs to BunN if and only if the maps κλ̌ extend to regular maps
on all of Y ×X.

Finally, we note that we have a Cartesian square:
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S0
Ran −−−−→ GrG,Ran
⏐
⏐
�

⏐
⏐
�

BunN −−−−→ BunN -gen ×
BunG -gen

BunG .

A.2 Toward the Proof of Theorem A.1.10

A.2.1

The assertion of Theorem A.1.10 is obtained as a combination of the following two
statements:

Proposition A.2.2 The map GrG,Ran → GrG,gen is universally homologically
contractible.

Theorem A.2.3 Let H be connected. Then the map pt → BunH -gen is universally
homologically contractible.

A.2.4

Let us recall the notion of what it means for a map of prestacks X1 → X2 to be
pseudo-proper (cf. [Ga2, Sect. 1.5]):

We shall say that a prestack X over an affine scheme Y is pseudo-proper if it can
be represented as a colimit of schemes proper over Y .

We shall say that a map of prestacks f : Y1 → Y2 is pseudo-proper if for any
affine test scheme Y and a map Y → X2, the map

Y ×
X2

X1 → Y

is pseudo-proper.
In loc.cit., it is shown that if f is pseudo-proper, the functor f!, left adjoint to f !,

is defined and satisfies base change against !-pullbacks and the projection formula

with the
!⊗ tensor product.

From here, we obtain:

Lemma A.2.5 Let X1 → X2 be pseudo-proper. Then it is universally homologi-
cally contractible if and only if its fibers over field-valued points (potentially, after
extending the ground field) are homologically contractible.
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A.2.6 Interlude: The Relative Ran Space

Let I0 be a finite subset of k-points of X. We define the relative Ran space Ran⊃I0

as follows:
For an affine test scheme Y , the set of Y -points of Ran⊃I0 consists of finite non-

empty subsets

I ⊂ Hom(Y,X),

such that Y × I0 is set-theoretically contained in +I.
We claim:

Proposition A.2.7 The prestack Ran⊃I0 is homologically contractible.

The proof repeats the proof of the homological contractibility of Ran, see [Ga3,
Appendix].

A.2.8 Proof of Lemma 2.3.3 for X Proper

If X is proper, Ran is pseudo-proper. Hence, in this case, the map pλ
Ran is pseudo-

proper. Therefore, by Lemma A.2.5, it suffices to show that the fibers of pλ
Ran (over

field-valued points) are homologically contractible.
For a given field-valued point D ∈ Xλ, let I0 ⊂ X be its support. The fiber of

pλ
Ran identifies with Ran⊃I0 .

Now the assertion follows from Proposition A.2.7.
�

A.2.9 Proof of Proposition A.2.2

It is easy to see that the map GrG,Ran → GrG,gen is pseudo-proper. Hence,
by Lemma A.2.5, it suffices to see that its fibers over field-valued points are
homologically contractible.

For a given (field-valued) point of GrG,gen, let U ⊂ X be the maximal open
subset over which α is defined. Let I0 be its set-theoretic complement. Then

pt ×
GrG,gen

GrG,Ran

identifies with Ran⊃I0 .
Now the required assertion follows from Proposition A.2.7.

�
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A.3 Proof of Theorem A.2.3

A.3.1

Let BunH -gen,triv be the prestack, whose value on an affine test scheme Y is the full
subgroupoid of Maps(Y,BunH -gen) consisting of objects isomorphic to the trivial
one. In other words, this is the essential image of the functor

∗ = Maps(Y, pt)→ Maps(Y,BunH -gen).

The assertion of Theorem A.2.3 is obtained as a combination of the following
two statements:

Theorem A.3.2 For H connected, the map pt → BunH -gen,triv is universally
homologically contractible.

Theorem A.3.3 The map BunH -gen,triv → BunH -gen is universally homologically
contractible.

A.3.4 Proof of Theorem A.3.2

Let Maps(X,H)gen be the group prestack that attaches to an affine test scheme Y

the group of maps from a domain in Y ×X to H . By definition

BunH -gen,triv � B(Maps(X,H)gen).

Hence, in order to prove Theorem A.3.2, it suffices to show that the prestack
Maps(X,H)gen is homologically contractible. However, this is essentially what is
proved in [Ga3, Theorem 1.8.2]:

In order to formally deduce the homological contractibility of Maps(X,H)gen
from loc. cit., we argue as follows:

Let Maps(X,H)Ran be the prestack that assigns to an affine test scheme Y the set
of pairs (I, h), where I is a finite non-empty subset in Hom(Y,X) and h is a map

(Y ×X − +I)→ H.

We have a tautologically defined map

Maps(X,H)Ran → Maps(X,H)gen,

and as in Proposition A.2.2, we show that this map is universally homologically
contractible.

Now, the assertion of [Ga2, Theorem 1.8.2] is precisely that for H connected, the
prestack Maps(X,H)Ran is homologically contractible.

�
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A.3.5

The remainder of this section is devoted to the proof of Theorem A.3.3. Write

1 → Hu → H → Hr → 1,

where Hu is the unipotent radical of H and Hr is the reductive quotient.
We factor the map BunH -gen,triv → BunH -gen as

BunH -gen,triv → BunHr -gen,triv ×
BunHr -gen

BunH -gen → BunH -gen .

We will prove that the maps

BunH -gen,triv → BunHr -gen,triv ×
BunHr -gen

BunH -gen (A.9)

and

BunHr -gen,triv → BunHr -gen (A.10)

are universally homologically contractible, which would imply the assertion of
Theorem A.3.3.

Remark A.3.6 Note that in the applications for the present paper, we have H = N ,
so we do not actually need to consider (A.10).

A.3.7

In order to prove the universal homological contractibility property of (A.9), we can
base change with respect to the (value-wise surjective) map pt → BunHr -gen,triv. We
obtain a map

BunHu -gen,triv → BunHu -gen,

and the statement that (A.9) is universally homologically contractible amounts to
the statement of Theorem A.3.3 for H unipotent.

However, we claim that for H unipotent, the map BunH -gen,triv → BunH -gen is
actually an isomorphism. Indeed, every H -bundle is (non-canonically) trivial over
a domain that is affine.
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A.3.8

Let us observe that the statement that (A.10) is universally homologically con-
tractible is equivalent to the statement of Theorem A.3.3 for H reductive. Hence,
for the rest of the argument, H will be assumed reductive.

A.4 Proof of Theorem A.3.3 for H Reductive

A.4.1

In order to prove that

BunH -gen,triv → BunH -gen

is universally homologically contractible, it suffices to show that it becomes an
isomorphism after localization in the h-topology. (We recall that h-covers include
fppf covers as well as maps that are proper and surjective at the level of k-points.)

Since (A.10) is a value-wise monomorphism, it suffices to show that it is a
surjection in the h-topology.

A.4.2

Consider the Cartesian square

BunH -gen,triv ×
BunH -gen

BunH −−−−→ BunH

⏐
⏐
�

⏐
⏐
�

BunH -gen,triv −−−−→ BunH -gen .

It suffices to show that both maps

BunH -gen,triv ×
BunH -gen

BunH → BunH (A.11)

and

BunH → BunH -gen (A.12)

are h-surjections.



264 D. Gaitsgory

A.4.3

The fact that map (A.11) is an h-surjection follows from [DS]; in fact the main
theorem of loc.cit. asserts that this map is an fppf surjection.

A.4.4

Let us show that (A.12) is an h-surjection.
Fix a Y -point (PG,U) of BunH -gen for an affine test scheme Y . The fiber product

Y ×
BunH -gen

BunH

is a prestack that assigns to Y ′ → Y the set of extensions of the G-bundle PG|Y ′×
Y
U

to all of Y ′ ×X.
It is easy to see that this prestack is (ind)representable by an ind-scheme, ind-

proper over Y . Hence, it is enough to show that the map

Y ×
BunH -gen

BunH → Y

is surjective at the level of k-points.
However, the latter means that any H -bundle on open subset of X can be

extended to all of X, which is well known.
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1 Introduction

1.1 Soergel Theory

In [So2], Soergel developed a new approach to the study of the principal block O0 of
the Bernstein–Gelfand–Gelfand category O of a complex semisimple Lie algebra g

(with a fixed Borel subalgebra b and Cartan subalgebra h ⊂ b). Namely, let P be the
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projective cover of the unique simple object in O0 with antidominant highest weight
(in other words, of the unique simple Verma module). Then Soergel establishes the
following results:

(1) (Endomorphismensatz) There exists a canonical algebra isomorphism

S(h)/〈S(h)W+ 〉 ∼−→ End(P ).

where W is the Weyl group of (g, h), S(h) is the symmetric algebra of h,
and 〈S(h)W+ 〉 is the ideal generated by homogeneous W -invariant elements of
positive degree.

(2) (Struktursatz) The functor V := HomO0
(P,−) is fully faithful on projective

objects; in other words, for any projective objects Q,Q′ this functor induces an
isomorphism

HomO0
(Q,Q′) ∼−→ HomEnd(P )(V(Q),V(Q′)).

(3) The essential image of the restriction of V to projective objects in O0 is
the subcategory generated by the trivial module C under the operations of
(repeatedly) applying the functors S(h) ⊗S(h)s − with s is a simple reflection
and taking direct sums and direct summands.

Taken together, these results allow him to describe the category of projective objects
in O0, and hence the category O0 itself, in terms of commutative algebra (“Soergel
modules”). On the other hand, Soergel relates these modules to cohomology of
Bruhat-constructible simple perverse sheaves on the Langlands dual flag variety
opening the way to the ideas of Koszul duality further developed in his celebrated
work with Beı̆linson and Ginzburg [BGS]. Another celebrated application of these
ideas is Soergel’s new proof of the Kazhdan–Lusztig conjecture [KL] proved earlier
by Beı̆linson–Bernstein and Brylinsky–Kashiwara.

1.2 Geometric Version

If G is the semisimple complex algebraic group of adjoint type whose Lie
algebra is g, and if B ⊂ G is the Borel subgroup whose Lie algebra is b, then
combining the Beı̆linson–Bernstein localization theory [BB] and an equivalence
due to Soergel [So1] one obtains that the category O0 is equivalent to the cate-
gory PervU(G/B,C) of U -equivariant (equivalently, B-constructible) C-perverse
sheaves on the flag variety G/B, where U is the unipotent radical of B (see,
e.g., [BGS, Proposition 3.5.2]). Under this equivalence, the simple Verma module
corresponds to the skyscraper sheaf at the base point B/B. The main goal of the
present paper is to develop a geometric approach to the results in Sect. 1.1, purely
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in the framework of perverse sheaves, and moreover valid in the setting where the
coefficients can be in an arbitrary field k (of possibly positive characteristic) instead
of C.

In fact, a geometric proof of the Struktursatz (stated for coefficients of charac-
teristic 0, but in fact valid in the general case) was already found by Beı̆linson, the
first author and Mirković in [BBM]. One of the main themes of the latter paper,
which is fundamental in our approach too, is an idea introduced by Beı̆linson–
Ginzburg in [BG], namely, that it is easier (but equivalent) to work with tilting
objects in O0 (or its geometric counterparts) rather than with projective objects.
Our main contribution is generalization of the Endomorphismensatz to the present
setting; then the description of the essential image of the functor V follows by rather
standard methods.

1.3 Monodromy

So we fix a field k, and consider the category PervU(G/B,k) of U -equivariant k-
perverse sheaves on the complex variety G/B. This category has a natural highest
weight structure, with weight poset the Weyl group W , and as in the characteristic-0
setting, the projective cover of the skyscraper sheaf at B/B is also the tilting object
associated with the longest element w0 in W ; we will therefore denote it Tw0 . Our
first task is then to describe the k-algebra EndPervU (G/B,k)(Tw0).

In the representation-theoretic context studied by Soergel (see Sect. 1.1), the
morphism S(h)/〈S(h)W+ 〉 ∼−→ End(P ) is obtained from the action of the center of
the enveloping algebra Ug on P . It has been known for a long time (see, e.g., [BGS,
§4.6] or [BBM, Footnote 8 on p. 556]) that from the geometric point of view, this
morphism can be obtained via the logarithm of monodromy for the action of T on G.
But of course, the logarithm will not make sense over an arbitrary field k; therefore,
what we consider here is the monodromy itself, which defines an algebra morphism

ϕTw0
: k[X∗(T )] → End(Tw0).

We then need to show that:

(1) The morphism ϕTw0
factors through the quotient k[X∗(T )]/〈k[X∗(T )]W+ 〉,

where 〈k[X∗(T )]W+ 〉, is the ideal generated by W -invariant elements in the
kernel of the natural augmentation morphism k[X∗(T )] → k.

(2) The resulting morphism k[X∗(T )]/〈k[X∗(T )]W+ 〉 → End(Tw0) is an isomor-
phism.
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1.4 Free-Monodromic Deformation

To prove these claims, we need the second main ingredient of our approach, namely,
the “completed category” defined by Yun in [BY, Appendix A]. This category
(which is constructed using certain pro-objects in the derived category of sheaves
on G/U ) is a triangulated category endowed with a t-structure, which we will
denote D̂U ((G/U)� T ,k), and which contains certain objects whose monodromy
is “free unipotent.” Killing this monodromy provides a functor to the U -equivariant
derived category Db

U(G/B,k). The tilting objects in PervU(G/B,k) admit “lifts”
(or “deformations”) to this category, and we can in particular consider the lift T̂w0

of Tw0 . Now, the algebra EndD̂U ((G/U)� T ,k)(T̂w0) admits two morphisms from (the
completion k[X∗(T )]∧ with respect to the augmentation ideal of) k[X∗(T )] coming
from the monodromy for the left and the right actions of T on G/U , and moreover,
we have a canonical isomorphism

End(Tw0)
∼= End(T̂w0)⊗k[X∗(T )]∧ k.

Hence, what we have to prove transforms into the following claims:

(1) The monodromy morphism k[X∗(T )]∧ ⊗k k[X∗(T )]∧ → End(T̂w0) factors
through k[X∗(T )]∧ ⊗(k[X∗(T )]∧)W k[X∗(T )]∧.

(2) The resulting morphism k[X∗(T )]∧ ⊗(k[X∗(T )]∧)W k[X∗(T )]∧ → End(T̂w0) is
an isomorphism.

1.5 Identification of End(̂Tw0)

One of the main advantages of working with the category D̂U ((G/U)� T ,k) rather
than with Db

U(G/B,k) is that the natural lifts (Δ̂w : w ∈ W) of the standard
perverse sheaves satisfy Hom(Δ̂x, Δ̂y) = 0 if x �= y. This implies that the functor
of “taking the associated graded for the standard filtration” is faithful, and we obtain
an injective algebra morphism

End(T̂w0)→ End(gr(T̂w0)). (1.1)

Now, we have gr(T̂w0)
∼= ⊕

w∈W Δ̂w so that the right-hand side identifies with⊕
w∈W k[X∗(T )]∧. To conclude, it remains to identify the image of (1.1); for this,

we use some algebraic results due to Kostant–Kumar [KK] (in their study of the
K-theory of flag varieties) and Andersen–Jantzen–Soergel [AJS].
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1.6 The Functor V

Once we have identified End(Tw0) and End(T̂w0), we can consider the functor

V := Hom(Tw0 ,−) : PervU(G/B,k)→ Mod(k[X∗(T )]/〈k[X∗(T )]W+ 〉)

and its version V̂ for free-monodromic perverse sheaves. As explained in Sect. 1.2,
a short argument from [BBM] shows that these functors are fully faithful on tilting
objects. To conclude our study, we need to identify their essential image. The
main step for this is to show that V̂ is monoidal. (Here, the monoidal structure on
tilting objects is given by a “convolution” construction, and the monoidal structure
on modules over k[X∗(T )]∧ ⊗(k[X∗(T )]∧)W k[X∗(T )]∧ is given by tensor product
over k[X∗(T )]∧.) Adapting an argument of [BY], we show that there exists an
isomorphism of bifunctors

V̂(− &̂−) ∼= V̂(−)⊗k[X∗(T )]∧ V̂(−). (1.2)

However, constructing a monoidal structure (i.e., an isomorphism compatible with
the relevant structures) is a bit harder. In fact, we construct such a structure in
the similar context of étale sheaves on the analogue of G/B (or G/U ) over
an algebraically closed field of positive characteristic, using a “Whittaker-type”
construction. We then deduce the similar claim in the classical topology over C

using the general formalism explained in [BBD, §6.1].
With this at hand, we obtain a description of the monoidal triangulated category

(D̂U ((G/U)� T ,k), &̂ ) and its module category Db
U(G/B,k) in terms of coherent

sheaves on the formal neighborhood of the point (1, 1) in T ∨
k
×(T ∨

k
)/W T ∨

k
and on

the fiber of the quotient morphism T ∨
k
→ (T ∨

k
)/W over the image of 1, respectively

(where T ∨
k

is the split k-torus which is Langlands dual to T ); see Theorem 11.9.

Remark 1.1 Identification of the essential image of V and V̂ does not require
monoidal structure on V̂: An isomorphism as in (1.2) would be sufficient. However,
description of the monoidal structure provides a stronger statement.

1.7 Some Remarks

We conclude this introduction with a few remarks.
As explained in Sect. 1.3, in the present paper, we work with the group algebra

k[X∗(T )] and not with the symmetric algebra S(k ⊗Z X∗(T )) as one might
have expected from the known characteristic-0 setting. However, one can check
(see, e.g., [AR2, Proposition 5.5]) that if char(k) is very good for G, then there
exists a W -equivariant algebra isomorphism between the completions of k[X∗(T )]
and S(k ⊗Z X∗(T )) with respect to their natural augmentation ideals. (In the
characteristic-0 setting, there exists a canonical choice of identification, given by
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the logarithm; in positive characteristic, there exists no “preferred” isomorphism.)
Therefore, fixing such an isomorphism, under this assumption, our results can also
be stated in terms of S(k ⊗Z X∗(T )). An important observation in [So2, BGS] is
that the identification between End(P ) and the coinvariant algebra allows one to
define a grading on End(P ) and then to define a “graded version” of O0. This
graded version can be realized geometrically via mixed perverse sheaves (either
in the sense of Deligne, see [BGS], or in a more elementary sense constructed
using semisimple complexes, see [AR1, AR3]). When char(k) is not very good,
the algebra k[X∗(T )]/〈k[X∗(T )]W+ 〉 does not admit an obvious grading; we do
not know how to interpret this, and the relation with the corresponding category
of “mixed perverse sheaves” constructed in [AR3]. (In very good characteristic,
this category indeed provides a “graded version” of PervU(G/B,k), as proved
in [AR2, AR3].)

As explained already, in the case of characteristic-0 coefficients, our results
are equivalent to those of Soergel in [So2]. They are also proved by geometric
means in this case in [BY]. In the case of very good characteristic, these methods
were extended in [AR2] (except for the consideration of the free-monodromic
objects). The method we follow here is completely general (in particular, new
in bad characteristic), more direct (since it does not involve Koszul duality), and
more canonical (since it does not rely on any choice of identification relating
S(k⊗Z X∗(T )) and k[X∗(T )]).

In the complex coefficients setting, the category PervU(G/B,C) has a represen-
tation-theoretic interpretation, in terms of the category O0. It also admits a
representation-theoretic description in the case when char(k) is bigger than the
Coxeter number of G, in terms of Soergel’s modular category O [So3]. This fact
was first proved in [AR2, Theorem 2.4]; it can also be deduced more directly by
comparing the results of [So3] and those of the present paper.

1.8 Contents

The paper starts with a detailed review of the construction of Yun’s “completed
category” (see [BY, Appendix A]) in Sects. 2–5. More precisely, we adapt his
constructions (performed initially for étale Q�-complexes) to the setting of sheaves
on complex algebraic varieties, with coefficients in an arbitrary field. This adapta-
tion does not require new ideas, but since the wording in [BY] is quite dense, we
reproduce most proofs and propose alternative arguments in a few cases.

Starting from Sect. 6, we concentrate on the case of the flag variety. We
start by constructing the “associated graded” functor. Then in Sect. 7, we review
the construction of the convolution product on D̂U ((G/U)� T ,k) (again, mainly
following Yun). In Sect. 8, we recall some algebraic results of Kostant–Kumar, and
we apply all of this to prove our “Endomorphismensatz” in Sect. 9. In Sect. 10, we
explain how to adapt our constructions in the setting of étale sheaves, and in Sect. 11,
we study the functors V and V̂. Finally, in Sect. 12, we take the opportunity to correct
the proof of a technical lemma in [AB].
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Part I: Reminder on Completed Categories
We fix a field k.

2 Monodromy

2.1 Construction

We consider a complex algebraic torus A and an A-torsor1 π : X → Y . We then
denote by Db

c (X� A,k) the full triangulated subcategory of Db
c (X,k) generated by

the essential image of the functor π∗ : Db
c (Y,k)→ Db

c (X,k).
Fix some λ ∈ X∗(A). We then set

θλ :
{
C×X → X

(z, x) �→ λ(exp(z)) · x .

We will also denote by pr : C×X → X the projection.
The following claims follow from the considerations in [Ve, §9].

Lemma 2.1

(1) For any F in Db
c (X� A,k), there exists a unique morphism

ιλF : θ∗λ (F)→ pr∗(F)

whose restriction to {0} ×X is idF. Moreover, ιλ
F

is an isomorphism.

(2) If F,G are in Db
c (X� A,k) and f : F → G is a morphism, then the following

diagram commutes:

Sketch of Proof The essential ingredient of the proof is the (obvious) fact that the
functor pr∗ is fully faithful so that its essential image is a triangulated subcategory
of Db

c (C × X,k). We see that for any G in Db
c (Y,k), the object θ∗λπ∗(G) belongs

to this essential image; hence, for any F in Db
c (X� A,k) the object θ∗λ (F) is

isomorphic to pr∗(F′) for some F′ in Db
c (X,k). Restricting to {0} × X, we

1All the torsors we will encounter in the present paper will be locally trivial for the Zariski
topology.
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obtain an isomorphism f : F
∼−→ F′, and we can define ιλ

F
as the composition

θ∗λ (F)
∼−→ pr∗(F′) pr∗(f−1)−−−−−→ pr∗(F). �

Using this lemma and restricting ιλ
F

to {2iπ} × X, we obtain an automorphism

ϕλ

F
of F. This automorphism satisfies the property that if F,G are in Db

c (X� A,k)

and f : F → G is a morphism, then ϕλ

G
◦ f = f ◦ ϕλ

F
.

For any F in Db
c (X� A,k), the automorphism ϕλ

F
is unipotent. (In fact, this

automorphism is the identity if F belongs to the essential image of π∗, and the
category Db

c (X� A,k) is generated by such objects.) Moreover, if λ,μ ∈ X∗(A),
we have

ϕ
λ·μ
F

= ϕλ

F ◦ ϕμ

F
.

In other words, the assignment λ �→ ϕλ

F
defines a group morphism

X∗(A)→ Aut(F). (2.1)

We now set

RA := k[X∗(A)].

The group morphism (2.1) induces a k-algebra morphism

ϕF : RA → End(F).

Since each ϕF(λ) is unipotent, this morphism factors through an algebra morphism

ϕ∧F : R∧A → End(F),

where R∧A is the completion of RA with respect to the maximal ideal mA given
by the kernel of the algebra map εA : RA → k sending each λ ∈ X∗(A) to 1.
This construction is functorial, in the sense that it makes Db

c (X� A,k) an R∧A-linear
category. (Here, the R∧A-action on HomDb

c (X�A,k)(F,G) is given by r · f = f ◦
ϕ∧
F

(r) = ϕ∧
G
(r) ◦ f .)

Remark 2.2 Geometrically, we have RA = O(A∨
k
), where A∨

k
is the k-torus such

that X∗(A∨
k
) = X∗(A), and R∧A identifies with the algebra of functions on the

formal neighborhood of 1 in A∨
k

. Note that any choice of trivialization A
∼−→ (C×)r

provides isomorphisms

RA
∼= k[y±1

1 , · · · , y±1
r ] and R∧A ∼= k[[x1, · · · , xr ]]

(where xi = yi − 1).
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2.2 Basic Properties

We denote by ε∧A : R∧A → k the continuous morphism which extends εA.

Lemma 2.3 For any F in Db
c (X� A,k) and x ∈ R∧A, we have

π!(ϕ∧F(x)) = ε∧A(x) · idπ!F.

Proof Let λ ∈ X∗(A), and let p : C × Y → Y be the projection. Then both of the
following squares are Cartesian:

By the base change theorem, we deduce canonical isomorphisms

(idC × π)!θ∗λ (F) ∼= p∗π!(F), (idC × π)!pr∗(F) ∼= p∗π!(F).

Under these isomorphisms, the map (idC×π)!ιλF identifies with an endomorphism
of p∗π!(F). Now, the functor p∗ is fully faithful; hence, this morphism must be of
the form p∗(f ) for f an endomorphism of π!F. Restricting to {0} × Y , we see that
f = idπ!F. Hence, the restriction of (idC× π)!ιλF to {2iπ} × Y is also the identity.

But this morphism identifies with π!(ϕλ

F
), which completes the proof. �

We now consider a second A-torsor π ′ : X′ → Y ′, and an A-equivariant
morphism f : X → X′. The following claims follow easily from the definitions.

Lemma 2.4

(1) The functors f ! and f ∗ induce functors

f !, f ∗ : Db
c (X

′� A,k)→ Db
c (X� A,k).

Moreover, for any F in Db
c (X

′� A,k) and r ∈ R∧A, we have

ϕ∧
f !F(r) = f !(ϕ∧F(r)), ϕ∧

f ∗F(r) = f ∗(ϕ∧F(r)).

(2) The functors f! and f∗ induce functors

f!, f∗ : Db
c (X� A,k)→ Db

c (X
′� A,k).

Moreover, for any F in Db
c (X� A,k) and r ∈ R∧A, we have
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ϕ∧
f!F

(r) = f!(ϕ∧F(r)), ϕ∧
f∗F

(r) = f∗(ϕ∧F(r)).

Finally, we consider a second torus A′, and an injective morphism φ : A′ → A.
Of course, in this setting, we can consider X either as an A-torsor or as an A′-
torsor, and Db

c (X� A,k) is a full subcategory in Db
c (X� A′,k). In particular, for F

in Db
c (X� A,k), we can consider the morphism ϕ∧

F
both for the action of A (in

which case we will denote it ϕ∧
F,A

) and for the action of A′ (in which case we will

denote it ϕ∧
F,A′ ). Once again, the following lemma immediately follows from the

definitions.

Lemma 2.5 For F in Db
c (X� A,k), the morphism ϕ∧

F,A′ is the composition of

ϕ∧
F,A

with the morphism R∧
A′ → R∧A induced by φ.

2.3 Monodromy and Equivariance

For simplicity, in this subsection, we assume that A = C
×. We denote by a, p :

A × X → X the action and projection maps, respectively. Recall that a perverse
sheaf F in Db

c (X,k) is said to be A-equivariant if a∗(F) ∼= p∗(F). (See [BR,
Appendix A] for the equivalence with other “classical” definitions.)

Lemma 2.6 Let F be a perverse sheaf in Db
c (X� A,k). Then F is A-equivariant

iff the morphism ϕ∧
F

factors through ε∧A.

Proof If F is equivariant, then there exists an isomorphism a∗(F)
∼−→ p∗(F)

whose restriction to {1} × X is the identity. For λ ∈ X∗(A), pulling back under
the morphism C × X → A × X given by (z, x) �→ (λ(exp(z)), x), we obtain the
morphism ιλ

F
of Lemma 2.1, whose restriction to {2iπ}×X is therefore the identity.

Conversely, assume that ϕ∧
F

factors through εA. Let λ : C
× → A be the

tautological cocharacter, and let f : C × X → C × X be the map defined by
f (z, x) = (z + 2iπ, x). Then f ∗(ιλ

F
) is a morphism θ∗λ (F) → pr∗(F) whose

restriction to {0} ×X is, by assumption, the identity of F. Therefore, by the unicity
claim in Lemma 2.1, we have f ∗(ιλ

F
) = ιλ

F
.

Now, we explain how to construct an isomorphism η : a∗(F)
∼−→ p∗(F).

Recall (see [BBD, Corollaire 2.1.22]) that since we consider (shifts of) perverse
sheaves, such an isomorphism can be constructed locally; more concretely, if we set
U1 = C � R≥0 and U2 = C � R≤0, then to construct η, it suffices to construct
isomorphisms on U1 ×X and U2 ×X, which coincide on (U1 ∩U2)×X. The map
C × X → A × X given by (z, x) �→ (λ(exp(z)), x) restricts to homeomorphisms
between {z ∈ C | 3(z) ∈ (0, 2π)} × X and U1 × X and between {z ∈ C |
3(z) ∈ (−π, π)} × X and U2 × X. Therefore, we can obtain the isomorphisms
on U1 × X and U2 × X by simply restricting ιλ

F
to these open subsets. The

intersection U1 ∩ U2 has two connected components: U+ = {z ∈ C | 3(z) > 0}
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and U− = {z ∈ C | 3(z) < 0}. Our two isomorphisms coincide on U+ × X by
definition, and they coincide on U− × X because of the equality f ∗(ιλ

F
) = ιλ

F
justified above. Hence, they indeed glue to an isomorphism η : a∗(F)

∼−→ p∗(F),
which finishes the proof. �
Remark 2.7

(1) Our proof of Lemma 2.6 can easily be adapted to the case of a general torus;
we leave the details to interested readers.

(2) In [Ve], Verdier defines (by the exact same procedure) monodromy for a more
general class of objects in Db

c (X,k), called the monodromic complexes, namely,
those complexes F such that the restriction of Hi (F) to each A-orbit is locally
constant for any i ∈ Z. As was suggested to one of us by J. Bernstein, one can
give an alternative definition of the category Db

c (X� A,k) as the category of
monodromic complexes F (in this sense) such that the monodromy morphism
ϕF : RA → End(F) is unipotent, that is, factors through RA/m

n
A for some

n. Indeed, it is clear that our category Db
c (X� A,k) is included in the latter

category. Now, if F is monodromic with unipotent monodromy, then F is an
extension of its perverse cohomology objects, which have the same property;
hence, we can assume that F is perverse. Then one can consider the (finite)
filtration

F ⊃
∑

x∈mA

Im(x) ⊃
∑

x∈m2
A

Im(x) ⊃ · · · .

Each subquotient in this filtration is a perverse sheaf with trivial monodromy
and hence belongs to the essential image of π∗ by (the general version of)
Lemma 2.6.

3 Completed Category

3.1 Definition

As in Sect. 2, we consider a complex torus A of rank r and an A-torsor π : X → Y .
We also assume we are given a finite algebraic stratification

Y =
⊔

s∈S
Ys

where each Ys is isomorphic to an affine space, and such that for any s ∈ S , the
restriction πs : π−1(Ys)→ Ys is a trivial A-torsor. We set

π† := π![r], π† := π ![−r] ∼= π∗[r].
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Then (π†, π
†) is an adjoint pair, and π† is t-exact with respect to the perverse t-

structures.
We denote by Db

S(Y,k) the S-constructible derived category of k-sheaves on Y ,
and by Db

S(X� A,k) the full triangulated subcategory of Db
c (X,k) generated by the

essential image of the restriction of π† to Db
S(Y,k).

Definition 3.1 The category D̂S(X� A,k) is defined as the full subcategory of the
category of pro-objects2 in Db

S(X� A,k) consisting of the objects “ lim←− ”Fn which
are:

• π -constant, that is, such that the pro-object “ lim←− ”π†(Fn) in Db
S(Y,k) is

isomorphic to an object of Db
S(Y,k)

• Uniformly bounded in degrees, that is, isomorphic to a pro-object “ lim←− ”F′
n such

that each F′
n belongs to D

[a,b]
S (X� A,k) for some a, b ∈ Z (independent of n).

The morphisms in this category can be described as

HomD̂S (X�A,k)(“ lim←− ”Fn, “ lim←− ”Gn) = lim←−
n

lim−→
m

HomDb
S (X� A,k)(Fm,Gn).

(3.1)
According to [BY, Theorem A.3.2], the category D̂S(X� A,k) has a natural

triangulated structure, for which the distinguished triangles are the triangles iso-
morphic to those of the form

“ lim←− ”Fn

“ lim←−”fn−−−−−→ “ lim←− ”Gn

“ lim←−”gn−−−−−→ “ lim←− ”Hn

“ lim←−”hn−−−−−→ “ lim←− ”Fn[1]

obtained from projective systems of distinguished triangles

Fn
fn−→ Gn

gn−→ Hn
hn−→ Fn[1]

in Db
S(X� A,k). By definition, the functor π† induces a functor

D̂S(X� A,k)→ Db
S(Y,k),

which will also be denoted π†. From the proof of [BY, Theorem A.3.2], we see that
this functor is triangulated.

The monodromy construction from Sect. 2 makes the category D̂S(X� A,k) an
R∧A-linear category. More precisely, for any object F = “ lim←− ”Fn in D̂S(X� A,k),
we have

End(F) = lim←−
n

lim−→
m

HomDb
S (X�A,k)(Fm,Fn).

2All our pro-objects are tacitly parametrized by Z≥0 (with its standard order).
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See (3.1). We have a natural algebra morphism RA → End(F), sending r ∈ RA

to (ϕFn
(r))n. Since each ϕFn

factors through a quotient RA/m
N
A for some N

(depending on n), this morphism extends to a morphism ϕ∧
F
: R∧A → End(F).

As in Sect. 2.1, this construction provides an R∧A-linear structure on D̂S(X� A,k).
All the familiar functors (in particular, the pushforward and pullback functors

associated with morphisms of A-torsors) induce functors between the appropriate
completed categories, which will be denoted similarly; for details, the reader might
consult [BY, Proposition A.3.3 and Corollary A.3.4].

Remark 3.2 As explained in [BY, Remark A.2.3], there exists a filtered trian-
gulated category D̂F

S (X� A,k) over D̂S(X� A,k) in the sense of [Be, Defi-
nition A.1(c)]. Namely, consider a filtered triangulated category DF

S (X� A,k)

over Db
S(X� A,k) (constructed, e.g., following [Be, Example A.2]). Then one

can take as D̂F
S (X� A,k) the category of pro-objects “ lim←− ”Fn in DF

S (X� A,k)

such that the filtrations on the objects Fn are uniformly bounded and such that
“ lim←− ”grFi (Fn) belongs to D̂S(X� A,k) for any i ∈ Z.

3.2 The Free-Monodromic Local System

Let us consider the special case X = A (with its natural action) and Y = pt. Let
us choose as a generator of the fundamental group π1(C

×) the anticlockwise loop
γ : t ∈ [0, 1] �→ exp(2iπt). Then we obtain a group isomorphism

X∗(A)
∼−→ π1(A) (3.2)

by sending λ ∈ X∗(A) to the class of the loop t �→ λ(γ (t)). (Here, our fundamental
groups are taken with the neutral element as base point.) Of course, the category
of k-local systems on A is equivalent to the category of finite-dimension k-
representations of π1(A). Via the isomorphism (3.2), we thus obtain an equivalence
between the category of k-local systems on A and that of finite-dimensional RA-
modules. The Serre subcategory consisting of local systems which are extensions
of copies of the constant local system kA then identifies with the category of
finite-dimensional RA-modules annihilated by a power of mA or equivalently with
the category of finite-dimensional R∧A-modules annihilated by a power of m∧A :=
mAR

∧
A. The latter category will be denoted Modnil(R∧A).

For any n ∈ Z≥0, we denote by LA,n the local system on A corresponding to the
RA-module RA/m

n+1
A . Then we have natural surjections LA,n+1 → LA,n; hence,

we can define L̂A as the pro-object “ lim←− ”LA,n. It is clear that this pro-object is
uniformly bounded. It is easily seen that it is also π -constant; in fact, the surjections
LA,n � LA,0 = kA induce an isomorphism

“ lim←− ”π!(LA,n)
∼−→ H2r (π!LA,0)[−2r] = k[−2r].
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In particular, this shows that L̂A defines an object of D̂(A� A,k), which satisfies

π†(L̂A) ∼= k[−r]. (3.3)

(The stratification of Y = pt we consider here is the obvious one.)

Remark 3.3 Choose a trivialization A
∼−→ (C×)r . Then we obtain an isomorphism

RA
∼= (RC×)

⊗r ; see Remark 2.2. For any n ≥ 0, we have

mn·r
A ⊂ mn

C×⊗(RC×)
⊗(r−1)+RC×⊗mn

C×⊗(RC×)
⊗(r−2)+· · ·+(RC×)

⊗(r−1)⊗mn
C×

⊂ mn
A,

hence an isomorphism

L̂A
∼−→ “ lim←− ”

(
LC×,n

)�r
. (3.4)

The definition of L̂A given above is much more canonical, but the description as the
right-hand side in (3.4) is sometimes useful to reduce the proofs to the case r = 1.

3.3 “Averaging” with the Free-Monodromic Local System

In this subsection, for simplicity, we assume that � := char(k) is positive. We will
prove a technical lemma that will allow us later to prove that in the flag variety,
setting the convolution product admits a unit (see Lemma 7.6). A reader ready to
accept (or ignore) this question might skip this subsection.

We denote by a : A×X → X the action morphism.

Lemma 3.4 For any F in Db
S(X� A,k), there exists a canonical isomorphism

a!
(
L̂A � F

) ∼= F[−2r].

Proof We first want to construct a morphism of functors a!
(
L̂A �−)→ id[−2r].

For this, by adjunction, it suffices to construct a morphism of functors

(
L̂A �−)→ a![−2r]. (3.5)

For any s ≥ 0, we denote by [s] : A → A the morphism sending z to z�
s
,

and set as := a ◦ ([s] × idX). Since any unipotent matrix M with coefficients in
k satisfies M�s = 1 for s , 0, we see that for F in Db

S(X� A,k), for s , 0, all
the cohomology objects of (as)∗F are constant on the fibers of the projection to X.
In fact, the techniques of [Ve, §5] show that for any such F and for s , 0, there
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exists an isomorphism fF
s : (as)∗F ∼−→ p∗(F) whose restriction to {1} ×X is the

identity. Moreover, these morphisms are essentially unique in the sense that given
s, s′ such that fF

s and fF
s′ are defined, for t , s, s′, we have

([t − s] × idX)∗fF
s = ([t − s′] × idX)∗fF

s′ ,

and functorial in the sense that if u : F → G is a morphism, then for s , 0, the
diagram

commutes.
Now, fix F in Db

S(X� A,k). For s , 0, we have the morphism

(fF
s )−1 ∈ Hom

(
p∗(F), (as)

∗F
) = Hom

(
p∗(F), (as)

!F[−2r])

∼= Hom
(
([s] × idX)!p∗(F), a!(F)[−2r]).

The “essential unicity” claimed above implies that these morphisms define a cano-
nical element in

lim−→
s

Hom
(
([s]×idX)!p∗(F), a!(F)[−2r])=Hom

(
(
“ lim←−

s

”[s]!k
)
� F, a!F[−2r]

)

.

Now, we observe that [s]!k = LA,�s so that “ lim←−s
”[s]!k ∼= L̂A, and we deduce the

wished-for morphism (3.5). (The functoriality of our morphism follows from the
“functoriality” of the morphisms fF

s claimed above.)
To conclude the proof, it remains to show that the morphism a!

(
L̂A � F

)→ F

is an isomorphism for any F in Db
S(X� A,k). By the 5-lemma and the definition of

this category, it suffices to do so in case F = π†G for some G in Db
S(Y,k). In this

case, the morphism fF
t is defined for any t ≥ 0 and can be chosen as the obvious

isomorphism

(at )
∗F = (at )

∗π∗G[−r] = (π ◦ at )∗G[−r] = (π ◦ p)∗G[−r] = p∗F.

Then under the identification

a!
(
L̂A � F

) = π†(pY )!(L̂A � G) = π†((π ′)!(L̂A)� G
)
,
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where pY : A × Y → Y and π ′ : A → pt are the projections, our morphism is
induced by the isomorphism (π ′)!(L̂A) ∼= k[−2r] from Sect. 3.2. This concludes
the proof. �

4 The Case of the Trivial Torsor

In this section, we study the category D̂S(X� A,k) in the special case X = A.

4.1 Description of ̂D(A� A,k) in Terms of Pro-complexes of
R∧

A
-Modules

As explained in Sect. 3.2, every object of Modnil(R∧A) defines a sheaf on A; this
assignment therefore defines a functor DbModnil(R∧A) → Db

c (A,k), which clearly
takes values in Db(A� A,k). We will denote by

ΦA : DbModnil(R∧A)→ Db(A� A,k)

the composition of this functor with the shift of complexes by r to the left (where
r is the rank of A). In this way, ΦA is t-exact if Db(A� A,k) is equipped with the
perverse t-structure.

Lemma 4.1 The functor ΦA is an equivalence of triangulated categories.

Proof If we denote by k the R∧A-module R∧A/m∧A, then it is clear that ΦA(k) =
kA[r]. We claim that ΦA induces an isomorphism

⊕

n∈Z
Hom

DbModnil(R∧A)
(k,k[n]) ∼−→

⊕

n∈Z
HomDb(A�A,k)(kA[r],kA[r + n]).

Here, the right-hand side identifies with H•(A;k).
Choosing a trivialization of A, we reduce the claim to the case r = 1, that is,

A = Gm (see Remark 2.2). In this case, the left-hand side has dimension 2, with a
basis consisting of id : k→ k and the natural extension

k = m∧
C×/(m

∧
C×)

2 ↪→ R∧
C×/(m

∧
C×)

2 � R∧
C×/m

∧
C× = k.

It is clear that ΦC× identifies this space with H•(C×;k), and the claim is proved.
Since the object k, resp. the object kA[r] generates the triangulated category

DbModnil(R∧A), resp. Db(A� A,k), this claim and Beı̆linson’s lemma imply that
ΦA indeed is an equivalence of categories. �
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The category Db
c (pt,k) identifies with DbVectfd

k
, where Vectfd

k
is the category of

finite-dimensional k-vector spaces. Under this identification, the functor π† corre-
sponds to the composition of ΦA with the restriction-of-scalars functor associated
with the natural surjection R∧A � k. By adjunction, we deduce an isomorphism

π† ◦ΦA
∼= k

L⊗R∧A (−).

In view of these identifications, the category D̂(A� A,k) is therefore equivalent
to the category D̂(R∧A) of pro-objects “ lim←− ”Mn in DbModnil(R∧A) which are
uniformly bounded and such that the object

“ lim←− ”k
L⊗R∧A Mn

is isomorphic to an object of DbVectfd
k

. We use this equivalence to transport the
triangulated structure on D̂(A� A,k) to D̂(R∧A).

4.2 Some Results on Pro-complexes of R∧
A
-Modules

We now consider

L̂A := “ lim←− ”R∧A/(m∧A)n+1,

a pro-object in the category DbModnil(R∧A).

Lemma 4.2 For any M in DbModnil(R∧A), there exists a canonical isomorphism

Hom(L̂A,M) ∼= H0(M)

(where morphisms are taken in the category of pro-objects in DbModnil(R∧A)).

Proof By dévissage, it is sufficient to prove this claim when M is concentrated in a
certain degree k, that is, M = N [−k] for some N in Modnil(R∧A). By definition, we
have

Hom(L̂A,N[−k]) = lim−→
n

Ext−k
R∧A

(R∧A/(m∧A)n+1, N).

If k = 0, it is easily seen that the right-hand side identifies with N . Now, if
k �= 0, we use the fact that the natural functor from DbModnil(R∧A) to the bounded
derived category of R∧A-modules is fully faithful (see, e.g., [Or, Lemma 2.1]),
which implies that any morphism f : R∧A/(m∧A)n+1 → N [−k] is the image of
a morphism in the category DbMod(R∧A/(m∧A)m+1) for m , 0. Then the image
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of f in Ext−k
R∧A

(R∧A/(m∧A)m+1, N) vanishes, since it is the image of a morphism in

HomDbMod(R∧A/(m∧
A)

m+1)(R
∧
A/(m

∧
A)

m+1, N[−k]) = 0. �
As a consequence of this lemma, one obtains in particular an isomorphism

“ lim←− ”k
L⊗R∧A R∧A/(m∧A)n+1 ∼= k (4.1)

in the category of pro-objects in DbVectfd
k

. This shows that L̂A belongs to D̂(R∧A).
(Of course, this property also follows from the fact that this object is the image of
L̂A[r] under the equivalence considered in Sect. 4.1.)

Lemma 4.3 Let “ lim←−”Mn be an object of D̂(R∧A), and assume that the object

“ lim←−”k⊗L
R∧A

Mn belongs to D≤0Vectfd
k
. Then the obvious morphism

“ lim←−”τ≤0Mn → “ lim←−”Mn

is an isomorphism in the category of pro-objects inDbModnil(R∧A), where τ≤0 is the
usual truncation functor for complexes of R∧A-modules.

Proof By uniform boundedness, we can assume that each complex Mn belongs to
D≤dModnil(R∧A) for some d ∈ Z. If d ≤ 0, then there is nothing to prove. Hence,
we assume that d > 0. We will prove that in this case, the pro-object “ lim←− ”Hd(Mn)

is isomorphic to 0. Since filtrant direct limits are exact, this will show that for any
X in DbModnil(R∧A), the morphism

lim−→Hom(Mn,X)→ lim−→Hom(τ<dMn,X)

is an isomorphism and hence that the morphism of pro-objects

“ lim←− ”τ<dMn → “ lim←− ”Mn

is an isomorphism. Of course, this property is sufficient to conclude.
We observe that the pro-object

“ lim←− ”k⊗R∧A Hd(Mn) = “ lim←− ”Hd

(

k
L⊗R∧A Mn

)

= Hd

(

“ lim←− ”k
L⊗R∧A Mn

)

in the category Vectfd
k

vanishes. Hence for any fixed n, for m , n, the map k⊗R∧A
Hd(Mm) → k ⊗R∧A Hd(Mn) vanishes, or in other words, the map Hd(Mm) →
Hd(Mn) takes values in m∧A · Hd(Mn). Since Hd(Mn) is annihilated by (m∧A)q
for some q, this implies that the map Hd(Mm) → Hd(Mn) vanishes for m , 0.
Clearly, this implies that “ lim←− ”Hd(Mn) ∼= 0 and concludes the proof. �
Lemma 4.4 The object L̂A generates D̂(R∧A) as a triangulated category.
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Proof We will prove, by induction on the length of the shortest interval I ⊂ Z, such
that “ lim←− ”k⊗L

R∧A
Mn belongs to DIVectfd

k
and that any object “ lim←− ”Mn of D̂(R∧A)

belongs to the triangulated subcategory generated by L̂A.
First, assume that I = ∅. Then for any X in DbVectfd

k
, we have

0 = lim−→
n

Hom
DbVectfd

k

(k
L⊗R∧A Mn,X) ∼= lim−→

n

Hom
DbModnil(R∧A)

(Mn,X).

Since the essential image of DbVectfd
k

generates DbModnil(R∧A) as a triangulated
category, and since filtrant direct limits are exact, it follows that

lim−→
n

Hom
DbModnil(R∧A)

(Mn,X) = 0

for any X in DbModnil(R∧A). By definition, this implies that “ lim←− ”Mn = 0, proving
the claim in this case.

Now, we assume that I �= ∅. Shifting complexes if necessary, we can assume
that I = [−d, 0] for some d ∈ Z≥0. Using Lemma 4.3, we can then assume that
each Mn belongs to D≤0Modnil(R∧A). Set

V := H 0
(

“ lim←− ”k
L⊗R∧A Mn

)

= “ lim←− ”H 0(k
L⊗R∧A Mn) = “ lim←− ”k⊗R∧A H 0(Mn).

Then V is a finite-dimensional k-vector space, and idV defines an element in

Homk

(
V, “ lim←− ”k⊗R∧A H 0(Mn)

)
= lim←−Homk

(
V,k⊗R∧A H 0(Mn)

)
.

Consider the object

V := “ lim←− ”
(
R∧A/(m∧A)n+1 ⊗k V

)

in D̂(R∧A). (Of course, V is isomorphic to a direct sum of copies of L̂A.) Then by
Lemma 4.2, we have

HomD̂(R∧A)(V, “ lim←− ”Mm) = lim←−
m

HomD̂(R∧A)(V,Mm) ∼= lim←−
m

Homk(V ,H 0(Mm)).

Now, for any m, we have a surjection

H 0(Mm) � k⊗R∧A H 0(Mm),

which induces a surjection

Homk(V ,H 0(Mm)) � Homk

(
V,k⊗R∧A H 0(Mm)

)
.
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Each vector space ker
(
Homk(V ,H 0(Mm))→ Homk(V ,k⊗R∧A H 0(Mm))

)
is finite-

dimensional; therefore, the projective system formed by these spaces satisfies the
Mittag–Leffler condition. This implies that the map

lim←−
m

Homk(V ,H 0(Mm))→ lim←−
m

Homk

(
V,k⊗R∧A H 0(Mn)

)
(4.2)

is surjective (see, e.g., [KS1, Proposition 1.12.3]).
Let now f : V → “ lim←− ”Mn be a morphism whose image in the right-hand side

of (4.2) is idV . By definition (and in view of (4.1)), the morphism

k
L⊗R∧A f : k L⊗R∧A V → k

L⊗R∧A “ lim←− ”Mn

induces an isomorphism in degree-0 cohomology. Hence, the cone C of f (in the
triangulated category D̂(R∧A)) is such that k⊗L

R∧A
C belongs to D[−d,−1]Vectfd

k
. By

induction, this objects belongs to the triangulated subcategory of D̂(R∧A) generated
by L̂A. Then the distinguished triangle

V → “ lim←− ”Mn → C
[1]−→

shows that “ lim←− ”Mn also belongs to this subcategory, which finishes the proof. �

4.3 Description of ̂D(A� A,k) in Terms of Complexes of
R∧

A
-Modules

Recall that the algebra R∧A is isomorphic to an algebra of formal power series
in r indeterminates; see Remark 2.2. In particular, this shows that this algebra is
local, Noetherian, and of finite global dimension. We will denote by Modfg(R∧A) the
category of finitely generated R∧A-modules.

Proposition 4.5 There exists a natural equivalence of triangulated categories

DbModfg(R∧A)
∼−→ D̂(R∧A).

Proof We consider the functor ϕ from DbModfg(R∧A) to the category of pro-objects
in DbModnil(R∧A) sending a complex M to

ϕ(M) := “ lim←− ”

(

R∧A/(m∧A)n+1 L⊗R∧A M

)

.
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Since R∧A is local, Noetherian, and of finite global dimension, any object in the
category DbModfg(R∧A) is isomorphic to a bounded complex of free R∧A-modules.
It is clear that the image of such a complex belongs to D̂(R∧A); hence, ϕ takes values
in D̂(R∧A). Once this is established, it is clear that this functor is triangulated.

By Lemma 4.2, for k ∈ Z, we have

HomD̂(R∧A)(L̂A, L̂A[k]) = lim←−
n

HomD̂(R∧A)(L̂A, R
∧
A/(m

∧
A)

n+1[k])

∼=
{
R∧A if k = 0;
0 otherwise.

(4.3)

Hence, ϕ induces an isomorphism

Hom
DbModfg(R∧A)

(R∧A,R∧A[k]) ∼−→ HomD̂(R∧A)(L̂A, L̂A[k]).

Since the object R∧A, resp. L̂A, generates DbModfg(R∧A), resp. D̂(R∧A), as a
triangulated category (see Lemma 4.4), this observation and Beı̆linson’s lemma
imply that ϕ is an equivalence of categories. �

Combining Proposition 4.5 and the considerations of Sect. 4.1, we finally obtain
the following result.

Corollary 4.6 There exists a canonical equivalence of triangulated categories

DbModfg(R∧A)
∼−→ D̂(A� A,k)

sending the free module R∧A to L̂A[r].
From (4.1), we see that the equivalence of Proposition 4.5 intertwines the

functors k⊗L
R∧A

(−) on both sides. Therefore, under the equivalence of Corollary 4.6,

the functor k ⊗L
R∧A

(−) on the left-hand side corresponds to the functor π† on the

right-hand side. (Here, π : A→ pt is the unique map, and we identify the categories
Db

c (pt,k) and DbVectfd
k

as in Sect. 4.1.)

5 The Perverse t-Structure

5.1 Recollement

We now come back to the setting of Sect. 3.1. If Z ⊂ Y is a locally closed union of
strata, and if we denote by h : π−1(Z) → X the embedding, in view of the results
recalled in Sect. 3.1, the functors h!, h∗, h!, and h∗ induce triangulated functors
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h!, h∗ : D̂S(π
−1(Z)� A,k)→ D̂S(X� A,k),

h∗, h! : D̂S(X� A,k)→ D̂S(π
−1(Z)� A,k)

which satisfy the usual adjunction and fully faithfulness properties. (Here, following
standard conventions, we write D̂S(π−1(Z)� A,k) for D̂T (π−1(Z)� A,k) where
T = {s ∈ S | Ys ⊂ Z}.) If πZ : π−1(Z) → Z is the restriction of π , and if h :
Z → Y is the embedding, then the arguments of the proof of [BY, Corollary A.3.4]
show that we have canonical isomorphisms

(πZ)† ◦ h? ∼= h? ◦ π†, (πZ)† ◦ h? ∼= h
? ◦ π† (5.1)

for ? ∈ {!, ∗}.
In particular, if Z is closed with U := Y � Z, it is open complement, and if we

denote the corresponding embeddings by i : π−1(Z) → X and j : π−1(U) → X,
then we obtain a recollement diagram

in the sense of [BBD].

5.2 Definition of the Perverse t-Structure

Let us choose, for any s ∈ S , an A-equivariant map ps : Xs → A, where Xs :=
π−1(Ys). (Such a map exists by assumption.) Then the functor (ps)

∗[dim(Ys)] ∼=
(ps)

![− dim(Ys)] induces an equivalence of triangulated categories

D̂(A� A,k)
∼−→ D̂S(Xs� A,k).

Composing with the equivalence of Corollary 4.6, we deduce an equivalence of
categories

DbModfg(R∧A)
∼−→ D̂S(Xs� A,k). (5.2)

The transport, via this equivalence, of the tautological t-structure on DbModfg(R∧A),
will be called the perverse t-structure and will be denoted

(
pD̂S(Xs� A,k)≤0, pD̂S(Xs� A,k)≥0

)
.
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Using the recollement formalism from Sect. 5.1, by gluing these t-structures, we
obtain a t-structure on D̂S(X� A,k), which we also call the perverse t-structure.
More precisely, for any s ∈ S , we denote by js : Xs → X the embedding. Then the
full subcategory pD̂S(X� A,k)≤0 consists of the objects F such that j∗s F belongs
to pD̂S(Xs� A,k)≤0 for any s, and the full subcategory pD̂S(X� A,k)≥0 consists
of the objects F such that j !sF belongs to pD̂S(Xs� A,k)≥0 for any s.

The heart of the perverse t-structure will be denoted P̂S(X� A,k), and an object
of D̂S(X� A,k) will be called perverse if it belongs to this heart.

Remark 5.1 By construction, there exists an obvious fully faithful triangulated
functor Db

S(X� A,k)→ D̂S(X� A,k). The essential image of this functor consists
of the objects F̂ such that the monodromy morphism R∧A → End(F̂) factors
through some quotient R∧A/(m∧A)n = RA/m

n
A. In fact, it is clear that the objects in

the essential image of our functor satisfy this property. For the converse statement,
using the fact that this essential image is a triangulated subcategory and the usual
recollement triangles, we reduce the proof to the case X has only one stratum. Then
the equivalence (5.2) allows to translate the question in terms of complexes of R∧A-
modules. Using once again the triangulated structure (and the result quoted in the
proof of Lemma 4.2), one can then assume that the complex is concentrated in one
degree; in this case, the claim is obvious.

The following (well-known) claim will be needed for certain proofs below.

Lemma 5.2 LetM be inDbModfg(R∧A), and assume that k⊗L
R∧A

M is concentrated

in nonnegative degrees. ThenM is isomorphic to a complex of freeR∧A-modules with
nonzero terms in nonnegative degrees only.

Proof Since R∧A is local and of finite global dimensional, M is isomorphic to a
bounded complex N• of free RA-modules. Let n be the smallest integer with Nn �=
0. If n < 0, then our assumption implies that the morphism k ⊗R∧A Nn → k ⊗R∧A
Nn+1 is injective. Then by the Nakayama lemma, the map Nn → Nn+1 is a split
embedding, and choosing a (free) complement to its image in Nn+1, we see that
M isomorphic to a complex of free R∧A-modules concentrated in degrees ≥ n + 1.
Repeating this procedure if necessary, we obtain the desired claim. �
Lemma 5.3 Let F in D̂S(X� A,k).

(1) If π†F is perverse, then F is perverse.
(2) If π†F = 0, then F = 0.
(3) If F is perverse and pH0(π†F) = 0, then F = 0.

Proof (1) The shifted pullback functor associated with the projection Ys → pt
induces a (perverse) t-exact equivalence between DbVectfd

k
and Db

S(Ys,k). Under
this equivalence and (5.2), the functor (πs)† corresponds to the functor k ⊗L

R∧A
(−)

(see the comments after Corollary 4.6). In view of the isomorphisms (5.1), this
reduces the lemma to the claim that if an object M of DbModfg(R∧A) satisfies
Hk(k⊗L

R∧A
M) = 0 for all k > 0, resp. for all k < 0, then we have Hk(M) = 0 for
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all k > 0, resp. for all k < 0. This claim is a standard consequence of the Nakayama
lemma, resp. follows from Lemma 5.2.

The proof of parts (2), (3) are similar to that of (1); details are left to the reader.
�

5.3 Standard and Costandard Perverse Sheaves

For any s ∈ S, we denote by is : Ys → Y the embedding, and consider the objects

Δs := (is)!kYs
[dimYs], ∇s := (is)∗kYs

[dimYs].

We will also set

L̂A,s := (ps)
∗L̂A,

and consider the objects

Δ̂s := (js)!L̂A,s[dimXs], ∇̂s := (js)∗L̂A,s[dimXs]

in D̂S(X� A,k). In view of (5.1) and (3.3), we have canonical isomorphisms

π†Δ̂s
∼= Δs, π†∇̂s

∼= ∇s . (5.3)

We also have isomorphisms of R∧A-modules

HomD̂S (X� A,k)

(
Δ̂s, ∇̂t [k]

) ∼=
{
R∧A if s = t and k = 0;
0 otherwise.

(5.4)

Our map is is an affine morphism so that the objects Δs and ∇s are perverse
sheaves on Y . By Lemma 5.3, (1) and (5.3), this implies that the objects Δ̂s and ∇̂s

are perverse too.

Lemma 5.4

(1) The triangulated category D̂S(X� A,k) is generated by the objects Δ̂s for s ∈
S , as well as by the objects ∇̂s for s ∈ S .

(2) For any s ∈ S , the monodromy morphism ϕ∧̂
Δs

induces an isomorphism

R∧A
∼−→ HomD̂S (X� A,k)(Δ̂s, Δ̂s).

Moreover, any nonzero endomorphism of Δ̂s is injective.
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Proof Property (1) follows from the equivalences (5.2) and the gluing formalism.
And in (2), the isomorphism follows from the equivalence (5.2) and the fact that
(js)! is fully faithful.

Now, let x ∈ R∧A � {0}, and consider the induced endomorphism ϕ∧̂
Δs

(x). Let
C be the cone of this morphism; then we need to show that C is concentrated in
nonnegative perverse degrees, or in other words that for any t ∈ S , the complex j !tC
belongs to pD̂S(Xt� A,k)≥0. Fix t ∈ S , and denote by M the inverse image of the
complex j !t Δ̂s under the equivalence (5.2) (for the stratum labelled by t); then the
inverse image of j !tC is the cone of the endomorphism of M induced by the action
of x.

Using (5.3), we see that (πt )†(j
!
t Δ̂s) ∼= i!tΔs . Since Δs is perverse, this complex

is concentrated in nonnegative perverse degrees, which implies that the complex
of vector spaces k ⊗L

R∧A
M is concentrated in nonnegative degrees. Hence, by

Lemma 5.2, M is isomorphic to a complex N of free R∧A-modules with Ni = 0
for all i < 0. It is clear that the cone of the endomorphism of N induced by the
action of x has cohomology only in nonnegative degrees; therefore, the same is true
for M , and finally, j !tC indeed belongs to pD̂S(Xt� A,k)≥0. �
Corollary 5.5

(1) For any F,G in D̂S(X� A,k), the R∧A-module

HomD̂S (X� A,k)(F,G)

is finitely generated.
(2) The category D̂S(X� A,k) is Krull–Schmidt.

Proof (1) Lemma 5.4 (1) reduces the claim to the special case F = Δ̂s , G = ∇̂t for
some s, t ∈ S , which is clear from (5.4).

(2) Since the triangulated category D̂S(X� A,k) admits a bounded t-structure, it
is Karoubian by [LC]. By (1) and [La, Example 23.3], the endomorphism ring of any
of its objects is semi-local. By [CYZ, Theorem A.1], this implies that D̂S(X� A,k)

is Krull–Schmidt. �
The standard objects also allow one to describe the perverse t-structure on the

category D̂S(X� A,k), as follows.

Lemma 5.6 The subcategory pD̂S(X� A,k)≤0 is generated under extensions by
the objects of the form Δ̂s[n] for s ∈ S and n ≥ 0.

Proof This claim follows from the yoga of recollement, starting from the obser-
vation that the subcategory DbModfg(R∧A)≤0 is generated under extensions by the
objects of the form R∧A[n] with n ≥ 0. (Here, we use the fact that R∧A is local so that
any finitely generated projective module is free.) �
Remark 5.7 It is not true that the subcategory pD̂S(X� A,k)≥0 is generated under
extensions by the objects of the form ∇̂s[n] for s ∈ S and n ≤ 0. (This is already
false if Y = pt and r > 0.)
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Corollary 5.8 The functor π† is right t-exact with respect to the perverse t-
structures.

Proof This follows from Lemma 5.6 and (5.3). �

5.4 Tilting Perverse Sheaves

It is a standard fact (see, e.g., [BGS]) that under our assumptions, the category
PervS(Y,k) of S-constructible perverse sheaves on Y is a highest weight category,
with weight poset S (for the order induced by inclusions of closures of strata),
standard objects (Δs : s ∈ S), and costandard objects (∇s : s ∈ S). Hence, we
can consider the tilting objects in this category, that is, those which admit both a
filtration with subquotients of the form Δs (s ∈ S) and a filtration with subquotients
of the form ∇s (s ∈ S). If F is a tilting object, the number of occurrences of Δs ,
resp. ∇s , in a filtration of the first kind, resp. second kind, does not depend on the
choice of filtration and equals the dimension of Hom(F,∇s), resp. Hom(Δs,F).
This number will be denoted (F : Δs), resp. (F : ∇s). The indecomposable tilting
objects are parametrized (up to isomorphism) by S; the object corresponding to s

will be denoted Ts .
Similarly, an object F of P̂S(X� A,k) will be called tilting if it admits both a

filtration with subquotients of the form Δ̂s (s ∈ S) and a filtration with subquotients
of the form ∇̂s (s ∈ S). From (5.4), we see that the number of occurrences of Δ̂s ,
resp. ∇̂s , in a filtration of the first kind, resp. second kind, does not depend on the
choice of filtration and equals the rank of Hom(F, ∇̂s), resp. Hom(Δ̂s,F), as an
R∧A-module. (These modules are automatically free of finite rank.) This number will
be denoted (F : Δ̂s), resp. (F : ∇̂s).

It is clear from definitions and (5.3) that if F is a tilting object in P̂S(X� A,k),
then π†(F) is a tilting perverse sheaf and that moreover,

(π†(F) : Δs) = (F : Δ̂s), (π†(F) : ∇s) = (F : ∇̂s). (5.5)

Lemma 5.9

(1) If F belongs to D̂S(X� A,k), then F is a tilting perverse sheaf iff π†(F) is a
tilting perverse sheaf.

(2) If F,G are tilting perverse sheaves in D̂S(X� A,k), then we have

HomD̂S (X�A,k)(F,G[k]) = 0 if k �= 0,

the R∧A-module HomD̂S (X� A,k)(F,G) is free of finite rank, and the functor π†
induces an isomorphism

k⊗R∧A HomD̂S (X� A,k)(F,G)
∼−→ HomDb

S (Y,k)(π†F, π†G).
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Proof (1) Using recollement triangles, it is easy to show that F is a tilting perverse
sheaf iff for any s ∈ S , the objects j∗s F and j !sF are direct sums of copies of
L̂A,s[dimXs] (see [BBM] for this point of view in the case of usual tilting perverse
sheaves). In turn, this condition is equivalent to the requirement that the inverse
images of j∗s F and j !sF under the equivalence (5.2) are isomorphic to a free R∧A-
module. It is well known that the latter condition is equivalent to the property that
the image under k⊗L

R∧A
(−) of these objects is concentrated in degree 0. We deduce

that F is a tilting perverse sheaf iff for any s ∈ S , the complexes (πs)†j
∗
s F and

(πs)†j
!
sF are concentrated in perverse degree 0 (see the proof of Lemma 5.3). Since

(πs)†j
∗
s F ∼= i∗s π†F and (πs)†j

!
sF

∼= i!sπ†F

by (5.1), we finally obtain that F is a tilting perverse sheaf iff the object G := π†F
is such that for any s ∈ S , the complexes i∗s G and i!sG are concentrated in perverse
degree 0. This condition is equivalent to the fact that G is a tilting perverse sheaf;
see [BBM], which concludes the proof.

(2) By Lemma 2.3, the morphism

HomD̂S (X�A,k)(F,G)→ HomDb
S (Y,k)(π†F, π†G)

induced by π† factors through the quotient k⊗R∧A HomD̂S (X� A,k)(F,G). Then the
desired properties follow from (5.4) and the 5-lemma. �
Remark 5.10 The arguments in the proof of Lemma 5.9(1) show more generally
that if F belongs to D̂S(X� A,k) and if π†(F) is a perverse sheaf admitting a
standard filtration, then F is perverse and admits a filtration with subquotients of
the form Δ̂s for s ∈ S , with Δ̂s occurring as many times as Δs occurs in π†(F). Of
course, a similar claim holds for costandard filtrations.

We will denote by T̂S(X� A,k) the full subcategory of D̂S(X� A,k) whose
objects are the tilting perverse sheaves. Lemma 5.9(2) has the following conse-
quence.

Proposition 5.11 There exists an equivalence of triangulated categories

KbT̂S(X� A,k)
∼−→ D̂S(X� A,k).

Proof As explained in Remark 3.2, the category D̂S(X� A,k) admits a filtered
version. Hence, by [AMRW, Proposition 2.2] (see also [Be, §A.6]), there exists
a triangulated functor KbT̂S(X� A,k) → D̂S(X� A,k) whose restriction to
T̂S(X� A,k) is the natural embedding. The fact that this functor is an equivalence
follows from Beı̆linson’s lemma. �
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5.5 Classification of Tilting Perverse Sheaves

It follows from Corollary 5.5(2) that the category T̂S(X� A,k) is Krull–Schmidt.
To proceed further, we need to classify its indecomposable objects.

The following classification result is proved in [BY, Lemma A.7.3]. Here, we
provide a different proof, based on some ideas developed in [RSW] and [AR2,
Appendix B]. (These ideas are themselves closely inspired by the methods
of [BGS].)

Proposition 5.12 For any s ∈ S , there exists a unique (up to isomorphism)
object T̂s in D̂S(X� A,k) such that π†(T̂s) ∼= Ts . Moreover, T̂s is an indecom-
posable tilting perverse sheaf, and the assignment s �→ T̂s induces a bijection
between S and the set of isomorphism classes of indecomposable tilting objects in
D̂S(X� A,k).

We begin with the following lemma, where we fix s ∈ S .

Lemma 5.13 For any open subset U ⊂ Ys which is a union of strata, there
exists a tilting perverse sheaf in D̂S(π−1(U)� A,k) whose restriction to Xs is
L̂A,s[dimXs].
Proof We proceed by induction on the number of strata in U , the initial case being
when U = Ys (which is of course obvious).

Consider now a general U as in the statement, and t ∈ S such that Yt ⊂ U and
Yt is closed in U . Then we set V := U � Yt , and assume (by induction) that we
have a suitable object T̂V in D̂S(π−1(V )� A,k). We then denote by j : V → U

the embedding, and consider the object j!T̂V . This object admits a filtration (in
the sense of triangulated categories) whose subquotients are standard objects in
D̂S(π−1(U)� A,k). In particular, it is perverse. We now consider the R∧A-module

E := Ext1
P̂S (π−1(U)� A,k)

(Δ̂U
t , j!T̂V ) = HomD̂S (π−1(U)� A,k)(Δ̂

U
t , j!T̂V [1])

(where Δ̂U
t is the standard object in D̂S(π−1(U)� A,k) associated with t). By

Corollary 5.5(1), E is finitely generated as an R∧A-module; therefore, we can choose
a nonnegative integer n and a surjection (R∧A)⊕n � E. This morphism defines an
element in

HomR∧A
(
(R∧A)⊕n, E

) ∼= E⊕n ∼= Ext1
P̂S (π−1(U)� A,k)

(
(Δ̂U

t )⊕n, j!T̂V

)
,

and therefore, an extension

j!T̂V ↪→ T̂U � (Δ̂U
t )⊕n (5.6)

in P̂S(π−1(U)� A,k), for some object T̂U . It is clear that this object admits a
filtration with subquotients of the form Δ̂u (u ∈ S) and has the appropriate
restriction to Xs . Hence, to conclude the proof of the claim, in view of Remark 5.10,
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it suffices to prove that if TU := (πU )†T̂U (where πU is the restriction of π to
π−1(U)), then TU admits a costandard filtration in the highest weight category
PervS(U,k) or in other words that

Ext1PervS (U,k)(Δ
U
u ,TU) = 0

for any u ∈ S such that Yu ⊂ U . (Here, ΔU
u is the standard perverse sheaf in

PervS(U,k) associated with u.)
The case u �= t is easy and left to the reader. We then remark that applying the

functor (πU )† to (5.6), we obtain an exact sequence

j !TV ↪→ TU � (ΔU
t )⊕n (5.7)

in PervS(U,k), where j : V → U is the embedding and TV := (πV )†T̂V for
πV : π−1(V )→ V the restriction of π .

We now claim that there exists a canonical isomorphism

k⊗R∧A E ∼= Ext1PervS (U,k)(Δ
U
u , j !TV ). (5.8)

In fact, using the natural exact sequences

ker ↪→ j !TV � j !∗TV , j !∗TV ↪→ j∗TV � coker

and the fact that TV admits a standard filtration, it is easily checked that

ExtiPervS (U,k)(Δ
U
u , j !TV ) = 0 for i ≥ 2

(see [AR2, Proof of Proposition B.2] for details). If M is the inverse image of j !t j!T̂V

under the equivalence (5.2), this means that the complex k ⊗L
R∧A

M is concentrated

in degrees≤ 1. This implies that M itself is concentrated in degrees≤ 1 and that we
have a canonical isomorphism k ⊗R∧A H1(M) ∼= H1(k ⊗L

R∧A
M). This isomorphism

is precisely (5.8).
Once (5.8) is established, we see that our surjection (R∧A)⊕n � E induces a

surjection k
⊕n � Ext1PervS (U,k)

(ΔU
u , j !TV ). Using this fact and considering the

long exact sequence obtained by applying the functor Hom(ΔU
t ,−) to (5.7), we

conclude that Ext1PervS (U,k)
(ΔU

t ,TU) = 0, which finishes the proof. �
Proof of Proposition 5.12 By Lemma 5.12, there exists a tilting object T̂s in
the category D̂S(X� A,k) which is supported on Xs and whose restriction to
Xs is L̂A,s . Of course, we can (and will) further require that this object is
indecomposable. By Lemma 5.9, the object π†T̂s is then a tilting perverse sheaf,
and it’s endomorphism ring is a quotient of End(T̂s) and hence is local; in other
words, π†T̂s is indecomposable. Since it is supported on Ys , and since its restriction
to Ys is kYs

[dim(Ys)], it follows that π†(T̂s) ∼= Ts .
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These arguments show more generally that if T̂ is any indecomposable tilting
object in D̂S(X� A,k), the object π†(T̂) is isomorphic to Tt for some t ∈ S . To
conclude the proof, it remains to prove that in this case, we must have T̂ ∼= T̂t . By
Lemma 5.9(2), the functor π† induces an isomorphism

k⊗R∧A HomD̂S (X� A,k)(T̂, T̂t )
∼−→ HomDb

S (Y,k)(π†T̂, π†T̂t ).

Hence, there exists a morphism f : T̂ → T̂t such that π†(f ) is an isomorphism.
Then the cone C of f satisfies π†(C) = 0. By Lemma 5.3(2), this implies that
C = 0; hence, that f is an isomorphism. �

Part 2: The Case of Flag Varieties

6 Study of Tilting Perverse Objects

6.1 Notation

From now on, we fix a complex connected reductive algebraic group G and choose
a maximal torus and a Borel subgroup T ⊂ B ⊂ G. We will denote by U the
unipotent radical of B and, by W , the Weyl group of (G, T ). The choice of B

determines a subset S ⊂ W of simple reflections and a choice of positive roots
(such that B is the negative Borel subgroup).

We will study further the previous constructions in the special case

X = G/U, Y = G/B

(with the action of A = T given by t · gU = gtU ), π : X → Y is the natural
projection, and the stratification is

Y =
⊔

w∈W
Yw with Yw := BwB/B.

The corresponding categories in this case will be denoted

Db
U(Y,k), D̂U (X� T ,k).

(Here, Db
U(Y,k) is indeed equivalent to the U -equivariant constructible derived

category in the sense of Bernstein–Lunts, which explains the notation.)
Recall that to define the objects Δ̂w and ∇̂w, we need to choose a T -equivariant

morphism Xw → T , where Xw = π−1(Yw). For this, we choose a lift ẇ of w

in NG(T ) and consider the subgroup Uw−1 ⊂ U defined as in [Sp, Lemma 8.3.5].

Then the map u �→ uẇB induces an isomorphism Uw
∼−→ Yw, and the map (u, t) �→
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uẇtU induces an isomorphism Uw × T
∼−→ Xw; see [Sp, Lemma 8.3.6]. We will

choose pw as the composition of the inverse isomorphism with the projection to the
T factor.

The category Db
U(Y,k) admits a natural perverse t-structure; its heart will be

denoted

O := PervU(Y,k).

Similarly, the constructions of Sect. 5.2 provide a perverse t-structure on the
category D̂U (X� T ,k), whose heart will be denoted

Ô := PervU(X� T ,k).

6.2 Right and Left Monodromy

By the general formalism of the completed monodromic category (see Sect. 3.1), for
any F in D̂U (X� T ,k), we have an algebra morphism

ϕ∧F : R∧T → End(F).

Since this monodromy comes from the action of T by right multiplication, we will
denote it in this case by ϕ∧

r,F
.

Now, let a : G → G/U be the projection (a locally trivial fibration, with fibers
isomorphic to affine spaces). Then the functor a∗ : Db

c (Y,k) → Db
c (G,k) is fully

faithful since a∗ ◦ a∗ ∼= id. The triangulated category Db
U(X,k) is generated by the

image of the forgetful functor Db
B(X,k) → Db

c (X,k); therefore, if G belongs to
Db

U(X� T ,k), then a∗(G) belongs to the monodromic category Db
c (G� T ,k) where

T acts on G via t · g = tg. Hence, we can consider the morphism ϕ∧
a∗(G)

. Since a∗

is fully faithful, this morphism can be interpreted as a morphism

ϕ∧
l,G : R∧T → End(G)

(where “l” stands for left). Passing to projective limits, we deduce, for any F in
D̂U (X� T ,k), an algebra morphism

ϕ∧
l,F : R∧T → End(F).

Combining these two constructions, we obtain an algebra morphism

ϕ∧
lr,F : R∧T ⊗k R∧T → End(F)
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sending r ⊗ r ′ to ϕ∧
l,F

(r) ◦ ϕ∧
r,F

(r ′) = ϕ∧
r,F

(r ′) ◦ ϕ∧
l,F

(r).

Lemma 6.1 For any w ∈ W , the morphism ϕ∧
r,Δ̂w

, resp. ϕ∧
r,∇̂w

, is the composition

of ϕ∧
l,Δ̂w

, resp. ϕ∧
l,∇̂w

, with the automorphism of R∧T induced by w.

Proof We treat the case of Δ̂w; the case of ∇̂w is similar. More precisely, we will
prove a similar claim for the monodromy endomorphisms of each object Δn

w :=
(jw)!p∗w(LT ,n)[dimXw].

By the base change theorem, we have

a∗(Δn
w)
∼= (j̃w)!(pw ◦ aw)∗LT ,n[dimXw],

where j̃w : a−1(Xw) ↪→ G is the embedding and aw : a−1(Xw) → Xw is the
restriction of a. By Lemma 2.4, we deduce that for any r ∈ R∧T , we have

a∗
(
ϕ∧r,Δn

w
(r)
) = ϕ∧r,a∗(Δn

w)(r) = (j̃w)!(pw ◦ aw)∗ϕ∧LT ,n
(r)[dimXw], (6.1)

where in the first two terms, we consider the monodromy operation with respect to
the action of T on G/U and G by multiplication on the right.

Now, we consider the actions induced by multiplication on the left. It is not
difficult to check that

(pw ◦ aw)(t · x) = w−1(t)(pw ◦ aw)(x)

for any t ∈ T and x ∈ a−1(Xw). In other words, pw ◦ aw is T -equivariant when
T acts on a−1(Xw) by multiplication on the left, and on T via the natural action
twisted by w−1. From this, using the same arguments as above and Lemma 2.5, we
deduce that

a∗
(
ϕ∧l,Δn

w
(r)
) = (j̃w)!(pw ◦ aw)∗ϕ∧LT ,n

(w−1(r))[dimXw]. (6.2)

Comparing (6.1) and (6.2), and using the fact that a∗ is fully faithful, we deduce the
desired claim. �

Similar considerations hold for objects in Db
U(Y,k). Below, we will only

consider the case of perverse sheaves, so we restrict to this setting. Let b =
π ◦ a : G → Y be the natural projection, and let F in O. Then the object b∗(F)

belongs to Db
c (G� T ,k), where the T -action on G is induced by multiplication on

the left. Hence, the monodromy construction from Sect. 2 provides a morphism
R∧T → End(b∗(F)). Now, the functor b∗ is fully faithful on perverse sheaves
since b is smooth with connected fibers (see [BBD, Proposition 4.2.5]); hence, this
morphism can be considered as an algebra morphism

ϕ∧
l,F : R∧T → End(F).
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It is clear that if F belongs to D̂U (X� T ,k) and π†(F) is perverse, the composition

R∧T
ϕ∧

l,F−−−→ End(F)
π†−→ End(π†(F))

coincides with ϕ∧
l,π†(F)

.

6.3 The Associated Graded Functor

Let us now fix a total order 4 on W that refines the Bruhat order. We then denote
by j≺w the embedding of the closed subvariety

⊔
y≺w Xy in X. For any T̂ in

T̂U (X� T ,k), the adjunction morphism

T̂ → (j≺w)∗(j≺w)
∗T̂

is surjective. If we denote its kernel by T̂6w, then the family of subobjects of T̂
given by (T̂6w)w∈W is an exhaustive filtration on T̂ indexed by W , endowed with
the order opposite to 4 (meaning that T̂6w ⊂ T̂6y if y 4 w). Moreover, if we set

grw(T̂) := T̂6w/T̂6w′ ,

where w′ is the successor of w for 4, then grw(T̂) is a direct sum of copies of Δ̂w.
(Here by convention T̂6w′ = 0 if w has no successor, i.e., if w is the longest element
in W .) Since by adjunction we have HomD̂U (X� T ,k)(Δ̂y, Δ̂w) = 0 if y 7 w, we see

that if f : T̂ → T̂
′

is a morphism in T̂U (X� T ,k), then f (T̂6w) ⊂ T̂
′
6w for any

w ∈ W . In other words, the assignment T̂ �→ T̂6w is functorial. This allows us to
define the functor

gr :
{
T̂U (X� T ,k) → P̂U (X� T ,k)

T̂ �→⊕
w∈W grw(T̂)

.

This functor is clearly additive.

Lemma 6.2 For any y,w ∈ W with y �= w, we have

HomD̂U (X� T ,k)(Δ̂y, Δ̂w) = 0.

Proof Let f : Δ̂y → Δ̂w be a nonzero morphism. We denote by F the image of f ,
and write f = f1 ◦ f2 with f2 : Δ̂y → F the natural surjection and f1 : F → Δ̂w

the natural embedding. Then for any r ∈ R∧T , we have a commutative diagram
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By Lemma 5.4, if r �= 0, then ϕ∧
r,Δ̂w

(r) is injective. Hence,

ϕ∧
r,F(r) is injective (in particular, nonzero) if r �= 0. (6.3)

On the other hand, using Lemma 6.1, we see that

f1 ◦ ϕ∧r,F(r) = ϕ∧r,Δ̂w
(r) ◦ f1 = ϕ∧l,Δ̂w

(w(r)) ◦ f1 = f1 ◦ ϕ∧l,F(w(r)),

which implies that ϕ∧
r,F

(r) = ϕ∧
l,F

(w(r)) since f1 is injective and that

ϕ∧
r,F(r) ◦ f2 = f2 ◦ ϕ∧r,Δ̂y

(r) = f2 ◦ ϕ∧l,Δ̂y
(y(r)) = ϕ∧

l,F(y(r)) ◦ f2,

which implies that ϕ∧
r,F

(r) = ϕ∧
l,F

(y(r)) since f2 is surjective. Comparing these

two equations, we deduce that ϕ∧
r,F

(r) = ϕ∧
r,F

(y−1w(r)), or in other words that

ϕ∧
r,F(r − y−1w(r)) = 0,

for any r ∈ R∧T . In view of (6.3), this implies that r = y−1w(r) for any r ∈ R∧T and
hence that y = w. �

As a consequence, we obtain the following claim.

Corollary 6.3 The functor gr is faithful.

Proof Let T̂, T̂
′

be in T̂U (X� T ,k), and let f : T̂ → T̂
′

be a nonzero morphism.
Let w ∈ W be an element which is maximal with respect to the property that
f (T̂6w) �= 0. Then f induces a nonzero morphism f̃w : grw(T̂) → T̂

′
. We have

f (T̂6w) ⊂ T̂
′
6w; hence, f̃w factors through a nonzero morphism grw(T̂) → T̂

′
6w.

Lemma 6.2 implies that the natural morphism

Hom(grw(T̂), T̂
′
6w)→ Hom(grw(T̂), grw(T̂

′
))

is injective; hence, grw(f ) �= 0 so that a fortiori gr(f ) �= 0. �
Note that by functoriality of monodromy, for any r ∈ R∧T , we have

ϕ∧
l,gr(T̂)

(r) = gr
(
ϕ∧

l,T̂
(r)
)
, ϕ∧

r,gr(T̂)
(r) = gr

(
ϕ∧

r,T̂
(r)
)
. (6.4)
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6.4 Monodromy and Coinvariants

Proposition 6.4 For any T̂ in T̂U (X� T ,k), the morphism ϕ∧
lr,T̂

factors through an

algebra morphism

R∧T ⊗(R∧T )W R∧T → End(T̂).

Proof We have to prove that ϕ∧
l,T̂

(r) = ϕ∧
r,T̂

(r) for any r ∈ (R∧T )W . Since

the functor gr is faithful (see Corollary 6.3), for this, it suffices to prove that
gr(ϕ∧

l,T̂
(r)) = gr(ϕ∧

r,T̂
(r)). This equality follows from (6.4) and Lemma 6.1 since

gr(T̂) is a direct sum of copies of objects Δ̂w. �

6.5 The Case of ̂Ts

In this subsection, we fix a simple reflection s and denote by α the associated simple
root.

We consider the closure Ys = Ys � Ye. This subvariety of Y is isomorphic to P
1,

in such a way that Ye identifies with {0}. The structure of the category PervU(Ys,k)

of k-perverse sheaves on Ys constructible with respect to the stratification Ys =
Ys � Ye is well known: This category admits five indecomposable objects (up to
isomorphism):

• Two simple objects ICe and ICs
• Two indecomposable objects of length 2, namely, Δs and ∇s , which fit into

nonsplit exact sequences

ICe ↪→ Δs � ICs , ICs ↪→ ∇s � ICe;

• One indecomposable object of length 3, namely, the tilting object Ts , which fits
into nonsplit exact sequences

Δs ↪→ Ts � ICe, ICe ↪→ Ts � ∇s .

We now fix a cocharacter λ : C
× → T and consider the full subcategory

PervC×,U (Ys,k) ⊂ PervU(Ys,k) consisting of perverse sheaves which are C
×-

equivariant for the action determined by z · xB = λ(z)xB.

Lemma 6.5 If the image of 〈λ, α〉 in k is nonzero, then Ts does not belong to
PervC×,U (Ys,k).

Proof Let B+ ⊂ G be the Borel subgroup opposite to B with respect to T , let U+
be its unipotent radical, and let U+s ⊂ U+ be the root subgroup associated with
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s. If we set Y ◦s := Ys � {sB}, then the map u �→ u · B induces an isomorphism

U+s
∼−→ Y ◦s . In particular, this open subset is C×-stable, with an action of C× via the

character 〈λ, α〉.
The object Ts is the unique nonsplit extension of ICe by Δs in PervU(Ys,k);

hence, to conclude, it suffices to show that Ext1
Perv

C×,U (Ys ,k)
(ICe,Δs) = 0 if the

image of 〈λ, α〉 in k is nonzero. Note that we have

Ext1
Perv

C×,U (Ys ,k)
(ICe,Δs) = HomDb

C×,U
(Ys ,k)

(ICe,Δs[1])

where Db
C×,U (Ys,k) is the C

×-equivariant constructible derived category in the
sense of Bernstein–Lunts. Let us consider the long exact sequence

HomDb
C×,U

(Ys ,k)
(ICe, ICe[1])→ HomDb

C×,U
(Ys ,k)

(ICe,Δs[1])

→ HomDb
C×,U

(Ys ,k)
(ICe, ICs[1])→ HomDb

C×,U
(Ys ,k)

(ICe, ICe[2])

obtained from the short exact sequence ICe ↪→ Δs � ICs . Here, the first,
resp. fourth, term identifies with the degree-1, resp. degree-2, C

×-equivariant
cohomology of the point. In particular, this term vanishes, resp. is canonically
isomorphic to k. Now, we observe that restriction induces an isomorphism

HomDb
C×,U

(Ys ,k)
(ICe, ICs[1]) ∼−→ HomDb

C×,U
(Y ◦s ,k)(kYe

,kY ◦s [2]).

The right-hand side is 1-dimensional, with a basis consisting of the adjunction
morphism associated with the embedding Ye ↪→ Y ◦s . Moreover, in view of the
classical description of the C

×-equivariant cohomology of the point recalled, for
example, in [Lu, §1.10], the map

HomDb
C×,U

(Ys ,k)
(ICe, ICs[1])→ HomDb

C×,U
(Ys ,k)

(ICe, ICe[2])

considered above identifies with the map k→ k given by multiplication by 〈λ, α〉.
Our assumption is precisely that this map is injective; we deduce that the vector
space Ext1

Perv
C×,U (Ys ,k)

(ICe,Δs) vanishes, as claimed. �
Corollary 6.6 Assume that there exists λ ∈ X∗(T ) such that the image of 〈λ, α〉 in
k is nonzero. Then in the special case T̂ = T̂s , the morphism

R∧T ⊗(R∧T )W R∧T → End(T̂s)

of Proposition 6.4 is surjective.



304 R. Bezrukavnikov and S. Riche

Proof By Nakayama’s lemma and Lemma 5.9(2), it suffices to prove that the
morphism

ϕ∧
l,Ts

: R∧T → End(Ts)

of Sect. 6.2 is surjective. Now we have dim(End(Ts)) = 2; hence, for this, it suffices
to prove that the image of ϕ∧

l,Ts
is not reduced to k · idTs

. However, if λ ∈ X∗(T )

is such that 〈λ, α〉 �= 0 in k, then by Lemmas 2.5, 2.6, and 6.5, the automorphism
ϕ∧

l,Ts
(λ) is unipotent but not equal to idTs

; therefore, it does not belong to k · idTs
,

and the claim is proved. �

6.6 Properties of Tw0

We finish this section with a reminder of some properties of the category O which
are well known (at least in the case char(k) = 0).

The following claim is fundamental. It is proved in [BBM, Lemma in §2.1] under
the assumption that char(k) = 0, but the arguments apply in full generality.

Lemma 6.7 For any w ∈ W , the socle of the object Δw is ICe, and all the
composition factors of Δw/soc(Δw) are of the form ICv with v �= e. Dually, the
top of the object ∇w is ICe, and all the composition factors of the kernel of the
surjection ∇w → top(∇w) are of the form ICv with v �= e.

This lemma has the following important consequence.

Corollary 6.8 If F is an object of O which admits a standard filtration, then its
socle is a direct sum of copies of ICe. In other words, any nonzero subobject of F
admits ICe as a composition factor. Dually, if F is an object of O which admits a
costandard filtration, then its top is a direct sum of copies of ICe. In other words,
any nonzero quotient of F admits ICe as a composition factor.

To finish this section, we recall the main properties of the object Tw0 that we will
need in Sect. 9.

Lemma 6.9

(1) For any w ∈ W , we have (Tw0 : Δw) = 1.
(2) The object Tw0 is both the projective cover and the injective hull of ICe in O.

Proof Both of these claims are consequences of Lemma 6.7. For details, see [AR2,
Lemma 5.25] for (1), and [AR2, Proposition 5.26] for (2). �
Lemma 6.10 Let s be a simple reflection, and let ıs : Ys → Y be the embedding.
Then we have ı∗s (Tw0)

∼= Ts .

Proof Since Tw0 is tilting (in particular, admits a standard filtration), the object
ı∗s (Tw0) is perverse and admits a standard filtration. More precisely, in view of
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Lemma 6.9(1), we have

(ı∗s (Tw0) : Δe) = (ı∗s (Tw0) : Δs) = 1.

By the description of the indecomposable objects of PervU(Ys,k) recalled
in Sect. 6.5, we deduce that ı∗s (Tw0) is isomorphic to either Ts or Δe ⊕ Δs .
However, we have

Hom(ı∗s (Tw0), ICs) = Hom(Tw0 , ICs) = 0

by adjunction and Lemma 6.9(2) respectively; hence, this object cannot admit Δs

as a direct summand. �

7 Convolution

7.1 Definition

Let us denote by

m : G×U X → X

the map defined by m([g : hU ]) = ghU . If F,G belong to Db
U(X,k), there exists

a unique object F �̃G in Db
U(G ×U X,k) whose pullback under the quotient map

G×X → G×U X is a∗(F)� G (where a is as in Sect. 6.2). We then set

F &U G := m!(F �̃G)[dim T ].

This construction defines a functor Db
U(X,k) × Db

U(X,k) → Db
U(X,k), which is

associative up to (canonical) isomorphism.
Similarly, we denote by

m′ : G×U Y → Y

the map defined by m([g : hB]) = ghB. If F belongs to Db
U(X,k) and G belongs

to Db
U(Y,k), there exists a unique object F �̃G in Db

U(G×U Y,k) whose pullback
under the quotient map G× Y → G×U Y is a∗(F)� G. We then set

F &U G := m′!(F �̃G)[dim T ].

This construction defines a functor Db
U(X,k) × Db

U(Y,k) → Db
U(Y,k), which is

compatible with the product &U on Db
U(X,k) in the obvious sense.
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Remark 7.1 Since the quotient G/U is not proper, there exist two possible conven-
tions to define the convolution product on Db

U(X,k): one involving the functor m!
and one involving the functor m∗. We insist that here, we consider the version with
!-pushforward.

It is straightforward (using the base change theorem) to check that for F,G in
Db

U(X,k) and G′ in Db
U(Y,k), there exist canonical isomorphisms

π!(F &U G) ∼= F &U π!(G), (7.1)

π !(F &U G′) ∼= F &U π !(G′), (7.2)

π∗(F &U G′) ∼= F &U π∗(G′). (7.3)

Instead of the U -equivariant categories, one can also consider the B-equivariant
categories. In particular, very similar considerations lead to the definition of a
functor

(−) &B (−) : Db
U(Y,k)×Db

B(Y,k)→ Db
U(Y,k).

(Here, we do not insert any cohomological shift in the definition. Note also that since
G/B is proper, there is no difference between the ∗- and !-versions of convolution.)

We will denote by ForBU : Db
B(Y,k) → Db

U(Y,k) the natural forgetful functor.
The following fact is standard.

Lemma 7.2 For any F in Db
U(X,k) and G in Db

B(Y,k), there exists a canonical
isomorphism

F &U ForBU(G) ∼= π†(F) &B G.

7.2 Convolution and Monodromy

Lemma 7.3 For any F, G in Db
U(X� T ,k), the object F &U G belongs to the

subcategory Db
U(X� T ,k). Moreover, for any x ∈ R∧T , we have

ϕ∧
l,F&UG(x) = ϕ∧

l,F(x) &U idG,

ϕ∧
r,F&UG(x) = idF &U ϕ∧

r,G(x),

ϕ∧
r,F(x) &U idG = idF &U ϕ∧

l,G(x).

Proof The first claim is clear from (7.3). The proof of the first two isomorphisms
is easy and left to the reader. To prove the third one, we write the map m as a
composition m = m1 ◦m2 where m1 : G×B X → X and m2 : G×U X → G×B X
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are the obvious morphisms. Then we have

F &U G = m!(F �̃G)[dim T ] = (m1)!(m2)!(F �̃G)[dim T ].

We consider the action of T on G ×U X defined by t · [g : hU ] = [gt−1 : thU ].
Then F �̃G belongs to Db

c

(
(G×U X)� T ,k

)
for this action, and the corresponding

monodromy morphism satisfies

ϕ∧F �̃G(λ) = ϕ∧F(λ−1) �̃ϕ∧G(λ)

for any λ ∈ X∗(T ). (In fact, this equality can be checked after pullback to G×G/U ,
where it follows from Lemma 2.5.) Now, m2 is the quotient map for this T -action;
hence, Lemma 2.3 implies that

(m2)!ϕ∧F �̃G(λ) = id,

or in other words that

(m2)!
(
ϕ∧F(λ) �̃ idG

) = (m2)!
(
idF �̃ϕ∧G(λ)

)
.

Applying (m1)!, we deduce the desired equality. �

7.3 Extension to the Completed Category

We now explain how to extend the construction of the convolution product to the
framework of the completed category D̂U (X� T ,k).

Lemma 7.4 Let “ lim←−n
”Fn be an object of D̂U (X� T ,k). If G is in Db

U(X� T ,k),

resp. if G′ is in Db
U(Y,k), then the pro-object

“ lim←−
n

”Fn &U G, resp. “ lim←−
n

”Fn &U G′,

is representable by an object of Db
U(X� T ,k), resp. of Db

U(Y,k).

Sketch of Proof This property is proved along the lines of [BY, §4.3]; we sketch the
proof in the second case and leave the details and the first case to the reader. If G′ is
of the form ForBU(G′′) for some G′′ in Db

B(Y,k), then by Lemma 7.2, we have Fn &
U

G′ ∼= π†(Fn) &
B G′′. Hence, the claim follows from the assumption that the pro-

object “ lim←−n
”π†(Fn) is representable. The general case follows since the objects

of this form generate Db
U(Y,k) as a triangulated category, using the following

observation (which can be checked using the methods of [BY, Appendix A]):

Given a projective system of distinguished triangles An → Bn → Cn
[1]−→
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in Db
U(Y,k), if the pro-objects “ lim←−n

”An and “ lim←−n
”Bn are representable, then

“ lim←−n
”Cn is representable too (and this object is a cone of the induced morphism

“ lim←−n
”An → “ lim←−n

”Bn). �
Using Lemma 7.4, we already see that the functor &U : Db

U(X,k)×Db
U(Y,k)→

Db
U(Y,k) induces a functor

&̂ : D̂U (X� T ,k)×Db
U(Y,k)→ Db

U(Y,k). (7.4)

Now, let F = “ lim←−n
”Fn and G = “ lim←−m

”Gm be two objects of D̂U (X� T ,k).

For any fixed m, by Lemma 7.4, the pro-object “ lim←−n
”Fn &U Gm is representable

by an object of Db
U(X� T ,k). Therefore, we can consider the pro-object

F &̂G := “ lim←−
m

”“ lim←−
n

”Fn &U Gm.

We claim that this pro-object belongs to D̂U (X� T ,k). Indeed, it is clearly
uniformly bounded. And using (7.1), we see that

“ lim←−
m

”π†

(

“ lim←−
n

”Fn &U Gm

)

∼= “ lim←−
m

”

(

“ lim←−
n

”Fn &U π†(Gm)

)

∼= “ lim←−
m

”
(
F &̂ π†(Gm)

) ∼= F &̂

(

“ lim←−
m

”π†(Gm)

)

.

Since by assumption the pro-object “ lim←−m
”π†(Gm) is representable, this shows that

F &̂G is π -constant, which finishes the proof of our claim.

Remark 7.5 Let F and G be as above. Using similar arguments, one can check that
for any fixed n ≥ 0, the pro-object “ lim←−m

”Fn &U Gm is representable so that it
makes sense to consider the pro-object

“ lim←−
n

”“ lim←−
m

”Fn &U Gm.

Using standard results on inverse limits (see, e.g., [KS2, Proposition 2.1.7]), one can
show that this pro-object is canonically isomorphic to F &̂G.

This construction provides us with a functor

&̂ : D̂U (X� T ,k)× D̂U (X� T ,k)→ D̂U (X� T ,k).

This functor is associative in the obvious sense and compatible with (7.4) in
the sense that for F,G in D̂U (X� T ,k) and H in Db

U(Y,k), we have canonical
isomorphisms
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(F &̂G) &̂H ∼= F &̂ (G &̂H), (7.5)

π†(F &̂G) ∼= F &̂ π†(G). (7.6)

The object Δ̂e = ∇̂e is a unit for this product (at least in the case when char(k) >
0),3 as proved in the following lemma.

Lemma 7.6 Assume that char(k) > 0. Then for any F in D̂U (X� T ,k), there exist
canonical isomorphisms

Δ̂e &̂F ∼= F ∼= F &̂ Δ̂e.

Proof For any G in Db
U(X� T ,k), we have

Δ̂e &̂G ∼= “ lim←−
n

”a!(LT ,n � G)[2r],

where a : T × X → X is the action morphism defined by a(t, gU) = tgU . Now,
we have canonical identifications

Db
U(G/U,k) ∼= Db

U×U(G,k) ∼= Db
U(U\G,k).

Under these identifications, the full subcategory Db
U(X� T ,k) ⊂ Db

U(G/U,k)

coincides with the category Db
U(U\G� T ,k) defined relative to the T -action on

U\G defined by t · Ug = Utg and the stratification of B\G by B-orbits. Hence,
Lemma 3.4 provides a canonical isomorphism Δ̂e &̂G ∼= G. Passing to (formal)
projective limits, we deduce a similar isomorphism for any G in D̂U (X� T ,k).

The proof of the isomorphism F ∼= F &̂ Δ̂e follows from similar considerations
together with Remark 7.5. �

One can easily check that these constructions provide Db
U(X� T ,k) with the

structure of a monoidal category (in the case when char(k) > 0).

7.4 Convolution of Standard, Costandard, and Tilting Objects

Lemma 7.7

(1) For any w ∈ W , we have ∇̂w−1 &̂ Δ̂w
∼= Δ̂e.

(2) If v,w ∈ W and if �(vw) = �(v)+ �(w), then we have

Δ̂v &̂ Δ̂w
∼= Δ̂vw, ∇̂v &̂ ∇̂w

∼= ∇̂vw.

3This assumption is probably unnecessary. But since this is the setting we are mostly interested in,
we will not consider the possible extension of this claim to the characteristic-0 setting.



310 R. Bezrukavnikov and S. Riche

Proof We prove the first isomorphism in (2); the other claims can be obtained
similarly. By (7.6) and (5.3), we have

π†(Δ̂v &̂ Δ̂w) ∼= Δ̂v &̂ π†(Δ̂w) ∼= Δ̂v &̂ Δw.

Since Δw is a B-equivariant perverse sheaf, using Lemma 7.2, we deduce that

π†(Δ̂v &̂ Δ̂w) ∼= Δv &B Δw.

Now, it is well known that the right-hand side is isomorphic to Δvw; see, for
example, [BBM, §2.2] or [AR3, Proposition 4.4]. Then the claim follows from
Remark 5.10. �
Lemma 7.8 Let s ∈ S. For any tilting perverse sheaf T̂ in D̂U (X� T ,k), the object
T̂s &̂ T̂ is a tilting perverse sheaf, and for any w ∈ W , we have

(T̂s &̂ T̂ : Δ̂w) = (T̂ : Δ̂w)+ (T̂ : Δ̂sw).

Proof We will prove that for any w ∈ W , the object T̂s &̂ Δ̂w admits a standard
filtration, the multiplicity of Δ̂v being 1 if v ∈ {w, sw}, and 0 otherwise. Similar
arguments show that T̂s &̂ ∇̂w admits a costandard filtration, and the desired claim
will follow. First, assume that sw > w. Then using the exact sequence Δ̂s ↪→ T̂s �
Δ̂e (see Sect. 6.5) and applying (−) &̂ Δ̂w, we obtain a distinguished triangle

Δ̂s &̂ Δ̂w → T̂s &̂ Δ̂w → Δ̂e &̂ Δ̂w
[1]−→ .

Here, Lemma 7.7(2) implies that the first term is isomorphic to Δ̂sw and that the
third term is isomorphic to Δ̂w, which shows the desired property. If now sw < w,
we use the exact sequence Δ̂e ↪→ T̂s � ∇̂s to obtain a distinguished triangle

Δ̂e &̂ Δ̂w → T̂s &̂ Δ̂w → ∇̂s &̂ Δ̂w
[1]−→ .

We conclude as above, using also Lemma 7.7(1) to see that the third term is
isomorphic to Δ̂sw. �

Remark 7.9 One can easily deduce from Lemma 7.8 that the tilting objects in Ô
are the direct sums of direct summands of objects of the form T̂s1 &̂ · · · &̂ T̂sr with
s1, · · · , sr ∈ S and moreover that the convolution product of two tilting objects
is again a tilting object. Similarly, the tilting objects in O are the direct sums of
direct summands of objects of the form T̂s1 &̂ · · · &̂ T̂sr &̂ Δe with s1, · · · , sr ∈ S,
and T̂ &̂T is tilting in O if T̂ is tilting in Ô and T is tilting in O. In particular, this
provides a “Bott–Samelson type” construction of these tilting objects.

Proposition 7.10 For any v,w ∈ W , we have

Δ̂v &̂ T̂w0 &̂ Δ̂w
∼= T̂w0 .
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Proof Of course, it is enough to prove that for v,w ∈ W , we have

Δ̂v &̂ T̂w0
∼= T̂w0 and T̂w0 &̂ Δ̂w

∼= T̂w0 .

And for this, in view of Proposition 5.12, it suffices to prove that

π†
(
Δ̂v &̂ T̂w0

) ∼= Tw0 and π†
(
T̂w0 &̂ Δ̂w

) ∼= Tw0 . (7.7)

We first prove the second isomorphism in (7.7). By (7.6) and (5.3), we have

π†
(
T̂w0 &̂ Δ̂w

) ∼= T̂w0 &̂ π†(Δ̂w) ∼= T̂w0 &̂ Δw.

Since Δw is a B-equivariant perverse sheaf, using Lemma 7.2, we deduce that

T̂w0 &̂ Δw
∼= Tw0 &B Δw.

Hence, to prove the second isomorphism in (7.7), we only have to prove that

Tw0 &B Δw
∼= Tw0 . (7.8)

It is known that any object of the form ∇u &B Δv is perverse (see, e.g., [AR3,
Proposition 4.6] or [ABG, Proposition 8.2.4] for similar claims). In particular, it
follows that Tw0 &B Δw is perverse. And since Δw &B ∇w−1 ∼= Δe, for any x ∈ W

and n ∈ Z, we have

HomDb
U (Y,k)(Tw0 &B Δw, ICx[n]) ∼= HomDb

U (Y,k)(Tw0 , ICx &B ∇w−1 [n]).

Now since the realization functor DbO → Db
U(Y,k) is an equivalence of categories

(see, e.g., [BGS, Corollary 3.3.2], whose proof applies to any field of coefficients),
and in view of Lemma 6.9(2), for y ∈ W and m ∈ Z, we have

HomDb
U (Y,k)(Tw0 , ICy[m]) ∼=

{
k if y = e and m = 0;
0 otherwise.

It is not difficult to see that if x �= e and if G belongs to Db
B(Y,k), then all the

composition factors of the perverse cohomology objects of ICx &B G are of the form
ICy with y �= e; using also Lemma 6.7, we deduce that

HomDb
U (Y,k)(Tw0 , ICx &B ∇w−1 [n]) ∼=

{
k if x = e and n = 0;
0 otherwise.
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It follows that the perverse sheaf Tw0 &
BΔw is the projective cover of ICe and hence

that it is isomorphic to Tw0 by Lemma 6.9(2). This finally proves (7.8) and hence
also the second isomorphism in (7.7).

We now consider the first isomorphism in (7.7). If v = e, then it follows from
Lemma 7.7 that Δ̂e &̂ T̂w0 is a tilting perverse sheaf and has the same standard
multiplicities as T̂w0 ; therefore, it is isomorphic to T̂w0 . Now, assume the claim
is known for v �= w0, and choose s ∈ S such that vs > v. By the same arguments
as in the proof of Lemma 7.8, we have an exact sequence of perverse sheaves

Δ̂vs ↪→ Δ̂v &̂ T̂s � Δ̂v. (7.9)

From Lemma 7.8, we deduce that T̂s &̂Tw0
∼= (Tw0)

⊕2. Therefore, convolving (7.9)
with Tw0 on the right and using induction, we obtain a distinguished triangle

Δ̂vs &̂Tw0 → (Tw0)
⊕2 → Tw0

[1]−→

in Db
U(Y,k). As above, the object Δ̂vs &̂Tw0 is perverse; hence, this triangle is

a short exact sequence in O. Since Tw0 is projective (see Lemma 6.9(2)), the
surjection (Tw0)

⊕2 � Tw0 must be split, and we finally obtain that Δ̂vs &̂Tw0
∼=

Tw0 , as desired. �

8 Variations on Some Results of Kostant–Kumar

From now on, we assume that G is semisimple, of adjoint type. (Of course, this
assumption is harmless if one is mainly interested in the category O.) We will denote
by Φ∨ the coroot system of (G, T ), and by Φ∨+ ⊂ Φ∨ the positive coroots.

8.1 The Pittie–Steinberg Theorem

We set

d =
∏

α∨∈Φ∨+
(1− eα

∨
) ∈ RT

and denote by ρ∨ ∈ X∗(T ) the half sum of the positive coroots.
The following result is an easy application of the Pittie–Steinberg theorem.

Theorem 8.1 The (R∧T )W -module R∧T is free of rank #W . More precisely, this
module admits a basis (ew)w∈W such that

det
(
(w(ev))v,w∈W

) = ((−1)|Φ∨+|e−ρ∨d
)|W |/2

. (8.1)
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Proof By the Pittie–Steinberg theorem (see [St]), we know that under our assump-
tions, Z[X∗(T )] is free over Z[X∗(T )]W , of rank #W . Moreover, from the proof
in [St], one sees that this module admits a basis such that (8.1) holds (see, e.g., [KK,
Proof of Theorem 4.4]). Now, there are canonical isomorphisms

k⊗Z Z[X∗(T )] ∼−→ k[X∗(T )], k⊗Z Z[X∗(T )]W ∼−→ k[X∗(T )]W .

(For the second one, we remark that Z[X∗(T )]W is a free Z-module, with a basis
consisting of the elements

∑
λ∈O eλ where O runs over W -orbits in X∗(T ). Since

a similar fact holds for k[X∗(T )]W , we deduce that the natural morphism k ⊗Z

Z[X∗(T )]W → k[X∗(T )]W is indeed an isomorphism.) Hence, RT is free over
(RT )

W , of rank #W , and admits a basis (ew)w∈W such that (8.1) holds.
Now, we consider completions. Let a ∈ R∧T , and write a as the limit of a sequence

(an)n≥0 of elements of RT . For any n ≥ 0, there exist (unique) elements (pn
w)w∈W

in (RT )
W such that

an =
∑

w∈W
pn
w · ew. (8.2)

We claim that each sequence (pn
w)n≥0 converges to a certain pw ∈ R∧T ; then pw will

belong to (R∧T )W , and we will have a =∑w∈W pw · ew, which will prove that the
elements (ew)w∈W generate R∧T over (R∧T )W .

Consider the matrix M := (v(ew))v,w∈W , with rows and columns parametrized
by W , and coefficients in RT . Then the equalities (8.2) imply that for any n ≥ 0, we
have

(v(an))v∈W = M · (pn
w)w∈W

in the space of vectors parametrized by W , and with values in the ring RT . Now (8.1)
shows that M is invertible in the space of matrices with coefficients in the fraction
field of RT and that d|W |/2 ·M−1 in fact has coefficients in RT . Moreover, we have

(d|W |/2 · pn
w)w∈W = (d|W |/2 ·M−1) · (v(an))v∈W . (8.3)

From this, we will deduce that each sequence (pn
w)n≥0 is Cauchy, which will prove

our claim. In fact, by the Artin–Rees lemma (applied to the RT -modules d|W |/2 ·
RT ⊂ RT and the ideal mT ), there exists an integer c such that

mn
T ∩ d|W |/2 · RT ⊂ d|W |/2 ·mn−c

T

for any n ≥ c. Now, if k ≥ 0 is fixed, for n,m , 0, we have an − am ∈ m
c+k
T .

From (8.3), we deduce that d|W |/2 · (pn
w − pm

w) belongs to m
c+k
T also, hence to

d|W |/2 ·mk
T . Hence, pn

w − pm
w belongs to mk

T , which finishes the proof of the claim.
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To conclude the proof, it remains to check that the elements (ew)w∈W are linearly
independent over (R∧T )W . However, if

∑

w∈W
pw · ew = 0

for some elements pw in (R∧T )W , then as above, we have M · (pw)w∈W = 0. Since
M is invertible (as a matrix with coefficients in the fraction field of R∧T ), it follows
that pw = 0 for any w ∈ W . �

Let us note the following consequences of this theorem:

• The R∧T -module R∧T ⊗(R∧T )W R∧T is free of rank #W .

• The k-vector space R∧T /(R∧T )
W+ has dimension #W , where (R∧T )

W+ is the kernel

of the map (R∧T )W ↪→ R∧T
ε∧T−→ k.

8.2 Some R∧
T
-Modules

In this subsection, we recall some constructions due to Kostant–Kumar [KK]
(replacing everywhere the T ∨-equivariant K-theory of the point—where T ∨ is the
torus dual to T —by R∧T ).

We will denote by Q∧
T the fraction field of R∧T . We then denote by QW the

smash product of Q∧
T and W ; in other words QW is a Q∧

T -vector space with a basis
(δw)w∈W , with the multiplication determined by

(aδw) · (bδv) = aw(b)δwv.

Of course, (δw)w∈W is also a basis for the action of Q∧
T given by right multiplication

in QW . We will denote by ι the anti-involution of QW determined by

ι(a) = a, ι(δw) = δw−1

for a ∈ Q∧
T and w ∈ W .

Following [KK], for s ∈ S, we set

ys := (δe + δs)
1

1− e−α∨s
= 1

1− e−α∨s
(δe − e−α∨s δs),

where α∨s is the simple coroot associated with s. The same computation as
for [KK, Proposition 2.4] shows that these elements satisfy the braid relations of
W ; therefore, by Matsumoto’s lemma, for w ∈ W , we can set

yw := ys1 · ys2 · (· · · ) · ysr ,
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where w = s1 · · · sr is any reduced expression. It is clear from definitions that
the matrix expressing these elements in the basis (δw)w∈W is upper triangular with
respect to the Bruhat order; in particular, (yw)w∈W is also a Q∧

T -basis of QW . We
set

YW :=
⊕

w∈W
R∧T · yw,

a free R∧T -module of rank #W . As in [KK, Corollary 2.5], one sees that YW is a
subring in QW and that (yw)w∈W is also a basis of YW as an R∧T -module for the
action induced by right multiplication.

We now consider

ΩW := HomQ∧T (QW ,Q∧
T ),

where QW is regarded as a Q∧
T -vector space for the action by right multiplication.

We will regard ΩW as a Q∧
T -vector space via (a · ψ)(b) = aψ(b) = ψ(ba) for a ∈

Q∧
T and b ∈ QW . We will sometimes identify this vector space with the vector space

Fun(W,Q∧
T ) of functions from W to Q∧

T , by sending the map ψ to the function
w �→ ψ(δw).

The space ΩW admits an action of QW (by Q∧
T -vector space automorphisms)

defined by

(y · ψ)(z) = ψ(ι(y) · z)

for y, z ∈ QW and ψ ∈ ΩW . (Note that the action of Q∧
T · δe ⊂ QW does not

coincide with the action of Q∧
T considered above.) Explicitly, we have

(ys · ψ)(δw) = ψ(δw)− e−w−1α∨s ψ(δsw)

1− e−w−1α∨s
. (8.4)

We will be interested in the subspace

ΨW := {ψ ∈ ΩW | ∀y ∈ YW , ψ(ι(y)) ∈ R∧T }.

Of course, this subspace is stable under the action of R∧T ⊂ Q∧
T . Since YW is

a subalgebra in QW , ΨW is also stable under the action of YW ⊂ QW . Since
(ι(yw))w∈W is a basis of ι(YW ) as a right R∧T -module, ΨW is free as an R∧T -module,
with a basis (ψw)w∈W determined by

ψw(ι(yv)) =
{

1 if v = w;
0 otherwise.

The following properties can be checked as in [KK, Proposition 2.22].
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Lemma 8.2

(1) For any v,w ∈ W , the element ψv(δw) belongs to R∧T and vanishes unless
v ≤ w.

(2) For any w ∈ W , we have

ψw(δw) =
∏

α∨∈Φ∨+
w(α∨)∈−Φ∨+

(1− eα
∨
).

(3) For w ∈ W and s ∈ S, we have

ys · ψw =
{
ψw + ψsw if sw < w;
0 otherwise.

In particular, Point (1) in this lemma shows that under the identification of ΩW

with Fun(W,Q∧
T ) considered above, ΨW is contained in the subset Fun(W,R∧T ) of

functions taking values in R∧T .

8.3 An Isomorphism of R∧
T
-Modules

Our goal in this subsection is to relate the algebra R∧T ⊗(R∧T )W R∧T with the objects
introduced in Sect. 8.2. Our proofs are based on “K-theoretic analogues” of some
arguments from [AJS, Appendix D].

Below, we will need the following lemma.

Lemma 8.3 Let f ∈ R∧T , and let α∨, β∨ be distinct positive coroots. If (1−eα
∨
) ·f

is divisible (in R∧T ) by 1− eβ
∨
, then f is divisible by 1− eβ

∨
.

Proof Let us first prove the similar claim where R∧T is replaced by RT everywhere.
For this, we denote by T ∨

k
the torus dual to T and consider α∨ and β∨ as characters

of T ∨
k

. Since α∨ and β∨ are linearly independent in the Z-module X∗(T ), the group
morphism

(α∨, β∨) : T ∨
k
→ (k×)2

is dominant, hence surjective. It follows that dim(ker(α∨)∩ker(β∨)) = dim(T ∨)−
2. Now, RT is a UFD, and the dimension condition means that 1− eα

∨
and 1− eβ

∨

have no common prime factor. If f ∈ RT and (1− eα
∨
) · f is divisible by 1− eβ

∨
,

each prime factor in the decomposition of 1 − eβ
∨

must appear in f , with at least
the same multiplicity. It follows that 1− eβ

∨
divides f , as desired.
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The claim we have just proved can be translated into the fact that the “Koszul
complex”

0 → RT
f �→((1−eβ

∨
)f,(1−eα

∨
)f )−−−−−−−−−−−−−−−→ RT ⊕ RT

(g,h) �→(1−eα
∨
)g−(1−eβ

∨
)h−−−−−−−−−−−−−−−−−→ RT → 0

(with nonzero terms in degrees −2, −1, and 0) has no cohomology in degree −1.
Since R∧T is flat over RT , applying the functor R∧T , we deduce that the complex

0 → R∧T
f �→((1−eβ

∨
)f,(1−eα

∨
)f )−−−−−−−−−−−−−−−→ R∧T ⊕ R∧T

(g,h) �→(1−eα
∨
)g−(1−eβ

∨
)h−−−−−−−−−−−−−−−−−→ R∧T → 0

has no cohomology in degree −1 either, which implies our lemma. �
Theorem 8.4 The morphism

τ : R∧T ⊗(R∧T )W R∧T → Fun(W,R∧T )

sending a ⊗ b to the function w �→ a ·w−1(b) is injective. Its image consists of the
functions f such that

f (w) ≡ f (wsα∨) mod (1− eα
∨
)

for any w ∈ W and any coroot α∨.

Proof Consider the basis (ew)w∈W of R∧T as an (R∧T )W -module considered in
Theorem 8.1. Then (1 ⊗ ew)w∈W is a basis of R∧T ⊗(R∧T )W R∧T as an R∧T -module.

Moreover, τ(1⊗ew) is the function v �→ v−1(ew). In view of (8.1), these functions
are linearly independent in Fun(W,Q∧

T ). Hence indeed, our map is injective, and
its image is (freely) spanned by these functions as an R∧T -module.

Now, let us identify ΨW with a subset of Fun(W,R∧T ) (see Lemma 8.2). We
claim that ψw0 belongs to the image of τ . In fact, this is equivalent to the existence
of elements (pw)w∈W in R∧T such that

τ

(
∑

w∈W
pw ⊗ ew

)

= ψw0 ,

or in other words (using Lemma 8.2(1)–(2)) such that

∑

w∈W
pwv(ew) =

{
d if v = w0;
0 otherwise.
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The arguments above show that there exist unique elements (pw)w∈W in Q∧
T which

satisfy these equalities. As explained in [KK, Proof of Theorem 4.4], these elements
in fact belong to RT , hence in particular to R∧T .

Recall the action of QW on ΩW considered in Sect. 8.2. Using the formula (8.4),
one sees that for any a, b ∈ R∧T and s ∈ S, we have

ys · τ(a ⊗ b) = τ

(

a ⊗ b − e−α∨s s(b)

1− e−α∨s

)

.

In particular, this shows that the image of τ is stable under the operators ys (s ∈ S).
Since (as we have seen above) this image contains ψw0 , by Lemma 8.2(3), it contains
all the elements ψw (w ∈ W ), hence ΨW .

It is clear that any function f in the image of τ satisfies

f (w) ≡ f (wsα∨) mod (1− eα
∨
)

for any w ∈ W and any coroot α∨. To conclude the proof, it only remains to prove
that any function which satisfies these conditions is a linear combination of the
elements (ψw)w∈W . For this, we choose a total order on W which extends the Bruhat
order and argue by descending induction on the smallest element w ∈ W such that
f (w) �= 0. Fix f , and let w be this smallest element. Then for any positive coroot
α∨ such that w(α∨) ∈ −Φ∨+, we have wsα∨ < w in the Bruhat order. Hence,
f (wsα∨) = 0, which implies that f (w) is divible by 1 − eα

∨
. By Lemmas 8.2(2)

and 8.3, we deduce that there exists a ∈ R∧T such that

f (w) = aψw(δw).

Then f −aψw vanishes on w and all the elements smaller than w (by definition of w
and Lemma 8.2(1)). By induction, we deduce that f − aψw is a linear combination
of elements (ψv)v∈W , which concludes the proof. �

8.4 A Different Description of the Algebra R∧
T

⊗(R∧
T
)W R∧

T

The results in this subsection do not play any significant role below; we state them
only for completeness.

As in Remark 2.2, the algebra R∧T identifies with the algebra of functions on
the formal neighborhood FNT ∨

k
({1}) of the identity in the k-torus T ∨

k
which is

Langlands dual to T (considered as a scheme). Hence, R∧T ⊗(R∧T )W R∧T identifies
with the algebra of functions on the fiber product

FNT ∨
k
({1})×(FNT∨

k

({1}))/W FNT ∨
k
({1}).
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On the other hand, consider the formal neighborhood FNT ∨
k
×(T∨

k
)/W T ∨

k
({(1, 1)}) of

the base point in T ∨
k
×(T ∨

k
)/W T ∨

k
(again, considered as a scheme). By the universal

property of the fiber product, there exists a natural morphism of schemes

FNT ∨
k
×(T∨

k
)/W T ∨

k
({(1, 1)})→ FNT ∨

k
({1})×(FNT∨

k

({1}))/W FNT ∨
k
({1}). (8.5)

Lemma 8.5 The morphism (8.5) is an isomorphism.

Proof We have to prove that the natural algebra morphism

R∧T ⊗(R∧T )W R∧T → O(T ∨
k
×(T ∨

k
)/W T ∨

k
)∧ (8.6)

is an isomorphism, where the right-hand side is the completion of O(T ∨
k
×(T ∨

k
)/W

T ∨
k
) at its natural augmentation ideal J .
Let I := ker(εT ) ⊂ RT ; then we have J = I ⊗(RT )

W RT + RT ⊗(RT )
W I . For

any n ∈ Z≥1, we have J 2n ⊂ In ⊗(RT )
W RT + RT ⊗(RT )

W In. Hence, for any
w ∈ W , the morphism RT ⊗(RT )

W RT → RT /I
n sending a ⊗ b to the class of

a ·w−1(b) factors through a morphism (RT ⊗(RT )
W RT )/J

2n → RT /I
n. From this

observation, it follows that the morphism τ of Theorem 8.4 factors through (8.6),
proving that the latter morphism is injective.

On the other hand, from Theorem 8.1, we see that the natural morphism

R∧T ⊗(RT )
W RT → R∧T ⊗(R∧T )W R∧T

is an isomorphism; hence, R∧T ⊗(R∧T )W R∧T is the completion of RT ⊗(RT )
W RT with

respect to the ideal I ⊗(RT )
W RT . Since I ⊗(RT )

W RT ⊂ J , we have for any n a
surjection

(RT ⊗(RT )
W RT )/(I ⊗(RT )

W RT )
n � (RT ⊗(RT )

W RT )/J
n.

Since these algebras are finite-dimensional, passing to inverse limits, we deduce
that (8.6) is surjective (by the Mittag–Leffler condition), which finishes the proof.

�

9 Endomorphismensatz

9.1 Statement and Strategy of Proof

Our goal in this section is to prove the following theorem, which constitutes the
main result of this article.
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Theorem 9.1 In the case T̂ = T̂w0 , the monodromy morphism of Proposition 6.4
is an algebra isomorphism

R∧T ⊗(R∧T )W R∧T
∼−→ End(T̂w0).

Let us note the following consequence, which does not involve the completed
category.

Corollary 9.2 The morphism ϕ∧
l,Tw0

of Sect. 6.2 induces an algebra isomorphism

RT /(RT )
W+

∼−→ End(Tw0),

where (RT )
W+ is the kernel of the composition (RT )

W ↪→ RT
εT−→ k.

Proof Theorem 9.1 and Lemma 5.9(2) imply that monodromy induces an algebra
isomorphism

R∧T /(R∧T )W+
∼−→ End(Tw0),

where (R∧T )
W+ is the kernel of the composition (R∧T )W ↪→ R∧T

ε∧T−→ k. Hence, to
conclude, it suffices to prove that the morphism

RT /(RT )
W+ → R∧T /(R∧T )W+

induced by the inclusion RT ↪→ R∧T is an isomorphism. However, this morphism
is easily seen to be injective. Since (by Theorem 8.1 and its proof) both sides have
dimension #W , the desired claim follows. �

In order to prove Theorem 9.1, we first remark that by Lemma 6.9(1) and (5.5),
we have

grw(T̂w0)
∼= Δ̂w

for any w ∈ W . We fix such isomorphisms, which provides an isomorphism

gr(T̂w0)
∼=
⊕

w∈W
Δ̂w.

By Lemma 5.4(2), the right monodromy morphism induces an isomorphism

R∧T
∼−→ End(Δ̂w)

for any w ∈ W . Taking also Lemma 6.2 into account, we deduce an algebra
isomorphism
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End
(
gr(T̂w0)

) ∼=
⊕

w∈W
R∧T . (9.1)

We now consider the morphisms

R∧T ⊗(R∧T )W R∧T
∼−→ R∧T ⊗(R∧T )W R∧T → End(T̂w0)→

⊕

w∈W
R∧T , (9.2)

where:

• The first arrow is given by a ⊗ b �→ b ⊗ a.
• The second arrow is the morphism from Proposition 6.4.
• The third arrow is induced by the functor gr, taking into account the isomor-

phism (9.1).

By (6.4) and Lemma 6.1, the composition of the morphisms in (9.2) is the morphism
τ of Theorem 8.4, if we identify

⊕
w∈W R∧T with Fun(W,R∧T ) in the obvious way.

In particular, this composition is injective, which proves that the morphism

R∧T ⊗(R∧T )W R∧T → End(T̂w0)

from Theorem 9.1 is injective. We also deduce (using Theorem 8.4) that the image
of the third morphism in (9.2) contains the subset of vectors (aw)w∈W such that

awsα∨ ≡ aw mod (1− eα
∨
) (9.3)

for any coroot α∨. Below, we will prove the following claim.

Proposition 9.3 If (ay)y∈W belongs to the image of the third morphism in (9.2),
then we have (9.3) for any w ∈ W and any coroot α∨.

This proposition will complete the proof of Theorem 9.1. Indeed, from Corol-
lary 6.3, we know that the third arrow in (9.2) is injective. The discussion above
shows that its image coincides with the image of its composition with the second
arrow in (9.2). Hence, this second arrow (i.e., the morphism from Theorem 9.1) is
surjective.

9.2 A Special Case

In this subsection, we will prove that if (ay)y∈W belongs to the image of third
morphism in (9.2), then (9.3) holds when w = e and α∨ is a simple coroot. We
will denote by α the (simple) root associated with α∨. To simplify notation, we set
s := sα∨ .

We will denote by j s the (closed) embedding of π−1(Ys) = Xs �Xe in X.



322 R. Bezrukavnikov and S. Riche

Lemma 9.4 We have j∗s (T̂w0)
∼= T̂s . Moreover, the morphism

grw(T̂w0)→ grw(T̂s)

induced by the adjunction morphism T̂w0 → (j s)∗j∗s T̂w0 = T̂s is an isomorphism
if w ∈ {e, s}, and 0 otherwise.

Proof Since T̂w0 is tilting (in particular, admits a standard filtration), it is clear that
the adjunction morphism T̂w0 → (j s)∗(j s)

∗T̂w0 is surjective and that the induced
morphism grw(T̂w0) → grw

(
(j s)∗j∗s T̂w0

)
is an isomorphism if w ∈ {e, s}, and 0

otherwise. Hence, it suffices to prove the isomorphism j∗s (T̂w0)
∼= T̂s . However, if

we still denote by π the morphism π−1(Ys)→ Ys induced by π , we have

π†(j
∗
s T̂w0)

∼= ı∗s π†(T̂w0) = ı∗sTw0

where ıs : Ys → Y is the embedding (see (5.1)). By Lemma 6.10, it follows that

π†(j
∗
s T̂w0)

∼= Ts .

We deduce the desired isomorphism, in view of Proposition 5.12. �
Remark 9.5 The objects T̂w are not canonical; they can be chosen only up to
isomorphism. (This does not affect Theorem 9.1, since monodromy commutes with
any morphism and hence is invariant under conjugation in the obvious sense.)
However, the proof of Lemma 9.4 shows that once T̂w0 is chosen, the object T̂s

(for any s ∈ S) can be defined canonically as (j s)∗j∗s T̂w0 .

From Lemma 9.4, we deduce that the composition

End(T̂w0)→
⊕

w∈W
R∧T

(aw)w∈W �→(ae,as )−−−−−−−−−−→ R∧T ⊕ R∧T

(where the first arrow is the third morphism in (9.2)) factors as the composition

End(T̂w0)
j∗s−→ End(T̂s)

gr−→ R∧T ⊕ R∧T . (9.4)

Now, by Corollary 6.6, the morphism

R∧T ⊗(R∧T )W R∧T → End(T̂s)

of Proposition 6.4 is surjective, and its composition with the second arrow in (9.4)
identifies with the morphism

a ⊗ b �→ (a · b, s(a) · b)
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(see Lemma 6.1). Since ab ≡ s(a)b mod (1 − eα
∨
), this proves that if (ay)y∈W

belongs to the image of the third morphism in (9.2), then indeed we have ae ≡ as
mod (1− eα

∨
).

9.3 The General Case

In this subsection, we deduce Proposition 9.3 from the special case considered
in Sect. 9.2. The main idea will be the following: recall diagram (9.2). We have
natural actions of W × W on the first, second, and fourth terms in this diagram,
respectively, defined by

ϑ
(1)
(w,v)(a ⊗ b) = w(a)⊗ v(b), ϑ

(2)
(w,v)(a ⊗ b) = v(a)⊗ w(b),

(
ϑ

(4)
(w,v)(f )

)
(x) = w(f (v−1xw))

for w, v ∈ W , a, b ∈ R∧T , f ∈ Fun(W,R∧T ), x ∈ W . It is easily seen that the
first arrow and the composition of the second and third arrows are equivariant with
respect to these actions. We will now define an action of W ×W on End(T̂w0) that
makes the whole diagram (9.2) equivariant. This will imply that the image of the
third morphism in this diagram is stable under this (W ×W)-action.

For w, v ∈ W , we denote by ϑ
(3)
(w,v) the automorphism of End(T̂w0) defined as

the composition

End(T̂w0)
∼−→ End(Δ̂v &̂ T̂w0 &̂ Δ̂w−1)

∼−→ End(T̂w0)

where the first arrow is induced by the functor Δ̂v &̂ (−) &̂ Δ̂w−1 and the second
arrow is induced by any choice of isomorphism as in Proposition 7.10.

Lemma 9.6 For any w, v ∈ W , the automorphism ϑ
(3)
(w,v) does not depend on the

choice of isomorphism as in Proposition 7.10. Moreover, these isomorphisms define
an action of W × W on End(T̂w0), and the second and third arrows in (9.2) are
equivariant with respect to this action and the ones defined above.

Proof First, we claim that the second morphism in (9.2) intertwines the automor-
phisms ϑ

(2)
(w,v) and ϑ

(3)
(w,v). For this, we remark that the image under this morphism

of a ⊗ b is ϕ∧
l,T̂w0

(a) ◦ ϕ∧
r,T̂w0

(b). Now, we have

idΔ̂v
&̂

(

ϕ∧
l,T̂w0

(a) ◦ ϕ∧
r,T̂w0

(b)

)

&̂ idΔ̂
w−1

= ϕ∧r,Δ̂v
(a) &̂ idT̂w0

&̂ ϕ∧l,Δ̂
w−1

(b)

= ϕ∧l,Δ̂v
(v(a)) &̂ idT̂w0

&̂ ϕ∧r,Δ̂
w−1

(w(b))

= ϕ∧
l,Δ̂v &̂ T̂w0 &̂ Δ̂

w−1
(v(a)) ◦ ϕ∧

r,Δ̂v &̂ T̂w0 &̂ Δ̂
w−1

(w(b)),
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where the first and third equalities follow from Lemma 7.3, and the second one
from Lemma 6.1. Now, by functoriality of monodromy, the conjugate of this
automorphism with any choice of isomorphism Δ̂v &̂ T̂w0 &̂ Δ̂w−1

∼−→ T̂w0 is
ϕ∧

l,T̂w0

(v(a)) ◦ ϕ∧
r,T̂w0

(w(b)), which concludes the proof of our claim.

We have already remarked that all the R∧T -modules appearing in (9.2) are free
of rank #W (see in particular Lemma 5.9(2) and Theorem 8.1). Moreover, from
the proof of Theorem 8.4, we see that the image under the functor Q∧

T ⊗R∧T −
(where, as in Sect. 8.2, Q∧

T is the fraction field of R∧T ) of the composition of the
three arrows in this diagram is an isomorphism. Hence, the same property holds
for any of the maps in this diagram. Since the composition of the second and third
maps intertwines ϑ(2)

(w,v) and ϑ
(4)
(w,v), and since the second map intertwines ϑ(2)

(w,v) and

ϑ
(3)
(w,v), we deduce that the third map intertwines ϑ

(3)
(w,v) and ϑ

(4)
(w,v). Since this map

is injective, from this property, we see that ϑ(3)
(w,v) does not depend on the choice of

isomorphism as in Proposition 7.10 and that these isomorphisms define an action of
W ×W on End(T̂w0). �
Proof of Proposition 9.3 First, we assume that α∨ is a simple coroot. Then since
ϑ

(4)
(e,w−1)

((ay)y∈W) also belongs to the image of the third map in (9.2), by the special
case considered in Sect. 9.2, we must have

aw ≡ awsα∨ mod (1− eα
∨
),

as desired.
Now, we consider the general case. We choose v ∈ W such that β∨ := v(α∨) is

a simple coroot. To prove that aw ≡ awsα∨ mod (1 − eα
∨
), we only have to prove

that

v(aw) ≡ v(awsα∨ ) mod (1− eβ
∨
).

However, since wsα∨ = wv−1sβ∨v, this fact follows from the observation that

ϑ
(4)
(v,e)((ay)y∈W) also belongs to the image of the third map in (9.2), and the case

of simple coroots treated above (applied with “w” replaced by wv−1). �

10 Variant: The étale Setting

All the constructions we have considered so far have counterparts in the world of
étale sheaves, which we briefly review in this section. Here, we need to assume that
k is a finite field and will denote its characteristic by �.
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10.1 Completed Derived Categories

We choose an algebraically closed field F of characteristic p �= �. Instead of
considering a complex connected reductive group, one can consider a connected
reductive group G over F, a Borel subgroup B ⊂ G, and a maximal torus T ⊂ B.
Then we denote by U the unipotent radical of B, and we set X := G/U, Y := G/B.
We will denote by D

b,et
c (X,k) and D

b,et
c (Y,k) the bounded constructible derived

categories of étale k-sheaves on X and Y, respectively. Then one can define the
subcategory D

b,et
U (Y,k) ⊂ D

b,et
c (Y,k) as the U-equivariant4 derived category of

Y and out of that define the associated categories D
b,et
U (X� T,k) and D̂et

U(X� T,k)
exactly as above.

In this setting, the monodromy construction (see Sect. 2) is a bit more subtle, but
the required work has been done by Verdier [Ve]. Namely, we start by choosing once
and for all a topological generator (xn)n≥0 of the pro-finite group

lim←−
n

{x ∈ F | x�n = 1}

(where the transition maps are given by x �→ x�). As in the proof of Lemma 3.4,
we denote, for n ≥ 0, by [n] : T → T the morphism z �→ z�

n
, and set an :=

a ◦ ([n] × idX), where a : T × X → X is the action morphism. Then given F in
D

b,et
U (X� T,k), for n, 0, there exists an isomorphism

fF
n : (an)∗F ∼−→ p∗F

whose restriction to {1} × X is the identity. Moreover, these isomorphisms are
essentially unique and functorial in the same sense as in the proof of Lemma 3.4;
see [Ve, Proposition 5.1]. Given λ ∈ X∗(T), restricting the isomorphism fF

n to
{λ(xn)} × X (for n , 0) provides a canonical automorphism of F, which by
definition is ϕλ

F
. Starting with these automorphisms, one obtains the morphism ϕ∧

F
,

which still satisfies the properties of Sect. 2.2.
Lemma 2.6 continues to hold in this setting, but its proof has to be adapted to the

new definition of monodromy. Note that when F is a perverse sheaf, the morphisms
fF
n are unique when they exist; in other words, they are determined by the condition

that their restriction to {1}×X is the identity. So if F is as in Lemma 2.6, there exists
n and an isomorphism fF

n : (an)∗F ∼−→ p∗F whose restriction to {1} × X is the

identity. The fact that the monodromy is trivial means that the restriction of fF
n to

4Recall that in the étale setting, the U-equivariant and B-constructible derived categories are
different if p > 0, due to the existence of nonconstant local systems on affine spaces. Here
D

b,et
U (Y,k) is the full triangulated subcategory of D

b,et
c (Y,k) generated by pushforwards of

constant local systems on strata.
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{xn}×X is the identity also. Hence, the pullback of fF
n under the automorphism of

Gm × X sending (z, x) to (zxn, x) is also an isomorphism (an)
∗F ∼−→ p∗F whose

restriction to {1}×X is the identity; therefore, this isomorphism coincides with fF
n .

Now, the morphism [n] × idX is étale since p �= �, and our observation amounts to
saying that the morphism fF

n satisfies the property that its pullbacks under both
projections (Gm × X) ×(Gm×X) (Gm × X) → Gm × X (where the fiber product is
taken with respect to the morphism [n] ×X on both sides) coincide. Since perverse
sheaves form a stack for the étale topology (see [BBD, §2.2.19]), it follows that
this morphism descends to an isomorphism a∗F ∼−→ p∗F; in other words, F is a
Gm-equivariant perverse sheaf.

Next, the étale fundamental group πet
1 (Gm) of Gm is more complicated than

π1(C
×). However, the étale covers [n] : Gm → Gm define a surjective morphism

πet
1 (Gm) � lim←−

n

{x ∈ F | x�n = 1}.

Recall that we have fixed a topological generator of the right-hand side; this allows
us to identify this group with lim←−n

Z/�nZ. We have a natural isomorphism

X∗(T)⊗Z πet
1 (Gm)

∼−→ πet
1 (T),

hence a natural surjection

πet
1 (T)→ X∗(T)⊗Z

(

lim←−
n

Z/�nZ

)

.

For n ≥ 0, one can then consider the quotient RT/m
�n

T , with its natural action of
X∗(T). This action factors through an action of X∗(T)⊗Z Z/�nZ; hence, it defines

an action of X∗(T)⊗Z

(
lim←−n

Z/�nZ
)

. By pullback, we deduce a finite-dimensional

continuous πet
1 (T)-module; the corresponding k-local system on T will be denoted

Let
T,n. Then we can define the pro-unipotent local system as

L̂
et
T = “ lim←−

n

”Let
T,n.

Using this object as a replacement for L̂T, all the constructions of Sects. 4–5 carry
over to the present context, with identical proofs.
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10.2 Soergel’s Endomorphismensatz

Once the formalism of completed categories is in place, all the considerations
of Sects. 6–7 carry over also. This allows one to extend the results of Sect. 9, in
particular Theorem 9.1 and Corollary 9.2, to the étale setting (assuming that G is
semisimple, of adjoint type).

10.3 Whittaker Derived Category

The main point of introducing the étale variant is that one can combine our
considerations with the following “Whittaker-type” construction. Here, we have to
assume that there exists a primitive p-th root of unity in F; we will fix once and for
all a choice of such a root.

Let U+ be the unipotent radical of the Borel subgroup of G opposite to B with
respect to T, and choose for any s an isomorphism between the root subgroup
of G associated with the simple root corresponding to s and the additive group
Ga. (Here, we assume that the roots of B are the negative roots.) We deduce an
isomorphism U+/[U+,U+] ∼= (Ga)

S . Composing with the addition map (Ga)
S →

Ga, we deduce a “nondegenerate” morphism χ : U+ → Ga. Our choice of
primitive p-th root of unity determines an Artin–Schreier local system on Gm,
whose pullback to U+ will be denoted Lχ . Then we can define the “Whittaker”
derived category D

b,et
Wh (Y,k) as the full subcategory of D

b,et
c (Y,k) consisting of

(U+,Lχ )-equivariant objects. (See, e.g., [AR2, Appendix A] for a reminder on the
construction of this category.) If j : U+B/B ↪→ Y is the (open) embedding then,
for any F in D

b,et
Wh (Y,k), adjunction provides isomorphisms

j!j∗F
∼−→ F

∼−→ j∗j∗F.

Next, we can define the corresponding category D
b,et
Wh (X� T,k) as the triangu-

lated subcategory generated by the objects of the form π†F with F in D
b,et
Wh (Y,k)

and deduce a completed category D̂et
Wh(X� T,k). If ĵ : π−1(U+B/B) ↪→ X

is the embedding, then for any object F in D̂et
Wh(X� T,k), adjunction provides

isomorphisms

ĵ!ĵ∗F
∼−→ F

∼−→ ĵ∗ĵ∗F.

In particular, using the obvious projection π−1(U+B/B) = U+B/U ∼= U+ × T→
T, we obtain a canonical equivalence of triangulated categories

DbModfg(R∧T )
∼−→ D̂et

Wh(X� T,k). (10.1)
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The image of the free rank-1 R∧T -module is the standard object Δ̂χ constructed
as in Sect. 5.3 (with respect to the orbit U+B/B ⊂ X). This object is canon-
ically isomorphic to the corresponding costandard object ∇̂χ . Transporting the
tautological t-structure along the equivalence (10.1), we obtain a t-structure on
D̂et

Wh(X� T,k) which we will call the perverse t-structure and whose heart will be
denoted P̂ et

Wh(X� T,k).
The categories D

b,et
Wh (Y,k), Db,et

Wh (X� T,k), and D̂et
Wh(X� T,k) are related to the

categories D
b,et
U (Y,k), D

b,et
U (X� T,k), and D̂et

U(X� T,k) in several ways. First,
the convolution construction of Sect. 7 defines a right action of the monoidal
category

(
D̂et

U(X� T,k), &̂
)

on D̂et
Wh(X� T,k); the corresponding bifunctor will

again be denoted &̂ . Next, we have “averaging” functors Db,et
U (Y,k)→ D

b,et
Wh (Y,k)

and D
b,et
U (X� T,k) → D

b,et
Wh (X� T,k), sending a complex F to (aU+)!(Lχ �

F)[dimU+], where aU+ : U+ × Y → Y and aU+ : U+ × X → X are the natural
morphisms. Standard arguments (see [BBM, BY]) show that (aU+)! can be replaced
by (aU+)∗ in this formula without changing the functor up to isomorphism. These
functors will be denoted Avχ ; then we have canonical isomorphisms

Avχ ◦ π† ∼= π† ◦ Avχ , Avχ ◦ π† ∼= π† ◦ Avχ .

In particular, we obtain an induced functor

Avχ : D̂et
U(X� T,k)→ D̂et

Wh(X� T,k).

By construction, this functor satisfies

Avχ (Δ̂e) = Δ̂χ .

We also have averaging functors in the other direction, defined in terms of the
action morphisms aU : U × Y → Y and aU : U × X → X and the constant local
system on U. This time, the versions with ∗- and !-pushforwards are different and
will be denoted AvU∗ and AvU! . Here also, we have isomorphisms

AvU? ◦ π† ∼= π† ◦ AvU? , AvU? ◦ π† ∼= π† ◦ AvU?
for ? ∈ {∗, !} (see the arguments in [BY, Proof of Corollary A.3.4] for the first
isomorphism in the case ? = ∗). Hence, we deduce induced functors

AvU! : D̂et
Wh(X� T,k)→ D̂et

U(X� T,k), AvU∗ : D̂et
Wh(X� T,k)→ D̂et

U(X� T,k).

Standard arguments (see, e.g., [BY, Lemma 4.4.5] or [AR2, Lemma 5.15]) show
that the pairs (AvU! ,Avχ ) and (Avχ ,AvU∗ ) form adjoint pairs of functors.
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10.4 Geometric Construction of ̂Tw0

The Whittaker constructions of Sect. 10.3 allow us in particular to give a concrete
and explicit description of the objects T̂w0 and Tw0 , as follows.

Lemma 10.1 There exist isomorphisms

Tw0
∼= AvU! ◦Avχ (Δe) ∼= AvU∗ ◦Avχ (Δe), T̂w0

∼= AvU! ◦Avχ (Δ̂e) ∼= AvU∗ ◦Avχ (Δ̂e).

Proof Since the averaging functors commute with π†, in view of the character-
ization of T̂w0 in Proposition 5.12, it is sufficient to prove the isomorphisms
Tw0

∼= AvU! ◦ Avχ (Δe) ∼= AvU∗ ◦ Avχ (Δe). This follows from standard arguments,
showing that AvU! ◦Avχ (Δe) is the projective cover of ICe and that AvU∗ ◦Avχ (Δe)

is the injective hull of ICe and then using Lemma 6.9(2); see [BY, Lemma 4.4.11]
or [AR2, Lemma 5.18] for details. �
Remark 10.2 As explained above, Lemma 10.1 provides a canonical representative
for the object T̂w0 (in the present étale setting). In view of Remark 9.5, the objects
T̂s with s ∈ S are then also canonically defined.

11 Soergel Theory

In this section, we use Theorem 9.1 and Corollary 9.2 to obtain a description
of tilting objects in O and Ô in terms of some kinds of Soergel bimodules. For
simplicity, we assume that k is a finite field. (This assumption does not play any
role in Sects. 11.1 and 11.2.)

In Sects. 11.1 and 11.2, we work either in the “classical” setting of Sects. 6–9 or
in the étale setting of Sect. 10. (For simplicity, we do not distinguish the two cases
and use the notation of Sects. 6–9.) Then in Sect. 11.3, we consider a construction
that is available only in the étale setting, and in Sect. 11.4, we explain how to
extend the results obtained using this construction to the classical setting. Finally,
in Sect. 11.5, we derive an explicit description of the categories of tilting objects in
O and Ô.

11.1 The Functor V

We fix a representative T̂w0 and set Tw0 := π†(T̂w0) (so that Tw0 is as above the
indecomposable tilting object in O associated with w0, but now chosen in a slightly
more specific way).
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Thanks to Theorem 9.1 and Corollary 9.2, respectively, we have isomorphisms

R∧T ⊗(R∧T )W R∧T
∼−→ End(T̂w0), RT /(RT )

W+
∼−→ End(Tw0)

so that we can consider the functors

V̂ : Ô → Mof(R∧T ⊗(R∧T )W R∧T )

V : O → Mof(RT /(RT )
W+ )

(where for A, a Noetherian ring, we denote by Mof(A) the abelian category of
finitely generated left A-modules) defined by

V̂(F̂) = Hom(T̂w0 , F̂), V(F) = Hom(Tw0 ,F).

Here, the fact that V takes values in Mof(RT /(RT )
W+ ) is obvious, while for V̂, the

corresponding property follows from Corollary 5.5(1). If T̂ is a tilting object in Ô,
then by Lemma 5.9(2), we have a canonical isomorphism

k⊗R∧T V̂(T̂) ∼= V(π†T̂), (11.1)

where the tensor product is taken with respect to the action of the right copy of R∧T .

Remark 11.1 Lemma 8.5 shows that the category Mof(R∧T ⊗(R∧T )W R∧T ) can be
described more geometrically as the category of coherent sheaves on the formal
neighborhood of the point (1, 1) in T ∨

k
×(T ∨

k
)W T ∨

k
(considered as a scheme).

Similarly, the category Mof(RT /(RT )
W+ ) is the category of coherent sheaves on the

fiber of the quotient morphism T ∨
k
→ (T ∨

k
)/W over the image of 1. In these terms,

the monoidal structure on Mof(R∧T ⊗(R∧T )W R∧T ) considered in Sect. 11.3 below can
be described as a convolution product.

These functors are “fully faithful on tilting objects” in the following sense.

Proposition 11.2 For any tilting perverse sheaves T̂, T̂
′
in Ô, the functor V̂ induces

an isomorphism

HomÔ(T̂, T̂
′
)
∼−→ HomR∧T⊗(R∧

T
)W

R∧T
(
V̂(T̂), V̂(T̂

′
)
)
.

Similarly, for any tilting perverse sheaves T, T′ in O, the functor V induces an
isomorphism

HomO(T,T′) ∼−→ HomRT /(RT )
W+
(
V(T),V(T′)

)
.

Proof The second case is treated in [BBM, §2.1]. Here, we prove both cases using
a closely related argument explained in [BY, §4.7].
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We start with the case of the functor V. We remark that this functor admits a
left adjoint γ : Mof(RT /(RT )

W+ ) → O defined by γ (M) = Tw0 ⊗RT /(RT )
W+ M .

More concretely, if M is written as the cokernel of a map f : (RT /(RT )
W+ )⊕n →

(RT /(RT )
W+ )⊕m, then in view of the isomorphism RT /(RT )

W+
∼−→ End(Tw0), the

map f defines a morphism (Tw0)
⊕n → (Tw0)

⊕m, whose cokernel is γ (M). From
this description and using the exactness of V (see Lemma 6.9(2)), we see that the
adjunction morphism id → V ◦ γ is an isomorphism.

We now assume that T is a tilting perverse sheaf and consider the adjunction
morphism

γ (V(T))→ T. (11.2)

The image of this morphism under V is an isomorphism since its composition with
the (invertible) adjunction morphism id → V ◦ γ applied to V(T) is id

V(T). Hence,
its kernel and cokernel are killed by V; in other words, they do not admit ICe as
a composition factor. In view of Corollary 6.8, this shows that the cokernel of this
morphism vanishes, that is, that (11.2) is surjective. Moreover, if T′ is another tilting
object in O, then the kernel of this morphism does not admit any nonzero morphism
to T′, again by Corollary 6.8. Hence, the induced morphism

Hom(T,T′)→ Hom(γ (V(T)),T′)

is an isomorphism, which finishes the proof in this case.
Now, we consider the case of V̂. As for V, this functor admits a left adjoint

γ̂ : Mof(R∧T ⊗(R∧T )W R∧T )→ Ô

defined by γ̂ (M) = T̂w0 ⊗R∧T⊗(R∧
T
)W

R∧T M; in more concrete terms, if M is the

cokernel of a map (R∧T ⊗(R∧T )W R∧T )⊕n → (R∧T ⊗(R∧T )W R∧T )⊕m, then γ̂ (M) is the

cokernel of the corresponding map (T̂w0)
⊕n → (T̂w0)

⊕m. From this description
and the fact that the functor pH0 ◦ π† is right exact (see Corollary 5.8), we see that
for any M in Mof(R∧T ⊗(R∧T )W R∧T ), we have

pH0(π†(γ̂ (M))) ∼= γ
(
k⊗R∧T M

)
.

Moreover, if T̂ is a tilting object in Ô, under this identification and that in (11.1),
applying pH0 ◦ π† to the adjunction morphism

γ̂ (V̂(T̂))→ T̂ (11.3)

we recover the adjunction morphism (11.2) for T = π†(T̂). Since the latter map is
known to be surjective, this shows that the cokernel of (11.3) is killed by pH0 ◦ π†
and hence, in view of Lemma 5.3(3), that this morphism is surjective.
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Let now K̂ be the kernel of (11.3). To conclude the proof, it now suffices to
prove that HomÔ(K̂, T̂

′
) = 0 for any tilting object T̂

′
in Ô. For this, it suffices to

prove that HomÔ(K̂, Δ̂w) = 0 for any w ∈ W . And finally, by the description of
morphisms as in (3.1) and since each local system LA,n is an extension of copies of
the trivial local system, for this, it suffices to prove that

HomÔ(K̂, π†Δw) = 0

for any w ∈ W .
By adjunction and right-exactness of π† (see Corollary 5.8), we have

HomÔ(K̂, π†Δw) ∼= HomDb
U (Y,k)(π†K̂,Δw) ∼= HomO(pH0(π†K̂),Δw).

Now, the remarks above (and the observation that pH−1(π†T̂) = 0) show that
pH0(π†K̂) is the kernel of the morphism (11.2) for T = π†(T̂). In particular, this
object does not admit ICe as a composition factor; by Lemma 6.7, this implies that
HomO(pH0(π†K̂),Δw) = 0 and finishes the proof. �

We also observe the following consequence of Proposition 11.2, follow-
ing [BBM].

Corollary 11.3 For any projective perverse sheaves P, P′ in O, the functor V

induces an isomorphism

HomO(P,P′) ∼−→ HomRT /(RT )
W+
(
V(P),V(P′)

)
.

Proof It is well known that the functor

(−) &B Δw0 : Db
U(Y,k)→ Db

U(Y,k)

is an equivalence of triangulated categories which restricts to an equivalence
between tilting and projective objects in O; see [BBM] or [AR2]. The inverse
equivalence is the functor

(−) &B ∇w0 : Db
U(Y,k)→ Db

U(Y,k).

Therefore, we have

V(P) = Hom(Tw0 ,P) ∼= Hom(Tw0 &B ∇w0 ,P &B ∇w0)
∼= V(P &B ∇w0)

since Tw0 &B ∇w0
∼= Tw0 ; see (7.8). In other words, we have constructed an

isomorphism between the restriction of V to the subcategory Proj(O) of projective
objects in O and the composition
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Proj(O)
(−)&B∇w0−−−−−−→∼ Tilt(O)

V−→ Mof(RT /(RT )
W+ ),

where Tilt(O) is the category of tilting objects in O. Hence, the desired claim follows
from Proposition 11.2. �

11.2 Image of ̂Ts

Let us fix s ∈ S. Recall (see Remark 9.5) that since we have chosen a representative
for T̂w0 , we have a canonical representative for T̂s . In the following lemma, we
denote by (R∧T )s the s-invariants in R∧T .

Lemma 11.4 There exists a canonical isomorphism

R∧T ⊗(R∧T )s R
∧
T

∼−→ V̂(T̂s).

Proof Recall that T̂s = (j s)∗j∗s T̂w0 ; hence, by adjunction, we have

V̂(T̂s) = Hom(T̂w0 , T̂s) ∼= End(T̂s).

By Proposition 6.4 (applied to the Levi subgroup of G containing T associated with
s), the morphism

R∧T ⊗k R∧T → End(T̂s)

induced by monodromy factors through a morphism R∧T ⊗(R∧T )s R∧T → End(T̂s),
and by Corollary 6.6, this morphism is surjective. Now, under our assumptions, R∧T
is free of rank 2 over (R∧T )s . (In fact, if δ∨ ∈ X∗(T ) is a cocharacter such that
〈δ∨, αs〉 = 1, then {1, δ∨} is a basis of this module.) Hence, R∧T ⊗(R∧T )s R

∧
T is free of

rank 2 as an R∧T -module. Since End(T̂s) also has this property (see Lemma 5.9(2)),
this morphism must be an isomorphism. �

11.3 Monoidal Structure: étale Setting

In this subsection, we consider the setting of Sect. 10. In this case, in view of
Lemma 10.1, we have a canonical choice for the object T̂w0 ; this is the choice we
consider.

We will denote by

T̂ et
U (X� T,k)
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the category of tilting perverse sheaves in D̂et
U(X� T,k). By Remark 7.9, this

subcategory is stable under the convolution product &̂ ; moreover, it contains the unit
object Δ̂e (see Lemma 7.6); hence, it has a natural structure of monoidal category.

In the following proposition, we consider the monoidal structure on the category
Mof(R∧T ⊗(R∧T )W R∧T ) given by (M,N) �→ M ⊗R∧T N , where the tensor product is

defined with respect to the action of the second copy of R∧T on M and the first copy
on N , and the action of R∧T ⊗(R∧T )W R∧T on M ⊗R∧T N is induced by the action of the

first copy of R∧T on M and the second copy of R∧T on N .

Proposition 11.5 The functor V̂ : T̂ et
U (X� T,k) → Mof(R∧T ⊗(R∧T )W R∧T ) has a

canonical monoidal structure.

Proof Recall from Sect. 10.3 the category D̂et
Wh(X� T,k), the object Δ̂χ , the

equivalence

Υ : DbModfg(R∧T )
∼−→ D̂et

Wh(X� T,k)

from (10.1), and the functor Avχ : D̂et
U(X� T,k) → D̂et

Wh(X� T,k). We also have
a right action of the monoidal category D̂et

U(X� T,k) on D̂et
Wh(X� T,k), denoted

again &̂ .
Let us denote by T̂ et

Wh(X� T,k) the full subcategory of D̂et
Wh(X� T,k) whose

objects are the direct sums of copies of Δ̂χ or equivalently the image under Υ of
the category of free R∧T -modules. We claim that for T̂ in T̂ et

U (X� T,k), the functor

(−) &̂ T̂ : D̂et
Wh(X� T,k)→ D̂et

Wh(X� T,k) (11.4)

stabilizes the subcategory T̂ et
Wh(X� T,k). In fact, to prove this, it suffices to prove

that Δ̂χ &̂ T̂ belongs to T̂ et
Wh(X� T,k). But we have Δ̂χ &̂ T̂ ∼= Avχ (T̂), and

H•(Υ −1(Avχ (T̂))) ∼= Hom•̂
Det

Wh(X�T,k)(Δ̂χ ,Avχ (T̂))

∼= Hom•̂
Det

U(X�T,k)(Av
U
! (Δ̂χ ), T̂) ∼= Hom•̂

Det
U(X�T,k)(T̂w0 , T̂)

where the second isomorphism uses adjunction, and the third one uses Lemma 10.1.
Now, the right-hand side is concentrated in degree 0 and free over R∧T by Lem-
ma 5.9(2). Hence, Avχ (T̂) is indeed a direct sum of copies of Δ̂χ .

The claim we have just proved shows in particular that the functor (11.4) is right
exact for the perverse t-structure. Hence, the functor

Mof(R∧T )
Υ−→∼ P̂ et

Wh(X� T,k)
pH0

(− &̂ T̂)−−−−−−−→ P̂ et
Wh(X� T,k)

Υ −1−−→∼ Mof(R∧T )
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is right exact and therefore representable by the R∧T -bimodule

Υ −1
(
pH0(Υ (R∧T ) &̂ T̂

)) = V̂(T̂).

In the case T̂ = Δ̂e, since the functor (−) &̂ Δ̂e is canonically isomorphic to
the identity functor, we must have a canonical isomorphism V̂(Δ̂e) ∼= R∧T (which

can of course also been seen directly). And if T̂, T̂
′

belong to T̂ et
U (X� T,k), since

the functor constructed as above from T̂ &̂ T̂
′

is canonically isomorphic to the
composition of the functors associated with T̂ and with T̂

′
, respectively, we obtain

a canonical isomorphism

V̂(T̂ &̂ T̂
′
) ∼= V̂(T̂)⊗R∧T V̂(T̂

′
).

It is easy to check that these isomorphisms are compatible with the associativity and
unit constraints and hence define a monoidal structure on V̂. �

11.4 Monoidal Structure: Classical Setting

In this subsection, we consider the “classical” setting of Sects. 6–9. Here, we do
not have (at present) a counterpart of the Whittaker category, but an analogue of
Proposition 11.5 can be obtained from general principles. For this, we have to
assume that k contains a primitive p-th root of unity for some prime number p �= �;
we fix a choice of p and of a primitive root.

Proposition 11.6 There exists a choice of object T̂w0 such that the functor V̂ :
T̂U (X� T ,k)→ Mof(R∧T ⊗(R∧T )W R∧T ) admits a monoidal structure.

Proof We follow the procedure of [BBD, §6.1] to deduce the result in the classical
topology (over C) from its étale counterpart (over an algebraically closed field of
characteristic p).

Let GZ be split connected reductive group over Z such that Spec(C) ×Spec(Z)
GZ is isomorphic to G, and let BZ be a Borel subgroup of GZ and TZ ⊂ BZ be
a (split) maximal torus; then we can assume that B = Spec(C) ×Spec(Z) BZ and
T = Spec(C) ×Spec(Z) TZ. Let also UZ be the unipotent radical of BZ so that
U = Spec(C) ×Spec(Z) UZ; then we can set XZ := GZ/UZ, YZ := GZ/BZ, which
provides versions of X and Y over Z. We set XC := Spec(C) ×Spec(Z) XZ, YC :=
Spec(C) ×Spec(Z) YZ; of course, these varieties coincide with X and Y , but we
change notation to emphasize the fact that we now consider them as schemes (with
the Zariski topology) rather than topological spaces (with the classical topology). If
UC = Spec(C) ×Spec(Z) UZ and TC = Spec(C) ×Spec(Z) TZ, we can consider the

categories Db,et
UC

(YC,k) and D
b,et
UC

(XC� TC,k) defined using étale sheaves (but now
over a complex scheme) as in Sect. 10. The general results recalled in [BBD, §6.1.2]
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provide canonical equivalences of categories

D
b,et
UC

(YC,k) ∼= Db
U(Y,k), D

b,et
UC

(XC� TC,k) ∼= Db
U(X� T ,k)

which commute (in the obvious sense) with pullback and pushforward functors.
Now, choose an algebraically closed field F whose characteristic is p, and a

strictly Henselian discrete valuation ring R ⊂ C whose residue field is F. Then we
can consider the base changes of GZ, BZ, etc. to R or F, which we will denote by the
same letter with a subscript R or F. We can consider the versions of the categories
considered above for XR and YR instead of XC and YC; the results explained
in [BBD, §§6.1.8–6.1.9] (see also [Mi, Corollary VI.4.20 and Remark VI.4.21])
guarantee that pullback along the natural morphisms

YC
�� YR YF

�� and XC
�� XR XF

��

induces equivalences of triangulated categories

D
b,et
UC

(YC,k) D
b,et
UR

(YR,k)
∼

��
∼

�� Db,et
UF

(YF,k)

and

D
b,et
UC

(XC� TC,k) D
b,et
UR

(XR� TR,k)
∼

��
∼

�� Db,et
UF

(XF� TF,k).

Combining these two constructions, we obtain an equivalence of categories

T̂U (X� T ,k)
∼−→ T̂ et

UF
(XF� TF,k) (11.5)

which is easily seen to be monoidal. Let us denote by T̂
et
w0

the object of the category
T̂ et
UF

(XF� TF,k) considered in Sect. 11.3; then Proposition 11.5 provides us with a

coalgebra structure on T̂
et
w0

(in the monoidal category (T̂ et
UF

(XF� TF,k), &̂ )). If we

choose the object T̂w0 as the inverse image of T̂
et
w0

under (11.5), then the coalgebra

structure on T̂
et
w0

induces a coalgebra structure on T̂w0 . Given such a structure, it is
not difficult (see, e.g., [BY, Proposition 4.6.4 and its proof]) to construct a monoidal
structure on the associated functor V̂. �
Remark 11.7 One can obtain a result weaker than Proposition 11.6 without using
the comparison with étale sheaves. Namely, choose an identification (ie)∗i∗e T̂w0

∼=
Δ̂e. Then by adjunction, we deduce a morphism ξ : T̂w0 → Δ̂e, which itself induces
a morphism

ξ &̂ ξ : T̂w0 &̂ T̂w0 → Δ̂e &̂ Δ̂e = Δ̂e.
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One can show (following, e.g., the ideas in [BY, Proof of Proposition 4.6.4]) that
there exists a morphism η : T̂w0 → T̂w0 &̂ T̂w0 which makes the diagram

commutative and that moreover for any such η, the morphism of bifunctors

V̂(−)⊗R∧T V̂(−)→ V̂(− &̂−)

sending f ⊗ g to (f &̂ g) ◦ η is an isomorphism of functors. However, to make sure
that this isomorphism induces a monoidal structure, we would have to choose η such
that (η &̂ id) ◦ η = (id &̂ η) ◦ η. We do not know how to make such a choice.

11.5 Soergel Theory

In this subsection, we work either in the classical or in the étale setting (but use the
notation from Sects. 6–9).

With Proposition 11.2, Lemma 11.4, and Proposition 11.5 (or Proposition 11.6)
at hand, one can obtain a very explicit description of the categories T̂U (X� T ,k)

and Tilt(O), as follows.

Theorem 11.8

(1) The functor V̂ induces an equivalence of monoidal categories between
T̂U (X� T ,k) and the full subcategorySMof(R∧T⊗(R∧T )W R∧T ) ofMof(R∧T⊗(R∧T )W

R∧T ) generated under direct sums, direct summands, and tensor products, by
the objects R∧T and R∧T ⊗(R∧T )s R

∧
T with s ∈ S.

(2) The functor V induces an equivalence of categories between Tilt(O) and the
full subcategory SMof(R∧T ) of Mof(R∧T ) generated under direct sums, direct
summands, and application of functors R∧T ⊗(R∧T )s − (with s ∈ S) by the trivial
module k.

(3) These equivalences are compatible in the sense that the diagram
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commutes (up to canonical isomorphism) and that the convolution action of
T̂U (X� T ,k) on Tilt(O) identifies with the action induced by the action of
Mof(R∧T ⊗(R∧T )W R∧T ) on Mof(R∧T ) by tensor product over R∧T .

Proof The theorem follows from the results quoted above and Remark 7.9. �
One can also state similar results for triangulated categories.

Theorem 11.9 There exist canonical equivalences of monoidal triangulated cate-
gories

KbSMof(R∧T ⊗(R∧T )W R∧T )
∼−→ D̂U (X� T ,k),

KbSMof(R∧T )
∼−→ Db

U(Y,k).

These equivalences are compatible in a sense similar to that in Theorem 11.8.

Proof The first equivalence follows from Proposition 5.11 and Theorem 11.8(1).
(The fact that the equivalence of Proposition 5.11 is monoidal in our setting follows
from standard arguments; see [Be, Lemma A.7.1] or [AMRW, Proposition 2.3].)
The second equivalence and their compatibilities follow from similar arguments.

�
Remark 11.10

(1) Using Remark 5.1, from the description of the category D̂U (X� T ,k) given in
Theorem 11.9, one can deduce a description of the category Db

U(X� T ,k) in
algebraic terms.

(2) Using Theorem 11.8 and the known structure of the additive categories
T̂U (X� T ,k) and Tilt(O), one obtains some sort of “multiplicative variant”
of the theory of Soergel modules and bimodules (see [So4]) in our present
setting. It might be interesting to understand if such a theory can be developed
algebraically and in bigger generality.

Finally, following [BBM], from our results, we deduce the following description
of the category O. Here, for w = (s1, · · · , sr ), a sequence of elements of S, we set

B(w) = R∧T ⊗(R∧T )s1 · · · ⊗(R∧T )sr−1 R∧T ⊗(R∧T )sr k.

Theorem 11.11 Choose, for anyw ∈ W , a reduced expression w forw. Then there
exists an equivalence of categories between O and the category Mof(A), where

A =
(

EndR∧T

(⊕

w∈W
B(w)

)
)op

.

Proof For v = (s1, · · · , sr ), a sequence of elements of S, we set

T(v) = T̂s1 &̂ · · · &̂ T̂sr &̂ Δe.
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Then by Corollary 11.3 and its proof, the object

P :=
⊕

w∈W
T(w) &B Δw0

is a projective generator of O, and we have End(P) ∼= Aop. Then the claim follows
from general and well-known result; see, for example, [Ba, Exercise on p. 55]. �

12 Erratum to [AB]

In this section, we use the above results to correct an error found in the proof of [AB,
Lemma 5]5 and generalize that statement to arbitrary coefficients. The new proof
below follows the strategy suggested in [AB, Remark 3]. The statement of [AB,
Lemma 5] involves an affine flag variety, but it readily reduces to Lemma 12.1 below
restricted to the special case of characteristic zero coefficients.

As in Sect. 10, we consider a connected reductive algebraic group G over an
algebraically closed field F of characteristic p �= � and choose a Borel subgroup
B ⊂ G and a maximal torus T ⊂ B. Fixing the same data as in Sect. 10.3,
we can consider the standard perverse sheaf Δχ := Avχ (Δe). (Note that the
natural morphism Δχ → ∇χ := Avχ (∇e) is an isomorphism.) In Sect. 10.3, we
have considered the averaging functors AvU! and AvU∗ . We can similarly define the
functors

AvB! := (aB)!
(
kB �−)[dimB], AvB∗ := (aB)∗

(
kB �−)[dimB],

from D
b,et
Wh (Y,k) to the B-equivariant derived category D

b,et
B (Y,k), where aB : B×

Y→ Y is the action morphism.
In the following lemma, we denote by Φ ⊂ X∗(T) the root system of (G,T),

and by ZΦ the lattice generated by Φ.

Lemma 12.1 The B-equivariant complex AvB∗ (Δχ) is concentrated in perverse
degrees ≥ − dim(T). Moreover, if X∗(T)/ZΦ has no torsion, then we have

pH− dimT(AvB∗ (Δχ)
) ∼= Δw0 .

Proof Using Verdier duality, this statement is equivalent to the fact that AvB! (Δχ)

is concentrated in perverse degrees ≤ dim(T) and that if X∗(T)/ZΦ has no torsion,

5Namely, it is claimed in this proof that the complex denoted “C” is concentrated in positive
perverse degrees. But the arguments given there only imply that its negative perverse cohomology
objects vanish.
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then we have pHdimT(AvB! (Δχ)
) ∼= ∇w0 . This is the statement we will actually

prove.
We have

AvB! ∼= !IndBU ◦ AvU! ,

where !IndBU : Db,et
U (Y,k)→ D

b,et
B (Y,k) is the functor sending F to

(a′B)!(kB/U �̃F)[dim(B/U)].

(Here, a′B : B×U Y→ Y is the natural map, and �̃ is the twisted external product.)
Using Lemma 10.1, we deduce that

AvB! (Δχ) ∼= !IndBU(Tw0).

It is clear that for any B-equivariant perverse sheaf F on Y, the complex !IndBU(F)

is concentrated in perverse degrees between 0 and dim(T). Hence, the same claim
holds for any extension of such perverse sheaves, that is, for any U-equivariant
perverse sheaf; thus, the first claim of the lemma is proved. Now, the functor !IndBU
is left adjoint to ForBU[dim(B/U)], where ForBU : Db,et

B (Y,k) → D
b,et
U (Y,k) is the

forgetful functor. Using this fact, it is not difficult to check that for any U-equivariant
perverse sheaf F on Y, the perverse sheaf

pHdimT(!IndBU(F)
)

is characterized as the largest B-equivariant quotient of F.
To conclude the proof, it remains to prove that if X∗(T)/ZΦ has no torsion,

then ∇w0 is the largest B-equivariant quotient of Tw0 . Now, Tw0 has a costandard
filtration, whose last term is ∇w0 ; therefore, there exists a surjection Tw0 � ∇w0

(which is unique up to scalar). Since ∇w0 is B-equivariant, we deduce that this map
factors as a composition

Tw0 � pHdimT(!IndBU(Tw0)
)
� ∇w0 .

The kernel of the second map here is the image of the kernel of our surjection
Tw0 � ∇w0 . Since the latter admits a costandard filtration, in view of Lemma 6.8,
if the former is nonzero, then it admits ICe as a composition factor; in other words,
the vector space

Hom
(
Tw0 ,

pHdimT(!IndBU(Tw0))
)

has dimension at least 2.
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On the other hand, we have a surjection

Hom(Tw0 ,Tw0) � Hom
(
Tw0 ,

pHdimT(!IndBU(Tw0))
)
.

Our assumption on G means that the quotient morphism G � G/Z(G) (where
Z(G) is the center of G) induces a surjection X∗(T) � X∗(T/Z(G)). Applying
Corollary 9.2 to G/Z(G), we obtain that monodromy induces a surjection

RT � Hom(Tw0 ,Tw0).

Since pHdimT(!IndBU(Tw0)) is B-equivariant, the composition

RT � Hom(Tw0 ,Tw0) � Hom
(
Tw0 ,

pHdimT(!IndBU(Tw0))
)

factors through εT, proving that the rightmost term has dimension at most 1. This
condition prevents the kernel of the surjection pHdimT(!IndBU(Tw0)

)
� ∇w0 to be

nonzero, which concludes the proof. �
Remark 12.2

(1) Using the remarks in Sect. 1.7, one can show that another setting in which the
second claim in Lemma 12.1 holds is when � is very good for G hence, in
particular, when � = 0. (Note that under this assumption, X∗(T)/ZΦ has no
�-torsion; see [He, §2.10].)

(2) Replacing the proof of [AB, Lemma 5] by the proof given above, one can check
that all the results of [AB, §2] (hence, in particular, [AB, Proposition 2]) extend
in a straightforward way to positive-characteristic coefficients.
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Appendix 2: Calculation of Thom Line Bundles from [YZ17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

I.M. is very happy for opportunity to mention just a few transformative effects
of personalities of Sasha Beilinson and Vitya Ginzburg. I.M.’s understanding of
possibilities of being a mathematician have been upturned through Bernstein’s
talk at Park City and Beilinson’s talks in Boston. A part of the magic was that
mathematics was alive, high on ideas, and low on ownership, and each talk would
open for thinking some topic in mathematics, almost regardless of one’s preparation.
Before meeting Ginzburg, I.M. has come to view him as a smarter twin brother in
mathematical tastes. Of biggest influence on I.M. was Ginzburg’s paper on loop
Grassmannians that offered a new kind of mathematics, orchestrated by an explosion
of geometric ideas.

1 Introduction

For a semisimple algebraic group G of ADE type, the corresponding quiver Q

is used to study representations of G, its loop group G((t)), and their quantum
versions. Here, we reconstruct from Q the loop Grassmannian G(G) of G. This con-
struction produces a candidate for the loop Grassmannian Kac-Moody extensions
gaff of loop Lie algebras g((t)) and should provide a tool to study its representations.

1.1 Loop Grassmannians Associated to Quivers

An advantage of the quiver approach is that it works in large generality. It provides
a “loop Grassmannian” GP

D(Q,A) associated to the data of an arbitrary quiver Q,
a cohomology theory A, a poset P , and a torus D of dilations. Intuitively, a quiver
Q should provide a “grouplike” object G(Q,A) though at the moment, we only see
objects that should correspond to (quantization of) its affinization.

A cohomology theory A gives a “cohomological schematization” functor

A(X)
def= Spec[A(X)] which assigns to a space X the affine scheme A(X) over

the ring of constants of theory A.1For us, this simplifies stacks (spaces with much
symmetry) to classical geometry. It takes the moduli of lines, i.e., the classifying
space BGm, to a curve G = A(BGm). Next, it turns the moduli V of finite-
dimensional vector spaces into the space of configurations on the curve G, i.e., the
Hilbert scheme of points HG = �n G

(n) of G.

1When A is de Rham cohomology, then AX can be viewed as an affinization of the de Rham space
XdR of X.
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This configuration space is then used as the setting for the Beilinson-Drinfeld
version of the “loop Grassmannian” G(Q,A) that intuitively corresponds to a (yet
undefined) group G(Q,A).

Finally, we construct the space GD(Q,A) which should be the quantum loop
Grassmannian of the group G(Q,A). Here, one adds quantization by letting a
torus D act on the extension correspondence for representations of quivers (and
its cotangent stack). At this level, there is a well-defined related “group theoretic”
object, the “affine quantum group,” that was constructed in [YZ16] and is denoted
here by UD(Q,A).

1.2 Construction

Since we avoid the group G(Q,A) and its affinization, the construction is less
standard. We will argue that it is of “homological nature.”

The geometric ingredient is the technique of local projective spaces from [M17].
This refers to the notion of I -colored local vector bundles over a curve C, i.e.,
vector bundles over the I -colored configuration space HC×I (the moduli of finite
flat subschemes of C × I ), that are in a certain sense “local with respect to C.”

We actually start with a local line bundle L over HC×I , and we induce it
using a finite poset P to a local sheaf IndP (L) over HC×I . The corresponding
projective scheme P(IndPL) is the projective spectrum of it symmetric algebra.
The (“projective”) zastava space ZP (L) is its “local part” Ploc[IndPL]. Its fibers
are obtained as collisions of products of fibers at colored points ai ∈ HC×I (for a
point a ∈ C and a color i ∈ I ). The collision happens inside the projective scheme
P[IndP (L)], and the “rules of collision” are specified by the locality structure on
the line bundle L.

The local line bundles L on HC×I are classified by symmetric bilinear forms
Q on Z[I ], and then the zastava space is denoted ZP (I,Q). However, we will
concentrate on the case when Q is associated to a quiver Q (with vertices I ). In
this case, the topological ingredient of our construction is an explicit reconstruction
of L from the quiver Q as the Thom line bundle of the moduli of representations of a
quiver Q. This topological construction allows adding to the data a choice of a coho-
mology theory A, to get the zastava space ZP (Q,A). Moreover, we can upgrade to
the quantum version ZP

D(Q,A) by replacing the moduli of representations with the
cotangent stack of the moduli of extensions of such representations and by switching
on an action of a certain small torus D from [YZ16] on this cotangent stack.

Finally, we get the loop Grassmannian GP
D(Q,A) as a certain union of fibers of

these zastava spaces.
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Remark The classical loop Grassmannians of reductive groups are recovered when
the poset P is a point (then P is omitted from notation). In that case, the fiber of
ZP (L) at any colored point is P1.2

1.3 “Quantum Nature” of GP
D(Q,A)

The loop Grassmannian G(G) of a semisimple group G is a partial flag variety
of Gaff so it has a known quantum version which is a noncommutative geometric
object. For the GD(Q,A) construction, this corresponds to the case when A is the
K-theory. However, our incarnation GD(Q,A) is an object in standard geometry,
and the hidden noncommutativity manifests in its Beilinson-Drinfeld form, i.e.,
when GD(Q,A) is extended to lie over a configuration space. The configuration
space is necessarily ordered (“noncommutative”), i.e., Hn

C×I = (C × I )(n) is
replaced by (C × I )n. This has more connected components, but this increase is
ameliorated by a nonstandard feature, a meromorphic braiding relating different
connected components of the configuration moduli.

We expect to have more explicit descriptions of GP
D(Q,A) in terms of the

graded algebra of sections of line bundles O(m) or in terms of the equation for
the embedding into the projective space corresponding to sections of O(1).3In this
paper, we only do some preparatory steps toward identifying the cases of GP

D(Q,A)

with the classical loop Grassmannian of reductive groups.
This paper is related to the work of Z. Dong [D18] that studies the relation

between the Mirković-Vilonen cycles in loop Grassmannians and the quiver Grass-
mannian of representations of the preprojective algebra (see Sect. 3.2.4).

1.4 Contents

In Sect. 2, we recall the method of generalized cohomology theories. Section 3
covers relevant aspects of classical loop Grassmannians and how to rebuild and
generalize these in a “homological” way, i.e., by turning the notion of locality into
a construction. In Sect. 4, we find a realization of these ideas in the setting of quivers
by constructing local line bundles on configuration spaces from representations of
quivers. Finally, in Sect. 5, we get quantum generalization of the notion of local

2Here, we do not pay attention to a choice of P , but when P = (1 < · · · < m), the fibers at colored
points are P

m and G1<···<m
D (Q,A) should “correspond to level m” in the sense that the sections of

the standard line bundle O(1) on this object should be the same as the sections of O(m) in the case
when P = pt.
3These embedding equations should be integrable hierarchies of differential equations indexed by
Q,P and A since this is true in the classical case of G(G).
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line bundles and of the corresponding loop Grassmannians using dilations on the
cotangent bundle of moduli of extensions of representations of a quiver.

Appendix “Loop Grassmannians with a Condition” completes the description
of Cartan fixed points in intersections of closures of semi-infinite orbits in loop
Grassmannians (Proposition 3.2.3). This observation was the starting point for
our generalization G(Q,A) of loop Grassmannians G(G). Appendix “Appendix 2:
Calculation of Thom Line Bundles from [YZ17]” compares computations of Thom
line bundles of convolution diagrams in Sect. 4.4 and in [YZ17].

2 Recollections on Cohomology Theories

2.1 Equivariant-Oriented Cohomology Theories

An oriented cohomology theory is a contravariant functor A that takes spaces X

to graded commutative rings A(X) and has certain properties such as the proper
direct image.4For us, an oriented cohomological theory A can be either a topological
cohomology theory or an algebraic cohomology theory. In the first case, the
“spaces” are topological spaces, and we will use the ones that are given by complex
algebraic varieties. In the second case, the “spaces” mean schemes over a given base
ring k.

Here, we list some of the common properties of such theories A that we will use.
First, A extends canonically to pairs of spaces A(X, Y ) for Y⊆X. In particular, we

get cohomology AY (X)
def= A(X,X − Y ) of X with supports in Y . Such theory A

is functorial under flat pullbacks and proper push forwards with usual properties
(homotopy invariance, projection formula, base change, and the projective bundle
formula [LM07, Lev15]).

Also, such A has an equivariant version AG(X) defined as lim← A(Xi ) for ind-

systems of approximations Xi of the stack G\X, For this reason, it is consistent
to denote AG(X) symbolically as A(G\X) even if we do not really extend A to
category of stacks.

The basic invariants of A are the commutative ring of constants R = A(pt) and
the one-dimensional formal group G over R with a choice of a coordinate l on G

(called orientation of theory A).
The geometric form of the theory A is the functor A from spaces to affine R-

schemes defined by A(X) = Spec(A(X)). The G-equivariant version is again
denoted by the index G, and it yields indschemes AG(X) = Spec(AG(X)), also

denoted A(G\X), that lie above AG
def= AG(pt). For instance, the formal group G

associated to A is AGm
(approximations of BGm are given by P

∞, the ind-system
of finite projective spaces).

4While the grading of a cohomology theory is fundamental, we will disregard it in this paper.
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We denote AG = AG(pt) and AG = AG(pt). For a torus T, let X∗(T),X∗(T)
be the dual lattices of characters and cocharacters of T and then AT = X∗(T)⊗ZG.
For a reductive group G with a Cartan T and Weyl group W , AG is the categorical
quotient AT//W . For instance, for the Cartan T = (Gm)n in GLn, the Weyl group
is the symmetric group Sn, and one has AT = G

n while AGLn = G
(n) is the

symmetric power Gn//Sn of G.

Remarks

(0) In the case when G is the germ of an algebraic group Galg , the equivariant A-
cohomology has a refinement which gives indschemes over Galg . All of our
results extend to this setting, and we will abuse the notation by allowing G to
stand either for the formal group or for this algebraic group. For simplicity, our
formulations will assume that Galg is affine—the adjustment for the non-affine
case is clear from the paper [YZ17] on elliptic curves (then G is an elliptic curve
and A(X) is affine over G rather than affine). Either version satisfies equivariant
localization.

(1) For algebraic oriented cohomology theories, the basic reference is [LM07,
Chapter 2] (one can also use [CZZ14, § 2] and [ZZ14, § 5.1]).5Here, cohomology
theory is defined on smooth schemes over a given base ring k. However, such
cohomology theory A then extends (with a shift in degrees) under the formalism
of oriented Borel-Moore homology to schemes over k that are of finite type and
separable.6

2.2 Thom Line Bundles

When V is a G-equivariant vector bundle over X, the equivariant cohomology of V

supported in the zero section ΘG(V )
def= AG(V , V −X) is known to be a line bundle

over AG(X), i.e., a rank one locally free module over AG(X), called the Thom
line bundle of V . Moreover, this is an ideal sheaf of an effective divisor in AG(X)

called the Thom divisor of V (see section 2.1 in [GKV95]). As usual, one can think
of this as the Thom line bundle Θ(G\V ) over A(G\X) for the vector bundle G\V
over G\X.

5 The terminology of “algebraic cohomology” is also used by Panin-Smirnov for a refinement
of the formalism in which the theory is bigraded (to adequately encode the example of motivic
cohomology). We will not be concerned with this version.
6What is called Borel-Moore homology here is not quite what this means in classical topology;
however, this is just a choice of terminology since the A-setting does contain the precise analogue
of Borel-Moore homology. For instance, for smooth X, the more appropriate version would be
BMA(X) = ΘA(TX)−1 in terms of the Thom bundle which is defined next.
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Lemma

(a) Let V → X be a vector bundle equivariant for a reductive group G with a
Cartan T. Then ΘT(V) is the pullback of ΘG(V) by a flat map AT → AG, and
ΘT(V) determines ΘG(V).

(b) For a cohomology theory A and a character η of a torus T, if η is trivial, then
ΘT(η) = OAT , and otherwise, ΘT(η) is the ideal sheaf of the (Thom) divisor
Ker(η)⊆T.

(c) For an extension of vector bundles 0 → V ′ → V → V ′′ → 0, one
has ΘG(V ) ∼= ΘG(V

′)⊗ΘG(V
′′). So ΘG is defined on the K-group of G-

equivariant vector bundles over X.

Proof These are proved in [GKV95, § 2.1]. See also [ZZ15, Proposition 3.13].

2.2.1 ΘG(V) for a Representation V of G

This is the case when X is a point. We can write ΘG(V) in terms of the character

ch(V ). First for a torus T and AT
def= AT(pt), there is a unique homomorphism

l : (N[X∗(T)],+) → (AT, ·) such that for any character χ of T, the function lχ

is the composition AT
Aχ−→AGm

l−→A
1. Now, for a reductive group G with a Cartan

T, this restricts to a homomorphism l from (N[X∗(T)]W,+) to (AG, ·). Then the
ideal ΘG(V) in functions on AG = [X∗(T)⊗G]//W is generated by the function
lch(V) on AG. (By the preceding lemmas, it suffices to check this when G is a torus,
which in turn can be reduced to the case when V is one dimensional and T = Gm.)

2.2.2 Thom Line Bundles Θ(f ) of Maps f

For a map of smooth spaces f : X → Y, we have the tangent complex T (f ) =
[TX→ f ∗TY]−1,0 on X and in degrees −1, 0. The line bundle Θ(f ) = Θ(T (f ))

on A(X) is defined as the value of Θ on the corresponding virtual vector bundle
f ∗TY− TX.

3 Loop Grassmannians and Local Spaces

In Sect. 3.1, we recall loop Grassmannians and in Sect. 3.2, we check the description

of T -fixed points in intersections (S0 ∩ S−−α)
T of closures of semi-infinite orbits

in a loop Grassmannian. This is used in the “homological” reconstruction and
generalization of loop Grassmannians in Sect. 3.4, which is itself based on the
formalism of local spaces from Sect. 3.3.
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3.1 Loop Grassmannians

We start with the standard loop Grassmannians G(G). Let k be a commutative ring,
and let O = k[[z]] ⊆ K = k((z)) be the Taylor and Laurent series over k.
These are functions on the indscheme d (the formal disc) and its punctured version
d∗ = d − 0. For an algebraic group scheme G, we denote by GO⊆GK its disc
group scheme and loop group indscheme over k, the points over a k-algebra k

′ are
GO(k′) = G(k′[[z]]) and GK(k′) = G

(
k
′((z))

)
. The standard loop Grassmannian

is the indscheme given by the quotient G(G) = GK/GO.
We also notice that O− = k[z−1] defines group indscheme GO−⊆GK. The

congruence subgroups K±(G) are the kernels of evaluations GO → G and
GO− → G at z = 0 and z = ∞.

3.1.1 Global (Beilinson-Drinfeld) Loop Grassmannians GHC
(G)

Let C be a smooth curve. For a finite subscheme D⊆C, the first G-cohomology
H 1

D(C,G) of C with the support at D is the moduli indscheme of pairs (T , τ ) of a
G-torsor T over C and its section τ over C −D. As D varies in the Hilbert scheme
of points HC , one assembles these into an indscheme G(G) = GHC

(G) over HC ,
with fibers GHC

(G)D = H 1
D(C,G).

A point of a smooth curve c ∈ C defines a “smooth formal curve” ĉ, and we
equally get GHĉ

(G) → Hĉ, which is a restriction of GHC
(G) → HC . Moreover, a

choice of a formal coordinate z at c identifies the fiber at c with the standard loop
Grassmannian

GHĉ
(G)c −−−−→∼= G(G).

One can also think of it the compactly supported cohomology H 1
c (̂c,G).7

3.1.2 The Abel-Jacobi Map

Recall that on a smooth curve C (hence also for C = d), HC is a commutative
monoid for addition of effective divisors. Moreover, the Abel-Jacobi map is a map
of monoids:

AJC : HC → G(Gm), AJC(D)
def= OC(−D)).

7By compactly supported cohomology of X, we mean the cohomology of a compactification X

trivialized on the formal neighborhood of the boundary of X in X.
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Precisely, AJC(D) consists of D ∈ HC , the Gm-torsor corresponding to the line
bundle OC(−D), and the canonical trivialization 1 of OC(−D) off D (which we
often omit).

Remark

(0) There are two simple ways to realize all of G(Gm). One fixes the trivial-
ization fixed at 1 as above, and the other uses the trivial torsor G × d.
The transition involves a minus since for any f ∈ K∗, one has f−1 :
(fOC, 1) −−−−→∼= (OC, f

−1).

Lemma ([CC81] (see also [M17])) The inclusion d⊆Hd makes Hd into the
commutative monoid affine indscheme freely generated by the formal disc d. The
Abel-Jacobi map d → G(Gm) makes G(Gm) into the commutative group indscheme
freely generated by d. �
Remarks

(1) In [M17], this is viewed as interpretation of G(Gm) as homology H∗(d) of d for
a certain conjectural cohomology theory H.8The above interpretations of G(Gm)

as both homology and the compactly supported cohomology (see Sect. 3.1) can
then be viewed as local Poincaré duality in algebraic geometry.

(2) A formal coordinate z on d gives a correspondence of subschemes D ∈ Hd

and monic polynomials χD in k[z] with nilpotent coefficients, such that χD is
an equation of D. This gives a lift of the Abel-Jacobi map that embeds Hd

into Gm,K by sending D ∈ Hn
d to χD

−1. For instance, for n ∈ N, the divisor

n[0] def= {zn = 0} goes to z−n ∈ Gm,K.
(3) The group indscheme Gm,K has a factorization Gm×zZ×K+(Gm)×K−(Gm)

where the points of congruence subgroups are K+(Gm)(k′) = 1+ zk′[[z]] and,
K−(Gm)(k′) is the invertible part of 1 + z−1

k
′[z−1], i.e., the part where the

coefficients are nilpotent [CC81].

3.2 The T -Fixed Points in Semi-infinite Varieties Sα

3.2.1 Tori

Let us restate the remarks in Sect. 3.1.2 in the generality of split tori T ∼=
X∗(T )⊗ZGm. First, λ ∈ X∗(T ) gives K∗ → TK, and the image of a coordinate
z on the disc is denoted zλ. This gives isomorphisms X∗(T ) −−−−→∼= π0(TK)

and X∗(T ) −−−−→∼= G(T )reduced −−−−→∼= π0(G(T )). For λ ∈ X∗(T ), we denote

8In general, the derived version of homology H∗(X) should be the free abelian commutative group
object in derived stacks freely generated by X.
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Lλ
def= z−λTO ∈ G(T ) (independently of z), meaning a trivial T -torsor on d with

a section z−λ on d∗. The corresponding connected component G(T )λ of G(T ) is a
K−(T )-torsor.

3.2.2 The “Semi-Infinite” Orbits S±
λ

Now let G be reductive with a Cartan T . Then the T -fixed point subscheme
G(G)T is G(T ). A choice of opposite Borel subgroups B± = TN± yields orbits

S±λ
def= N±

KLλ indexed by λ ∈ X∗(T ) (we often omit the super index +). If G is
semisimple, then G(G) is reduced, and these orbits provide two stratifications of
G(G). The following is well known:

Lemma ([MV07]) For λ,μ ∈ X∗(T ), the following are equivalent: (0) Sλ # μ, (i)
Sλ⊇Sμ, (ii) Sλ meets S−μ , and (iii) λ ≥ μ (in the sense that λ − μ lies in the cone

Q̌+ generated by the coroots α̌ dual to roots α in N ). �
Example The loop Grassmannian of G = SL2 is identified with the space L of
lattices in K2 = Ke1⊕Ke2 (the O-submodules that lie between two submod-

ules of form znO2) and have volume zero. Here., vol(L)
def= dim(L/znO2) −

dim(O2/znO2) for n >> 0. For the standard Borel subgroup B = TN , we have

N = ( 1 ∗
0 1

)
, and the coroot α̌ in N is α̌(a) =

(
a 0
0 a−1

)
∈ T . Then X∗(T ) = Zα̌ and

Lnα̌ = z−nα̌L0 is the lattice generated by two vectors 〈z−ne1, z
ne2〉. For a lattice

L ∈ L, one has L ∈ Snα̌ if L ∩Ke1 = z−nOe1 and L ∈ Snα̌ if L # z−ne1.

3.2.3 The T -Fixed Points

Now, let G⊇B = TN be semisimple with a simply connected cover
Gsc⊇Tsc. If αi, i ∈ I , are simple roots in N , then

∏
i∈I α̌i : G

I
m
−−−−→∼= Tsc

defines the Abel-Jacobi embedding AJGd as the composition Hd×I ↪→
G(Gm

I ) −−−−→∼= G(Tsc)⊆G(Gsc)⊆G(G), where D = (Di)I �→ (OC(−Di))I

�→ (α̌i[OC(−Di)])I . In particular, for α =∑I ai i ∈ N[I ],

AJG(α[0]) = (α̌i

[
OC(−ai[0]

]
)I = (α̌i[zaiOC)])I Remark 3.1.2.0= z−αL0 = Lα.

The following has been announced in [M17].

Proposition

(a) The image of the Abel-Jacobi embedding AJGd : Hd×I ↪→ G(G) is the fixed
point sub-indscheme (S0)

T .
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(b) For α ∈ N[I ], this identifies the connected component Hα
d×I = ∏

i∈I Hαi

d of

Hd×I with the intersection of S0 with the connected component G(T )α of G(T ).
(c) Also, the moduliHα[0]⊆Hd×I of all subschemes of the finite flat colored scheme

α[0] is identified with (S0 ∩ S−α )T .9

Proof We start with the proof for G = SL2. Parts (a-b) claim that S0 meets the
connected component G(T )pα̌ of G(T ) if and only if p ≥ 0, and then the intersection
is AJGd (Hp

d ).
The points of the negative congruence subgroup K−(Gm)⊆Gm,K are the

comonic polynomials Q = 1+q1z
−1+· · ·+qsz

−s in z−1 with nilpotent coefficients.
Now, the isomorphism K−(Gm) −−−−→∼= G(T )pα̌ is given by Q �→ α̌(Q)Lp which

is the lattice 〈Q−1z−pe1,Qzpe2〉. According to the example in Sect. 3.2.2, this is
in S0 if (Qzp)−1O # z0. This means that zpQ ∈ O, i.e., that the powers of z−1 in
Q are ≤ p. Such zpQ form all monic polynomials in z of degree p with nilpotent
coefficients. So all such α̌(Qzp)L0 form exactly AJGd (Hp

d ).

For part (c), the example in Sect. 3.2.2 says that S−
mα̌

consists of lattices L that
contain zme2. Now, for D ∈ Hp

d with a monic equation P ∈ k[z], AJGd (D) =
α̌(P )L0 = 〈P−1e1, P e2〉 lies in S−m if PO # zm, i.e., polynomial P divides zm.
This is equivalent to D⊆m[0].

The proof in the general case is postponed to the Appendix “Proof of the
Proposition 3.2.3”.

Remark The connected component of G(G) is G(Gsc), so the spaces S0⊇ S0 ∩ S−−α

and their T -fixed points do not depend on the center of G.

3.2.4 The Kamnitzer-Knutson Program of Reconstructing MV Cycles

Here, we restate the proposition and recall one of the origins of this paper. Consider
a simply laced semisimple Lie algebra g and its adjoint group G. In [BK10], the
irreducible components C of the variety Λ of representations of the preprojective
algebraΠ of a Dynkin quiver Q of G are put into a canonical bijection with certain
irreducible subschemes XC of the corresponding loop Grassmannian G(G), called
MV cycles [MV07].

For any representation
.

V of the preprojective algebra Π , the moduli GrΠ(
.

V ) of

all Π -submodules of
.

V is called the quiver Grassmannian of
.

V .

Conjecture ([M17]) For any irreducible component C of Λ, and a sufficiently

generic representation
.

V in C, the cohomology of its quiver Grassmannian GrΠ(
.

V )

9So the connected components of S0
T

are (S0 ∩ S−−α) ∩ G(T )−β , for 0 ≤ β ≤ α, identified with

the moduli Hβ
α[0] of length β subschemes of α[0].
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is the ring of functions on the subscheme XT
C of points in the corresponding MV

cycle XC in G(G) that are fixed by a Cartan subgroup T of G.
The grading on cohomology corresponds to the action of loop rotations on XT

C .

Remarks

(0) This is a version of a conjecture of Kamnitzer and Knutson on equality of

dimensions of cohomology H ∗[GrΠ(
.

V )] and of sections of the line bundle
O(1) over the MV cycle XC.

(1) Zhijie Dong has constructed a map in one direction in this conjecture [D18].
(2) The form of this conjecture is alike the Hikita conjecture in the symplectic

duality framework.
(3) The MV cycles are defined as irreducible components of intersections in G(G)

of closures of semi-infinite orbits S0 ∩ S−−α for α ∈ N[I ]. Proposition 3.2.3.c
will imply the following simplified version of the conjecture that replaces on the
loop Grassmannian side the individual MV cycles with the intersections S0 ∩
S−−α , and on the quiver side, it degenerates the operators in the representation of
Π to zero:

Corollary Let α ∈ N[I ]. Then (S0 ∩ S−−α)
T is the spectrum of cohomology of

the quiver Grassmannian GrΠ(
.

V ), where
.

V is the zero representation of Π of
dimension α. Also, the grading on cohomology corresponds to the action of loop
rotations on the fixed point subscheme of the loop Grassmannian.

Proof For α = ∑
αii, we have

.

V = ⊕i∈I Vi with dim(Vi) = αi . The quiver

Grassmannian GrΠ(
.

V ) is then the product
∏

i∈I Gr(Vi) of total Grassmannians of
components Vi .

Since (S0 ∩ S−−α)
T = Hα[0] =∏i∈I Hαi [0] by Proposition 3.2.3.c, it remains to

notice that H ∗(Grp(n)) can be calculated by Carell’s theorem as functions on the
fixed point subscheme Grp(n)

e of a regular nilpotent e on k
n. If we realize k

n and
e as O(n[0]) and the operator of multiplication by z, we see that Grp(n)

e is Hp

n[0]
(a subspace of O(n[0]) is z-invariant if it is the ideal of a subscheme).

Finally, the degree 2p cohomology corresponds to the p-power of z which is the
grading by rotations of the disc d.

3.3 Local Spaces Over a Curve

The notion of local spaces has appeared in [M14] as a common framework for
the factorization spaces of Beilinson-Drinfeld and the factorizable sheaves of
Finkelberg-Schechtman.
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3.3.1 Local Spaces

For a set I and a smooth curve C, we consider the Hilbert scheme HC×I
∼= (HC)

I

of I -colored points of C.10Its connected components Hα
C×I

∼= ∏
i∈I Hαi

C are given
by subschemes of length α ∈ N[I ]. For a space Z over HC×I , we denote the fiber
at D ∈ HC×I by ZD .

An I -colored local space Z over C is a space Z over HC×I , together with a
commutative and associative system of isomorphisms for disjoint D′,D′′ ∈ HC×I

ιD′,D′′ : ZD′ × ZD′′ −−−−→∼= ZD′�D′′ .

We have Z∅ = pt. When α = i ∈ I , the connected component Hi
C×I is C × i.

We call the fiber Zai at a ∈ C the “i-particle at a,” and we think of Z as a fusion
diagram for these particles.

Example A factorization space in the sense of Beilinson and Drinfeld is a local
space Z → HC×I such that the fibers ZD only depend on the formal neighborhood
D̂ of D in C. These can be viewed as spaces over the Ran space RC , the moduli of
finite subsets of C.

Remarks

(1) A weakly local structure is the case when the structure maps ι are only
embeddings. Any weakly local space Z has its local part Zloc⊆Z which
we define as the least closed local subspace of Z that contains all particles.
Explicitly, one first constructs Zloc,reg over Hreg

C×I so that at a discrete D ∈
HC×I the fiber is

∏
ai∈D Zai , then Zloc is the closure in Z of Zloc,reg .

(2) A local structure on a (super) vector bundle V over a local space Z is
an associative and commutative system of isomorphisms V |ZD′�V |ZD′

∼=
V |ZD′�D′′ . By the Segre embedding, its projective bundle P(V ) is a weakly local
space. Its local part P(V )loc is called the local projective space P

loc(V ) of a
local vector bundle V .

(3) The notion of “locality structure” is a version of the Beilinson-Drinfeld
“factorization structure” where emphasis is changed slightly to get a tool for
producing spaces such as P

loc(V ). However, the use of closure makes this
construction existential rather than explicit.

(4) One would like to extend this locality mechanism from a smooth curve to a
formal disc d, but this requires a supply of disjoint finite flat subschemes of d.
This is expected (or known) to be doable in terms of rigid geometry.

10One could try replacing a curve by a more general scheme and H by other notions of powers of
a scheme like the Cartesian powers Cn

C = Cn.
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3.3.2 Classification of Local Line Bundles on the Colored Hilbert Scheme

The following is a simplified version of the classification of factorizable line bundles
on the space of colored divisor in Proposition 3.10.7 of [BD04].

Lemma

(a) For a line bundle M = (Mi )i∈I over C × I , there is a unique local line bundle
M̃ overHC×I which agrees withM on C × I and whose locality structure maps
extend to isomorphisms across the diagonals.

(b) Isomorphism classes of local line bundles on HC×I are classified by pairs
(M,Q) of a line bundle M = (Mi )i∈I over C × I and a symmetric bilinear
form (“sb-form”) Q on Z[I ] by (M,Q) �→M̃(QΔH) where QΔH is the divisor
inHC×I given by

∑
i≤j Q(i, j)Δij for the discriminant divisors ΔH

ij ⊆HC×I .

Remarks

(0) We also check the same classification for local super line bundles on the

“ordered configuration space” CC×I
def= �n (C×I )n. A line bundle M on C × I

and an sb-form κ on Z[I ] give the corresponding local super line bundle by the
“same” formula M̃(κΔC) where the diagonals ΔC

ij are now in CC×I and the

parity of Mi is that of κ(i, i). Local line bundles L of the form M̃(−κΔC)) are
characterized by requiring that the locality maps ιij : Li�Lj → Li,j defined on
Ci,j
C = C2 and off ΔC , have vanishing of order κ(i, j) along ΔC .

(1) A local super line bundle M̃(κΔC) on CC×I descends to HC×I if the quadratic
form κ is even. (Since the pullback of the diagonal in H2i

C = C(2) to C2 is the
double of the diagonal divisor, the pullback of OHC×I

(QΔH) from HC×I to
CC×I is OC(κΔC) where κ is obtained from Q by doubling the numbers on the
diagonal.)

Proof

(a) In the setting of Cartesian powers, the restriction M̃i1,...,in of M̃ to the connected
component Ci1,...,in

C×I =∏n
k=1(C × ik) is simply �n

k=1 Mik .
In the setting of Hilbert powers, consider the tautological bundle

T q−→HC×I , the fiber at D ∈ HC×I is the subscheme D of C × I . From

T ⊆ HC×I × (C × I )
pr2−→C × I , we have a line bundle i∗pr∗2M on T , and we

define the line bundle M̃ on HC×I as its Deligne direct image in line bundles,
along the map q. (For an abelian group A, one has the direct image of A-torsors
along a finite flat map.)

(b) Let us write the proof in the more general case of Cartesian powers. For any
M,Q, the line bundle M̃(QΔC) on CC×I is clearly local. Conversely, let L be
any local line bundle and denote M = L|C×I .
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For any i, j ∈ I , the locality isomorphism Li�Lj ∼= Li,j is defined on Cij
C×I =

(C × i) × (C × j) minus the diagonal. It extends to an identification over all of
C

ij
C×I : Li�Lj ∼= Li,j (−κ(i, j)) for a unique integer κ(i, j).

Now, local line bundles L and M(κΔC) on CC×I have been identified over
C≤2
C×I . However, an isomorphism over C≤2

C×I extends uniquely to CC×I since the
the remaining higher incidences have codimension ≥ 2.

3.4 A Generalization GP (I,Q) of Loop Grassmannians of
Reductive Groups

This is a case of the local projective space construction (Remark 3.3.1(2)), in the
setting of a local line bundle L on the configuration space HC×I of colored effective
divisors on a curve C. In Sect. 3.4.1, we notice that for a semisimple group, G leads
to such local line bundle L as a restriction of the line bundle O(1) on the loop
Grassmannian G(G). In Sects. 3.4.2–3.4.4, we will associate to a based symmetric
bilinear form (I,Q) and a poset P the corresponding zastava space ZP (I,Q) and
the loop Grassmannian GP (I,Q). Finally, in Sect. 3.4.6, we check that this is indeed
a generalization of the corresponding spaces for simply connected semisimple
groups.

This reconstruction roughly says that the loop Grassmannian G(G) can be
effectively reconstructed from G(T ). Previous results in this direction include
[Zhu07], [FK], and [Se]. The key observation is that the equations of the semi-

infinite variety S0 in the projective space P(Γ [S0,OG(G)(1)]∗) = P(Γ [S0
T
,L∗])

are given by the locality structure on OG(G)(1). So the locality structure allows us

to reconstruct S0 and then also G(G) as a certain limit of copies of S0.

3.4.1 Local Line Bundles from Loop Grassmannians

If G is simple and simply connected, then P ic[G(G)] ∼= Z with the canonical
generator O(1) (given, for instance, by the divisor which is the complement of the
open Bruhat cell G0 in G(G)). To study O(1), we will use factorizable line bundles
on various versions of loop Grassmannians, and these are defined and compared in
[TZ19].

We now choose two relevant versions of the Abel-Jacobi map. For a
smooth curve C, define the maps CC×I

x �→x−−−−→ HC×I
N−−−−→ HC

. For
x = (c1, i1, . . . , cn, in) ∈ Cn

C×I = (C × I )n (so, cp ∈ C, ip ∈ I ), let
x = ∑

i∈I ixi ∈ HC×I with xi = ∑
ip=i cp ∈ HC . Also, for Di ∈ HC , let

N(
∑

i∈I iDi) = ∑
I Di . For a semisimple group G, consider the global Abel-

Jacobi map
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AJGC
def= (

CC×I x �→x−−−−→ HC×I

AJGC−−−−→ GHC
(G)

)
, AJGC(x)

def= AJGC(x)

= (Nx,OC(−x)
)
,

with Nx ∈ HC and OC(−x) ∈ GHC
(T )Nx . We also consider a version at one point

0 ∈ C:

AJGd
def= (

Cd×I x �→x−−−−→ Hd×I

AJGd−−−−→ G(G)
)
, AJGd (x)

def= AJGd (x)
def= OC(−x).

Proposition LetG be simple and simply connected. Then the pullback (AJGd )∗O(1)
of O(1) via the above Abel-Jacobi map is the line bundle OCd×I

(−κΔC) on Cd×I

corresponding to the negative of the Cartan form κ on Z[I ]. It has a canonical
extension to a local line bundle OCC×I

(−κΔC) on CC×I .

Proof We will use the curve C = A
1 which contains the disc d = 0̂. Then G(G)

is the fiber GCC
(G)0 of the Beilinson-Drinfeld Grassmannian GCC

(G) at the divisor
0 ∈ C = C1

C . We use the extension of O(1) to a factorizable line bundle OC(1)
on the loop Grassmannian GCC

(G). By Proposition 2.5 in [TZ19], this extension is
unique once we trivialize O(1) at the origin of G(G) (this is essentially Section 3.4
in [Zhu16]).

The restriction L of OC(1) to GCC
(T )⊆GCC

(G) inherits the structure of a
factorizable line bundle. This will imply that (AJGd )∗O(1) is canonically identified
with the restriction of (AJGC)∗OC(1) to Hd×I⊆HC×I . The point is that at x ∈ Cd×I ,
the fiber of (AJGd )∗O(1) is L0,OC(−x), and the fiber of (AJGC)∗OC(1) is LNx,OC(−x).
The canonical identification of these fibers of L is a special case of the unique
descent of any factorizable line bundle on GCC×I

(T ) to the so-called rational
Grassmannian Grat (T ), and this was proved in Proposition 1.4 of [TZ19].

We are now interested in the line bundle (AJGC)∗OC(1) on CC×I with its structure
of a local line bundle that it inherits—by definitions—from the factorization line
bundle structure on OC(1). To any factorization line bundle L on GCC

(G), one
associates a quadratic form qL ∈ QF(X∗(T )) whose symmetric bilinear form
κL(λ, μ) = qL(λ + μ) − qL(λ) − qL(μ) is given by the order of vanishing of
the locality structure along the diagonals ΔC⊆C2 corresponding to the pair λ,μ.

The proof of Proposition 2.5 in [TZ19] checks that if G is simple and π1(G) =
0 the quadratic form corresponding to OC(1) is the “minimal” integral invariant
quadratic form qm, characterized by qm(α̌) = 1 for short coroots α̌.

Finally, in the simply connected case, this is the Cartan matrix κ in the sense

that κij
def= 〈αi, α̌j 〉 equals (α̌i , α̌j ) for the sb-form (−,−) given by the quadratic

form qm.
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3.4.2 Zastava Spaces of Local Line Bundles

We can induce any local line bundle L on HC×I along a poset P . Consider the
correspondence

(HC×I )
P π←−P

H σ−→HC×I ,

where the fiber σ−1{D} of PH at D ∈ HC×I is the set Hom(P,HD) of maps
E of posets, i.e., for a ≤ b in P , one has Ea⊆Eb⊆D. This gives a sheaf

IndP (L) def= σ∗π∗(L�P ) on HC×I .

Lemma IndP (L) is a local sheaf on HC×I . If P is an interval, [m] = (1 < · · · <
m) then IndP (L) is a local vector bundle.11

Proof If D = D1�D2 in HC×I , then a representation of P in D is a pair of
representations in Di’s. Sheaf IndP (L) is a vector bundle if PH is flat over HC×I .
If D is a length n subscheme of a smooth curve, then the length of the Hilbert
scheme HD is 2n. This gives the case m = 1. The general case follows by induction
in posets i < · · · < m as i goes from m to 1.

Define the mth zastava space of L as the local projective space

Zm(L) def= P
loc([Ind[m]L]∗).

Remarks

(0) One can extend the construction to zastava spaces ZP (L) for finite posets P , by
replacing the projective space of IndPL∗ with the projective spectrum of the
symmetric algebra of IndPL.

(1) Any symmetric bilinear form Q on Z[I ] defines a local line bundle
O(Q) = OHC×I

(QΔH) on HC×I (3.3.2), hence also zastava spaces

ZP (I,Q)
def= ZP (O(Q)).

Example When P is a point, we omit P from notation. Then PH σ−→HC×I is the
relative Hilbert scheme HT /HC×I

for the tautological bundle T /HC×I , i.e., the
fiber TD at D ∈ HC×I is the Hilbert scheme HD of all subschemes of the finite
scheme D ⊆C × I .

If D is a point ai with a ∈ C and i ∈ I , then Hai = {∅, ai}, hence Ind(L) =
L∅⊕Lai = k⊕Lai . So the particle at ai is P

1 with two chosen points. Then one
is constructing Z(L) by colliding P

1’s according to the prescription given by the
locality structure on the line bundle L.

11Flatness fails for the poset P = (0 < a, b).
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Similarly, when P = [m] = {1 < · · · < m}, then all particles of Zm(L) =
Z[m](L) are P

m. Actually, this P
m is naturally the mth symmetric power of the

particle P
1, so P

1 embeds into P
m by Veronese embedding.

3.4.3 Weak Flatness of Zastavas

We start with a general statement about Kodaira embeddings.

Lemma Let L be a relatively very ample line bundle on a projective scheme Y

over a base variety S. Let X be a projective subvariety over an open dense U⊆S.
Suppose that there exists a finite flat S-subscheme F⊆Y such that over U it lies
inside X and the restriction map LX/U → (LF/S)|U is an isomorphism.12Then the
closure X of X in Y is a closed subscheme of P(LF

∗) ∩ Y and also LX/S = LF/S

is a vector bundle.

Proof For a sheaf E , denote by P(E) the projective spectrum of the symmetric
algebra of E . The restriction map LY/S → LF/S is surjective since L is very ample
for Y/S and F/S is finite flat. Therefore, inside P(LY/F ), we have both Y and
P(LF/S). Over U , both contain X since P(LF/S)|U = PLX/U , and this contains X

since L is very ample. So Y ∩ P(LF/S) also contains X.
The restriction ρ : LX/S → LF/S is surjective since we have F⊆X⊆Y , and

LY/S → LF/S is surjective since L is very ample for Y/S and F/S is finite flat.
Moreover, if S is a variety, then Ker(ρ) is supported over the boundary S −U of U .
If X is a variety, then so is X. Moreover, Ker(ρ) = 0 since the line bundle L has no
sections on X that vanish on X. So LX/S = LF/S , and this is a vector bundle since
F/S is finite flat.

Corollary Recall that the zastava spaces Zm(L) lie inside the bundle of projec-
tive spaces P[Ind[m](L)∗] which carries the line bundle O(1). Then the sheaf
(Z(L)/HC×I )∗O(1) is the vector bundle Ind[m](L).

Proof In the lemma, we choose S⊇U as HC×I⊇Hreg
C×I . Let F/S be the map σ in

the correspondence HC×I
p←− [m]H q−→HC×I from Sect. 3.4.2.

A local line bundle L on S gives a line bundle π∗L�m on F , and (π∗L�m)F/S

is just Ind[m](L). Now, the projective bundle Y/S
def= P(π∗LF/S)/S carries a very

ample line bundle L = O(1) and contains X = P
loc([π∗L]F/S) = Zm(L) and

X = P
loc,reg([π∗L]F/S) = Zm,loc(L). So the claim LX/S = LF/S from the lemma

means that (Zm(L)/HC×I )∗O(1) equals ([m]H/HC×I )∗O(1). However, O(1)|[m]H
is just π∗L�m (a property of Kodaira embeddings), and ([m]H/HC×I )∗π∗L�m is
Ind[m](L).

12We denote by LF/S the direct image of L|F to S, etc.
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3.4.4 Grassmannians from Based Symmetric Bilinear Forms

Let Q be a quadratic form on Z[I ]. Its zastava space ZP (I,Q)
def= ZP (O(Q))

defines the semi-infinite space SP (I,Q) over HC×I , and the fiber at D ∈ HC×I

is the colimit (union) of zastava fibers ZP (I,Q)D at multiples of D

SP (I,Q)D = lim→ n
ZP (I,Q)nD.

Finally, N[I ] acts on SP (I,Q), and the corresponding loop Grassmannian is
defined as

GP (I,Q)
def= Z[I ] ×N[I ] SP (I,Q).

3.4.5 Zastava Spaces Zα(G) for Groups

We will recall these spaces from [FM99] which compares several definitions. The
description in terms of the Beilinson-Drinfeld Grassmannian GBD(G) is from
Section 6 of [FM99].

We will be interested in the connected component GBD(Gsc) of GBD(G). For
a Borel B, the simple coroots identify H = B/N with Gm

I . Therefore, the
singularities of a rational section τ of any H -torsor over C define an I -colored
divisor D. We say that the singularity of τ is the degree deg(D) ∈ Z[I ].

For α ∈ Q̌+, we define SBD(α)⊆GBD(Gsc) so that the fiber SD(α) at D ∈ HC

consists of all pairs (T , τ ) of a G-torsor T over C and its section τ over C − D,
such that the B-subtorsor Bτ⊆T |C−D extends to C (necessarily as the closure Bτ

in T ), and that the section τ of the H -torsor N\Bτ has singularity α. If α ∈ N[I ],
this means that the divisor D is in Hα

C×I . At a single point a ∈ C, the fiber Sa(α) is
the orbit NKLα from Sect. 3.2.3.

Now, a pair of opposite Borels B± = TN± (with B+ = B) gives two
semi-infinite stratifications SBD,±(α), α ∈ Q̌+, of GBD(Gsc). For α ∈ N[I ],
consider a version Zα(G) of “zastava” for G which is obtained by pulling back

the intersection of closures S
BD,+
0 ∩ S

BD,−
α to the connected component Hα

C×I of
the colored configuration space, via the sum map HC×I → HC, (Di)i∈I �→∑

Di .
Our “zastava” space Z→ HC×I is local since the singularity of a section τ regular
off D′�D′′ is the sum of contributions at D′ and D′′.

When ai is a point in C × I = Hi
C×I , then the fiber (Zi )ai is P

1 with Cartan
fixed points L0, Lα̌i

(this reduces to G = SL2, and then it is as easily seen from the
example in Sect. 3.2.2). Then by locality, the fiber at a regular divisor D ∈ Hα,reg

C×I is

isomorphic to (P1)D , and the T -fixed points in Zα
D are all Lβ with 0 ≤ β ≤ α in Q̌.

This in particular shows that the restriction Zα,reg def= Zα
∣
∣Hα,reg

C×I is reduced. The
zastava space that we are interested in is its closure Zα in the scheme Zα . By
definition, it is a reduced local space.
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Remarks

(0) (Comparison of Terminology with [FM99]). The space Z over HC×I is
projective so we can call it projective zastava. We also have open subspaces

Z⊇Z⊇ ◦
Z . What is called open zastava in [FM99] is

◦
Z which is obtained by

replacing S
BD,+
0 ∩ S

BD,−
α with S

BD,+
0 ∩ SBD,−

α . For C = A
1, this is the

space of based maps into the flag variety Map[(P1,∞), (B, b−)]. What is
called zastava in [FM99] is the space Z for which one removes one closure

and uses S
BD,+
0 ∩ S

BD,−
α . For C = A

1, this is the space of based quasimaps
QMap[(P1,∞), (B, b−)]. We can call it affine zastava since it is affine.

(1) The diagonal points of Hα
C×I are of the form αp = (aip)i∈I for a point p ∈

C and α = ∑
i∈I ai i ∈ N[I ]. The unions of central fibers of zastava spaces

∪
α∈Q̌+Z

α
αp⊇∪α∈Q̌+ Zα

αp are by definitions the semi-infinite varieties S0⊇S0 in
G(G).

Moreover, one can view G(G) as the increasing union of Sβ = z−βS0 ∼= S0, β ∈
Q̌+. So the whole loop Grassmannian is a certain direct limit lim→ Q̌+

S0. As α ∈ N[I ]
acts on S0 by zα , we can rewrite this limit as G(G) = Z[I ] ×N[I ] S0.

3.4.6 Reconstruction of Loop Grassmannians G(G) Associated to Groups

Here, we check that the Grassmannians GP (I,Q) from Sect. 3.4.4 indeed generalize
the loop Grassmannian G(G) of semisimple groups.

Theorem Let G be a simply connected simple group which is simply laced. Let
I index the simple roots, and let Q′ be the modification of the Cartan matrix
by dividing by 2 on the diagonal.13Then Zα(I,−Q′), S(I,−Q′), G(I,−Q′) are
naturally identified with the corresponding notions Zα(G), S0(G), G(G) for the
group G.

Proof We only need to prove equality Zα(I,Q) = Zα(G) since the other two
spaces are obtained from zastavas in the same way (compare Sect. 3.4.4 and the
Remark 3.4.5.1).

Let T α be the tautological bundle over Hα
C×I so that the fiber at a colored divisor

D =∑i∈I Dii is the finite flat scheme D = �i Dii⊆C × I . The interesting object

is the relative Hilbert scheme H(T α/Hα
C×I ), its fiber at D is H(D)

def= ∏
i∈I HDi

,
where H(Di) is the moduli of all subschemes of a finite flat scheme Di . The point is

13The modification appears because we use the Hilbert scheme HC rather than over powers of
curves CC (see the Remark 3.3.2(1)).
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that according to Proposition 3.2.3, the fixed points subscheme (Zα(G))T is exactly

H(D)
def= ∏

i∈I HDi
.14

Now, we can apply the weak flatness Lemma 3.4.3. Choose S⊇U to be
Hα

C×I⊇Hα,reg
C×I . For Y/S, we choose the pullback of the Beilinson-Drinfeld Grass-

mannian GBD(G) to HC×I (by the sum map). It carries a very ample line bundle L
which is the pull back of OG(1) from GBD(G).

For F⊆Y , take (Zα(G))T = H(T α/Hα
C×I ). We have already argued that it is

flat in the proof of Lemma 3.4.2. Finally, let X/U be Zα,reg(G), the restriction of
Zα(G) to Hα,reg

C×I .
We still need to check that the restriction map LX/U → LFU/U is an isomor-

phism. Due to locality of Z(G) and of the line bundle L on Y , we only need the
claim at colored divisors D which are points ai.

Here, Zi
ai is P

1 with T -fixed points {L0, Lα̌i
}. So one just needs to check that

the restriction of L to Zi
ai is OP1(1). Recall that L = OG(1) is OG(G)(DG) for the

divisor DG in G(G) defined as the boundary of the open orbit G0(G) of the negative
congruence subgroup. So it suffices to see that Zi

ai∩DG is a single point. This claim
reduces to the SL2 subgroup Si of G corresponding to the simple root αi – since
DG∩G(Si) = DSi . In the SL2 case, one easily checks explicitly in the lattice model
for the loop Grassmannian (see the Example 3.2.3).

Now, Lemma 3.4.3 guarantees that for Zα(G) = Zα,reg(G) = X and any
D ∈ Hα

C×I , the restriction map Γ [Zα(G)D,O(1)] → Γ [Zα(G)TD,O(1)] is an
isomorphism. This implies that Zα(G) is a local projective space for the local vector
bundle dual to LZα(G)T /HC×I

(we use the notation from Lemma 3.4.3).

Now, Z(G)T has been identified with the Hilbert scheme for T /HC×I , and then
the local vector bundles LZα(G)T /HC×I

and Ind(I,−Q′) on the two spaces are
identified by Proposition 3.4.1. Therefore, the corresponding local projective spaces
Z(G) and Z(I,−Q′) are the same.

Remark The “simply laced” restriction can be removed using the folding mecha-
nism. Here, this means an action of a group γ on the data (I,Q). Furthermore, if γ
is allowed to act on a curve above C×I , then one would include loop Grassmannians
for twisted affine Lie algebras and the Galois action.

3.4.7 The “Homological” Aspect of GP (I,Q)

The standard interpretation of loop Grassmannians G(G) is cohomological
(Sect. 3.1.1). The construction Sect. 3.4 provides what one could view as a
homological interpretation. First, for a torus T = G

I
m, one builds G(T ) from

the union of formal discs d × I in stages d × I �→Hd×I �→G(GI
m). Here, the

14While the quoted lemma is stated at a single point of C, we actually need a version of the
lemma for the family Zα(G) → Hα

C×I . This is easy using the moduli description of semi-infinite
stratifications from Sect. 3.4.5.
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configuration space Hd×I is the free commutative monoid generated by d × I , and
then one inverts the center of the disc to get G(GI

m) as the free commutative group
on d × I (remark 0 in Sect. 3.1.2). One repeats this procedure for a reductive group
G with a Cartan T = G

I
m by adding a local line bundle L on Hd×I , to get G(G)

(or more generally GP (I,Q)). First, the positive part of the loop Grassmannian
is the zastava space ZP (I,Q) built using the monoid Hd×I in Sect. 3.4.2. Then
GP (I,Q) itself is obtained from ZP (I,Q) in Sect. 3.4.4 by inverting N[I ]⊆Hd×I .
We mention that for a complete curve C, a reconstruction of BunG(C) from C has
been pursued long ago in [FS94].

4 Local Line Bundles from Quivers

We know that local line bundles L on configuration spaces HC×I correspond
to quadratic forms Q (Sect. 3.4.4), and the forms Q with nonnegative integer
coefficients clearly correspond to graphs. In this section, we construct local line
bundles directly from graphs or quivers. The advantage is that such construction
extends to the quantum setting (see [YZ16] and Sect. 4.5 below). In the quantum
setting, the “commutative” configuration space HG×I will be replaced with the

“noncommutative”, i.e., ordered, configuration space CG×I
def= �n (G × I )n.

On the level of representations of quivers, the noncommutative configuration space
corresponds to passing to complete flags in representations.

We start with the curve G which is the one-dimensional group corresponding
to a cohomology theory A.15Then the Hilbert scheme HG×I of points in G× I
is obtained as the cohomological schematization A(RepQ) of the moduli VI of I -
graded finite-dimensional vector spaces.

In Sect. 4.1, we recall various categories of representations of quivers and their
extension correspondences. The cotangent complexes for these correspondences are
considered in Sect. 4.3.

The “classical” local and biextension line bundles L(Q,A) and L(Q,A) on
HG×I and (HG×I )

2 are constructed as Thom line bundles of moduli of extensions
of representations in Sect. 4.2. Here, L(Q,A) can be defined directly from the
incidence quadratic form of the quiver Q.

In Sect. 4.4, we calculate Thom line bundles associated to the cotangent corre-
spondence and the effect of dilations. Finally, in Sect. 4.5, we recall the construction
of the quantum group UD(Q,A) from the cotangent correspondence, and this leads
us to select a choice of quantization of the above “classical” line bundles from
Sect. 4.2.

Remark This section is largely a retelling of the paper [YZ17]. That paper is
primarily concerned with the construction of quantum affine groups in the language

15Here, G is defined over the ring of constants A(pt) of the cohomology theory.
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of preprojective algebras which is here viewed as the cotangent bundle of the moduli
RepQ. This “symplectic” setting allows to “quantize” the notion of local line bundles
and the construction of loop Grassmannian from local line bundles. The quantization
comes from the action of the dilation torus D on representations (which is in turn
defined by a choice of a Nakajima function m on the set of arrows of the double Q

of the quiver Q).16

4.1 Quivers

Let Q be a quiver with finite sets I and H of vertices and arrows. For each arrow
h ∈ H , we denote by h′ (resp. h′′) the tail (resp. head) vertex of h. The opposite
quiver Q∗ = (I,H ∗) has the same vertices, and the set of arrows H ∗ is endowed
with a bijection ∗ : H → H ∗ so that h �→h∗ exchanges sources and targets. The
double Q of the quiver Q has vertices I and arrows H �H ∗.

Let VI be the moduli of finite-dimensional I -graded vector spaces V = ⊕i∈I V i .
Let RepQ be the moduli of representations of Q. Its fiber at V ∈ VI is the
vector space RepQ(V ) of representations on V . This is the sum over h ∈ H of

RepQ(V )h = Hom(V h′ , V h′′). We usually denote v = dim(V ) ∈ N[I ], and let G
be GL(V ) so that the connected component RepQ(v)—given by representations of
fixed dimension v ∈ N[I ]—is G\RepQ(V ).

4.1.1 Dilation Torus D

A choice of Nakajima’s weight function m : H ∐
H ∗ → Z gives an action of G2

m

on

T ∗ RepQ(V ) = RepQ(V ) = RepQ(V )⊕RepQ∗(V ).

Elements (t1, t2) act for each h ∈ H on RepQ(V )h by t
mh

1 and on RepQ∗(V )h∗ by
t
mh∗
2 . We also let G2

m act on the Lie algebra g of GL(V ) by t1t2.
We choose a subtorus D of G

2
m and require that the moment map for the

GL(V )-action on T ∗ RepQ(V ) is D-equivariant. This means that on D, we have

t
m(h)
1 t

m(h∗)
2 = t1t2 for any h ∈ H . In particular, the symplectic form on T ∗ RepQ(V )

has weight t1t2.

16While [YZ17] deals with the case of elliptic cohomology, some of its ideas appear in an earlier
paper [YZ14] which was only concerned with affine groups G. This allowed for a trivialization of
Thom line bundles which accounts for a different presentation of functoriality of cohomology in
that paper.
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Example

1. Nakajima’s construction of quantum affine algebra associated to Q uses D =
Gm, the diagonal torus in G

2
m (see [Nak01, (2.7.1), (2.7.2)]). Here, the D-weight

of the symplectic form on T ∗ RepQ(V ) and on g is 2, and the condition on m
is m(h) + m(h∗) = 2. If there are a arrows in Q from vertex i to j , we fix a
numbering h1, · · · , ha of these arrows, and let

m(hp) := a + 2− 2p, m(h∗p) := −a + 2p, for p = 1, · · · , a.

2. In [SV13], the elliptic Hall algebra (the spherical double affine Hecke algebra of
GL∞) is obtained from the choice D = G

2
m and m = 1.

4.1.2 The Extension Correspondence for Quivers

The moduli R = RepQ is given by pairs of V ∈ VI and a ∈ RepQ(V ). We denote
the elements of Rm as sequences (V•, a•) of pairs of (Vi, ai) ∈ R.

Let Fm be the moduli of m-step filtrations F = (0 = F 0⊆F 1⊆· · ·⊆Fm =
V ) on objects V of VI. Similarly, we consider the moduli of filtrations FmR of
representations, the objects are triples of V ∈ VI, representation a of Q on V and
a compatible filtration F ∈ FmR(V ). We denote the fiber of Fm at V ∈ VI by
Fm(V ) and the fiber of FmRepQ at F ∈ Fm(V ) by FmR(F ) = RepQ(F).

The fiber R(V ) of R at V ∈ VI is RepQ(V ). Also, RepQ∗(V ) = R(V )∗ and for

R = RepQ, we have R(V ) = T ∗R(V ). By representations on a sequence V• =
(Vi)

m
k=1 ∈ Vm, we mean a sequence of representations, say R(V•) = ⊕m

k=1 R(Vk).
A decomposition f of v ∈ N[I ] as v1+· · ·+vm gives the connected components

F f and FmR(f), given by dim[GrF (V )] = f. The stabilizer P of a chosen F ∈
F f(V ) is a parabolic in G and then F f ∼= P \G.

Now, the m-step extension correspondence for R is

Rm p←−FmR q−→R

where p(V, a, F ) = GrF (V, a) and q(V, a, F ) = (V , a). The obvious splitting
⊕m

1 of p is given by sending (V•, a•) to (⊕m
1 Vi,⊕m

1 ai, F ) for Fp = ⊕p

k=1Vk .
A filtration F on vector spaces A,B defines a filtration on Hom(A,B), where

operator x is in Fd if xFpA⊆Fp+dB for all p. In particular, we get a filtration
Fd(A

∗) = F⊥−d−1, and the two filtrations on Hom(B,A) ∼= Hom(A,B)∗ coincide.
So a filtration F ∈ Fm(V ) induces a filtration on RepQ(V )⊆End(⊕i∈I V i) with

x ∈ Fd Rep(V ) if xFpV h′⊆Fp+dV h′′ . Then F0 RepQ(V ) is the space RepQ(F)

of representations compatible with F and GrF0 RepQ(V ) = Rep(GrFV ). Also, the
two filtrations on RepQ(V ) = T ∗ RepQ(V ) coincide.
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4.2 Thom Line Bundles

4.2.1 Classical Thom Bundles for Quivers

As RepQ(V ) is quadratic in V , we define its bilinear version RepQ(V1, V2) =
⊕h∈H Hom(V h′

1 , V h′′
2 ) for Vi ∈ VI. Let vi = dim(Vi) and denote L = GL(V1) ×

GL(V2). Over AL = G
(v1) ×G

(v2), we define the line bundle

L(Q,A)v1,v2

def= ΘL(RepQ(V1, V2)).

Lemma

(a) For a quiverQ = (I,H), the Thom line bundle L(Q,A)
def= Θ[RepQ] is a local

line bundle O(−Q) on A(RepQ) = HG×I , corresponding to the incidence
quadratic form Q of the quiver.

(b) The line bundle L(Q,A)V1,V2 onG
(v1)×G

(v2) is bilinear in V1, V2 in the sense
that for the addition map S : GL(U ′)×GL(U ′′) ↪→ GL(U ′⊕U ′′), one has

LU ′,V�LU ′′,V ∼= (AS)
∗(LU ′⊕U ′′,V )

and the same for V .

Proof (a) For V ∈ VI and G = GL(V ), as a G-module R(V ) = RepQ(V )

is ⊕H Rh(V ) for Rh(V ) = Hom(V h′ , V h′′). The corresponding connected
component of RepQ is a vector bundle G\RepQ(V ) over B(G). Then the ideal
ΘG(Rh) in OAG

is generated by the function lch(Rh) (defined in Sect. 2.2.1)
corresponding to the character of R(h).

A system of coordinates xi
s on each V i, i ∈ I gives a Cartan T in G such

that a basis in X∗(T ) can be denoted by xi
s . If i

h−→j , then the character of Rh

is ch(Rh) = ∑
s

∑
t x

j
t (x

i
s)
−1; hence, lch(Rh) =

∏
s,t l(x

j
t (x

i
s)
−1), and

the same divisor is given by
∏

s,t l(x
j
t ) − l(xi

s) which is the equation of the
(i, j)-diagonal in AT

∼=∏i∈I G
dim(Vi ).

(b) Hom(U, V ) is bilinear in U and V . We use the obvious observation that if Vi

is a module for Gi for 1 ≤ i ≤ n, then Θ∏ Gi
(⊕ Vi) ∼= � ΘGi

(Vi). By
multiplicativity of Θ , this reduces to the claim that for a representation V of G,
ΘG×G′(V�k) = ΘG(V )�OAG′ .

For this, we can assume that G,G′ are reductive, and then they can be replaced
by their Cartans T , T ′. Then we can also assume that Vi are characters χ of T . But
then Ker(χ�k) = Ker(χ)× T ′, and this implies the claim.
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4.3 Cotangent Versions of the Extension Diagram

4.3.1 The (Co)tangent Functoriality

The tangent complex of a map of smooth spaces f : X → Y is T (f ) =
[TX df−→f ∗TY]−1,0 on X , and the dual cotangent complex is T ∗(f ) =
[f ∗T ∗Y d∗f−→T ∗X ]0,1. When f is an embedding, these are the (co)normal bundles
T (f ) ∼= N(f ) and T ∗(f ) = T ∗XY = N(f )∗. The Thom line bundle of a map f

is Θ(f )
def= Θ[T (f )] = Θ(f ∗TY)Θ(TX )−1. For the map f , the direct image of

A-cohomology takes the form of f∗ : Θ(f )→ A(Y) [GKV95].
The cotangent functoriality associates to f : X → Y the correspondence

T ∗Y f̃←−f ∗T ∗Y d∗f−→T ∗X .

Therefore, any correspondence A
p←−C

q−→B of smooth spaces gives two cotangent

correspondences T ∗A p̃←−p∗T ∗A d∗p−→T ∗C d∗q←−q∗T ∗B q̃−→T ∗B that compose to the
correspondence p∗T ∗A×T ∗C q∗T ∗B.17Say, in the category of schemes this fibered
product consists of all c ∈ C, α ∈ T ∗p(c)A, β ∈ T ∗q(c)B such that d∗pα = d∗qβ, so
by passing to (c, α,−β), we identify it with T ∗C(A×B). Then the cotangent version

of the original correspondence is T ∗A
·
p←−T ∗C(A× B)

·
q−→T ∗B.

4.3.2 Stacks

If X is a smooth variety with an action of a group G, then G\X is a smooth stack
whose tangent complex is [g → TX]−1,0 and the cotangent complex is [T ∗X →
g∗]0,1.

We will consider a map of smooth varieties X1
f−→X2 and G1 → G2 a compati-

ble map of groups Gi acting on Xi . Then for Xi = Gi\Xi , one gets F : X1 → X2.

We will calculate its cotangent correspondence T ∗X2
F̃←−F ∗T ∗X2

d∗F−→T ∗X1. First,
the Thom line bundles for stacky versions are the equivariant Thom bundles for f

plus a change of equivariance factor ΘG1(g1/g2) defined as ΘG1([g1 → g2]0,1).
Lemma

(a) Θ(F) = ΘG1(f ) ⊗ ΘG1(g1/g2).
(b) Θ(d∗F) = ΘG1(d

∗f ) ⊗ ΘG1(g1/g2).
(c) Θ(F̃ ) = ΘG1(f ) ⊗ ΘG1(g1/g2).

17The fibered product has to be derived for the relevant base change to hold unless d∗p, d∗q are
transversal.
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(d) The pullback map on cohomology A(T ∗X2)
(F̃ )∗−→A(F ∗T ∗X2) is the same as

A(X2)
F ∗−→A(X1). Also, (d∗F)∗ is identity on A(X1).

Proof The (co)tangent complexes of spaces Xi are calculated by formulas
T (G\X) = G\(TGX) and T ∗(G\X) = G\(T ∗GX), where TGX = [g × X →
TX]−1,0 and T ∗GX = [T ∗X → g∗ ×X]0,1.

The map F gives pullbacks F ∗(TX2) = X1
G1
×X2

G2

TG2X2

G2
= f ∗TG2X2

G1
and

F ∗(T ∗X2) = f ∗T ∗G2
X2

G1
.

(a) The tangent complex T (F ) = [TX1 → F ∗TX2]−1,0 of the map F comes
from (the G1-quotient of) the map of complexes [g1 → TX1] → [g2 → TX2]
given by TX1

df−→f ∗TX2 and g1 → g2. When we view this as a bicomplex
with horizontal and vertical degrees in [−1, 0], then T (F ) is its total complex
[g1 → TX1⊕g2 → f ∗TX2]−2,0, which is an extension of complexes

[TX1
df−→f ∗TX2]−1,0 = T (f ) and [g1 → g2]−2,−1. So Θ(F) is as stated.

Now, the cotangent correspondence can be written as

T ∗X2
F̃←−−−− F ∗(T ∗X2)

d∗F−−−−→ T ∗X1

=
⏐
⏐
� =

⏐
⏐
� =

⏐
⏐
�

T ∗G2
X2

G2
←−−−− f ∗T ∗G2

X2

G1
−−−−→ T ∗G1

X1

G1
.

(b) Write d∗F as (d∗F)o/G1 where (d∗F)o : f ∗[T ∗X2 → g∗2] →
[T ∗X1 → g∗1] is a map of complexes viewed as a bicomplex with all
horizontal and vertical degrees in [−1, 0]. So T ((d∗F)o) is the total complex
[f ∗T ∗X2 → T ∗X1⊕g∗2 → g∗1]−2,0 which is an extension of complexes

[f ∗T ∗X2
d∗f−→T ∗X1]−2,−1 and [g∗2 → g∗1]−1,0. So Θ(d∗F) = ΘG1((d

∗F)o) =
ΘG1(d

∗f )⊗ΘG1([g∗2 → g∗1]−1,0) = ΘG1(d
∗f )⊗ΘG1([g1 → g2]0,1), and then

we use invariance of the Thom line bundle under duality.
(c) Denote the complex T ∗G2

X2 = [T ∗X2 → g∗2]0,1 by V , and let η : f ∗V → V .

Then the map F̃ is given by η and the change of symmetry G1 → G2. So part
(a) says that Θ(F̃ ) = ΘG1(η)⊗ΘG1([g1 → g2]0,1). Let us denote π : V → X2

and π : f ∗V → X1, and then T (η) = [T (f ∗V)
dη−→η∗T (V)]−1,0 is π∗T (f ).

(One has 0 → π∗V → T V → π∗TX1 → 0 and 0 → π∗f ∗V → Tf ∗V →
π∗TX2 → 0. Now the map of complexes is identity on subsheaves π∗f ∗V ∼=
η∗π∗V and what remains is π∗TX2 → η∗π∗TX1 = π∗f ∗TX1.)

So ΘG1(η) = ΘG1(π
∗T (f )), and since π is contractible, this is ΘG1(f ).

(d) After contracting complexes of vector bundles, the maps F̃ and d∗F become,

respectively, the map X2/G2
F←−X1/G1 and the identity on X1/G1.
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4.4 The A-Cohomology of the Cotangent Correspondence for
Extensions

We recall the construction of [YZ14] of a quantum group in the above setup. It
originated from the study of affine quantum groups in [Nak01] and [SV13] and is
closely related to [KS11].

4.4.1 Connected Components of the Cotangent Correspondence

Fixing V ∈ VI and F ∈ Fm(V ), let GrF (V ) = ⊕m
k=1Vk . We denote G = GL(V ),

L = ∏m
k=1 GL(Vk) the automorphism group of GrF (V ), and P is a parabolic

subgroup of G with a Levi subgroup L. Let U be the unipotent radical of P . Denote
the Lie algebras by p, l, u.

These choices fix the connected component of the correspondence Rm p←−FmR
q−→R → VI given by

L\R(GrF (V ))
p←−P \R(F )

q−→G\R(V ) → G\ pt . (1)

4.4.2 Line Bundles from the Cotangent Correspondence

The extension correspondence gives two cotangent correspondences

T ∗Rm p̃←−p∗T ∗Rm d∗p−→T ∗FmR d∗q←−q∗T ∗R q̃−→T ∗R. (2)

These compose to a single correspondence as in Sect. 4.3.1 which is the cotangent
correspondence of the extension correspondence. We will not consider it since we
are calculating here its effect on cohomology and this is the composition of effects
of the above two simpler correspondences.

Let V ∈ VI and F ∈ Fm(V ). We write the fiber of the correspondence (1) over
F as

R(GrF (V ))

o
p←−R(F )

o
q−→R(V ).

The connected component of the diagram (2) determined by F takes the form

T ∗(L\Rm(GrF))
p̃←−p∗T ∗(L\Rm(GrF))

d∗p−→
T ∗(P \FmR(F ))

d∗q←−q∗T ∗(G\R(V ))
q̃−→T ∗(G\R(V )). (3)
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Lemma With notations as above (and the filtration on R(F ) as in Sect. 4.1.2), we
have

Θ(d∗p) ∼= ΘL(g/p)⊗ΘL(F−1R(F )) and Θ(̃q) ∼= ΘL[R(V )/R(F )]⊗ΘL(g/p)
−1.

Proof According to the Lemma 4.3.2.b Θ(d∗p) is ΘL(d
∗ o
p)⊗ΘL([p→ l]0,1). The

second factor is ΘL(u), since u ∼= (g/p)∗ we can write it as ΘL(g/p). For the

first factor, as
o
p : R(F ) → R(GrF (V )), we get d∗ o

p : R(F ) × R(GrF (V ))∗ →
R(F ) → R(F )∗ so up to a factor R(F ), this is R(GrF (V ))∗ ↪→ R(F )∗ with the
quotient [F−1R(F )]∗. So the first factor is ΘL([F−1R(F )]∗) = ΘL(F−1R(F )).

Again, by Lemma 4.3.2.c Θ(̃q) is ΘP (
o
q)⊗ΘP ([p → g]0,1) for the embedding

[R(F )

o
q−→R(V )]−1,0. So the first factor is ΘL[R(V )/R(F )], and the second is

ΘL(g/p)
−1.

4.4.3 Dilations

Recall the action of the dilation torus D ⊆ G
2
m from Sect. 4.4.3. The weight of the

first Gm-factor on R is prescribed by m while the second factor acts trivially. Then
the D-action on T ∗R is uniquely determined by asking that the natural symplectic
form on T ∗R has weight t1t2. We denote the D-character of weight t1t2 by ω, so
that the D-action on T ∗R is twisted by ω. This gives rise to the following twisted
version of (3),

T ∗(L\Rm(GrF))⊗ ω
p̃←−p∗T ∗(L\Rm(GrF))⊗ ω

d∗p−→T ∗(P \FmR(F ))⊗ ω

(4)

d∗q←−q∗T ∗(G\R(V ))⊗ ω
q̃−→T ∗(G\R(V ))⊗ ω.

The maps in the above diagram are equivariant with respect to D.
Now, we analyze D-action on the relative tangent complexes of F , d∗F , and F̃ .

Lemma 4.3.2 applies to induced actions on cotangent bundles. When working D-
equivariantly, we need to add an ω-twist. This applies to the Lie algebra factors in
Lemma 4.3.2 that come from the cotangent complexes. On the other hand, the Lie
algebra factors that come from the change of symmetry are not affected as they only
carry the adjoint action. To simplify notations, for any group H , we denote H ×D
by H̃ . Then

ΘD(d∗F) ∼= ΘG̃1
(d∗f )⊗ΘG̃1

((g1/g2)⊗ω) and ΘD(F )=ΘG̃1
(f )⊗ΘG̃1

(g1/g2).

Therefore, ΘD(F̃ ) = ΘG̃1
(f ) ⊗ ΘG̃1

(g1/g2).
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Lemma With notations above: Θ(d∗p) ∼= ΘL̃(g/p ⊗ ω) ⊗ ΘL̃(F−1R(F )) and
Θ(̃q) ∼= ΘL̃[R(V )/R(F )] ⊗ΘL̃(g/p)

−1.

Proof According to Lemma 4.3.2.b Θ(d∗p) is ΘL̃(d
∗ o
p)⊗ΘL̃([p → l]0,1 ⊗ ω).

The second factor is ΘL̃(u⊗ ω), since u ∼= (g/p)∗ we can write it as ΘL̃(g/p⊗ ω).

Again, by Lemma 4.3.2.c, Θ(̃q) is ΘP̃ (
o
q)⊗ΘP̃ ([p → g]0,1) for the linear

embedding [R(F )

o
q−→R(V )]−1,0. So the first factor is ΘL̃[R(V )/R(F )], and the

second is ΘL̃(g/p)
−1, as it comes from the change of symmetries.

4.5 D-Quantization of the Monoid (HG×I ,+)

Here, we recall the construction from [YZ17] of a deformation (Coh(HG×I ), &) of
the convolution on the monoid (HG×I ,+). The quantum group UD(Q,A) and its
positive part U+D(Q,A) were constructed in [YZ14, YZ16], as algebra objects in
(Coh(HG×I ), &), and hence in particular as R-algebras.

4.5.1 Local and Biextension Line Bundles LD(Q,A) and LD(Q,A)

These will be upgrades of L(Q,A) and L(Q,A) from Sect. 4.2.1. They will be
constructed as special cases of line bundles associated to cotangent correspondences
of extension moduli (3).

Case 1 The biextension line bundle L = LD(Q,A) comes from m = 2, i.e., the
2-step filtrations F2(V ) of V . For GrF (V ) = V1 ⊕ V2

LV1,V2 := Θ(d∗p)⊗Θ(̃q)

is a line bundle on AL̃
∼= AG(V1) × AG(V2) × AD.

Case 2 Our quantum version L = LD(Q,A) of the local line bundle L(Q,A)

depends on a choice of a type of a complete flag F ∈ Fm(V ) which is f =
dim(GrF (V )) ∈ (NI )m. Then

[LD(Q,A)]V,f
def= Θ(d∗p)⊗Θ(̃q)

is a line bundle on AL̃ = G
|V | ×AD, where |V | =∑i∈I dim(V i) (here, the Levi

subgroup L is a Cartan in GL(V )). It is called the local line bundle.

One easily sees that the restrictions of “quantum objects” LD(Q,A) and
LD(Q,A) to 0 ∈ AD are the classical Thom line bundles L(Q,A) and L(Q,A)

from Sect. 4.2.1.
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4.5.2 Convolutions and Biextensions

We recall the monoidal structure & on coherent sheaves on HG×I × AD (over the
base scheme AD) from [YZ17].

For a smooth curve C, HC×I is a commutative monoid freely generated by
C. The operation S : HC×I × HC×I → HC×I is the addition of divisors
(“symmetrization”). Since it is a finite map, it defines a convolution operation on
the abelian category Coh(HC×I ) of coherent sheaves by F ∗ G = S∗(F�G).

The following definition can be found in [P, P126]. A line bundle L over
(HC×I )

2 is a biextension (or Poincare line bundle) if we have the following
isomorphism of line bundles

ax1,x2;y : Lx1+x2,y → Lx1,y ⊗ Lx2,y,

ax;y1,y2 : Lx,y1+y2 → Lx,y1 ⊗ Lx,y2 ,

which satisfy the following cocycle conditions

(i) ax1+x2,x3;y ◦ (ax1,x2;y ⊗ id) = ax1,x2+x3;y ◦ (id⊗ax2,x3;y),

(ii) ax;y1+y2,y3 ◦ (ax;y1,y2 ⊗ id) = ax;y1,y2+y3 ◦ (id⊗ax;y2,y3),

(iii) (ax1,x2;y1 ⊗ ax1,x2;y2)ax1+x2;y1,y2 = (ax1;y1,y2 ⊗ ax2;y1,y2)ax1,x2;y1+y2 .

This is equivalent to a central extension of the monoid (HC×I ,+) (or its group
completion) by Gm.

Now, L twists the convolution on Coh(HC×I ) to another monoidal structure F &

G def= S∗[(F�G)⊗L].
From now on, the curve C will be G = AGm

.

Lemma The line bundle L = LD(Q,A) on (HC×I )
2×AD defined in Sect. 4.5.1.1

is an AD-family of biextension line bundles. This gives a “D-twisted” convolution
on Coh(HG×I × AD) by

F & G def= S∗[(F�ADG)⊗L].

Proof We need to check that the quantum version of L is still a biextension. Notice
that the quantum version has an extra factor ΘD(g/p). However, since for m = 2 the
space g/p is of the form Hom(V1, V2), the argument in the proof of Lemma 4.2.1.b
applies again.

Proposition ([YZ17, Theorem A, Theorem 3.1])

(a) (Coh(HG×I × AD), &) is a monoidal category with a meromorphic braiding
which is symmetric. The unit is the structure sheaf on H0

G×I
× AD.

(b) The structure sheaf onHG×I × AD is an algebra object in this category.
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For any τ ∈ AD, we denote by Lτ the restriction of L to τ ∈ AD, and F &τ G :=
S∗[(F�ADG)⊗Lτ ].
Remark One way to motivate the L-twisted convolution of coherent sheaves on
(HG×I )

2 × AD is to notice that when the cohomology theory A extends to
constructible sheaves, then for a constructible F on a space X, the cohomology
A(F) is a coherent sheaf on A(X). In this case, the A-cohomology functor
intertwines the convolution of constructible sheaves on RepQ and the L-twisted
convolution of coherent sheaves on A(RepQ) = (HG×I )

2 × AD. (This follows as
in the proof of Lemma 4.4.2.)

4.5.3 Quantum Groups U+
D(Q,A) ⊂ UD(Q,A)

Now, we consider the setup of Sect. 4.4.2 with V ∈ VI and F ∈ Fm(V ). Let
f = dim(GrF (V )) ∈ (NI )m be the type of the filtration F . Applying the cohomology
theory A to the diagram (3), we have the following multiplication map associated
to f:

mf := (q̃∗) ◦ (d∗q∗) ◦ (d∗p∗) ◦ (p̃∗) : S∗(Θ(q̃)⊗Θ(d∗p))→
AD(T ∗(G\R(V ))) ∼= OAG×AD , (5)

where S : AL → AG is the symmetrization map.
Let Sph(V ) be the set of types v of filtrations in Fm(V ) consisting of complete

flags (so m = |v| def= ∑
i∈I vi). We define U+D(Q,A) so that on the connected

component AG × AD,

(U+D(Q,A))V
def=

∑

f∈Sph(V )

Image(mf) ⊆ AG̃ = OAG×AD .

Lemma

1. The coherent sheaf U+D(Q,A) is an ideal sheaf on AG × AD.
2. U+D(Q,A) is an AD-family of algebras in the monoidal categories

(Coh(HG×I ), &τ ).

Proof As each mf, for f ∈ Sph(V ), is a morphism of coherent sheaves, the
image Image(mf) is a coherent subsheaf in OAG×AD . Since Sph(V ) is a finite set,
(U+D(Q,A))V is a sum of finitely many coherent subsheaves, so it is itself a coherent
subsheaf of OAG×AD . A coherent subsheaf of the structure sheaf is a sheaf of ideals,
hence so is (U+D(Q,A))V .

For (2), the algebra structure on (U+D(Q,A))V is defined using mf, where F is
the two-step filtrations in Sect. 4.5.1 Case 1.
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The sheaf U+D(Q,A) on AG × AD is denoted by Psph in [YZ14], since it is the
spherical subalgebra of the cohomological Hall algebra of preprojective algebra.

The affine quantum group UD(Q,A) associated to the quiver Q and the
cohomology theory A is defined in [YZ16] as the Drinfeld double of U+D(Q,A).
The quantization parameters of UD(Q,A) are given by AD. This Drinfeld double
was constructed in [YZ16] using a comultiplication and a bialgebra pairing on an
extended version of U+D(Q,A). U+D(Q,A) itself also has a coproduct but in the
meromorphic braided tensor category (Coh(HG×I ), &) [YZ17]. The affine quantum
group UD(Q,A) acts on the corresponding A-homology of the Nakajima quiver
varieties (see [YZ14, YZ16]), generalizing a construction of Nakajima [Nak01].

4.5.4 Local Line Bundle from Zastava and U+
D(Q,A)

In this section, we associate to a quiver Q a different integral form U+D(Q,A) of
the quantum group U+D(Q,A). There is an algebra homomorphism U+D(Q,A) →
U+D(Q,A), which becomes an isomorphism after a certain localization to be
explained below.

Recall from Sect. 3.4.1 that for a semisimple simply laced group of simply
connected type, the restriction from the loop Grassmannian gives a local line bundle
on HC×I related to the Cartan quadratic form. On the other hand, a quiver Q

produces the local line bundle L(Q,A) corresponding to the incidence quadratic
form of Q (Sect. 4.2.1). So when Q is the corresponding Dynkin graph, the
quadratic forms differ on the diagonal. Then the new quantum group U+D(Q,A)

will be related to the Cartan quadratic form.
To define U+D(Q,A) as an algebra object in a monoidal category, we modify

the local and biextension line bundles from Sect. 4.5.1. We follow the notations
from Sect. 4.4.3. Let V ∈ VI and F ∈ Fm(V ). Let f = dim(GrF (V )) ∈ (NI )m

be the type of the filtration F . Let G be the automorphism group of V and P be
the parabolic subgroup preserving F and L the automorphism group of GrF (V ).
Consider the L̃-representation (u⊕ g/p)⊗ ω.

Now assume that f ∈ Sph(V ), i.e., it is a type of a complete flag. By the
invariance under the symmetric group, Θ

L̃
((u ⊕ g/p) ⊗ ω) (as a line bundle on

AL × AD), is obtained from pullback of a line bundle on AG × AD, which by an
abuse of notation is denoted by Θ

G̃
((u ⊕ g/p) ⊗ ω). Twisting by this line bundle,

we get from (5) the following map:

mf := (q̃∗) ◦ (d∗q∗) ◦ (d∗p∗) ◦ (p̃∗) (6)

with

mf : S∗(Θ(q̃)⊗Θ(d∗p)⊗Θ
L̃
((u⊕ g/p)⊗ ω))−1 → Θ

G̃
((u⊕ g/p)⊗ ω)−1.

We define (LD(Q,A))V,f to be Θ(q̃)⊗Θ(d∗p)⊗Θ
L̃
((u⊕g/p)⊗ω)−1. We define

U+D(Q,A) so that on the connected component of AG × AD containing V ,
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(U+D(Q,A))V
def=

∑

f∈Sph(V )

Image(mf) ⊆ Θ
G̃
((u⊕ g/p)⊗ ω)−1.

Similarly, we have the modified biextension line bundle LD(Q,A) coming from
the 2-step filtrations F2(V ) of V . For GrF (V ) = V1 ⊕ V2

LV1,V2 := ΘL̃(g/p⊗ ω)−1 ⊗ΘL̃(F−1R(F ))⊗Θ(̃q)

is a line bundle on AL̃
∼= AG(V1) × AG(V2) × AD.

Restrictions of these “quantum objects” LD(Q,A) and LD(Q,A) to 0 ∈ AD
gives line bundles on HC×I and HC×I

2, denoted by L(Q,A) and L(Q,A),
respectively.

Similar to Sect. 4.5.3, LD(Q,A) defines a family of monoidal structure on
HG×I , denoted by (Coh(HG×I ), &τ ).

Proposition LetQ be a simply laced Dynkin quiver, with Cartan quadratic formQ
and the simply connected group G.

1. The local line bundle L(Q,A) on HC×I is isomorphic to AJ ∗OG(G)(1).

2. U+D(Q,A) is an AD-family of algebras in the monoidal categories
(Coh(HG×I ), &τ ).

Proof The proof of (1) is similar to that of Lemma 4.2.1. By Lemma 4.2.1, the
local line bundle L(Q,A) is associated to the incidence quadratic form Q of Q. On
the component associated to f ∈ Sph(V ), tensoring L(Q,A) with ΘG(u ⊕ g/p),
we get L(Q,A), which is associated to the Cartan quadratic form Q. On the other
hand, when G is the simply connected group whose Dynkin diagram is Q, then
AJ ∗OG(G)(1) is associated to Q by Proposition 3.4.1.

Proof of (2) is similar to Sect. 4.5.3. The algebra structure on (U+D(Q,A))V is
defined using mf, where taking F to be a 2-step filtration gives LD(Q,A).

Remarks

(1) There is an algebra homomorphism U+D(Q,A) → U+D(Q,A). Topologically,

for V ∈ VI, the map U+D(Q,A))V → (U+D(Q,A))V is induced by

z∗z∗ : ΘL̃
((u⊕ g/p)⊗ ω)→ AD(T ∗(L Rm(GrF)))

where z is the zero section of the vector bundle on T ∗(L\Rm(GrF)) which is
the pullback of (u ⊕ g/p) ⊗ ω form L̃\ pt. In particular, the map becomes an
isomorphism after inverting the Euler class of (u⊕ g/p)⊗ ω.
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(2) The shuffle formula for U+D(Q,A) is similar to that of U+D(Q,A) given in
[YZ16, § 1.2].18

(3) The integral form U+D(Q,A) has originally appeared in [BFN19, Appendix B].
The isomorphism can be seen directly by comparing the shuffle formula for
U+D(Q,A) with the formula [FT18, (3.6.3)].

5 Loop Grassmannians GP
D(Q,A) and Quantum Locality

In the preceding Sect. 4, we have attached to a quiver Q = (I,H) and a cohomology
theory A a local line bundle L(Q,A) on the colored configuration space HG×I of
the curve G given by A (Lemma 4.2.1.a). Modified as in Sect. 4.5.4, in Sect. 3.4 the
local line bundle L(Q,A) can be used to produce a “loop Grassmannian” G(Q,A)

over HG×I .
The local line bundle L(Q,A) is closely related to the biextension line bundle

L(Q,A) from Lemma 4.2.1.b. In Sect. 4, we have also recalled the construction
of the affine quantum groups U+D(Q,A) and used this to select the “correct”
quantizations LD(Q,A) and LD(Q,A) of the above line bundles, on the basis of
relation to this quantum group (Sect. 4.5.1).

While pieces L(Q,A)α of the classical local line bundle depend on α ∈ N[I ]
parameterizing connected components of HG×I , the pieces LD(Q,A)i of the
quantum version depends on a choice of i ∈ IN (Sect. 4.5.1). This really means
that we are dealing with the noncommutative (ordered) configuration spaces C =
CG×I = � (G × I )n so that each α ∈ N[I ] is refined to all i = (i1, . . . , in) ∈ In

with
∑

ip = α. The connected components given by all refinements i of the same
α are related by the meromorphic braiding from [YZ17]. So the information carried
by all refinements i of α is (only) generically equivalent.

Altogether, GD(Q,A) can still be constructed by the same prescription as in
the case of G(Q,A). However, the local line bundle LD(Q,A) now lives on the
larger (“noncommutative”) configuration space CG×I . The zastava space ZD(Q,A)

over C = CG×I is first defined generically in C where fibers are products of
projective lines. Then the singularities of the locality structure prescribe how fibers
degenerate. Finally, passing from the zastava space to loop Grassmannian is given
by the procedure of extending the free monoid on I to the free group on I .

Altogether, the key difference in the quantum case is seen in the configuration
space. It has more connected components (but they are related by braiding), and
the singularities of locality structure (hence also the notion of locality) are now the
diagonals shifted by the quantum parameter.

18Placing the numerator of the factor fac1 in Equation [YZ14, (2)] on the denominator to get the
corresponding factor in the shuffle formula for U+D(Q,A). The homomorphism from (1) is on the
level of shuffle algebras the multiplication by the Euler class of (u⊕ g/p)⊗ ω.
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5.1 The “Classical” Loop Grassmannians GP (Q,A)

The choice of A influences the space GP (Q,A) only through the curve G. Whenever
G is a formal group, then the orientation l of A identifies G with the coordinatized
formal disc d.

However, since the loop Grassmannian G(Gm) is the free commutative group
indscheme generated by d, the group law on d given by A induces a commutative
ring structure on the loop Grassmannian G(Gm). This is the group algebra of the
group G taken in algebraic geometry.

Remark The universal Witt ring has the same nature, and it is the homology
H∗(A1, 0) of the multiplicative monoid (A1, 0, ; ·) in pointed spaces. Observations
of this nature have already been made in [BZ95, Str00, No09].

5.2 Quantization Shifts Diagonals

Any Thom line bundle is the ideal sheaf of the corresponding Thom divisor. While
the Thom divisor corresponding to L(Q,A) is a combination of diagonals of H =
Hd×I , the quantization shifts these diagonals in the configuration space C = Cd×I .

We first examine how an added action of a torus D affects the Thom divisor in
general (Sect. 5.2.1), and then we specialize this to the local line bundle LD(Q,A)

in Sect. 5.2.2.

5.2.1 Deformation of a Thom Divisor from an Additional Torus D

For a representation E of a product G̃ = G×D, we can view the line bundle ΘG̃(E)

on AG×AD as a family of line bundles ΘG̃(E)τ (for τ ∈ AD), on AG
τ
↪→ AG×AD.

If E contains no trivial characters of a Cartan T , we will see that this deformation
lifts to divisors.

First, consider the case when G is a torus T and E = χ�ζ−1 for characters χ, ζ

of T ,D (so χ �= 0). Then for any τ ∈ AD, the restriction ΘT̃ (E)τ to AT is the ideal
sheaf of the divisor

Ker(Aχ�ζ−1) ∩ [AT × τ ] = Aχ
−1(Aζ (τ )) ⊂ AT .

Here, χ : T → Gm induces the homomorphism Aχ : AT → AGm
= G as in

Sect. 2.2.1, and Aχ
−1(Aζ (τ )) is a divisor in AT . For τ = 0, this is the divisor

Ker(Aχ ) whose ideal sheaf is ΘT (χ), and in general, Aχ
−1(Aζ (τ )) is its torsor

which we think of as a shift of Ker(Aχ ) = Aχ
−1(0) by Aζ (τ ) ∈ G.
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Now, for any reductive group G with a Cartan T and Weyl group W , we
decompose E according to D-action as E = ⊕ζ∈X∗(D) (Eζ�ζ−1), for some G-
modules Eζ . Then ΘG(Eζ ) is the ideal sheaf of some divisor, denoted by D(Eζ ),
in AG = AT //W . As T -representations, we have the decomposition Eζ |T =
⊕χ∈X∗(T )[Eζ : χ ]χ . Therefore, the divisor D(Eζ ) is a sum over χ ∈ X∗(T ) of
divisors [Eζ : χ ]·Ker(Aχ ). Now, for any τ ∈ AD, ΘG̃(E)τ is the ideal sheaf of the
shifted divisors D(Eζ )+ Aζ (τ ) of D(Eζ ).

5.2.2 Quantum Diagonals

In our quiver setting, each h ∈ H�H ∗ defines (via the Nakajima function m) a
character μh ∈ X∗(D), by which D acts on the component RepQ(V )h of RepQ(V ).

For 1V, 2V in VI for each i ∈ I choose coordinates sx
i
p on sV

i hence a
decomposition of sV

i into lines sV
i
p. This gives Cartans Ts⊆Gs = GL(sV ) with a

basis sx
i
p of X∗(Ts). Then on the line Hom(1V

i
p,2 V

j
q ), the torus T̃

def= T1× T2×D
acts by 2x

j
q ·(1x

i
p)
−1·μh, so its Thom divisor is given by vanishing of A

2x
j
q
+

Aμh
−A

1x
i
p

in AT1×T2×D. Therefore, the Thom divisor of the T1 × T2 ×D-module
RepQ(1V,2 V )h is the shifted diagonal

Δ
v1,v2
h (τ )

def= Δ
v1,v2
h′,h′′ + (0, τh) ⊂ AT1 × AT2 .

Here, τh = Aμh
(t) depends on h, and Δ

v1,v2
h′,h′′ ⊂ AT1 × AT2 is the diagonal

divisor defined by vanishing of
∏

p,q(A2x
j
q
− A

1x
i
p
), and the shift Δv1,v2

h′,h′′ + (0, τh)

means that for 2V
j , we use the embedding of G = AGm

into AGL( 2V
j ) via

Gm = Z(GL( 2V
j )) and the corresponding addition action of G on AGL( 2V

j ).

Consider the diagonal Δv1,v2
i of Gvi1×Gvi2 given by the vanishing of

∏
p,q(A1x

i
p
−

A
2x

i
q
). Let Δ

v1,v2
i (τ )

def= Δ
v1,v2
i + (τ, 0), where τ = Aω(t). The character ω ∈

X∗(D) is as before. The shift Δ
v1,v2
h′,h′′ + (τ, 0) means that for 1V

j , we use

the embedding of G = AGm
into AGL( 1V

i) via Gm = Z(GL( 1V
i)) and

the corresponding addition action of G on AGL( 1V
i), given by the vanishing of∏

p,q(A1x
i
p
− A

2x
i
q
+ Aω).

We will say that for τ ∈ AD, and Ds = (Di
s)i∈I ∈ G

|vs | for s = 1, 2; the
pair (D1,D2) is (m, τ )-disjoint if (D1,D2, τ ) and (D2,D1, τ ) do not lie in any of
the shifted diagonals Δ

v1,v2
h (τ ),Δ

v1,v2
i , Δ

v1,v2
i (τ ). Equivalently, for any i ∈ I , the

divisors Di
1±τ and Di

2 are disjoint, and Di
1 and Di

2 are disjoint; for each h : h′ → h′′

in H , Dh′′
2 ± τh and Dh′

1 are disjoint.
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5.3 Quantum Locality

We will now consider locality in the setting of the (noncommutative) monoid CG×I

freely generated by G× I .
Let CI be the free monoid on I , so elements are ordered sequences γ =

i1i2 · · · iN of elements in I . The product of γ = i1i2 · · · iN , γ ′ = j1j2 · · · jN ′ , is
the concatenation γ + γ ′ = i1i2 · · · iNj1j2 · · · jN ′ .

Let CG×I = � (G× I )n = �γ∈CI
G

γ be the indscheme monoid freely generated
by G × I , with connected components labeled by CI . The natural projection, from
the free monoid to the free commutative monoid is denoted 6 : CG×I → HG×I .

We will use the notation L = LD(Q,A) both for the biextension line bundle
defined on H2

G×I
× AD in Sect. 4.5.1 and also for its pullback to C2

G×I
× AD. For

γ ′, γ ′′ ∈ CI , we denote by Lγ ′,γ ′′ its restriction to the component Gγ ′ ×G
γ ′′ ×AD,

5.3.1 m-Locality

An m-locality structure on a vector bundle K on CG×I ×AD is a consistent system
of isomorphisms

(Kγ1,τ � Kγ2,τ )⊗ Lγ1,γ2
∼= Kγ1+γ2,τ for τ ∈ AD.

Any m-locality structure on K implies an algebra structure on K in the monoidal
category

(
Coh(CG×I × AD), &

)
(by the biextension property of L). In this way,

an m-locality structure on K is the same as a structure of a &-algebra, whose
multiplications are isomorphisms.19

Example The line bundle L = LD(Q,A) constructed component-wise in Sect. 4.5.1
Case 2, is a line bundle over CG×I × AD, and it has a natural m-locality structure.
So is the modification LD(Q,A) as in Sect. 4.5.4. We will write the proof only
generically:

Lemma The line bundle L on CG×I × AD defined in Sect. 4.5.1 Case 2 has the
property that (D1,D2) ∈ (CG×I )

2 is (m, τ )-disjoint for τ ∈ AD, and then there is
a canonical identification of fibers

LD1+D2,τ
∼= LD1,τ ⊗ LD2,τ .

Proof Let V = V1⊕V2 in VI and Gi = GL(Vi) and G = GL(V ). Choose a Cartan
Ti in Gi . Then RepQ(V ) ∼= RepQ(V1)⊕RepQ(V2)⊕RepQ(V1, V2)⊕RepQ(V2, V1)

19Notice that this is stronger than the standard definition of locality which only requires such
isomorphism over the regular part of the configuration space where L happens to trivialize by
Sect. 5.2.
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gives

ΘG̃[RepQ(V )]⊗ΘG̃[RepQ(V1)]−1⊗ΘG̃[RepQ(V2)]−1

∼= ΘG̃[RepQ(V1, V2)]⊗ΘG̃[RepQ(V2, V1)].

Now the disjointness condition implies that the last two factors have canonical
trivializations at (D1,D2, τ ). A similar statement holds for ΘL̃(g/p ⊗ ω), and
ΘL̃(g/p)

−1, where g/p = ⊕2
i=1gi/pi .

Therefore, LD1,D2 = Θ(d∗p) ⊗ Θ(̃q) has a canonical trivialization when
(D1,D2) is (m, τ )-disjoint. The claim now follows from the identification (LD1,τ �
LD2,τ )⊗ LD1,D2

∼= LD1+D2,τ .

Remark The quantum local line bundle L is in a sense a localization of the
quantum group U+D(Q,A) to the noncommutative configuration space CG×I . By
its definition, the α-weight space U+D(Q,A)(α) is a sum of contributions from all
refinements γ ∈ CI of a given α ∈ N[I ].20

In the classical case D = 1, for all γ above, αLγ are the same, so the sum
U+D(Q,A) is the line bundle L. However, upon quantization, there is a genuine
dependence on γ , and one has to take the sum of all contributions in order to
construct a subalgebra.

Example In the case when I is a point (the “sl2-case”), then CI = N[I ] = N; hence,
CG×I is the system �n∈NGn of Cartesian powers of G. Then Ln = 6 ∗

n (U
+
D(Q,A)n).

5.3.2 Some Expectations

The above construction of loop Grassmannians is of “existential” nature, with
hidden difficulties of explicit computations. We hope to ameliorate this difficulty
by some equivalent descriptions. Our construction is based on “abelianization” (as
we construct sections of O(1) on the loop Grassmannian from the same objects
for a Cartan subgroup) and on locality (as we interpret equations of the projective
embedding of the Grassmannian as locality conditions).

We would like to describe these equations in more standard terms by constructing
a central extension of the quantum group UD(Q,A) and its action on sections of
O(1). Here, the central extension should appear as one extends the “quantum local”
line bundle LD(Q,A) from the analogue CG×I of HG×I to an analogue of G(T ).

One could also try to construct the graded algebra of section of line bundles
O(m) by choosing the poset P in GP

D(Q,A) to be 1 < · · · < m.

20One formal way to say it is that U+D(Q,A)α is the smallest subsheaf on G
(α) such that its pullback

to each refinement Cγ contains Lγ .
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Appendix 1: Loop Grassmannians with a Condition

We recall a general technique providing modular description of some parts of
loop Grassmannian. This allows us to finish (in Appendix “Proof of the Propo-
sition 3.2.3”) the proof of Proposition 3.2.3 on T -fixed points in closures of
semi-infinite orbits.

Moduli of Finitely Supported Maps

Here, we recall some elements of Drinfeld’s notion of loop Grassmannians with a
geometric (“asymptotic”) condition. This material will be covered in more details
elsewhere. We will fix a smooth curve C.

We are interested in various moduli of G-torsors over a curve C that are local
spaces over C. As observed by Beilinson and Drinfeld, the relevant spaces Y are
usually of the form MY (C), the moduli of finitely supported, i.e., generically
trivialized maps into some pointed stack (Y, pt) built from G. (We usually omit the
point pt from notation.)

The Subfunctor G(G, Y )⊆G(G) Given by “Condition Y”

Let C be a smooth connected curve with the generic point ηC . Let G be an algebraic
group and (Y, y) a pointed scheme with a G-action on Y . This gives a pointed stack
(Y, ∗) with Y = G\Y . Consider the moduli of maps of pairs Map[(C, ηC), (Y, ∗)].
Denote by G(G, Y ) the space over HC with the fiber at D ∈ HC given by the maps
f ∈ Map[(C, ηC), (Y, ∗)] that are defined off D. This is a factorization space
(Sect. 3.3).

If the orbit Gy is open in Y and its boundary ∂(Gy) is a union of divisors
Yi, i ∈ I , to any f ∈ Map[(C, ηC), (Y, ∗)] one can associate an I -colored

finite subscheme f−1(∂∗) def= (f−1G\Yi)i∈I . Then we define G(G, Y ; I ) to be
Map[(C, ηC), (Y, ∗)] considered as a space over HC×I . This is an I -colored local
space (Sect. 3.3).

Examples

(a) When Y is a point, G(G, pt) is the loop Grassmannian G(G).
(b) When G = Gm and (Y, y) = (A1, 1), I is a point and G(Gm,A1, I ) =

Map[(C, ηC), (Gm\A1, ∗)] is the space of effective divisors on C, i.e., the
Hilbert scheme HC .

Lemma Let the scheme Y be separated.
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(a) G(G, Y ) is a subfunctor of G(G). If Y is also affine, then G(G, Y ) is closed in
G(G).

(b) For a subgroupK⊆G, the intersection with G(K)⊆G(G) reduces the condition
Y to the condition Ky⊆Y :

G(G, Y ) ∩ G(K) = G(K,Ky).

The Closure of S0

It is well known that G/N is quasi-affine, i.e., it is an open part of its affinization
(G/N)aff. We will consider it with the base point y = eN .

Proposition Let G be of simply connected type.

(a) The scheme of T -fixed points G(G, (G/N)aff)T isHd×I .

(b) The closure S0 is the reduced part G[G, (G/N)aff]red of the loop Grassman-

nian with the condition (G/N)aff.

Proof

(a) The fixed points G(G)T are known to be G(T ) so G(G, (G/N)aff)T =
G(G, (G/N)aff) ∩ G(T ). This has been identified in Lemma 5.3.2.b with

G(T , T y) where y is the base point eN of (G/N)aff. So Ty = B/N . When

G is simply connected,
∏

i∈I α̌i : GI
m
−−−−→∼= T ∼= B/N . This extends to

an identification of the closure of B/N in (G/N)aff (a T -variety) with (A1)I

(a G
I
m-variety). Now, G(T , T y) ∼= G(Gm,A1)I is identified with Hd×I in the

example 2 in Sect. 5.3.2.
(b) Since (G/N)aff is affine, G(G, (G/N)aff) is closed in G(G) (Lemma 5.3.2.a).

Since G(G, (G/N)aff) contains G(G,G/N) = G(N) = S0, its reduced

part contains S0. Since the stabilizer of the base point of (G/N)aff)
is N , G(G, (G/N)aff)⊆G(G) is NK-invariant. Then the reduced part

G(G, (G/N)aff)red has a stratification by NK-orbits Sλ for λ ∈ X∗(T ) such

that Lλ lies in G(G, (G/N)aff)red .

We have, according to Part (a), that G(G, (G/N)aff)T is Hd×I . So

G(G, (G/N)aff)red = S0.
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Proof of the Proposition 3.2.3

(a) According to Proposition 5.3.2.a, we have S0 = G(G, (G/N)aff)red . Therefore,

S0
T⊆G(G, (G/N)aff)T which is Hd×I by Proposition 5.3.2.b.
To see that Hd×I⊆G(G) lies in S0, we denote by Gi⊆G the connected three-

dimensional subgroup corresponding to i ∈ I . Then S0 contains the corresponding
object S0(Gi) for Gi , and since we have already checked the proposition for SL2,
this is AJGi (Hd), i.e., AJG(Hd×i ).

It remains to prove that S0
T⊆G(T ) is closed under the product in G(T ) (because

AJ(Hd×I ) is the product of all AJ(Hd×i )). However, the product in G(T ) can be
realized using fusion in G(T ).21So it suffices to notice that S0 is the fiber at a point
a = 0 in a curve C = A

1 of a factorization space G(G,G/N) which is defined as
the closure of the factorization subspace G(N) ∼= G(G,G/N)⊆G(G).

(b–c) The part (a) of Proposition 3.2.3 gives a factorization of S0
T

as a product
Hd×I

∼= ∏
i∈I (Hd)

I over contributions from all i ∈ I . One therefore also has

such factorization for S−α
T

and obviously for the connected components G(T )β .
This reduces Parts (b) and (c) of the proposition to the SL2 case. This case has
already been checked by explicit calculation following Proposition 3.2.3. �

Appendix 2: Calculation of Thom Line Bundles from [YZ17]

In [YZ17], one uses a different convolution diagram. The only essential difference
is the map ι described below. We check that it gives the same Thom line bundle as
the calculation in Sect. 4.4.2 which used the dg cotangent correspondence. We will
recall without character formulas how computations of Thom line bundles were
made in [YZ17]. For calculational reasons, one uses an extra variety X = G×P Y

for Y = RepQ(GrF (V )), and then a nonlinear map ι accounts for the difference
between ambiental embeddings T ∗GX⊆T ∗X and T ∗LY⊆T ∗Y .

The notations are as in Sect. 4.4.2. Denote the elements of Y = Rep(V•) =
⊕m

k=1 RepQ Vk and Y ∗ = RepQ∗(V•) by y and y∗. The moment map μ : T ∗Y →
l∗ ∼= l is given by the projection of the commutator to l

μ(y, y∗) = [y, y∗]l def=
( ∑

{h∈H, h′=i}
yhy

∗
h −

∑

{h∈H :h′′=i}
y∗hyh

)

i∈I .

21For C = A
1, we have a canonical trivialization of G(G) → HC over C = H1

C , as G(G). Now,

consider the pullback GC2 (G)
def= C2×C[2] GHC×I

(G) of the restriction of GHC×I
(G) to H2 = C2.

The locality identifies it over C2−ΔC with the constant bundle G(G)2. By fusion of u, v ∈ G(G),
we mean the limit (when it exists) over the diagonal of the constant section (u, v) which is defined
off the diagonal.
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The story in [YZ17] is told in terms of singular subvarieties μ−1(0) ⊆ T ∗Y
(for a group L acting on a smooth variety Y ), and the functoriality of cohomology
is constructed in terms of ambiental smooth varieties T ∗Y . The difference here
is that we derive the cotangent correspondence mechanically from the original
correspondence. For instance, this makes the associativity of multiplication follow
manifestly from associativity of the extension correspondence.

Let W = G ×P R(F ) with projection to X′ = R(V ). Let Z := T ∗W(X × X′).
We have the following correspondence in [YZ14, Section 5.2]

G×P T ∗Y � � ι
�� T ∗X Z

φ
��

ψ
�� T ∗X′ (7)

The maps are the natural ones, which we further describe below.
Let U be the unipotent radical of P . Denote the Lie algebras by p, l, u. Denote

the natural projections by π : P → L, π : p→ l, and π ′ : p→ u.
For any associated G-bundle E = G ×P E, we denote the fiber at the origin by

E0 = E. Then T ∗X ∼= G ×P (T ∗X)0 and the L-variety (T ∗X)0 is (by Yang and
Zhao [YZ14, Lemma 5.1 (a)])

(T ∗X)0
def= {(c, y, y∗) | c ∈ p, (y, y∗) ∈ T ∗Y, such that μ(y, y∗) = π(c)}.

(8)

Lemma

(a) We have an isomorphism of L-varieties u × T ∗Y ∼= (T ∗X)0 over G/P by
(u, y, y∗) �→ (u+ μ(y, y∗), y, y∗).

(b) This makes T ∗X into a G-equivariant vector bundle over G/P the sum of
T ∗(G/P ) and G×P T ∗Y .

Proof In (a), the inverse map is (c, y, y∗) �→ (π ′(c), y, y∗). In (b), we use
T ∗(G/P ) ∼= G×P u.

The map G×T ∗Y → T ∗X defined as (g, y, y∗) �→ (g, μ(y, y∗), y, y∗) induces
a well-defined map ι : G×P T ∗Y → T ∗X. By Yang and Zhao [YZ14, Lemma 5.1],
we have the isomorphism

Z := T ∗W(X ×X′) ∼= G×P RepQ(F)

with ψ(g, x, x∗) �→ g(x, x∗) for g ∈ G and (x, x∗) ∈ RepQ(V ). So the map ψ is
a composition of the inclusion ψ ′ of vector bundles over G/P and the conjugation
action ψ ′′ (which acts by the same formula as ψ) and the diagram is

G×P T ∗Y ι
↪→ T ∗[G×P Rep(GrF (V ))] φ←− Z

ψ ′⊆ G×P RepQ(V )
ψ ′′−→RepQ(V ).
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Lemma The Thom line bundles ΘG̃(ψ ′), ΘG̃(ψ ′′) and ΘG̃(ι) are, respectively, the
line bundles

ΘL̃[(F∞/F0)RepQ(V )], ΘL̃(g/p)
−1 and ΘL̃(p

⊥) = ΘL̃(g/p⊗ ω),

In particular, Θ(d∗p)⊗Θ(̃q) ∼= ΘL(ι)⊗ΘL(ψ).

Proof If S is one of the first four spaces in the diagram, then AG̃(S) = AL̃ since
S = G ×P S0 for the fiber S0 which is an affine space. In particular, for a map
η ∈ {ι, ψ ′, ψ ′′}, the line bundle ΘG̃(η) on AL̃ is ΘL̃(T (η)0).

(1) Vector bundle T (ι) is the normal bundle N(ι). According to the Lemma 5.3.2,
it is isomorphic to G×P − of the L̃-module (g/p)∗ ⊗ ω = p⊥ ⊗ ω.

(2) Similarly, T (ψ ′) is the normal bundle N(ψ ′), and the fiber T (ψ ′)0 is
(F/F0)RepQ(V ).

(3) The equality ΘG̃(ψ ′′) = ΘP̃ [g/p]−1 is clear.

Corollary

(a) ΘL[F∞/F0(RepQ(V )] = ΘL[RepQ(V )−GrF0 (RepQ(V )].
(b) Consider the case when Q has no loop edges, and the filtration type v is a flag,

i.e., vk ∈ I for all k. Then Gr0 Rep(V ) = 0 and ΘL(ψ
′) = ΘG(RepQV ).

Proof

(a) A filtration on V induces a family of filtrations, compatible with the decom-
position RepQ(V ) = RepQ(V )⊕RepQ∗(V ) and with the L-equivariant
identification RepQ∗(V ) ∼= [RepQ(V )]∗. Therefore, the claim follows from

F∞
F0
[(RepQ(V )∗] = [ F−1

F−∞
(RepQ(V )]∗

and the invariance of Thom line bundles under duality of vector bundles.
(b) follows since GrF0 RepQ(V ) = 0 under the assumption on Q. The reason is that

GrF0 RepQ(V ) = ⊕ RepQ(GrpV ), and all Grp(V ) ∈ VI are one-dimensional.
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[FM99] M.Finkelberg, I. Mirković, Semi-infinite flags I, the case of a global curve P
1,

Differential Topology, Infinite-Dimensional Lie Algebras, and Applications: D. B.
Fuchs’ 60th Anniversary Collection, Editors A. Astashkevich, S. Tabachnikov, AMS
series Adv. in the Math. Sci., Vol. 194 (1999).

[FS94] B. L. Feigin, A. V. Stoyanovsky, A Realization of the Modular Functor in the Space
of Differentials and the Geometric Approximation of the Moduli Space of G-Bundles,
Funktsional. Anal. i Prilozhen., 1994, Volume 28, Issue 4, 42–65

[FK] I.B. Frenkel, V.G. Kac, Basic representations of affine Lie algebras and dual resonance
models. Invent Math 62, 23–66 (1980). Invent. Math. 62.

[GKV95] V. Ginzburg, M. Kapranov, and E. Vasserot, Elliptic algebras and equivariant elliptic
cohomology, Preprint, (1995). arxiv9505012

[KS11] M. Kontsevich, Y. Soibelman, Cohomological Hall algebra, exponential Hodge struc-
tures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys. 5
(2011), no. 2, 231–352. MR 2851153

[Lev15] M. Levine, Motivic Landweber exact theories and their effective covers. Homology
Homotopy Appl. 17 (2015), no. 1, 377–400.

[LM07] M. Levine, F. Morel, Algebraic cobordism theory, Springer, Berlin, 2007. MR 2286826
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1 Introduction

1.1 Motivation

This paper is devoted to the study of the symplectic algebraic geometry of
coarse moduli spaces of (semistable) representations of multiplicative preprojective
algebras. These can be thought of as multiplicative analogues of Nakajima quiver
varieties [Nak94], which includes character varieties of (open) Riemann surfaces.
In particular, our attention is focused on tackling two main problems: The first is to
understand whether these multiplicative quiver varieties are symplectic singularities,
as defined by Beauville in [Bea00];1 the second is to classify all the possible cases
in which they admit symplectic resolutions.

Multiplicative preprojective algebras were first defined by Crawley-Boevey and
Shaw in [CBS06], with the aim of better understanding Katz’s middle convo-
lution operation for rigid local systems, [Kat96]. Another important application
contained in the seminal paper [CBS06] is the solution of (one direction of) the
multiplicative Deligne-Simpson problem in terms of the root data of a certain star-
shaped quiver. Moduli spaces of representations, in the sense of King [Kin94], of
these algebras give rise to the so-called multiplicative quiver varieties. Ordinary
(Nakajima) quiver varieties have appeared in numerous places in representation
theory, algebraic geometry, and mathematical physics; their homology theories are
closely related to the representation theory of Kac–Moody Lie algebras [Nak94],
and their quantum cohomology is closely related to quantum R-matrices and the
Casimir connection [MO19]. A number of authors have studied multiplicative
quiver varieties since their definition: Among others, Jordan [Jor14] considered
quantizations of such varieties from a representation theoretic point of view by

1Since submission of this article, in [KS], the first author and D. Kaplan resolve this in the
affirmative for all multiplicative quiver varieties. In particular, they are all normal.
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constructing flat q-deformations of the algebra of differential operators on certain
affine spaces; a more geometric approach was used by Yamakawa in [Yam08],
where a symplectic structure on these moduli spaces was defined and studied.
Some of these results will be recalled in the next sections of the present paper.
More recently, (derived) multiplicative preprojective algebras appeared in the study
of wrapped Fukaya categories of certain Weinstein 4-manifolds constructed by
plumbing cotangent bundles of Riemann surfaces: See [EL19]. In the recent work
of Chalykh and Fairon [CF17], multiplicative quiver varieties are used to construct a
new integrable system generalizing the Ruijsenaars–Schneider system, which plays
a central role in supersymmetric gauge theory and cyclotomic DAHAs. Moreover, in
work of McBreen–Webster [MW18] and McBreen–Gammage–Webster [MGW19],
related to [BK16, §7], mirror symmetry is studied for multiplicative hypertoric
varieties, which include multiplicative quiver varieties when the dimensions are one.
Finally, mixed Hodge polynomials of character varieties and quiver varieties were
studied in the groundbreaking work of Hausel, Lettelier, and Rodriguez-Villegas
using arithmetic methods [HLRV11, HLRV13a, HLRV13b]; they suggested that
similar methods should apply to general multiplicative quiver varieties. Given their
appearance in so many different contexts, it seems natural to perform a careful
analysis of multiplicative quiver varieties from the point of view of symplectic
algebraic geometry.

The subject of symplectic resolutions and the more general symplectic singu-
larities (the latter dating to Beauville [Bea00]) has recently gained importance in
many areas of mathematics and physics. Their quantizations subsume many of
the important examples of algebras appearing in representation theory (Cherednik
and symplectic reflection algebras, D-modules on flag varieties and represen-
tations of Lie algebras, quantized hypertoric and quiver algebras, etc.). There
is a growing theory of symplectic duality, or three-dimensional physical mirror
symmetry ([BFN18, Nak16, CHZ14, BLPW16] and many others), between pairs
of these varieties. Pioneering work of Braverman, Maulik, and Okounkov [BMO11]
(continued in the aforementioned [MO19] and in many other places) shows that their
quantum cohomology is also deeply tied to connections arising in representation
theory, related to derived autoequivalences of duals in the sense of homological
mirror symmetry (two-dimensional field theories). Since, as mentioned before,
quiver varieties play such an important role here, it is expected that multiplicative
quiver varieties will as well. Moreover, the varieties in question are instances of
moduli spaces parametrizing geometric objects. The study of such spaces and their
singularities is, in general, important in algebraic geometry.

For all of these reasons, it is natural to ask when multiplicative quiver vari-
eties have symplectic singularities and admit symplectic resolutions. We largely
answer these questions, leaving a couple cases (the so-called “(2,2)”-cases related
to O’Grady’s examples [O’G99], and the so-called isotropic cases, which are
multiplicative analogues of symmetric powers of du Val singularities), that appear
to require local structure theory. Our methods generalize those of [BS21], which
we largely follow. They build on Crawley-Boevey and Shaw’s pioneering work on
multiplicative quiver varieties (and extensions by Yamakawa [Yam08]) and apply
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(as in [BS21]) Drezet’s factoriality criteria [Dre91] and Flenner’s theorem [Fle88]
on extendability of differential forms beyond codimension four.

1.2 Summary of Results on Character Varieties

Since they are the easiest to state and perhaps of the broadest interest, we first
explain the results on character varieties that follow from our considerations on
multiplicative quiver varieties. Fix a connected compact Riemann surface X of
genus g ≥ 0, let S = {p1, . . . , pk} ⊂ X be a subset of k ≥ 0 points, and fix
a tuple C = (C1, . . . , Ck) of conjugacy classes Ci ⊂ GLn(C), i = 1, . . . , k. Let
X◦ := X \ {p1, . . . , pk} be the corresponding punctured surface, and let γi be the
homotopy class in π1(X

◦) of some choice of loop around the puncture pi (having
the same free homotopy class as a small counterclockwise loop around pi). We
define the character variety of X◦ with monodromies in Ci as follows:

X (g, k, C) := {χ : π1(X
◦)→ GLn | χ(γi) ∈ Ci}//GLn. (1.2.1)

As recalled in Sect. 3 below, this has the structure of an affine algebraic variety. Note
that X (or X◦) does not appear in the notation on the left-hand side, since the result
does not depend on the choice of X up to isomorphism (only the identification of
π1(X

◦) is relevant).
Observe that in order for this character variety to be non-empty, we must

have
∏k

i=1 det(Ci ) = 1, where we let det(Ci ) be defined as the determinant of
any element of Ci . Let us assume this from now on. Given m ≥ 1, we let
m · C = (C⊕m

1 , . . . , C⊕m
k ). We call C q-divisible if C = m · C′ for m ≥ 2 and

∏k
i=1 det(C′i ) = 1. Call it q-indivisible if it is not q-divisible. Below, q-indivisibility

will be the most important criterion for the existence of symplectic resolutions for
X (g, k, C).

For each Ci , let the minimal polynomial of any A ∈ Ci be (x−ξi,1) · · · (x−ξi,wi
),

ordered so that the sequence αi,j := rank(A − ξi,1) · · · (A − ξi,j ) has the property
that αi,j − αi,j+1 is nonincreasing in j (for 0 ≤ j ≤ wi − 1, setting αi,0 = n).
This is possible since the nonincreasing property obviously holds when all the ξi,j
are equal. The following quantities will have importance for us:

� :=
∑

i

αi,1, p(α) := 1+ n2(g − 1)+ n�+
k∑

i=1

wi−1∑

j=1

αi,j αi,j+1 −
k∑

i=1

wi∑

j=1

α2
i,j .

(1.2.2)

The quantity 2p(α) is the “expected dimension” of the character variety, which is
its actual dimension in many cases, as explained below.

Our main results on character varieties can be summarized as follows. We divide
separately into the genus 0 and the positive genus cases.
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Recall here that a symplectic singularity is a normal variety X equipped with a
symplectic structure ωreg on the smooth locus Xreg such that for any (or equivalently
every) resolution of singularities ρ : X̃ → X, ρ∗ωreg extends to a regular two-
form ω̃ ∈ Ω2(X̃). The map ρ is furthermore a symplectic resolution if ω̃ is
nondegenerate.

Theorem 1.1 Let g = 0 and fix n and conjugacy classes C1, . . . , Ck ⊆ GLn(C) as
above.

• If � < 2n, then one of the following exclusive possibilities occur and can be
computed by an explicit algorithm:

– X (0, k, C) is empty.
– X (0, k, C) is a point.
– There is a canonical datum (n′, k′, C′1, . . . , C′k′ , ι) of n′ < n, k′ ≤ k, and

conjugacy classes C′1, . . . , C′k′ ⊆ GLn′(C) such that �′ (defined as above)

satisfies �′ ≥ 2n′, and an isomorphism ι : X (0, k′, C′)→ X (0, k, C).
Suppose, therefore, that � ≥ 2n.

• If C is q-indivisible, then X (0, k, C) admits a projective symplectic resolution
(via geometric invariant theory). Therefore, its normalization is a symplectic
singularity.2 Moreover, dimX (0, k, C) = 2p(α).

• Suppose that C is q-divisible. Then, unless one of the conditions listed after
Corollary 1.12 is satisfied (for k ≤ 5), the normalization of X (0, k, C) is a
symplectic singularity which does not admit a symplectic resolution (in fact, it
contains a singular terminal factorial open subset).

As mentioned in the theorem, the technique used to show nonexistence of symplec-
tic resolutions is by identifying an open singular factorial terminal subset. It is well
known that singular factorial terminal varieties cannot admit crepant resolutions,
and hence not symplectic resolutions. Indeed, by Van der Waerden purity, any
resolution of a singular factorial variety has exceptional locus which is a divisor.
By definition, any crepant resolution of a terminal variety has exceptional locus of
codimension at least two. Put together, there is no crepant resolution of a singular
factorial terminal variety.

Remark 1.2 Note that, when k ≤ 2 in genus zero, the character variety is always a
point (or empty).

Theorem 1.3 Suppose that g ≥ 1. Then the following holds:

• If C is q-indivisible, then X (g, k, C) admits a projective symplectic resolution
(via geometric invariant theory). Therefore, its normalization is a symplectic
singularity. Moreover, it has dimension 2p(α).

2As mentioned in Sect. 1.1, it is now known that these and the other varieties in this article are
normal.
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• If C is q-divisible, then unless one of the following conditions is satisfied, the
normalization of X (g, k, C) is a symplectic singularity which does not admit
a symplectic resolution (in fact, it contains a singular terminal factorial open
subset):

(a) g = 2, k = 0, and n = 2;
(b) g = 1, k = 0;
(c) g = 1, k = 1, w1 = 2, and α1,1 = p, with p prime.

Moreover, in all cases except case (b), dimX (g, k, C) = 2p(α).

The proofs of these theorems is given in Sect. 6.7; they are consequences of our
main results on multiplicative quiver varieties (particularly Corollary 6.28).

Remark 1.4 Actually, the results above (slightly modified) should also apply to
twisted character varieties, where we replace π1(X

◦) by a finite central extension,
corresponding to setting the relation

∏g

i=1[Ai, Bi]∏k
j=1 Mj to be a root of unity

times the identity matrix. To prove, such a statement would require a straightforward
generalization of [CB13] and of Sect. 3 below. With this in hand, these results would
follow from Corollary 6.28 just as before. For some more details, see Sect. 1.5 of
the introduction, where we describe roughly how to translate this corollary into the
setting of twisted character varieties.

1.3 Multiplicative Quiver Varieties with Special Dimension
Vectors

Recall that a quiver Q is a directed graph. We let Q0 denote the set of vertices and
Q1 the set of arrows (=edges). Given Q together with a tuple of nonzero complex
numbers q ∈ (C×)Q0 , one can define the multiplicative preprojective algebra
Λq(Q), over the semisimple ring C

Q0 (see Sect. 2.2 below). To a representation,
we associate a dimension vector in N

Q0 . Given furthermore a stability parameter
θ ∈ Z

Q0 , one can define a variety, denoted Mq,θ (Q, α), which is a coarse moduli
space of θ -semistable representations of Λq(Q) of dimension vector α. It is natural
to ask what the dimension vectors of θ -stable representations are. Toward this end,
one considers a combinatorially defined subset Σq,θ ⊆ N

Q0 of the set of all possible
dimension vectors (defined in Sect. 2.8 below). It has the property that for α ∈ Σq,θ ,
the θ -stable locus is dense in Mq,θ (Q, α) (and it is always open). However, it is
unknown in general if Mq,θ (Q, α) is non-empty. It is expected, but not known, that
these conversely describe all dimension vectors of stable representations, that is:

If there is a θ -stable representation of Λq(Q) of dimension α ∈ N
Q0 , then α ∈ Σq,θ .

(*)
In the case θ = 0, Crawley-Boevey kindly pointed out a work in progress
with Hubery toward a proof of (*). We prove a weakened version of (*) below
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(Corollary 6.18), replacing Σq,θ by a larger set. Note that if (*) holds and
furthermore Mq,θ (Q, α) �= ∅ for all α ∈ Σq,θ , then put together, we would obtain
a characterization of the set Σq,θ : In this case, α ∈ Σq,θ if and only if there exists a
θ -stable representation of dimension α. However, this is, again, unknown.

To define Mq,θ (Q, α), we require α · θ = 0, and for it to be non-empty, we
require that qα := ∏

i∈Q0
q
αi

i = 1. Let Nq,θ := {α ∈ N
Q0 | qα = 1, α · θ = 0}.

We call a vector α ∈ Nq,θ q-indivisible if 1
m
α /∈ Nq,θ for any m ≥ 2. Equivalently,

writing α = mβ for m = gcd(αi), we have that qβ is a primitive m-th root of unity.
Note that if α ∈ Nq,θ is indivisible, it is clearly q-indivisible, although the converse
does not hold in general. (Unlike in the case of character varieties, here the q in
“q-(in)divisible” refers to an actual parameter; see Remark 1.10 for an explanation
how the two notions nonetheless coincide.)

We denote by p the following function:

p : NQ0 → Z, p(α) = 1− 1

2
(α, α) ≥ 0,

where (−,−) denotes the Cartan–Tits form associated to the quiver Q (see
Sect. 2.1 for more details). Geometrically, 2p(α) gives the “expected dimension”
of Mq,θ (Q, α) (which is the actual dimension if α ∈ Σq,θ and Mq,θ (Q, α) �= ∅;
see Remark 2.20 below). If p(α) = 1, that is, (α, α) = 0, then α is called isotropic.
Otherwise, it is called anisotropic.

One of the main results of this paper, proved in Sect. 4, is the following:

Theorem 1.5 Let α ∈ Σq,θ and assume that α �= 2β for β ∈ Nq,θ and p(β) = 2.
Then, assuming it is non-empty, Mq,θ (Q, α) satisfies the following:

• Its normalization is a symplectic singularity.
• If α is q-indivisible, then for suitable generic θ ′, it admits a symplectic resolution

of the form Mq,θ ′(Q, α)→Mq,θ (Q, α).
• If α = mβ for β ∈ Σq,θ and m ≥ 2, and Mq,θ (Q, β) �= ∅, then Mq,θ (Q, α)

does not admit a symplectic resolution. Moreover, for suitable generic θ ′,
Mq,θ ′(Q, α) is a singular factorial terminalization. In fact, Mq,θ (Q, α) itself
contains a singular, factorial, terminal open subset.

Implicit in Theorem 1.5 is the fact (see Lemma 2.12 and Corollary 2.21 below)
that for all α ∈ Σq,θ , Mq,θ ′(Q, α) → Mq,θ (Q, α) is a projective birational
Poisson morphism for suitable θ ′. This implies, by definition, that it is a symplectic
resolution if the source is smooth symplectic. In the last part of the theorem,
by singular factorial terminalization, we mean a projective birational Poisson
morphism with source a singular factorial terminal variety.

In the case of generic θ , the theorem can be simplified as follows, avoiding the
need to check if a vector is in Σq,θ . First, note that Σq,θ , by definition, is a subset of
the set of roots for the quiver (which in turn equals the set of roots of the associated
Kac–Moody Lie algebra in suitable cases). The real roots are those vectors obtained
from elementary vectors ei, i ∈ Q0 by simple reflections α �→ α − (α, ei)ei ;
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the imaginary roots are those obtained by such reflections from nonnegative (or
nonpositive) vectors with connected support and nonpositive Cartan pairing with
all ei .

Corollary 1.6 Fix an imaginary root α for Q. Let q be such that qα = 1. Let θ be
generic (inside the hyperplane {θ · α = 0}). Then:
(i) We have α ∈ Σq,θ if and only if α is q-indivisible or anisotropic. If α is q-

indivisible, Mq,θ (Q, α) is smooth symplectic.
(ii) Assume α is q-divisible and anisotropic. Moreover, assume that α �= 2β for

p(β) = 2 and qβ = 1. ThenMq,θ (Q, α) is a (normal) symplectic singularity.
(iii) Under the assumptions of (ii), we have the following:

– If there exists a θ -stable representation of Λq(Q) of dimension 1
m
α, for

some m ≥ 2, then Mq,θ (Q, α) is singular, factorial, and terminal and
hence does not admit a symplectic resolution.

– If, on the other hand, there are no θ -stable representations of Λq(Q) of
dimension rα for all rational r < 1, then Mq,θ (Q, α) is smooth.

Note that in the general case with α ∈ Σq,θ , the above corollary always describes the
source of projective birational Poisson morphisms obtained by suitably varying θ .

Remark 1.7 Note that every rα, r ∈ Q<1 appearing in the theorem is also in Σq,θ ,
by part (i). Thus, if there exists a θ -stable representation of every dimension in
Σq,θ , then in part (iii), we are necessarily in the first case. This condition holds
in the additive case (with λ ∈ R

Q0 ), by Bellamy and Schedler [BS21], but we
don’t have any other evidence that this holds here. Also, note that the two cases
are not exhaustive, so it could happen that there are some stable representations of
dimension rα but not when r = 1

m
. In this (unexpected) situation, it would require

more detailed analysis to determine whether a symplectic resolution exists.

Remark 1.8 In the case left out of the theorem, where α = 2β for some β ∈ Nq,θ

satisfying p(β) = 2 (we call this the “(2, 2)-case”), we conjecture, as in the special
case of character varieties of rank two local systems on genus two surfaces handled
in [LS06, BS], that Mq,θ (Q, α) has a symplectic resolution obtained by blowing
up the singular locus of Mq,θ ′(Q, α), for suitably generic θ ′. However, in order
to prove this, it is necessary to understand the étale local structure of Mq,θ (Q, α)

while at the moment, all of our techniques are global in nature. In Sect. 7, we discuss
an approach to understand the local structure of the multiplicative quiver varieties,
based on the conjectural 2-Calabi–Yau property of the multiplicative preprojective
algebra for non-Dynkin quivers.

Remark 1.9 Note that, as part of Corollary 1.6, when θ is generic (and α ∈ Σq,θ ),
we prove normality of the variety Mq,θ (Q, α); see Proposition 4.10. Moreover, we
conjecture normality for all θ (as well as for the (2, 2)-case). Such a result requires a
local understanding of the varieties Mq,θ (Q, α), which would again follow from the
conjectural 2-Calabi–Yau property for Λq(Q) when Q is not Dynkin; see Sect. 7.
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1.4 Character Varieties as (Open Subsets of) Multiplicative
Quiver Varieties

In Sect. 3, extending results of [CBS06] and [Yam08], we explain how character
varieties identify as natural open subsets of the multiplicative quiver varieties for
crab-shaped quivers (Theorem 3.6), also known as “comet-shaped” in [HLRV11].
Namely, the character variety identifies as an open subset of a multiplicative quiver
variety for the crab-shaped quiver described in Sect. 1.2, with appropriate parameter
q ∈ (C×)Q0 . The open subset is defined by requiring the loops in the original
(undoubled) quiver to act invertibly. In particular, in the genus zero case, the
character variety equals the multiplicative character variety.

Remark 1.10 By the above correspondence, a collection of conjugacy classes C ⊆
GLn(C

×) is q-divisible in the sense of Sect. 1.2 (where q is not yet a parameter) if
and only if, for the associated quiver Q, dimension vector α ∈ N

Q0 , and parameter
q ∈ (C×)Q0 , the vector α is q-divisible in the sense of Sect. 1.3. We hope that this
abuse of notation aids understanding.

It is then an interesting question which character varieties exhibit the different
properties discussed above, in particular, which ones are the “(2,2)”-cases where
an “O’Grady”-type resolution is expected (see Remark 1.8)? Their classification
is achieved in Theorems 5.1 and 5.3: All of these are in the genus zero case (i.e.,
they are star-shaped quivers), with three to five punctures and particular monodromy
conditions, as classified in Theorem 5.1, except for two cases in Theorem 5.3. The
latter cases correspond to once-punctured tori and to closed genus two surfaces (with
even rank and rank two local systems, respectively, the former having particular
monodromy about the puncture).

1.5 General Dimension Vectors

Although it is difficult to study directly quiver varieties of dimensions α /∈ Σq,θ , in
the additive setting, this issue is alleviated by Crawley-Boevey’s canonical decom-
position, expressing an arbitrary variety as a product of varieties for dimension
vectors in Σq,θ [CB02, Theorem 1.1] (extended to θ �= 0 in [BS21, Proposition
2.1]). In Theorem 6.17 below, we provide a version of this decomposition in the
multiplicative setting using reflection functors, following the proof of [CB02],
which is weaker in the sense that the dimension vectors of the factors need not
be in Σq,θ , and hence the factors could further decompose (although it is not
known in general if they do). One of the reasons why we must give the weaker
statement is the unavailability of (*); see Sect. 7.2 for more details. Along with this,
we prove a more general sufficient criterion for varying θ to produce a symplectic
resolution (Theorem 6.23), that does not require dimension vectors to be in Σq,θ .
Using these results, in Theorem 6.27, we are able to extend Theorem 1.5 to general
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dimension vectors. The content of Theorems 6.17 and 6.27 can be summarized in
the following. Here, Σ̃q,θ is a larger set than Σq,θ , consisting of roots for which a
certain multiplicative moment map is flat; Σ iso

q,θ ⊆ Σq,θ is the subset of isotropic

roots. See Sects. 2 and 6 for details on these definitions. For any subset X ⊆ N
Q0 ,

let N≥2 ·X := {mα | m ≥ 2, α ∈ X}.
Theorem 1.11 Assume that Mq,θ (Q, α) is non-empty.

(i) There is a decomposition α = β(1) + · · · + β(k) with β(i) ∈ Σ̃q,θ ∪N≥2 ·Σ iso
q,θ ,

such that the direct sum map produces an isomorphism (of reduced varieties):

k∏

i=1

Mq,θ (Q, β(i))
∼→Mq,θ (Q, α).

(ii) Assume that this decomposition has neither elements β(i) ∈ N≥2 · Σ iso
q,θ (Q, α)

nor β(i) = 2α for α ∈ Nq,θ and p(α) = 2. Then:

• The normalization of Mq,θ (Q, α) is a symplectic singularity.
• Each factorMq,θ (Q, β(i)) with β(i) /∈ Σq,θ admits a symplectic resolution.
• If for any factor β(i) there exists a θ -stable representation of dimension

γ (i) = 1
m
β(i) with m ≥ 2, then Mq,θ (Q, α) does not admit a symplectic

resolution. In fact, it has an open, singular, terminal, factorial subset.

Putting everything together, in Corollary 6.28, we are able to give a classification
of crab-shaped settings whose multiplicative quiver varieties admit symplectic
resolutions. By Theorem 3.6, we also deduce the corresponding statement for
character varieties (Theorems 1.1 and 1.3), which are open subsets of these varieties,
for θ = 0 and for certain values of the parameter q. To state the result, first
recall that the Jordan quiver is the quiver with one vertex and one arrow (a loop).
The fundamental region F(Q) consists of those nonzero vectors α ∈ N

Q0 with
connected support and with (α, ei) ≤ 0 for all i. As we explain below, by applying
certain reflection functors, we can reduce to this case. We give a simplified version
of the statement of Corollary 6.28 below; see the full statement for precise details.

Corollary 1.12 Let Q be a crab-shaped quiver and α ∈ Nq,θ a vector in the
fundamental region with αi > 0 for all i ∈ Q0. Further assume that (Q, α) is
not one of the following cases:

(a) β := 1
2α is integral, qβ = 1, and (Q, β) is one of the quivers in Theorems 5.1

and 5.3;
(b) Q is affine Dynkin of type Ã0 (i.e., the Jordan quiver with one vertex and one

arrow), D̃4 or Ẽ6, Ẽ7, Ẽ8) and α is a q-divisible multiple of the indivisible
imaginary root δ of Q.

Then:

• The normalization of Mq,θ (Q, α) is a symplectic singularity.
• If α is q-indivisible, Mq,θ (Q, α) admits a symplectic resolution;
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• If α is q-divisible, and α is not: (c) A prime multiple of one of the quivers listed in
Theorem 6.16.(b2) below (a framed affine Dynkin quiver with dimension vector
(1,mδ) with mδ q-divisible) with θ · δ = 0, then Mq,θ (Q, α) does not admit a
symplectic resolution (it contains an open singular factorial terminal subset).

Thus, after reducing to the fundamental region, a symplectic resolution exists if and
only if the dimension vector is q-indivisible, unless we are in one of the following
three open cases:

(a) Twice one of the dimension vectors appearing in Theorems 5.1 and 5.3 below,
which correspond to one of certain (twisted) character varieties of a sphere with
3–5 punctures (with rank at most 24), of a once-punctured torus (of rank 4) or a
closed genus two surface (of rank 2)

(b) a q-divisible imaginary root on an affine Dynkin quiver (of type Ã0, D̃4, Ẽ6, Ẽ7,
or Ẽ8), which corresponds to either a (twisted) character variety of a closed torus
(type A), or a (twisted) character variety of a sphere with 3 or 4 punctures (type
E or D, respectively) with particular rank and monodromy conditions

(c) A prime multiple of the vector (1, �δ) on a framed affine Dynkin quiver (again
of type Ã0, D̃4, Ẽ6, Ẽ7, or Ẽ8) with θ · δ = 0, which corresponds again to
a certain character variety of a once-punctured torus or a sphere with 4 or 5
punctures.

Here, when we say “correspond,” we mean precisely that, for θ = 0, the multiplica-
tive quiver varieties equal the given (twisted) character varieties, whereas for the
genus ≥1 case, the latter is the open subset of the former where the transformations
corresponding to loops in the undoubled quiver are invertible. Setting θ �= 0 gives
a partial resolution (which may be an actual one, as in case of θ generic and α

q-indivisible).

Remark 1.13 For the ordinary (untwisted) character varieties of closed genus one
or two surfaces appearing in the lists for cases (b) and (a) above, a symplectic
resolution exists; see, for example, [BS]. The proof makes use of Poincaré–Verdier
duality for closed surfaces; perhaps, a suitable generalization of this for orbifolds
would allow us to extend those results to the orbifold case. If so, we could remove
Ã0 from case (b) and the quiver with one vertex and two loops from (a).

1.6 Outline of the Paper

The outline of the paper is as follows: In Sect. 2, we recall some basic facts
about quivers and root systems and establish the notation that shall be used
throughout the paper. We then recall the definition of multiplicative preprojective
algebras and outline some of their algebraic properties. These are needed in the
construction, via Geometric Invariant Theory (GIT), of their moduli spaces of
semistable representations, following [Kin94]. In Definition 2.18, we introduce the
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fundamental combinatorially defined subset Σq,θ of roots appearing in our main
results (which is expected to contain, if not equal, the dimension vectors of θ -
stable representations of the multiplicative preprojective algebra). We extend some
properties of multiplicative quiver varieties with dimension vector in Σq,θ that
were originally formulated and proved in [CBS06] in the case of a trivial stability
condition to the general case.

In Sect. 3, we prove that for quivers of special type, namely, those which are
crab-shaped (see Fig. 1), there is an isomorphism between (an open subset of) the
corresponding multiplicative quiver variety and a character variety arising from
considering representations of the fundamental group of a punctured Riemann
surface where the monodromies of loops around the punctures are assumed to lie
in the closure of certain conjugacy classes. In order to build such a correspondence,
we exploit [CBS06, Lemma 8.2 and Theorem 1.1]. Note that an instance of
the correspondence between multiplicative quiver varieties and local systems on
punctured surfaces already appeared in [Yam08], where a proof is given for the
case of the punctured projective line. Our result applies to all genera. Thanks to this
correspondence, and to the results proved in Sect. 4, we are able to extend the work
of Bellamy and the first author from closed Riemann surfaces to open ones. Another
interesting aspect of this correspondence is that it could be conjecturally combined
with the non-abelian Hodge theorem to extend the main results of [Tir19], proved
by the second author, in the context of moduli spaces of parabolic Higgs bundles.
More details on this topic are provided in Sect. 7, where possible future research
directions of the present work are discussed.

Section 4 contains the proof of Theorem 1.5. A careful study of the singularities
of multiplicative quiver varieties is carried out. First, we show that the smooth locus
is precisely the θ -stable locus. The remaining part of the section is devoted to the
study of the nature of the singular locus. To this end, we use techniques from the
work [BS21] of Bellamy and the first author to prove that, under suitable hypotheses,
the singularities are symplectic. We also prove that, under certain conditions, the
moduli space Mq,θ (Q, α) contains an open subset which is singular, factorial, and
terminal. As a consequence, Mq,θ (Q, α) does not admit a symplectic resolution.
Moreover, for generic θ , we see that the open subset is the entire variety. The only
case left out by Theorem 1.5, when α = 2β for β ∈ Nq,θ and p(β) = 2, is more
subtle than the others. The corresponding result in the context of ordinary quiver
varieties, treated in [BS21], is based on the study of the local structure of such
varieties. In our case, such a tool is still not available but will hopefully be the
object of future research.

In Sect. 5, namely, in Theorems 5.1 and 5.3, we combinatorially classify all the
pairs (Q, α), formed by a crab-shaped quiver and a corresponding dimension vector
in the fundamental region such that (p(gcd(α)−1α), gcd(α)) = (2, 2). This is
relevant as these are the cases expected, for generic θ , to admit “O’Grady”-type
resolutions (i.e., by blowing up the singular locus). This is also important since
by Theorem 1.11, it allows us to recognize whether a dimension vector in the
fundamental region is expected to admit a symplectic resolution or not.
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In Sect. 6, we face the problem of existence of symplectic resolutions of
multiplicative quiver varieties for general dimension vectors. In order to do so, we
follow the approach of Bellamy and the first author. In particular, we prove that a
multiplicative quiver variety has a canonical decomposition into natural factors; see
Theorem 6.17. This can be viewed as a multiplicative analogue of Crawley-Boevey’s
decomposition [CB02], and we follow his proof, obtaining some more factors due to
the unavailability of (*) and some local structure results. Our result makes it possible
to solve the problem by understanding it only at the level of such indecomposable
factors, which are multiplicative quiver varieties with particular dimension vectors.
We then extend the GIT construction of symplectic resolutions by varying θ to
dimension vectors not in Σ (Theorem 6.23); this includes multiplicative analogues
of framed quiver varieties such as Hilbert schemes of C

2 and of hyperkähler
almost locally Euclidean spaces. In Theorem 6.27, we make use of our canonical
decomposition and, modulo some cases for which the question remains still open,
we classify all multiplicative quiver varieties with arbitrary dimension vector that
admit a symplectic resolution. As an application of this result, by restricting to
crab-shaped quivers, we give an explicit classification of the character varieties of
punctured surfaces admitting symplectic resolutions (Corollary 6.28), combining
Theorem 6.27 and the results of Sect. 3.

Last, Sect. 7 contains some open questions which naturally arise from the study
carried out in the present paper. One open question which would be interesting
to tackle regards the possibility to extend the main results of [Tir19] starting
from the correspondence outlined in Sect. 3: In Sect. 7, we provide some details
on this topic by describing which moduli space one would need to consider,
via the non-abelian Hodge theorem in the non-compact case [Sim90], and we
conjecture a generalization of the Isosingularity theorem for such moduli spaces.
To conclude, we outline a general setting and of pose a number of questions which
should generalize the work of the present and many other papers, for example,
[AS18, BS21, BS, KL07, Tir19]: It seems that many of the techniques exploited
in the mentioned works are particular instances of theorems which conjecturally
hold in the context of moduli spaces of semistable objects in 2-Calabi–Yau
categories, under suitable hypotheses. This assertion is motivated also by the work
of Bocklandt, Galluzzi, and Vaccarino, [BGV16], who studied moduli spaces of
representations of 2-Calabi–Yau algebras and proved that such varieties locally look
like representations of (ordinary) preprojective algebras. This seems to be a singular,
local, underived version of the phenomenon that representation varieties of Calabi–
Yau algebras are (shifted) symplectic (as announced by Brav and Dyckerhoff; see a
similar result in [Yeu]).

2 Multiplicative Quiver Varieties

In this section, we give the definition of multiplicative quiver varieties following
[CBS06] and recall some basic properties of such moduli spaces which will be



406 T. Schedler and A. Tirelli

useful in the arguments of the proof of our main theorems. In addition to these
known results, we prove a new one, concerning the normality of the aforementioned
varieties.

Throughout the paper, we work over the field C of complex numbers.

2.1 Preliminaries on Quivers and Root Systems

We recall the basic definitions and fix the notations from the theory of quiver
representations. Let Q be a finite quiver (= directed graph with finitely many
vertices and edges). We let Q0 and Q1 denote the set of vertices and the set of
arrows (= edges) of Q, respectively. Moreover, for an arrow a ∈ Q1, let h(a) and
t (a) denote the head and the tail of a, respectively. For a dimension vector α ∈ N

Q0 ,
we will denote by Rep(Q, α) the space of representations of Q of dimension α,
which is naturally acted upon by the group GL(α) :=∏i∈Q0

GL(αi).
The coordinate vector at vertex i is denoted ei . The set NQ0 of dimension vectors

is partially ordered by α ≥ β if αi ≥ βi for all i, and we say that α > β if α ≥ β

with α �= β. The support of a vector α is the set of i ∈ Q0 with αi �= 0; α is called
sincere if its support is all of Q0. The Euler (or Ringel) form on Z

Q0 is defined by

〈α, β〉 =
∑

i∈Q0

αiβi −
∑

a∈Q1

αt(a)βh(a).

Let (α, β) = 〈α, β〉 + 〈β, α〉 denote the corresponding Cartan (or Tits) form and set
p(α) = 1 − 〈α, α〉. The fundamental region F(Q) is the set of nonzero α ∈ N

Q0

with connected support and with (α, ei) ≤ 0 for all i. For q ∈ (C×)Q0 and α ∈ N
Q0 ,

let qα :=∏i∈Q0
q
αi

i .
If i is a loop-free vertex, so p(ei) = 0, there is a reflection si : ZQ0 → Z

Q0

defined by si(α) = α − (α, ei)ei . The real roots (respectively, imaginary roots)
are the elements of ZQ0 which can be obtained from the coordinate vector at a loop-
free vertex (respectively,± an element of the fundamental region) by applying some
sequence of reflections at loop-free vertices. Let R+ denote the set of positive roots.
Recall that a root β is isotropic imaginary if p(β) = 1 and anisotropic imaginary if
p(β) > 1. We say that a dimension vector α is indivisible if the greatest common
divisor of the αi is one.

2.2 Multiplicative Preprojective Algebras

We now define the quiver algebras whose moduli of representations are the varieties
of interest in the present paper. To this purpose, let Q be a finite quiver, fixed once
and for all in this section. First, recall that for a vector λ ∈ C

Q0 , the deformed
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preprojective algebra Πλ(Q) is the quotient of the path algebra CQ of the doubled
quiver Q by the relation

∑

x∈Q1

[x, x∗] =
∑

i∈Q0

λiei,

where x∗ denotes the dual loop to x in Q1; it is well known that Nakajima quiver
varieties can be interpreted as moduli spaces of (θ -semistable) representations
of such algebras. As one might expect, the defining relation for multiplicative
preprojective algebras is a multiplicative analogue of the above equation: Choose
q ∈ (C×)Q0 and define A(Q) to be the universal localization of the path algebra
CQ such that 1 + xx∗ and 1 + x∗x are invertible, for x ∈ Q1. Then, following
[CBS06, Definition 1.2], the multiplicative preprojective algebra Λq(Q) is defined
as the quotient of A(Q) by the relation

<∏

x∈Q1

(1+ xx∗)ε(x) =
∑

i∈Q0

qiei,

where ε(x) equals 1 if x ∈ Q1 and −1 otherwise and the product is ordered by an
arbitrary choice of ordering “<” on Q1. It is known, by [CBS06, Theorem 1.4] that
up to isomorphism, Λq(Q) does not depend on the orientation of the quiver or the
chosen ordering on Q1. When the quiver Q is clear from the context, we will use
the shortened notation Λq in place of Λq(Q).

Analogously to the additive case mentioned above, representations of Λq(Q)

are representations of the underlying quiver Q, {(Vi)i∈Q0
, (φa)a∈Q1

}, satisfying the
additional relations:

IdVh(a)
+ φaφ

∗
a is an invertible endomorphism of Vh(a) for all a ∈ Q1

∏

a∈Q1,h(a)=i

(IdVh(a)
+ φaφ

∗
a )

ε(a) = qiIdVi
for all i ∈ Q0,

where for an edge, a ∈ Q1, φ∗a denotes the linear map φa∗ , a∗ being the dual edge
of a.

For a positive vector α ∈ N
Q0 , we denote by Rep(Λq, α) the set of represen-

tations of Λq with Vi = C
αi for all i. This can be given an obvious affine scheme

structure via the subset of matrices satisfying the obvious polynomial equations. We
will work below with the reduced subvariety of this affine scheme.

Remark 2.1 By taking determinants of the defining relation for the multiplicative
preprojective algebra, one can easily see that if Λq has a representation of dimension
vector α, then qα = 1, which, thus, is a necessary condition to be satisfied in order
to have a non-empty moduli space.



408 T. Schedler and A. Tirelli

The following results, which will be used in the next sections, are proved in
[CBS06]. It is worth pointing out that even though we work over C, these statements
hold true over an arbitrary field K.

Proposition 2.2 If X and Y are finite-dimensional representations of Λq , then

dim Ext1Λq (X, Y ) = dim HomΛq (X, Y )+ HomΛq (Y,X)− (dimX, dimY )

The following result concerns the geometry of the space Rep(Λq, α) of repre-
sentations of the algebra Λq , when a dimension vector α ∈ N

Q0 is fixed. Define gα
as gα := −1+∑i∈Q0

α2
i .

Proposition 2.3 Rep(Λq, α) is an affine variety, and every irreducible component
has dimension at least gα + 2p(α). The subset T ⊂ Rep(Λq, α) of representations
X with trivial endomorphism algebra, End(X) = C, is open and, if non-empty,
smooth of dimension gα + 2p(α).

2.3 Reflection Functors for Λq(Q)

As in the additive case, one can define reflection functors for the multiplicative
preprojective algebra Λq(Q): Let v a loop-free vertex in Q and define

uv : (C×)Q0 → (C×)Q0 , uv(q)w = q−(ev,ew)
v qw.

It is easy to see that the map uv satisfies the following identity:

(uv(q))
α = qsv(α),

where sv is the reflection map defined in Sect. 2.1. The main result concerning such
maps is analogous to the properties of reflections functors for Πλ(Q).

Proposition 2.4 [CBS06, Theorem 1.7] If v is a loop-free vertex and qv �= 1, then
there is an equivalence of categories Fq from the category of representations of Λq

to the category of representations of Λuv(q), acting on dimension vectors through
the reflection sv . The inverse equivalence is given by Fuv(q).

We will need also reflections on θ . Define

rv : ZQ0 → Z
Q0 , rv(θ)w = θw − (ev, ew)θv.

Definition 2.5 The map (q, θ, α) �→ (uv(q), rv(θ), sv(α)), is called a reflection. If
θv �= 0 or qv �= 1, it is called an admissible reflection.

We will explain below isomorphisms of multiplicative quiver varieties, due to
Yamakawa, which are closely related to the above equivalence.
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2.4 Moduli of Representations of Λq(Q)

We shall now outline the construction of the varieties of interest for the present work.
As mentioned above, the general definition involves a stability condition θ ∈ Z

Q0 ,
which we fix for the rest of this section.

The seminal work of King [Kin94] allows one to define the notion of θ -
semistability for modules over Λq :

Definition 2.6 Let M be a finite-dimensional representation of Λq such that dimM ·
θ = 0. The module M is said to be θ -semistable if for any submodule N ⊂ M

θ · dimN ≤ 0.

The module M is said to be θ -stable if the strict inequality holds. Finally, M

is said to be θ -polystable if it is a direct sum of θ -stable representations. Given
a set (or scheme) X of representations, let Xθ−s and Xθ−ss denote the θ -stable
and θ -semistable loci, respectively. We will use the notation Repθ−s(Q, α) :=
Rep(Q, α)θ−s and similarly for θ−ss.

Remark 2.7 By [Kin94, Proposition 3.1], one has that the above definition of
stability coincides with the usual one coming from GIT: Indeed, consider the
character

χθ : GL(α)→ C
×, (gi)i∈Q0 �→

∏

i∈Q0

(det gi)
−θi .

It defines a linearization on the trivial line bundle Rep(Q, α) × C of the action
of GL(α) on Rep(Q, α); thus, one can define the notion of χθ -(semi)stability à
la Mumford, [MFK02]. The aforementioned result of King proves that M is θ -
(semi)stable if and only if it is χθ -(semi)stable.

Using the notion above, one can construct the moduli space of (semistable)
representations of Λq of dimension α as follows (see [Yam08, §2], for the details):
define

Rep◦(Q, α) = {φ ∈ Rep(Q, α) | det(1+ φaφ
∗
a ) �= 0, a ∈ Q1}.

Here and in the following, for φ ∈ Rep(Q, α), we let φa, a ∈ Q1 denote the
component linear maps. One can then consider the map

Φ : Rep◦(Q, α) −→ GL(α),

defined by the formula
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Φ(φ) =
<∏

a∈Q1

(1+ φaφ
∗
a )

ε(j).

Let us identify C
× also with the scalar matrices in GL(αi), and hence (C×)Q0 also

with a subset of GL(α). Fixing q ∈ (C×)Q0 , one has that Rep(Λq(Q), α) is the
set-theoretic preimage Φ−1(q). Thus, one can give the following

Definition 2.8 The multiplicative quiver varietyMq,θ (Q, α) is the GIT quotient

Mq,θ (Q, α) := (Repθ−ss(Q, α) ∩Φ−1(q)) // GL(α).

Remark 2.9 The reason for the terminology in the previous definition is apparent:
The equations defining the multiplicative preprojective relation are modifications of
the ones used to define the usual deformed preprojective algebras, whose moduli of
(semistable) representations are Nakajima quiver varieties.

It is worth recalling a fundamental result of King, which gives a moduli-theoretic
interpretation—in the sense of (representable) moduli functors—to Mq,θ (Q, α).

Theorem 2.10 ([Kin94, Propositions 3.1 and 3.2]) Assume θ ∈ Z
Q0 . Then,

Mq,θ (Q, α) is a coarse moduli space for families of θ -semistable representations
up to S-equivalence.

Here, two θ -semistable representations are S-equivalent if and only if they have
the same composition factors into θ -stable representations (i.e., they have filtrations
whose subquotients are isomorphic θ -stable representations). This means that every
point in Mq,θ (Q, α) has a unique representative which is θ -polystable, up to
isomorphism.

Precisely as in [BS21, Lemma 2.4], we have the following instance of the well-
known principle of GIT:

Definition 2.11 We say that θ ′ ≥ θ if every θ ′-semistable representation of Λq is
also θ -semistable.

Note that θ ′ ≥ θ is implied if the purely combinatorial condition holds that θ ·β > 0
implies θ ′ · β > 0 for all β < α.

Lemma 2.12 ([BS21, Lemma 2.4]) Let α ∈ Nq,θ be such that Mq,θ (Q, α) �=
∅. Take θ ′ ≥ θ . Then we have a projective Poisson morphism Mq,θ ′(Q, α) →
Mq,θ (Q, α) induced by the inclusion Φ−1(q)θ

′−ss ⊆ Φ−1(q)θ−ss .

We caution that this morphism need not be surjective (and indeed the source
could be empty when the target is not). However, in many cases, as we will see, it
produces a symplectic resolution.
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2.5 Reflection Isomorphisms

There is a multiplicative analogue of the Lusztig–Maffei–Nakajima reflection
isomorphisms of quiver varieties (see in particular [Maf02, Theorem 26]), due
to Yamakawa, which makes use of the reflection functors Fq . Let us extend the
definition of Mq,θ (Q, α) to α ∈ Z

Q0 by setting it to be empty in the case that
αi < 0 for some i.

Theorem 2.13 ([Yam08, Theorem 5.1]) An admissible reflection (q, θ, α) �→
(uv(q), rv(θ), sv(α)) induces an isomorphism of multiplicative quiver varieties,
Mq,θ (Q, α) ∼=Muv(q),rv(θ)(Q, sv(α)).

2.6 Poisson Structure onMq,θ (Q, α)

In order to construct a Poisson structure on Mq,θ (Q, α), we shall use the theory
of quasi-Hamiltonian reductions, first developed in [AMM98] for the case of real
manifolds, and then treated by Boalch, [Boa07], and Van den Bergh [Van08a,
Van08b] in the holomorphic and algebraic settings. To this end, note that the map
Φ defined above is a group valued moment map for the quasi-Hamiltonian action
of GL(α) on Rep◦(Q, α). Thus, the variety Mq,θ (Q, α) can be considered as the
quasi-Hamiltonian reduction of Rep◦(Q, α) modulo the action of GL(α). From the
properties of such a reduction, we obtain that Mq,θ (Q, α) is a Poisson variety.
Moreover, defining

Ms
q,θ (Q, α) := (Repθ−s(Q, α) ∩Φ−1(q))/GL(α),

where Repθ−s(Q, α) ⊂ Repθ−ss(Q, α) denotes the θ -stable locus, one has the
following result, which will be crucial in proving that Mq,θ (Q, α) is a symplectic
singularity. Note that in the above definition, the quotient is the usual orbit space,
if we replace GL(α) by PGL(α) = GL(α)/C×, as a point in the stable locus has
trivial stabilizer group under PGL(α).

Proposition 2.14 ([Yam08, Theorem 3.4]) Ms
q,θ (Q, α), if non-empty, is an

equidimensional algebraic symplectic manifold and its dimension is 2p(α).

2.7 Stratification by Representation Type

An important result proved in [CBS06, §7] concerns a natural stratification of the
affine variety Mq,0(Q, α) which parametrizes semisimple representations of the
algebra Λq . This stratification and its generalization, proved below, to the case of
θ -semistable representations are important in order to understand the singular locus
of Mq,θ (Q, α).
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Consider M ∈ Repθ−ss(Λq, α). Replace it by the unique θ -polystable represen-
tation which is S-equivalent to it (see the discussion after Theorem 2.10). M is then
said to be of representation type τ = (k1, β

(1); . . . ; kr , β(r)) if it can be decomposed
into the direct sum M ∼= M

k1
1 ⊕ · · ·⊕M

kr
r , where Mi is a θ -stable representation of

Λq of dimension vector β(i), i = 1, . . . , r , and Mi � Mj for i �= j .

Proposition 2.15 If τ is a representation type for Λq , then the set Cτ
q,θ (Q, α) of

θ -semistable representations of type τ is a locally closed subset of Mq,θ (Q, α),
which, if non-empty, has dimension

∑r
i=1 2p(β(i)). Mq,θ (Q, α) is the disjoint

union of the strata Cτ
q,θ (Q, α), where τ runs over the set of representation types

that can occur for Λq .

Proof First, note that the case when θ = 0 is treated in [CBS06] and proved in
Lemma 7.1 therein. For the case when θ �= 0, we use the same arguments. Indeed,
the fact that Mq,θ (Q, α) is a disjoint union of subsets of a fixed representation type
is immediate from the fact that the decomposition of a θ -polystable module into
θ -stable modules is unique. This, in turn, holds because for θ -stable modules M

and N , we have dim Hom(M,N) ≤ 1, with equality if and only if M and N are
isomorphic. Moreover, to prove that each Cτ

q,θ (Q, α) is locally closed and of the
dimension prescribed by the lemma, one can adapt the proof [CB01, Theorem 1.3]:
Indeed, those arguments can be repeated in this case as well, replacing Rep(Q, α)

with Repθ−ss(Q, α), μ−1
α (λ) with Φ−1(q), the word “ (semi)simple” with “θ -

(semi)stable” in the proof, and noting that everything goes through in the same
way because Repθ−ss(Q, α) is open in Rep(Q, α). The only difference is that in
this case, we do not claim irreducibility, since Repθ−ss(Q, β) is not known to be
irreducible. �

We will need also the following property of Repθ−ss(Λq(Q), α):

Lemma 2.16 Every irreducible component of Repθ−ss(Λq(Q), α) has dimension
at least gα + 2p(α), and the set of θ -stable representations form an open subset of
Rep(Λq(Q), α) which, if non-empty, is smooth of dimension gα + 2p(α).

Proof For the first part, Lemma 6.2 in [CB03] proves the statement in the case when
θ = 0, of which the above result is a consequence since Repθ−ss(Λq(Q), α) is an
open subset of Rep(Λq(Q), α): Indeed, every irreducible component of the former
variety is contained in only one irreducible component of the latter and, hence, the
dimension estimate holds. For the second part, one just needs to note that if X is a θ -
stable representation, then End(X) = C and, hence, by Crawley-Boevey and Shaw
[CBS06, Theorem 1.10] defines a smooth point of Rep(Λq(Q), α), which implies
that it is a smooth point of Repθ−ss(Λq(Q), α). �
For the proof of the following proposition, apply the strategy carried out in [CB03,
§6, 7] and [CBS06, §7]: The only change is that in the definition of representation
of top-type, one has to replace the word “simple” with the word “θ -stable” and
use Proposition 2.15 instead of [CBS06, Lemma 7.1] and Lemma 2.16 instead of
[CBS06, Theorem 1.1].
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Proposition 2.17 The inverse image in Repθ−ss(Λq(Q), α) of the stratum of
representations of type τ = (k1, β

(1); , . . . ; kr , β(r)) has dimension at most gα +
p(α)+∑r

l=1 p(β
(l)).

2.8 The Set Σq,θ

As mentioned in the introduction, the dimension vectors of stable representations
are closely related to the following combinatorially defined set, which is the
multiplicative analogue of the set Σλ introduced by Crawley-Boevey in [CB02] and
extensively used in [BS21]:

Definition 2.18 Fix q ∈ (C×)Q0 and θ ∈ Z
Q0 and set Nq,θ := {α ∈ N

Q0 | qα =
1, α · θ = 0}. Define R+q,θ := R+ ∩Nq,θ . Then,

Σq,θ :=
{

α ∈ R+q,θ

∣
∣
∣
∣
∣
p(α) >

r∑

i=1

p
(
β(i)

)
for any decomposition

α = β(1) + · · · + β(r) with r ≥ 2, β(i) ∈ R+q,θ
}
.

When θ = 0, we shall use the shortened notation Σq in place of Σq,0.

The following is an extension of [CBS06, Theorem 1.11] to the case θ �= 0.

Proposition 2.19 Let α ∈ Σq,θ . Then, if non-empty, Repθ−ss(Λq(Q), α) is
a complete intersection in Repθ−ss(Q, α), equidimensional of dimension gα +
2p(α). The locus of θ -stable representations Repθ−s(Λq(Q), α) is dense inside
Repθ−ss(Λq(Q), α).

Proof This is a direct consequence of Lemma 2.16 and Proposition 2.17, by the
definition of Σq,θ . �
Remark 2.20 Note that a consequence of the above proposition is that if π :
Repθ−ss(Λq(Q), α)→Mq,θ (Q, α) is the projection map, the image Ms

q,θ (Q, α)

of the stable locus is dense in the moduli space Mq,θ (Q, α). As a corollary of
this and Proposition 2.14 (or Proposition 2.15), one has that every component of
Mq,θ (Q, α) has dimension 2p(α).

A useful corollary of the proposition is the following criterion for birationality of
the maps Mq,θ ′(Q, β) → Mq,θ (Q, β). Together with Lemma 2.12, this explains
that these maps will be resolutions of singularities when the source is smooth.

Corollary 2.21 Let α ∈ Σq,θ be such that Mq,θ (Q, α) �= ∅. Take θ ′ ≥ θ such
that every θ -stable representation is θ ′-stable. Then the morphism Mq,θ ′(Q, β)→
Mq,θ (Q, β) is birational.
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Remark 2.22 Note that θ ′ ≥ θ is guaranteed if whenever β < α, then θ · β > 0
implies θ ′ · β > 0. Similarly, the assumption that every θ -stable representation is
θ ′-stable is implied if for β < α, then θ · β < 0 implies θ ′ · β < 0. To find θ ′
satisfying these conditions, first note that they will be satisfied for rational stability
conditions θ ′ ∈ Q

Q0 sufficiently close to θ . But they hold for a rational vector if and
only if they hold for an integral multiple.

Proof By Definition 2.11, Repθ ′−ss(Λq, α) is a subset of Repθ−ss(Λq, α), and it is
open. By assumption, the locus Repθ−s(Λq, α) is open in Repθ ′−ss(Λq, α). It is also
dense, since it is dense in Repθ−ss . Therefore, the locus Mθ−s

q,θ ′ (Q, β) is open and

dense in Mq,θ ′(Q, β). As the stable GL(α)-orbits are closed, Mθ−s
q,θ ′ (Q, β) maps

isomorphically to Ms
q,θ (Q, β). As the latter is dense in Mq,θ (Q, β), we conclude

the desired birationality. �
Using the above results, one can derive an important geometric property of

the moduli space Mq,θ (Q, α). For reasons which are clear in the proof of the
proposition, we assume that a certain codimension estimate holds. As usual, let
π : Repθ−ss(Λq, α)→Mq,θ (Q, α) denote the quotient map.

Lemma 2.23 Assume α ∈ Σq,θ and let τ be a stratum. The following inequality
holds true:

codimRepθ−ss (Λq,α)(π
−1(Cτ

q,θ (Q, α))) ≥ 1

2
codimMq,θ (Q,α)(C

τ
q,θ (Q, α)).

Proof By Proposition 2.19, one has that

codim(π−1(Cτ
q,θ (Q, α))) = gα + 2p(α)− dimπ−1(Cτ

q,θ (Q, α)).

Moreover, from Proposition 2.17, it follows that

gα + 2p(α)− dimπ−1(Cτ
q,θ (Q, α)) ≥ gα + 2p(α)− gα − p(α)−∑r

l=1 p(β
(l))

= p(α)−∑r
l=1 p(β

(l)).

On the other hand, by Proposition 2.15, one has that

p(α)−
r∑

l=1

p(β(l)) = 1

2

(
dimMq,θ (Q, α)− dimCτ

q,θ (Q, α)
)
,

which, combined with the above inequality, leads to the desired statement. �
By taking the minimum of these codimensions, we immediately conclude:

Corollary 2.24 Let Z denote the complement inside Mq,θ (Q, α) of the set of θ -
stable representationsMs

q,θ (Q, α), that is, Z is the union of all the non-open strata
of Mq,θ (Q, α). Then, the following inequality holds:
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codimπ−1(Z) ≥ 1

2
min

τ �=(1,α)
codimCτ

q,θ (Q, α).

Proposition 2.25 Consider α ∈ Σq,θ and assume that all strata in the non-empty
multiplicative quiver variety Mq,θ (Q, α) have codimension at least 4, that is,
assume that

min
τ �=(1,α)

(
dimMq,θ (Q, α)− dimCτ

q,θ (Q, α))
)
≥ 4.

Then the variety Mq,θ (Q, α) is normal.

Proof The arguments to prove the above statement are analogous to the ones used
in [BS]. In particular, we shall use a criterion proved by Crawley-Boevey, [CB03,
Corollary 7.2]. We first deal with the case when θ = 0 and then explain how to
adapt the arguments for general θ . When θ = 0, Mq,0(Q, α) is the categorical
quotient Rep(Λq, α)//GL(α) of an affine variety modulo a reductive group. Thus,
we only need to show that Rep(Λq, α) satisfies Serre’s condition (S2) and that
certain codimension estimates hold true. The first condition is ensured by the
fact that by Crawley-Boevey and Shaw [CBS06, Theorem 1.11] (the case θ = 0
of Proposition 2.19), Rep(Λq, α) is a complete intersection and, hence, Cohen-
Macaulay, which indeed implies condition (S2). Now, denote by S the open subset
S ⊂Mq,0(Q, α) of simple representations, which is non-empty by our assumption.
S is contained in the smooth locus and hence is normal. Moreover, let Z denote its
complement in Mq,0(Q, α) and denote with π : Rep(Λq, α) → Mq,0(Q, α) the
quotient map; then by Corollary 2.24, one has

dim Rep(Λq, α)− dimπ−1(Z) ≥ 1

2
min

τ �=(1,α)
(dimMq,0(Q, α)− dimCτ

q,0(Q, α)),

and the right-hand side is greater or equal than two by assumption. Thus, all
the hypotheses of [CB03, Corollary 7.2] are satisfied, and we can conclude that
Mq,0(Q, α) is normal. For the case when θ �= 0, keeping in mind that normality is
a local property, we fix a point x ∈Mq,θ (Q, α) and aim at proving normality at x.
This is achieved by choosing an open neighborhood V of x such that the restriction
to π−1(V ) of the projection morphism π−1(V ) → V is an affine quotient (note
that this can be done thanks to the properties of the GIT construction). One can now
repeat the same arguments as for the θ = 0 case, noting that by Proposition 2.15, the
estimates above hold true also in this more general setting: Being Cohen-Macaulay
is a local statement and thus the previous part of the proof ensures that π−1(V ),
which is open in Rep(Λq, α), satisfies this property. Moreover, defining Sθ to be the
subset of V of θ -stable representations, then one may proceed as in the first part of
the proof to obtain the desired conclusion. �
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Remark 2.26 In the next sections, we will examine some cases in which the
technical assumption in the previous result is satisfied, thus giving explicit examples
of when Mq,θ (Q, α) is normal.

Finally, for the sequel, we will have to consider the following analogue of
divisibility:

Definition 2.27 A dimension vector α ∈ Nq,θ is said to be q-indivisible if 1
m
α /∈

Nq,θ for all m ≥ 2. Equivalently, for α = mβ and β indivisible, then qβ is a
primitive m-th root of unity.

3 Punctured Character Varieties as Multiplicative Quiver
Varieties

In this section, we explain how it is possible to realize certain character varieties
as particular examples of multiplicative quiver varieties by considering quivers of
special type, the so-called crab-shaped quivers. Such character varieties parametrize
representations of the fundamental group of a compact Riemann surface with a finite
number of punctures, where the monodromies at closed loops around such punctures
are fixed to lie in (the closure of) certain conjugacy classes. We use the language of
quiver Riemann surfaces introduced by Crawley-Boevey in [CB13]. Moreover, in
what follows, we shall adopt the term punctured character variety to refer to the
character variety of a Riemann surface with punctures.

Fix a connected compact Riemann surface X of genus g ≥ 0, let S =
{p1, . . . , pk} ⊂ X be the set of punctures, and fix a tuple C = (C1, . . . , Ck) of
conjugacy classes Ci ⊂ GLn(C), i = 1, . . . , k. Recall that the fundamental group
π1(X \ S) of the punctured surface X \ S admits the following presentation:

π1(X\S) = 〈a1, . . . , ag, b1, . . . , bg, c1, . . . , ck | [a1, b1]·· · ··[ag, bg]c1·· · ··ck = 1〉,

where [a, b] = aba−1b−1 denotes the commutator. Note that the generators
c1, . . . , ck represent homotopy classes of closed loops around the punctures,
in the same free homotopy classes as small counterclockwise loops around
the punctures. Thus, a representation of π1(X \ S) whose monodromies about
the punctures are in the conjugacy classes Ci is given by a tuple of matrices
(A1, . . . , Ag, B1, . . . , Bg, C1, . . . , Ck) ∈ GLn(C)2g × C1× · · ·× Ck , satisfying the
relation

g∏

i=1

[Ai, Bi]
k∏

j=1

Cj = I.

Given the above, from the fact that isomorphic representations correspond to
conjugate matrices, one has that the character variety X (g, k, C) associated to
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Fig. 1 A crab-shaped quiver
with 2 loops and 3 legs, of
length 2, 3, and 1,
respectively

• •

• • • •

•

the pair (X, S) and monodromies lying in the conjugacy classes fixed above is
isomorphic to the affine quotient

X (g, k, C) := {(A1, . . . , Ag, B1, . . . , Bg, C1, . . . , Ck) ∈ GLn(C)2g × C1 × · · · × Ck |
g∏

i=1

[Ai, Bi ]
k∏

j=1

Cj = I }//GLn(C).

Remark 3.1 Note that the closures Ci are affine varieties, and hence, the quotient is
indeed that of an affine variety by an algebraic group.

We shall now explain how to realize the variety X (g, k, C) as an open subset of a
multiplicative quiver variety, using an equivalence of categories proved in [CB13].
As mentioned above, such a correspondence holds when one considers the so-called
crab-shaped quivers (called “comet-shaped” in [HLRV11]), that is, quivers such
that there exists a vertex v satisfying the following condition: The set of arrows is
formed by loops at v and a finite number of legs ending at v. See Fig. 1. A star-
shaped quiver is a crab-shaped quiver with no loops.

For the remainder of this section, the following notation will be used: g, for
the number of loops around the central vertex; k for the number of legs, and li ,
for i = 1, . . . , k, for the length of the i-th leg. As we shall see, g contains the
information regarding the genus of the surface, while the integers k and li encode
information about the (prescribed) conjugacy classes of the monodromies of the
loops around the punctures.

Definition 3.2 [CB13, §2] A Riemann surface quiver Γ is a quiver whose set of
vertices has the structure of a Riemann surface X with finitely many connected
components. Γ is said to be compact if X is compact. A point p ∈ X is called
marked if it is a head or a tail of an arrow of Γ .

Definition 3.3 Given a Riemann surface quiver Γ , the component quiver [Γ ] of
Γ , is the quiver whose set of vertices is the set of connected components of Γ and
arrows given by [a] : [p] → [q] for any arrow a : p → q, where p and q are points
of X and [p] denotes the connected component of X containing p.

Remark 3.4 Although, by definition, there are in general infinitely many vertices,
we will consider (Riemann surface) quivers with finitely many arrows.

Following closely [CB13, §5, §8], starting from a Riemann surface quiver Γ , it is
possible to define two categories of representations, Repσ (π(Γ )) and Rep Λq([Γ ]),
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whose equivalence is the key point to proving the correspondence between multi-
plicative quiver varieties and punctured character varieties. Fix a quiver Riemann
surface Γ , and let {Xi}i∈I the set of connected components of the underlying
Riemann surface X. For each i ∈ I , let Di be the set of marked points of Γ

contained in Xi . Moreover, let D = ∪iDi : fix σ ∈ (C×)D , bi ∈ Xi \ Di , and
for each p ∈ Di , fix a loop lp ∈ π1(Xi \Di, bi) around p.

Repσπ(Γ ) is defined to be the category whose objects are given by collections
(Vi, ρi, ρa, ρ

∗
a ) consisting of representations ρi : π1(Xi \ Di, bi) → GL(Vi), for

i ∈ I and linear maps ρa : Vi → Vj and ρ∗a : Vj → Vi for each arrow a : p → q

in Γ , where Xi = [p] and Xj = [q], satisfying

σ−1
p ρi(�p)

−1 = 1Vi
+ ρ∗aρa and σqρj (�q) = 1Vj

+ ρaρ
∗
a

and whose morphisms are the natural ones.
Consider the component quiver [Γ ], and define Q to be the quiver obtained from

[Γ ] by adjoining gi loops at each vertex i, where gi is the genus of Xi . Moreover,
define q ∈ (C×)I by qi = ∏

p∈Di
σp. We define Rep Λq([Γ ])′ to be the category

of representations of the multiplicative preprojective algebra Λq(Q) in which the
linear maps representing the added loops in Q (but not their reverse loops in Q) are
invertible.

Lemma 3.5 ([CB13, Proposition 2]) There is an equivalence of categories

Repσπ(Γ ) � Rep Λq([Γ ])′.

This induces a GL(α)-equivariant isomorphism of affine algebraic varieties,

Repσ (π(Γ ), α)
∼−→ Rep(Λq([Γ ])′, α),

defined as the collections of representations with Vi = C
αi for all i.

Proof The first statement is precisely [CB13, Proposition 2]. For the second, both
Repσ (π(Γ ), α) and Rep(Λq([Γ ])′, α) are acted upon by the group GL(α), and the
above equivalence of categories implies that there is a GL(α)-equivariant bijection
as desired. Moreover, Repσ (π(Γ ), α) and Rep(Λq([Γ ]′, α)) are easily seen to be
affine algebraic varieties, defined as tuples of matrices satisfying certain polynomial
relations, with certain polynomials inverted. To see that the above map is a GL(α)-
equivariant algebra isomorphism, observe that the proof of [CB13, Proposition 2]
uses explicit invertible polynomial formulae. �

In order to explain how the above equivalence of categories implies the corre-
spondence between character varieties and preprojective algebras, we shall explain
how it is possible to encode the datum of a number of conjugacy classes into a star-
shaped quiver. We follow [CBS06, §8] and [CB04, §2]: Fix k conjugacy classes
C1, . . . , Ck in GLn(C), for k ≥ 1. We can encode the datum of such conjugacy
classes in a combinatorial object as follows: Take Ai ∈ Ci and let wi ≥ 1 be the
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degree of its minimal polynomial, for i = 1, . . . , k; choose elements ξij ∈ C
×,

1 ≤ i ≤ k, 1 ≤ j ≤ wi , such that

(Ai − ξi1I ) · · · · · (Ai − ξiwi
I ) = 0.

The closure of the conjugacy class Ci is then determined by the ranks of the partial
products

αij = rank(Ai − ξi1I ) · · · · · (Ai − ξij I ),

for Ai ∈ Ci and 1 ≤ j ≤ wi − 1. In addition, if we set α0 = n, we get a dimension
vector α for the following quiver Qw

Now, for every i ∈ {1, . . . , k}, let ti be a nonnegative integer, and define a Riemann
surface quiver Γ as follows: Its underlying Riemann surface X is given by the
disjoint union

X = X0 �
⊔

i∈{1,...,k},j∈{1,...,ti }
P

1
i,j ,

where X0 is an arbitrary closed Riemann surface of genus g (the choice does not
matter), and P

1
i,j is simply a copy of P1 for the index (i, j). For each pair of indices

(i, j), fix a point pi,j ∈ P
1
i,j , and for i = 1, . . . , k, fix distinct points pi ∈ X0.

Define D as before to be

D = {pi,j } ∪ {pl}.

The arrows of Γ are listed as follows (Fig. 2):

• ai,0 : pi,1 → pi , for i = 1, . . . , k;
• ai,j : pi,j+1 → pi,j , for i = 1, . . . , k, j = 1, . . . , ti − 1.

Unfolding the definition for the objects of the category Repσπ(Γ ), one has that
for such a Riemann surface quiver Γ , these are representations

ρ : π1(X0 \ {p1, . . . , pk})→ GL(V ),
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Fig. 2 An example of a Riemann surface quiver associated with a tuple of conjugacy classes

and linear maps

ρi,0 : Vi,1 → V, ρi,j : Vi,j+1 → Vi,j

and

ρ∗i,0 : V → Vi,1, ρ∗i,j : Vi,j → Vi,j+1,

for i = 1 . . . , k and j = 1, . . . , ti − 1, such that if li ∈ π1(X0 \ {p1, . . . , pk}) is the
loop around pi , i = 1, . . . , k, the linear automorphism ρ(li) satisfies the condition

σiρ(li) = 1V + ρi,0ρ
∗
i,0

and the linear maps ρi,j and ρ∗i,j satisfy the equations:

σ−1
i,j+11Vi,j+1 = 1Vi,j+1 + ρ∗i,j ρi,j ,

σi,l1Vi,l
= 1Vi,l

+ ρi,lρ
∗
i,l ,

for i = 1, . . . , k, j = 1, . . . , ti − 1, and l = 1, . . . , ti , which, setting j = l − 1 and
summing the equations involving operators on the same space Vi,l , can be rewritten
as

ρ(li) = σ−1
i 1V + σ−1

i ρi,0ρ
∗
i,0,

ρ∗i,j−1ρi,j−1 − ρi,j ρ
∗
i,j = (σ−1

i,j − σi,j )1Vi,j
,

σi,ti 1Vi,ti
= 1Vi,ti

+ ρi,ti ρ
∗
i,ti

,

for i = 1, . . . , k and j = 1, . . . , ti − 1. Now, we specialize to the case ti = wi − 1
and assume that dimVi,j = αi,j and dimV = n, where wi and αi,j are defined as
before. Through some simple algebraic computations, it is possible to see that given
ξi,j as before, it is possible to find corresponding σi,j , defined as

σ0 = 1
∏k

i=1 ξi,1
, σi,j = ξi,j

ξi,j+1
,
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such that the above sets of equations can be rewritten in terms of linear operators
φi,j and ψi,j , for i = 1, . . . , k and j = i, . . . , wi − 1,

V
φi1
�
ψi1

Vi1

φi2
�
ψi2

Vi2

φi3
�
ψi3

. . .

φi,wi−1

�
ψi,wi−1

Vi,wi−1

satisfying

ρ(li)− ψi1φi1 = ξi1 1V

φijψij − ψi,j+1φi,j+1 = (ξi,j+1 − ξij ) 1Vij
(1 ≤ j < wi − 1)

φi,wi−1ψi,wi−1 = (ξi,wi
− ξi,wi−1) 1Vi,wi−1 ,

which, by Crawley-Boevey [CB04, Theorem 2.1], implies that ρ(li) lies in the
closure of the conjugacy class Ci , i = 1, . . . , k. In fact, this theorem says that this is
a necessary and sufficient condition; thus, given a representation

ρ : π1(X0 \ {p1, . . . , pk})→ GL(V ),

where dimV = n and ρ(li) ∈ Ci , for prescribed conjugacy classes C1, . . . , Ck in
GLn(C), we can find linear maps ρi,j and ρ∗i,j and vector spaces Vi,j of dimension
αi,j as above, such that the tuple (V , ρ, Vi,j .ρi,j , ρ

∗
i,j ) is an object of the category

Repσπ(Γ ). Then, combining this with Lemma 3.5, one has the following result.

Theorem 3.6 There is an isomorphism between the character variety X (g, k, C)
and the affine quotient M̃q,0([Γ ], α) := Rep Λq([Γ ], α)′//GL(α).

Remark 3.7 From its definition, one can see that Rep Λq([Γ ], α)′ is an open
affine GL(α)-invariant subset of Rep(Λq [Γ ], α) which is obtained by inverting
certain GL(α)-invariant functions (the determinants of the linear transformations
corresponding to loops of the undoubled quiver at the node). Since the quotient in
the affine case, with G reductive, is obtained by passing to G-invariant functions,
that is, SpecB//G = SpecBG, we deduce that the affine quotient M̃q,0([Γ ], α) can
be identified with an open subset of the multiplicative quiver variety Mq,0([Γ ], α).
This is important because, as outlined in the following section, in order to show the
nonexistence of symplectic resolutions, we prove that certain such varieties contain
an open subset which is factorial and terminal.

Remark 3.8 We note that, in the star-shaped case, this result follows from [CBS06,
Section 8]. Moreover, in the general case, Yamakawa proves a similar result to the
one obtained in this section in the language of local systems on punctured surfaces;
see [Yam08, Theorem 4.14] for more details.
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4 Singularities of Multiplicative Quiver Varieties

Throughout this section, which is devoted to the study of the singularities
Mq,θ (Q, α) and to the proof of Theorem 1.5, we use the notation introduced
in Sect. 2.

In order to carry out this analysis, in Sect. 4.1, we describe the singular locus
of the varieties in question. As one might expect, for α ∈ Σq,θ , this is given by
the locus of strictly semistable representations. This follows because these varieties
are Poisson, the stable locus is symplectic and smooth, and its complement has
codimension at least two. Since a generically nondegenerate Poisson structure on
a smooth variety can only degenerate along a divisor (the vanishing locus of the
Pfaffian of the Poisson bivector), we conclude that the entire smooth locus is
nondegenerate. Since the strictly semistable locus is degenerate, it must therefore be
singular. Moreover, in the case where α is q-indivisible, a symplectic resolution can
be obtained by varying θ , by Lemma 2.12, and Corollary 2.21 (and Remark 2.22).
These arguments, spelled out below, prove the second statement of Theorem 1.5.

In Sect. 4.4, we complete the proof of Theorem 1.5 by considering strata of
representation type νβ, where α = nβ and ν is a partition of n. We compute
their codimension. As a consequence, taking β to be q-indivisible, for suitable
θ ′ ≥ θ , Mq,θ ′(Q, α) has singularities in codimension ≥ 4. Hence, by Flenner’s
theorem [Fle88], its normalization is a symplectic singularity, which proves the first
statement of Theorem 1.5. Finally, we show, using Drezet’s criterion of factoriality,
that the singularities along most strata νβ are factorial and terminal. This proves the
final statement of Theorem 1.5. Note that Sect. 4.4 closely follows [BS21], where
the analogous strata are considered for ordinary quiver varieties.

4.1 Singular Locus of Mq,θ (Q, α) for α ∈ Σq,θ

Before proving the main statement, we need a well-known result which is valid for
any variety endowed with a Poisson structure.

Lemma 4.1 Let X be a smooth variety and π ∈ ∧2TX a generically nondegener-
ate Poisson bivector. Let D the degenerate locus of π . Then, if non-empty, D is a
divisor.

Proof By generic nondegeneracy, dimX has to be even; therefore, dimX = 2d.
Define the top polyvector field γ = ∧dπ . Then, D coincides with the zero locus of
γ . On the other hand, γ is a section of a line bundle, and therefore, its zero locus is
a divisor (if non-empty). �
This implies the following criterion for the singular locus of a Poisson variety:
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Corollary 4.2 Let X be a Poisson variety which is smooth and symplectic in the
complement of a closed Poisson subvariety Z ⊆ X which has codimension at least
two everywhere. Then Z equals the set-theoretic singular locus of X.

Proof Suppose for a contradiction that X is smooth at a point z ∈ Z. Since Z is a
closed Poisson subvariety, the Poisson structure of X is degenerate at z. It follows
from Lemma 4.1 that the degeneracy locus of X has codimension 1 at z. However,
this locus is contained in Z, which has codimension at least two at z. This is a
contradiction. �
Proposition 4.3 Let α ∈ Σq,θ . The smooth locus of Mq,θ (Q, α) isMs

q,θ (Q, α).

Proof By Proposition 2.14, Ms
q,θ (Q, α) is smooth and symplectic. Let Z be the

complement. It is the union of all the non-open strata of Mq,θ (Q, α). There are
finitely many, and these all have purely even dimension; hence, Z has codimension
at least two everywhere (as Ms

q,θ is dense and it has purely even dimension, 2p(α)).
Furthermore, we claim that Z is a Poisson subvariety, that is, all Hamiltonian vector
fields are tangent to it. Indeed, Hamiltonian vector fields descend from GL(α)-
invariant Hamiltonian vector fields on representation varieties. These integrate to
formal automorphisms which commute with the G-action, which hence preserve
the stratification by conjugacy classes of stabilizer. Therefore, the hypotheses of
Corollary 4.2 are satisfied, and the statement follows. �
Remark 4.4 It is reasonable to ask if a stronger statement is true, which makes sense
for general α: Are the connected components of the representation-type strata the
symplectic leaves? Equivalently, do the Hamiltonian vector fields span the tangent
spaces to the representation type strata? If so, then (a) Mq,θ (Q, α) has finitely
many symplectic leaves, and (b) the representation type strata are all smooth. The
converse statement also holds: If a stratum is smooth and it is a union of finitely
many symplectic leaves, its Poisson structure must be nondegenerate outside a locus
of codimension at least two. So Lemma 4.1 implies that it is actually nondegenerate.

Let us comment briefly on conditions (a) and (b). First, if Mq,θ (Q, α) is a
symplectic singularity, it has finitely many symplectic leaves, by Kaledin [Kal06,
Theorem 2.5]. Next, for a representation type τ = (k1, β

(1); . . . ; kr , β(r)), the direct
sum map produces a surjection (Ms

q,θ (Q, β(1)) × · · · × Ms
q,θ (Q, β(r)))dist →

Cτ
q,θ (Q, α) with smooth source, where the dist refers to the open subset where the

elements of the i-th and j -th factors are unequal for all distinct i and j . It seems
reasonable to expect this to be a covering, in which case the stratum is smooth.

4.2 Generalities on Symplectic Singularities

In order to prove the first statement of Theorem 1.5, we need a criterion for the
normalization of a variety to have symplectic singularities. This is an extension of
[BS21, Lemma 6.12], using [Kal09, Theorem 1.5]:
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Proposition 4.5 Let X be a Poisson variety and assume that π : Y → X is a
proper birational Poisson morphism from a variety Y with symplectic singularities.
Then the normalization X′ of X has symplectic singularities. Moreover, the induced
map π : Y → X′ is Poisson.

Proof In [BS21, Lemma 6.12], the result is proved under the assumption that X

is in fact normal. To conclude the lemma from this result, we may apply [Kal09,
Corollary 1.4, Theorem 1.5]. By these results (and their proofs), given a Poisson
variety X, the normalization X′ has a unique Poisson structure such that the
normalization map ν : X′ → X is a Poisson morphism. The map π factors through
ν, and the induced map π ′ : Y → X′ must be Poisson, since the Poisson bracket
on OX′ is the unique extension of the Poisson bracket on OX to a biderivation
OX′ ×OX′ → OY . Then the fact that X′ has symplectic singularities follows from
[BS21, Lemma 6.12]. �
Remark 4.6 For convenience, we will apply this result even in the case where π is a
symplectic resolution. However, in this case, the statement follows from definitions,
without really requiring the results of [BS21, Kal09], as follows. The map π : Y →
X factors through π ′ : Y → X′, which induces on X′ a unique Poisson structure
such that π ′ is Poisson; as Y is nondegenerate and its symplectic form is pulled back
from X′, X′ must also be nondegenerate on the smooth locus. By definition, X′ is
then a symplectic singularity. Since π is dominant, the Poisson structure on X is
uniquely determined from the one on Y and must be the one obtained from X′ via
the inclusion OX → OX′ . This proves the last statement.

Remark 4.7 Actually, in the above proposition, the biconditional holds: X has
symplectic singularities if and only if Y does. Moreover, one can generalize to the
case where X is a non-reduced Poisson scheme: In this case, the map π factors
through the reduced subvariety Xred, which is canonically Poisson by Kaledin
[Kal09, Corollary 1.4].

4.3 The q-Indivisible Case

We now prove the second statement of Theorem 1.5. Suppose that β ∈ Σq,θ is
q-indivisible.

First, suppose that β is real. In this case, by Crawley-Boevey and Shaw [CBS06,
Theorem 2.1], Λq(Q) admits a simple rigid representation X, and any other
representation Y of the same dimension must be isomorphic to X, which means
that the variety Mq,θ (Q, β) is a point. So there is nothing to prove.

Next, suppose that β is imaginary. In this case, one may proceed as follows:
By choosing a generic stability parameter θ ′ ≥ θ , there is a projective symplectic
resolution

π :Mq,θ ′(Q, β) −→Mq,θ (Q, β).
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Indeed, by Yamakawa [Yam08, Proposition 3.5], for θ ′ generic, the stable locus
Ms

q,θ ′(Q, β), which is smooth, coincides with the semistable locus. Hence, we can
find θ ′ ≥ θ such that Mq,θ ′ is smooth and symplectic. Moreover, the fact that the
morphism π exists and is projective and Poisson follows, in the θ = 0 case, from
the very definitions of affine and GIT quotient and, for general θ , from Lemma 2.12.
Finally, birationality of π is ensured by Corollary 2.21 (and Remark 2.22). Thus,
we can conclude that Mq,θ (Q, β) admits a symplectic resolution, given by the
morphism π . By Proposition 4.5 (or Remark 4.6), this implies that the normalization
of Mq,θ (Q, β) has symplectic singularities.

4.4 The q-Divisible Case

In this subsection, we prove the first and third statements of Theorem 1.5. We may
assume that α is q-divisible: This is automatic in the third part, whereas in the first
part, the result follows from the second part (proved in the preceding subsection) in
the q-indivisible case. This means that α is anisotropic, by the following result:

Lemma 4.8 Let α ∈ Nq,θ be q-divisible. Then α ∈ Σq,θ only if α is anisotropic.
Conversely, if α = mβ and β ∈ Σq,θ is anisotropic, then α ∈ Σq,θ .

Proof This is a generalization of [CB02, Proposition 1.2] (in view of Remarks 6.7
and 6.8), with the same proof. For details, see Corollary 6.21 below (whose proof is
independent of any of the results of this section). �

Recall that a weighted partition of n is a sequence ν = (l1, ν1; . . . ; lk, νk) such
that ν1 ≥ · · · ≥ νk and

∑k
i=1 liνi = n. If ν is a partition of n, we shall denote by νβ

the representation type (l1, ν1β; . . . , lk, νkβ).
Lemma 4.9

(1) The set Σq,θ contains {mβ | m ≥ 1}.
(2) dimC

νβ
q,θ (Q, nβ) = 2

(
k + (p(β)− 1)

∑k
i=1 ν

2
i

)
.

(3) For (p(β), n) �= (2, 2), dimMq,θ (Q, nβ) − dimC
νβ
q,θ (Q, nβ) ≥ 4 for all ν �=

(1, n).
(4) For (p(β), n) �= (2, 2) and ν �= (1, n), one has dimMq,θ (Q, nβ) −

dimC
νβ
q,θ (Q, nβ) ≥ 8 unless one of the following holds: (i) (p(β), n) = (2, 3)

and ν = (1, 2; 1, 1); (ii) (p(β), n) = (3, 2) and ν = (1, 1; 1, 1).

Proof The arguments are completely analogous to those of [BS21, Lemma 6.1],
except here that we use the dimension estimates given by Proposition 2.15. The first
statement is a consequence of Lemma 4.8. �
Note that the above result has the following interesting consequence.
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Proposition 4.10 Assume that all θ -stable representations of dimension γ < nβ

have γ = mβ for some m. Moreover, assume that (p(β), n) �= (2, 2). Then,
Mq,θ (Q, nβ) is normal.

For example, the first condition holds if β is q-indivisible and θ is generic.

Proof This is an immediate consequence of Proposition 2.25 and point (3) of
Lemma 4.9, given that, by assumption on θ , all strata except for the open one have
codimension greater than 4. �
Now, let α ∈ Σq,θ be q-divisible. Write α = nβ for β q-indivisible and n ≥ 2.
For generic θ ′ ≥ θ , the only strata of Mq,θ ′(Q, α) are those of the form νβ,
which appear in Lemma 4.9. If (p(β), n) �= (2, 2), then, taking into account
Remark 2.20, all non-open strata have codimension at least four by Lemma 4.9.(3).
Therefore, Mq,θ ′(Q, α) is a symplectic singularity by Flenner’s Theorem [Fle88].
Now, the map Mq,θ ′(Q, α)→Mq,θ (Q, α) is birational, projective, and Poisson by
Corollary 2.21 (and Remark 2.22), and Lemma 2.12. Therefore, the normalization
of Mq,θ (Q, α) is itself a symplectic singularity by Proposition 4.5. This proves the
first statement of Theorem 1.5.

It remains to prove the final statement of Theorem 1.5. For this purpose, assume
that α = nβ for n ≥ 2 and that β ∈ Nq,θ (not necessarily q-indivisible or in Σq,θ ),
such that there exists a θ -stable representation of dimension β. Let U be the union
of all the strata indexed by νβ for ν a weighted partitions of n,

U :=
⋃

ν

C
νβ
q,θ (Q, α).

As well as for the previous lemma, to prove the following result, one can repeat
verbatim the arguments in [BS21, Lemma 6.2].

Lemma 4.11 The subset U is open in Mq,θ (Q, α). If θ is generic and β is q-
indivisible, this subset is the entire variety.

In order to prove that U is factorial, we shall follow the approach of [BS21],
which was itself inspired by results of Drezet [Dre91] on factoriality of points in
moduli spaces of semistable sheaves on rational surfaces. Assuming the notation
above, with π : Repθ−ss(Λq, α)→Mq,θ (Q, α) denoting the quotient map, define
V := π−1(U). We aim at proving that V is a local complete intersection and that
it is factorial and normal. We shall then descend the factoriality property to the
subvariety U .

Proposition 4.12 V is a local complete intersection, factorial, and normal.

The proof of this proposition follows closely the arguments used in [BS21,
Proposition 6.5].

Proof of Proposition 4.12 Since V is open inside Repθ−ss(Λq, α), Proposi-
tion 2.19 implies that it is a local complete intersection. To prove normality and
factoriality, recall that a local complete intersection satisfies Serre’s S2 property,
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so Serre’s criterion implies that it is normal if it is smooth outside a locus of
codimension at least 2. Moreover, by a result of Grothendieck [KLS06, Theorem
3.12], a local complete intersection which is smooth outside a locus of codimension
at least 4 is factorial. Put together, to show that V is normal and factorial, it suffices
to show that it is smooth outside of a locus of codimension at least 4. For this,
one can repeat verbatim the arguments used in [BS21, Proposition 6.5], replacing
Corollary 6.4 and Lemma 6.1 with Lemmas 2.23 and 4.9, respectively. �

In order to descend factoriality from V to U we use Drezet’s method. In
particular, [BS21, Theorem 6.7] holds true in this context as well with no change in
the proof of the result, as we have already made sure that all of the tools used there
are still applicable here, Proposition 4.12 being the most important one. Thus, the
corresponding statement of [BS21, Corollary 6.9] is the following:

Theorem 4.13 U is a factorial variety.

We omit the proof, as it is exactly the same as in [BS21, Corollary 6.9].
Using the previous theorem and the estimates on the codimension of the singular

locus, one can conclude that Mq,θ (Q, α) does not admit a symplectic resolution.
We state this formally below, where we also recall our running hypotheses for the
reader’s convenience.

Theorem 4.14 Let α = nβ ∈ Σq,θ be anisotropic imaginary, for n ≥ 2, such that
there exists a θ -stable representation ofΛq of dimension β, and (p(β), n) �= (2, 2).
Then Mq,θ (Q, α) has an open subset which is factorial, terminal, and singular.
Hence, it does not admit a symplectic resolution. Moreover, if θ is generic and α is
q-indivisible, then this open subset is the entire variety.

Proof The subset U is singular, since it contains the non-open stratum (n, β). It
is factorial by Theorem 4.13. Under the assumptions, the singular strata in U all
have codimension at least four, hence also the singular locus. Thus, U is terminal
by Namikawa [Nam], since it has symplectic singularities and the singular locus has
codimension at least four. �
This completes the proof of the third and final statement of Theorem 1.5.

4.5 Proof of Corollary 1.6

Write α = mβ for β q-indivisible. Note that for θ generic, the only possible
decompositions of α are into multiples of β. If α is q-indivisible, it therefore follows
trivially that α ∈ Σq,θ . Since the only stratum in Mq,θ (Q, α) is the open one of
stable representations, it also follows from Proposition 2.14 that Mq,θ is smooth
symplectic. Suppose that α is q-divisible. It then follows from Lemma 4.8 that α is
in Σq,θ if and only if it is anisotropic. This completes the proof of part (i).

Part (ii) follows from Proposition 4.10 and Theorem 1.5. The first statement
of part (iii) follows from Theorem 1.5. Finally, the last statement follows from
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Proposition 2.14 because in this case, there is only one stratum in Mq,θ (Q, α),
consisting of θ -stable representations.

4.6 The Anisotropic Imaginary (p(α), n) = (2, 2) Case

The only case left out in this analysis is that of 2α ∈ Σq,θ for α ∈ Nq,θ satisfying
p(α) = 2. The analogous question of existence of a symplectic resolution in the
setting of Nakajima quiver varieties is settled in [BS21, Theorem 1.6], where it is
shown that for generic θ , blowing up the ideal sheaf defining the singular locus
gives a symplectic resolution of singularities. This is achieved by showing that,
étale locally, the variety is isomorphic to the product of C4 with the closure of the
six-dimensional nilpotent orbit closure in Sp(C4): see [BS21, Theorem 5.1] and the
references therein. Given this, one might conjecture that an analogous result holds
for multiplicative quiver varieties, and such a result should be proved by studying
the étale local structure of the variety. In fact, by Artin’s approximation theorem
[Art69], it would be sufficient to give a description of the formal neighborhood of a
point. This will be discussed in a future work. For more details, see Sect. 7.

5 Combinatorics of Multiplicative Quiver Varieties

In this section, we study some combinatorial problems which are related to the
geometry of multiplicative quiver varieties. Indeed, an interesting problem is to
classify all the possible “(2, 2)-cases”: These are the main q-divisible cases for
which we conjecture that there exists a symplectic resolution. In the next subsection,
we carry out these computations in the case of crab-shaped quivers (which we
defined in Sect. 3). We shall see how most of the (2, 2)-cases occur in the case
of star-shaped quivers, that is, where there are no loops, so that the corresponding
surface has genus zero. It is also important to point out that the classification below
yields an explicit classification of the crab-shaped quivers for which symplectic
resolutions exist, or are conjectured to exist: See Corollary 6.28 in the next section
for details on this.

5.1 (2,2) Cases for Crab-Shaped Quivers

The analysis is based on some standard numerical arguments and the constraints on
the dimension vector α for it to satisfy the conditions of Sect. 3, that is, it has to
represent the multiplicities of the eigenvalues in the prescribed conjugacy class.

Theorem 5.1 There are exactly 13 pairs (Q, α), where Q is a star-shaped quiver
as in Sect. 3 and α ∈ F(Q) is in the fundamental region, such that p(α) = 2. Such
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pairs are depicted as follows, where a vertex is substituted by the corresponding
entry of the dimension vector:

(5.1.1)

(5.1.2)

(5.1.3)

(5.1.4)

(5.1.5)

(5.1.6)

(5.1.7)

(5.1.8)

(5.1.9)

(5.1.10)

(5.1.11)
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(5.1.12)

(5.1.13)

Remark 5.2 It is important to highlight that quivers (5.1.5), (5.1.9), (5.1.11),
(5.1.13) are the framed affine Dynkin quivers D̃4, Ẽ6, Ẽ7, Ẽ8, respectively, with
dimension vector given by (2δ, 1), where δ is the minimal isotropic imaginary root
of the corresponding quiver. See Remark 5.5 for the significance of this.

Proof of Theorem 5.1 Note that p(α) = 2 if and only if 〈α, α〉 = −1. Let us
calculate the value of 〈α, α〉 explicitly, for α a general dimension vector. The general
star-shaped quiver has g loops and k legs, each of which has li arrows, i = 1, . . . , k.
We have

〈α, α〉 = (1− g)n2 +
∑

i,j

α2
i,j − n

k∑

i=1

αi,1 −
k∑

i=1

li−1∑

j=1

αi,jαi,j+1.

Assume now that α ∈ F(Q) and that 〈α, α〉 = −1; then given that 〈α, α〉 =∑
i∈Q0

αi〈α, ei〉 = ∑
i∈Q0

αi〈ei, α〉, this implies that there can only be two
possibilities:

(a) There exists a unique vertex i ∈ Q0 such that either αi = 1 and (α, ei) = −2, or
αi = 2 and (α, ei) = −1, with (α, ej ) = 0 for j �= i; this implies that, denoted
by Adj(i), the set of vertices which are adjacent to i, one has

∑
j∈Adj(i) αj = 5

for αi = 2 and
∑

j∈Adj(i) αj = 4 for αi = 1.
(b) There are two distinct vertices i and i′ such that (α, ei) = (α, ei′) = −1

and αi = αi′ = 1, with (α, ej ) = 0 for j �= i, i′. In this case, one has∑
j∈Adj(k) αj = 3 for k = i, i′.

In this case, if i or i′ is the central vertex, then the only possibility is given by the
quiver (1) in the statement of the theorem. Otherwise, if v is the central vertex, then
(α, ev) = 0, which implies that

∑
j∈Adj(v) αj = 2n, where αv = n: Indeed,

0 = (α, ev) = 〈α, ev〉 + 〈ev, α〉 = n−
∑

k→v

αk + n−
∑

v→l

αl = 2n−
∑

j∈Adj(v)

αj .

Now, fix a branch along which none of the special vertices i and i′ appear, let l be
its length, and let β0 = n, β1, . . . , βl be the components of the vector α along the
branch.

Then using that (α, ej ) = 0 for j �= i, i′, we get the recursive formula

2βj = βj−1 + βj+1,
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for j = 1, . . . , l − 1, and also βl−1 = 2βl , which implies that

βj = (l + 1− j)βl.

Therefore, the branch has the form

n −→ n− c −→ n− 2c −→ . . . −→ c,

where c is a positive integer such that c|n. Moreover, in order for condition (a) to be
satisfied, there has to be one branch ending with one of the following

5 −→ 2, 4 −→ 2 −→ 1, 4 −→ 1,

and, thus, having the form

n− 3 −→ . . . ,−→ 5 −→ 2,

n− 2 −→ . . . ,−→ 4 −→ 2 −→ 1,

n− 3 −→ . . . ,−→ 4 −→ 1 (§)

respectively; for condition (b), there have to be two branches ending as

3 −→ 1,

having the form

n− 2 −→ . . . −→ 3 −→ 1. (§§)

Therefore, we are left to consider a star-shaped quiver where all but one or two
branches are as follows:

Moreover, if the quiver satisfies condition a), then l = k − 1 and there is an
additional branch having one of the forms in (§); on the other hand, if the quiver is
as in case b), then l = k − 2 and there are two additional legs of the form described
by (§§).

We shall now use some numerical arguments to prove that, among all such
possibilities, only the ones listed in the statement of the theorem can actually occur.
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First, let us spell out how the equality 0 = (α, ev) can be rephrased: One has that

0 = (α, ev) ⇐⇒ 2n =
k∑

i=1

(n− ai) ⇐⇒
k∑

i=1

ai = (k − 2)n.

Therefore, one has the following possibilities:

(a) In the cases of a branch ending with 5 −→ 2 or 4 → 1, the equality 0 = (α, ev)

reads as

3

n
+

k−1∑

i=1

1

n/ai
= k − 2,

where n ≡ 2 (mod 3) and n ≡ 1 (mod 3), respectively, and n > ai ≥ 2, ai |n
for every i; these shall be mentioned in the following as cases a.1 and a.2. On
the other hand, for a branch ending with 4 −→ 2 −→ 1, we have

2

n
+

k−1∑

i=1

1

n/ai
= k − 2, (5.1.14)

where n has to be even and ai |n; this is renamed as case a.3.
(b) There are two branches 3 −→ 1 and 0 = (α, ev) is equivalent to

4

n
+

k−2∑

i=1

1

n/ai
= k − 2,

and ai |n for every i and n has to be odd, and ai < n, for every i.

In cases a.1 and a.2, one has that n ≥ 4 which forces k ≤ 4: Indeed, one has that for
n ≥ 4 n/ai ≥ 2 and, therefore,

3

n
+

k−1∑

i=1

1

n/ai
≤ 3

4
+ k − 1

2
<

k + 1

2
,

which implies that

k − 2 <
k + 1

2
,

and thus k ≤ 4. For k = 4 and n = 4, it is easily checked that quiver (5.1.3) in the
statement of the result is the only possibility. If k = 3, then the following inequality
holds:
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(
1

2
+ 1

4

)

n ≥
(

1− 3

n

)

n = n− 3,

which forces n ≤ 12; one can check that case (a) cannot be realized for n =
4, 7, 11 and that the cases n = 5, 8, 10 give quivers (5.1.6), (5.1.10), and (5.1.12),
respectively. Next, for case a.3, one has: n even and k ≤ 4: Indeed, since n ≥ 4,
from Eq. (5.1.14), one has that

2

4
+ k − 1

2
≥ k − 2,

which implies that

k

2
≤ 2.

If k = 4 and n = 4, then one gets quiver (5.1.5). If k = 3, then n ≤ 12: Indeed,
from Eq. (5.1.14), we have

2

n
+ 1

2
+ 1

3
≥ 1

This leads to quiver (5.1.4) for n = 4, quivers (5.1.8) and (5.1.9) for n = 6,
quiver (5.1.11) for n = 8, and quiver (5.1.13) for n = 12.

We turn now to case (b): n is odd and ≥ 3; this implies that k ≤ 4: Indeed, in the
same way as the previous case, Eq. (5.1.14) gives

4

3
+ k − 2

3
≥ k − 2 9⇒ 8

3
≥ 2k

3
.

Therefore, setting k = 4 forces n = 3, which leads to quiver (5.1.2). When k = 3
one has that n ≤ 6, which implies that n = 3 or n = 5. One checks that n = 3
is impossible, whereas n = 5 gives quiver (5.1.7). Since we have dealt with all the
possible cases, the proof is complete. �
Theorem 5.3 Assume that g ≥ 1. Then, the only pairs (Q, α), where Q is a crab-
shaped quiver and α ∈ F(Q) is such that 〈α, α〉 = −1 are the following:

(5.1.15)

(5.1.16)

Remark 5.4 Parallel to Remark 5.2, in the second case above, the quiver and
dimension vector are also of the form (2δ, 1) where δ = (1) is the primitive
imaginary root of affine type Ã0 (the Jordan quiver with one vertex and one arrow).
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Proof of Theorem 5.3 As in the arguments of the previous theorem, we see that if
v is the central vertex and α ∈ F , then there are three possibilities for the value of
(α, ev), that is, (α, ev) can be either 0, −1, or −2. In general, one has that

(α, ev) = 2(1− g)n−
k∑

i=1

αi,1.

If k = 0, then by the argument leading to cases (a) and (b) in the proof of
Theorem 5.1, one must have n = 1 and g = 2, which gives the first quiver of the
statement of the result. Thus, one is left to show that for k ≥ 1, there are no crab-
shaped quivers satisfying the mentioned conditions other than the second quiver in
the statement of the theorem. If k ≥ 1, n > 1, which implies that either (α, ev) = 0
or −1. In the first case, we get that

2(1− g)n =
k∑

i=1

αi,1,

but g ≥ 1, which gives
∑k

i=1 αi,1 ≤ 0, a contradiction. If (α, ev) = −1, then one
must have n = 2 and αi,1 = 1 for i = 1, . . . , k and g = 1. This implies that

k = 5− 4g,

which forces k = 1. Therefore, we get the quiver

Since we dealt with all the possible cases, the proof is complete. �
Remark 5.5 Note that to get a list of all the (2, 2)-cases, one has to take each of
the pairs (Q, α) drawn above and consider the pair (Q, 2α). Moreover, given q ∈
(C×)Q0 and θ ∈ Z

Q0 , it follows from Theorem 6.16 below that the given α are
in Σq,θ (since they are already in F(Q)) if and only if the following are satisfied:
(a) They are in Nq,θ , that is, qα = 1 and θ · α = 0, and (b) in the (2δ, 1) cases
(mentioned in Remarks 5.2 and 5.4), δ /∈ Nq,θ , that is, qδ �= 1 or θ · δ �= 0.

6 General Dimension Vectors and Decomposition

One fundamental tool in the classification theorem [BS21, Theorem 1.4] is the
canonical decomposition of a dimension vector of a quiver variety into summands
which lie in Σλ,θ , which is the additive version of the set Σq,θ defined in this paper
(one just needs to replace the condition qα = 1 with λ · α = 0). This appears in
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Crawley-Boevey’s canonical decomposition in the additive case (extended to the
case θ �= 0 in [BS21]). Combinatorially, it says:

Lemma 6.1 [CB02, Theorem 1.1], [BS21, Proposition 2.1] Let α ∈ NR+λ,θ . Then
α admits a unique decomposition α = n1σ

(1) + · · · + nkσ
(k) as a sum of elements

σ (i) ∈ Σλ,θ such that any other decomposition of α as a sum of elements from Σλ,θ

is a refinement of this decomposition.

Geometrically, the statement (together with the consequence for symplectic resolu-
tions) is:

Theorem 6.2 [CB02, Theorem 1.1], [BS21, Theorem 1.4] The symplectic variety
Mλ,θ (Q, α) = μ−1(λ)θ−ss//GL(α) is isomorphic to the product

Mλ,θ (Q, α) ∼=
k∏

i=1

SniMλ,θ (Q, σ (i)).

Moreover, it admits a symplectic resolution if and only if eachMλ,θ (Q, σ (i)) admits
a symplectic resolution.

For multiplicative quiver varieties, the combinatorial statement still holds, but it
is not clear that such a geometric decomposition holds. We instead prove a weaker
statement, which gives a decomposition into factors which might not be minimal
but still has all of the needed properties. Moreover, the resulting classification of
symplectic resolutions is the same statement as if the canonical decomposition as
above held. As a result, we are able to generalize Theorem 1.5 to the case of general
dimension vectors (Theorem 6.27) and give its specialization to the crab-shaped case
(Corollary 6.28). To complete the proof, we need to establish that Mq,θ ′(Q, α) →
Mq,θ (Q, α) is a symplectic resolution for many α not in Σq,θ (Theorem 6.23), in
order to handle such factors appearing in the decomposition. In the additive case,
such resolutions include the Hilbert schemes of points in C

2 and in hyperkähler
ALE spaces (i.e., minimal resolutions of du Val singularities).

6.1 Flat Roots

In order to write a product decomposition in the multiplicative setting, the dimension
vectors for the factors need to be more general than those in Σq,θ . The dimension
vectors turn out to include “flat roots,” which are those for which the moment map
is flat (this is true for roots in Σq,θ ). This condition is also very important in order
to have a geometric understanding of the varieties.

Definition 6.3 A vector α ∈ Nq,θ is called flat if, for every decomposition α =
α(1) + · · · + α(m) with α(i) ∈ R+q,θ , we have p(α) ≥ p(α(1)) + · · · + p(α(m)). Let

Σ̃q,θ be the set of flat roots.



436 T. Schedler and A. Tirelli

Remark 6.4 As in [CB01, Theorem 1.1], we could alternatively have made the
definition only requiring α(i) ∈ Nq,θ . Indeed, it follows from the proof of the
decomposition theorem (Theorem 6.17) below that if α ∈ Nq,θ , then there is a
decomposition α = β(1) + · · · + β(k) with each β(i) either in Σ̃q,θ or of the form
β(i) = mγ, γ ∈ Σ iso

q,θ , satisfying p(α) ≤ p(β(1)) + · · · + p(β(k)). Hence, if we

know the inequality when the α(i) ∈ R+q,θ , we also know it when the α(i) ∈ Nq,θ .

The definition has the following interpretation. Let SL(α) := {g ∈ GL(α) |∏
i∈Q0

det(gi) = 1} ⊂ GL(α). Note that Φα factors through the inclusion SL(α)→
GL(α); let Φα : Rep◦(Q, α)θ−ss → SL(α) be the factored map.

Proposition 6.5 If α is a flat root, then Φα is flat over a neighborhood of q.
In particular, Φ−1

α (q)θ−ss is a complete intersection and is equidimensional of
dimension gα + 2p(α).

Proof The second statement follows from the argument of Proposition 2.19 (fol-
lowing [CB01, Theorem 1.11]): All arguments go through with the strict inequality
replaced by the non-strict one, except that no statement can be deduced about the
stable (or simple) representations forming a dense subset. For the first statement,

concerning flatness, note that dimΦ
−1
α (q)θ−ss = dim Rep◦(Q, α)θ−ss−dim SL(α).

Then the statement follows from the following general considerations. Suppose
we are given a morphism of varieties f : X → Y , with X equidimensional.
By upper semicontinuity of the fiber dimension, the minimum fiber dimension is
dimX − dimY , and the locus in Y where the fibers have this minimal dimension is
open. Next, it is a standard fact that a morphism from a Cohen–Macaulay variety X

to a smooth variety Y is flat if and only if for every x ∈ X, with y = f (x) ∈ Y , one
has the equality dimx X = dimy Y + dim f−1(y). It follows that f is flat over the
open locus where the fibers have minimum dimension. Now, back to the situation at
hand, by the second statement of the proposition, the minimum dimension is attained
over q ∈ SL(α). As the domain and codomain are equidimensional and smooth, the
aforementioned open locus is a neighborhood of q over which Φα is flat. �
Putting this together with Proposition 2.17, we conclude the following analogue of
the last statement of Proposition 2.19:

Corollary 6.6 For α a flat root, a dense subset ofΦ−1
α (q)θ−ss is given by the union

of preimages of strata of types (1, β(1); . . . ; 1, β(r)) with p(α) =∑r
i=1 p(β

(i)).

Observe that Σq,θ ⊆ Σ̃q,θ . The opposite inclusion does not hold: For instance,
with (q, θ) = (1, 0), one can take the quiver with two vertices and two arrows,
one a loop at the first vertex, and the other an arrow to the second vertex. Then the
dimension vector (m, 1) is flat for all m but only in Σq,θ for m = 1.

Remark 6.7 Note that, for every pair q, θ , there always exists q ′ such that Nq ′,0 =
Nq,θ , and hence Σq,θ = Σq ′,0 and Σ̃q,θ = Σ̃q ′,0. Indeed, let z ∈ C

× be a
multiplicatively independent element from the qi (i.e., 〈z, qi〉/〈qi〉 is infinite cyclic,
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where 〈−〉 denotes the multiplicative group generated by the given elements). Set
q ′i := qiz

θi . Then q ′ has the desired properties.

Remark 6.8 Similarly, given any parameters in the additive case (for ordinary
quiver varieties), λ ∈ C

Q0 , θ ∈ Z
Q0 , we also can construct q ′ ∈ (C×)Q0 such

that the sets N and Σ correspond. More precisely, letting Na
λ,θ ,Σ

a
λ,θ , Σ̃

a
λ,θ denote

the sets defined for the additive case, this means that Na
λ,θ = Nq ′,0, Σa

λ,θ = Σq ′,0,
and Σ̃a

λ,θ = Σ̃q ′,0.

We recall, following [CB01] and [Su06], how to classify flat roots in terms of the
fundamental region.

Definition 6.9 We say that the transformation α �→ sv(α) is a (−1)-reflection if
sv(α) = α − ev .

We point out a useful geometric consequence of this definition:

Proposition 6.10 Suppose that α �→ sv(α) is a (−1)-reflection and that qv = 1
and θv = 0. Then there is a reflection isomorphism Mq,θ (sv(α))

∼→Mq,θ (α).

Proof There is an obvious map Mq,θ (α − ev) → Mq,θ (α), given by ρ �→ ρ ⊕
Cv , where Cv is the trivial representation (all arrows act as zero). We claim that
it is an isomorphism. In the decomposition of any θ -polystable representation of
dimension α into stable representations, at least one factor must have dimension
vector which has positive pairing with ev . By Crawley-Boevey and Shaw [CBS06,
Lemma 5.1] (in the case θ = 0, which extends to the general case by replacing
simple representations by θ -stable ones), this summand must be Cv itself. Therefore,
the obvious map is an isomorphism. �
Definition 6.11 Given α ∈ R+q,θ , call a sequence v1, . . . , vm ∈ Q0 a reflecting
sequence if, setting

(q(i), θ (i), α(i)) := (uvi · · · uv1(q), rvi · · · rv1(θ), svi · · · sv1(q)),

we have (a) α(m) ∈ F(Q) ∪ {ev | v ∈ Q0} and (b) α(i)
vi < α

(i−1)
vi for all i.

Lemma 6.12 A reflecting sequence always exists.

Proof By definition, α is a root if and only if there exists a sequence of reflections
at loop-free vertices taking α to either the fundamental region or to an elementary
root ev (it is imaginary in the former case and real in the latter case). Now, given
α ∈ N

Q0 , let Nα := |{β ∈ R+ real | (α, β) > 0}|. Then each reflection satisfying
(b) decreases Nα by one, and a nontrivial reflection not satisfying (b) increases Nα

by one. Now, assume that α ∈ R+q,θ . Then Nα <∞. Since sv(R
+ \ {ev}) ⊆ R+, an

arbitrary sequence of reflections satisfying (b) will remain in N
Q0 . Thus, if α is real,

an arbitrary Nα − 1 reflections satisfying (b) will send α to ev for some v ∈ Q0,
and if α is imaginary, then an arbitrary Nα reflections satisfying (b) will take α to
F(Q). �
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As in [Su06, Theorem 1.2], we have the following.

Theorem 6.13 Let α ∈ R+q,θ . Pick any sequence of vertices v1, . . . , vm ∈ Q0 such

that, for (q(i), θ (i), α(i)) := (uvi · · · uv1(q), rvi · · · rv1(θ), svi · · · sv1(q)), we have

α(m) ∈ F(Q) and α
(i)
vi < α

(i−1)
vi . Then α is flat if and only if (a) α(m) ∈ F(Q)

is flat, and (b) for every i, either (b1) (q(i), θ (i), α(i)) is an admissible reflection
(Definition 2.5) of (q(i−1), θ (i−1), α(i−1)) (i.e., q(i−1)

vi �= 1 or θ
(i−1)
vi �= 0), or (b2)

α(i) is a (−1)-reflection of α(i−1).

Analogously to [Su06], we will show below that α(m) ∈ F(Q) is flat if and only
if it is not of the form m�δ for δ the minimal imaginary root of an affine Dynkin
subquiver, m ≥ 2, and � ≥ 1 is such that qδ is a primitive �-th root of unity.

The theorem actually gives an algorithm to determine if a root is flat, by playing
a variant of the numbers game [Moz90] (with a cutoff in the inadmissible case as in
[GS11]).

Proof of Theorem 6.13 Under an admissible reflection, the condition of being flat
does not change since svi : R+

q(i−1),θ(i−1) → R+
q(i),θ(i)

is a bijection (as evi /∈
R+

q(i−1),θ(i−1) ), cf. [CB01, Lemma 5.2]. Here, we let q(0) := q and θ(0) := θ . If we
apply a (−1)-reflection, we claim that the condition of being flat does not change.
We only have to show that if α(i) ∈ Σ̃q(i),θ(i) , then also α(i−1) ∈ Σ̃q(i−1),θ(i−1) ,
since the converse follows immediately from the definition of flat. Suppose on the
contrary that α(i−1) = β(1) + · · · + β(k) is a decomposition with β(j) ∈ R+

q(i−1),θ(i)

and p(α(i−1)) < p(β(1))+ · · · + p(β(k)). Since (α(i−1), evi ) = 1, there must exist

j with (β(j), evi ) ≥ 1 and hence also β
(j)
vi ≥ 1. Set γ (�) := β(�) − δ�j evi for all �.

Note that p(γ (j)) ≥ p(β(j)), with equality if and only if (β(j), evi ) = 1. Then

p(α(i)) = p(α(i−1)) < p(β(1))+ · · · + p(β(k)) ≤ p(γ (1))+ · · · + p(γ (k))

so that α(i) /∈ Σ̃q(i),θ(i) . We have proved the contrapositive.

It remains to show that if (α(i−1), evi ) > 1 and (qvi , θvi ) = (1, 0), then
α(i−1) /∈ Σ̃q(i−1),θ(i−1) In this case, there can be no loops at vi so that evi is a real root.

Moreover, α(i−1)
vi ≥ 1. Then, p(α(i−1)−evi ) = p(α(i−1)−evi )+p(evi ) > p(α(i−1)).

So α(i−1) is not flat. �
Remark 6.14 The same theorem as above applies in the additive case, to charac-
terize the analogous set Σ̃λ,θ of flat roots. Also, note that when θ = 0, the above
proof simplifies the proof of [Su06, Theorem 1.2], since it does not require the
classification [CB01, Theorem 8.1] of roots in F(Q) \Σλ,0.

Remark 6.15 Thanks to [GS11, Theorem 3.1], the condition that any (or every)
reflecting sequence consists only of admissible and (−1)-reflections is equivalent to
the condition that for every real root β ∈ R+q,θ , we have (α, β) ≤ 1.
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6.2 Fundamental and Flat Roots Not in Σq,θ

To complete the characterization, we need to determine the set F(Q) \ Σ̃q,θ . This
follows from [CB01, Theorem 8.1], which computes F(Q) \ Σλ (in the additive
case, but which extends to the present setting). We state a sharper and more general
version:

Theorem 6.16 A root in R+q,θ is not in Σq,θ if and only if, applying a reflecting
sequence as in Theorem 6.13, either one of the reflections is inadmissible, or the
resulting element of F(Q) is one of the following:

(a) m�δ with δ the indivisible imaginary root for an affine Dynkin subquiver,m ≥ 2,
and � is such that qδ is a primitive �-th root of unity; or

(b) The support of α is J � K for J,K ⊆ Q0 disjoint subsets with exactly one
arrow in Q1 from a vertex j ∈ J to a vertex k ∈ K , αk = 1, and either:

(b1) αj = 1, and α|J ∈ R+q,θ , or
(b2) Q|J is affine Dynkin and α|J = mδ for some m ≥ 2, with δ ∈ R+q,θ

indivisible and j an extending vertex of Q|J .
Moreover, the root is not in Σ̃q,θ if and only if one of the reflections is neither
admissible nor a (−1)-reflection, or the resulting element of F(Q) is in case (a).

Proof First, it is clear that if an inadmissible reflection is applied in the sequence,
p(α) ≤ p(siα) + p(α − siα) shows that α is not in Σq,θ . So we can assume all
reflections are admissible. By Crawley-Boevey [CB01, Theorem 8.1] in the additive
case (with θ = 0), there is a sequence of admissible reflections resulting in one of
the given cases (which is not assumed to be in F(Q)). The proof in loc. cit. extends
verbatim to our case, replacing Nλ by Nq,θ . Although the additive statement has
� = 1 (or in characteristic p has � = p), for us, we note that if qδ is a primitive
�-th root of unity, that is, �δ is q-indivisible, then �δ ∈ Σq,θ , since every element
β ∈ Nq,θ with β < �δ is real. Note that in [CB01, Theorem 8.1], the condition in
(b2) that δ ∈ R+λ is not stated (since its goal is to produce non-exhaustive necessary
conditions for α ∈ Σ), but it follows from the proof that it is also a necessary
condition for α /∈ Σ .

We claim that in fact, we can take the result to be in F(Q). Note that, in [CB01], it
is not required in conditions (a), (b) that α be in F(Q). However, we already know
that in order to have α ∈ Σq,θ , there must be an admissible reflection sequence
taking α to F(Q). Thus, we may assume that α ∈ F(Q) and moreover that it
is sincere. Then, applying [CB01, Theorem 8.1], there is a further sequence of
admissible reflections taking α to one of the forms above. After this, we can apply
an admissible reflection sequence to get back to an element of F(Q), necessarily
α again. It is clear that doing so will not change the form as above, since α was
assumed to be sincere, so the reflections cannot shrink the support of α; note that in
cases (a) and (b2), this means that no reflections will be applied to the coefficients
of the multiple of δ.
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For the converse, it remains to verify that cases (a) and (b1), (b2) are not in Σq,θ .
In case (a), p(mδ) = 1 < mp(δ) = m. In case (b1), p(α) = p(α|J ) + p(α|K).
Finally, in case (b1), p(α) = p(δ)+ p(α − δ).

The statement about flat roots follows from Theorem 6.13 together with the
observation that case (a) is not flat (as p(m�δ) < mp(�δ)), whereas cases (b1)
and (b2) are flat: This follows from [Su06, Theorem 1.1], where it is shown that
(b1) and (b2) are already flat as elements of Σ1,0 (which is stronger). �

6.3 Canonical Decompositions

Let Σ iso
q,θ ⊆ Σq,θ be the subset of isotropic imaginary roots. We use the notation

N≥2 ·Σ iso
q,θ := {mα | m ≥ 2, α ∈ Σ iso

q,θ }.
Theorem 6.17

(i) Given α ∈ Nq,θ , there exists a unique decomposition α = α(1) + · · · + α(m)

with α(i) ∈ Σq,θ such that any other such decomposition is a refinement of this
one.

(ii) There is also a unique decomposition α = β(1)+· · ·+β(k) with β(i) ∈ Σ̃q,θ ∪
N≥2 ·Σ iso

q,θ , satisfying the properties:

(a) Every element β(i) is of one of the following three types:

(1) β(i) ∈ Σq,θ

(2) β(i) ∈ N≥2 ·Σ iso
q,θ

(3) β(i) ∈ Σ̃q,θ \ Σq,θ ; moreover, there is an admissible reflection
sequence taking β(i) to an element of the fundamental region having
only decompositions of the form (b2) in Theorem 6.16.

(b) Any other decomposition into Σ̃q,θ ∪ N≥2 · Σ iso
q,θ satisfying (a) is a

refinement of this one.

(iii) The decomposition in (i) is a refinement of the one in (ii), obtained uniquely,
after applying admissible reflections, by performing decompositions α = α|J+
α|K of type (b2) in Theorem 6.16.

(iv) The direct sum map produces a Poisson isomorphism (of reduced varieties),
using the decomposition in (ii),

k∏

i=1

Mq,θ (Q, β(i))
∼→Mq,θ (Q, α).

Notice the following immediate consequence (of the decomposition in (ii)), giving
a weakened version of (*):
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Corollary 6.18 If α is the dimension of a θ -stable representation of Λq , then one
of the following three cases must hold: (1) α ∈ Σq,θ ; (2) α ∈ N≥2Σ

iso
q,θ ; (3) α is

obtained by admissible reflections from an element in the fundamental region having
only type (b2) decompositions in Theorem 6.16.

Remark 6.19 In the additive situation, the fact that cases (2) and (3) in the preceding
corollary cannot occur was very recently given a simpler, unified proof in [CBH19].

Note that in the real case α ∈ Σq,θ , it is obvious from the properties of admissible
reflections that α is the dimension of a θ -stable representation (see [CBS06,
Theorem 1.9] for a stronger statement). In the imaginary case, following (*), we
only expect a stable representation if α ∈ Σq,θ , but it is not at all clear how to prove
its existence.

In the proof of the theorem, we will produce also an algorithm for constructing
the β(i), by a sequence of reflections and subtracting roots ei , with the end result
an element in F(Q) whose connected components give the imaginary β(i). For the
real roots, we obtain the unique decomposition into real roots in Σq,θ (as a real root
which is the sum of multiple real roots cannot be in Σq,θ ).

Remark 6.20 Observe that essentially the same proof as that provided below of
Theorem 6.17 was given in [CB02] in the context of Nakajima quiver varieties,
and indeed, the result above holds in that setting. However, due to the simplifying
properties of that case (such as expectation (*) holding, and q-divisibility coinciding
with ordinary divisibility), Crawley-Boevey is able to show that the product
decomposition in (iv) always refines to one using the decomposition of (i). Hence,
the statement given in [CB02] is substantially simpler, eliminating parts (ii) and (iii).

Proof of Theorem 6.17 We first obtain the existence of the desired decompositions
in (i) and (ii) satisfying (iii) and (iv). We prove this by induction on the sum of the
entries of α. If there is a vertex v ∈ Q0 at which (α, ev) > 0 and either qv �= 1 or
θv �= 0, then we can apply an admissible reflection. Since admissible reflections
preserve the set of flat roots, the statements follow from Theorem 2.13 and the
induction hypothesis. So suppose that there is no such vertex. Instead, suppose that
v ∈ Q0 is such that (α, ev) > 0 but qv = 1, θv = 0. Then every decomposition of
α into elements of Σ̃q,θ must have an element having positive Cartan pairing with
ev . This cannot happen by definition for the imaginary roots. Since ev is the only
real root in Σq,θ with positive pairing with ev , this implies that ev must appear as
a summand of every decomposition of types (i) and (ii). Similarly, the argument of
the proof of Proposition 6.10 shows that in this case, the direct sum map yields an
isomorphism Mq,θ (Q, α − ev)×Mq,θ (Q, ev)

∼→Mq,θ (Q, α). We can apply the
induction hypothesis to α − ev .

This reduces the theorem to the case that (α, ei) ≤ 0 for all i. In this case, we
can decompose α into its connected components. By Theorem 6.16, all of these are
flat roots, except for elements of the form m�δ with �δ ∈ Σ iso

q,θ and m ≥ 2.
It remains to show that given the situation (b1) of Theorem 6.16, we get a

decomposition of our moduli space. This follows from the arguments of [CB01,
§10, II]. We briefly repeat them for the reader’s convenience, adapting them to our
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situation (see loc. cit. for details). Restrict the quiver to the vertices {j} ∪ K and
the arrows incident only to these vertices. Let a, a∗ be the pair of reverse arrows
between j and k; without loss of generality suppose a : j → k. Adding the
relations at all the vertices of K , and using that α|K ∈ Nq,θ (since α and α|J
are), we obtain that a∗a is equal to a sum of commutators. It thus has trace one,
and since αj = 1, it is zero. Therefore, either a∗ or a acts by zero. In the former
case, we obtain a quotient representation with dimension vector α|K ; in the latter,
we obtain a subrepresentation with this dimension. These representations are θ -
semistable since θ · α|K = 0, and the original representation was θ -semistable.
So the polystabilization of our representation decomposes into a direct sum of
representations with dimension vectors α|J and α|K . Therefore, the direct sum map
Mq,θ (Q, α|J )×Mq,θ (Q, α|K)→Mq,θ (Q, α) is an isomorphism.

This yields the desired decomposition in (ii), as well as the isomorphism in (iv),
and the decomposition in (iii).

Let us prove that the decompositions are unique. For (i), this is done in [CB02,
Theorem 1.1]; the proof carries over verbatim, replacing Σλ by Σq,θ and adapting
all notions. Let us consider (ii), whose proof is similar. We can obviously assume
that α is sincere. We first claim that the uniqueness statement is unaffected by
applying the aforementioned reduction to the fundamental region. It is obvious that
applying admissible reflections does not change the statement. So we only have to
show that if (α, ev) > 0, then every decomposition of type (ii) includes ev . In this
case, any decomposition of the form (ii) must have (β(i), ev) > 0 for some v. If
β(i) �= ev , then we must have β(i) /∈ N ·Σq,θ . Thus, β(i) ∈ Σ̃q,θ , and by assumption
(3), it must be related by admissible reflections to an element of the fundamental
region. Therefore, it does not have a positive pairing with any real roots. This is a
contradiction. We therefore obtain that β(i) = ev for some i. Thus, the uniqueness
statement for α is equivalent to that for α − ev , as desired.

This reduces us to the case that α is in the fundamental region. We clearly can get
a decomposition in a unique way by iteratively replacing α by the sum α|J + α|K
as in (b1) of Theorem 6.16. We only have to show that every decomposition of the
form (ii) refines such a decomposition of type (b1). For a contradiction, suppose α

is in the fundamental region, and we have a decomposition of type (b1) with sets J

and K , but also a decomposition of type (ii) with some β(i) not supported entirely
on J or K . After applying admissible reflections to β(i), this property continues to
hold, since we cannot perform admissible reflections at the vertices j and k. So we
can assume β(i) is itself in the fundamental region. This contradicts our assumptions
on β(i). �

As a consequence, we obtain the following description of divisibility criteria for
elements of Σ̃q,θ and Σq,θ , analogous to [BS21, Theorem 2.2]:

Corollary 6.21 Let α = mβ for β ∈ R+q,θ q-indivisible and imaginary, and m ≥ 2.

Then, α ∈ Σ̃q,θ if and only if β ∈ Σ̃q,θ , β is anisotropic, and a reflecting sequence
taking β to the fundamental region involves only admissible reflections. In this case,
also α ∈ Σq,θ .
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In particular, for γ ∈ Σ̃q,θ , every rational multiple rγ ∈ Nq,θ for r ∈ Q≤1 is
also in Σ̃q,θ .

Proof This follows from the classification of flat roots in Theorems 6.13, 6.16,
and 6.17. Observe simply that if a reflection sequence for β involves an inadmissible
(−1)-reflection, then the same sequence for α involves an inadmissible (−2)-
reflection (which is not allowed). On the other hand, if only admissible reflections
are allowed, then mβ will also be flat unless β is isotropic. In the anisotropic
case, mβ ∈ Σq,θ , since the decompositions of type (b1) and (b2) cannot occur
for a divisible vector. The last statement then follows by considering γ and rγ as
multiples of a common vector. �
Remark 6.22 Although we are working with reduced varieties throughout the paper,
we emphasized this in Theorem 6.17(iv) because it is not completely clear that the
reflection isomorphisms in [Yam08, Theorem 5.1] are defined scheme-theoretically.
On the other hand, this is the only obstacle here. That is, if these isomorphisms are
defined scheme-theoretically, then the proof would appear to extend to this case,
that is, to not-necessarily-reduced multiplicative quiver schemes.

6.4 Symplectic Resolutions for q-Indivisible Flat Roots

Theorem 6.23 Suppose that α ∈ Σ̃q,θ is q-indivisible and Mq,θ (Q, α) is non-
empty. Then for suitable θ ′ ≥ θ , Mq,θ ′(Q, α) → Mq,θ (Q, α) is a symplectic
resolution.

Remark 6.24 Observe that the theorem also holds in the additive setting, where the
result is also interesting. Indeed, it explains and generalizes the technique of framing
used to construct resolutions such as Hilbert schemes of C2 or of hyperkähler ALE
spaces. In the former case, the quiver is again the framed Jordan quiver (with two
vertices and two arrows, a loop at the first vertex, and an arrow from the second to
the first vertex). The dimension vector is α = (m, 1). The theorem recovers the well-
known statement that taking θ �= 0 gives a symplectic resolution of the singularity
Symm

C
2 in the additive case; this identifies with Hilbm

C
2. In the multiplicative

case for the same quiver, by Theorem 3.6 and Remark 3.7, after localization, we
obtain a resolution of the character variety of the once-punctured torus in the
multiplicative case for rank m local systems with unipotent monodromy A satisfying
rk(A− I ) ≤ 1.

Proof of Theorem 6.23 In view of Lemma 2.12, we only have to show that we can
find θ ′ ≥ θ such that Mq,θ ′(Q, α) is smooth and Mq,θ ′(Q, α) → Mq,θ (Q, α)

is birational. We will make use of the combinatorial analysis of [CB01, Section 8].
Note that if α ∈ Σq,θ , then the result follows from the discussion in Sect. 4.1 so we
can assume that this is not the case.
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Let us take θ ′ generic such that the conditions of Remark 2.22 are satisfied
(i.e., θ ′ is an integral multiple of a generic rational stability condition in a
small neighborhood of θ ). In particular, this means that θ ′ ≥ θ , every θ -stable
representation is θ ′-stable, and θ ′ · β �= 0 for any β < α with β ∈ Nq,θ .

By Corollary 6.6, for each connected component of Mq,θ (Q, α), there is a
dense stratum of the form (1, β(1); . . . ; 1, β(r)) with p(α) = ∑r

i=1 p(β
(i)). We

need to show that each representation ρ in such a stratum is in the boundary of a
unique GL(α)-orbit in Repθ ′−s(Λq(Q), α). Equivalently, we must show that there
is a unique θ ′-stable representation ρ′ up to isomorphism such that ρ is the θ -
polystabilization of ρ′.

We will prove the statement by induction on α, with respect to the partial ordering
≤. First, applying admissible and (−1)-reflections, we reduce to the case that α is in
the fundamental region. Indeed, it is clear from Theorem 2.13 and Proposition 6.10
that applying these reflections causes no harm. Note that each (−1)-reflection will
modify stratum types by removing a real root from the type; once we are in the
fundamental region, no real roots will appear.

We first show uniqueness. If ρ′ is as above, then suppose that there is an exact
sequence of θ -semistable representations of the form 0 → ψ → ρ′ → φ → 0. By
our assumptions, the dimension vectors of ψ and φ are sums of complementary
subsets of the β(i). It follows from the proof of Theorem 6.16 (using [CB02,
Section 8]) that there is a corresponding decomposition of α as in Theorem 6.16,
of type (b1) or (b2), with the following property: In type (b1), α(1) := α|J and
α(2) := α|K are the dimension vectors of ψ and φ, in either order, or in type (b2),
α(1) := δ and α(2) := α − δ are these dimension vectors, again in some order.
Note that the ordering of the α(i) is fixed by the conditions that dimψ · θ < 0 and
dimφ · θ > 0. Next, since (α(1), α(2)) = −1, it follows from Proposition 2.2 that
dim Ext1(ψ, φ) = dim Ext1(φ,ψ) = 1. So the extension ρ′ is uniquely determined,
up to isomorphism, from ψ and φ.

We claim that ψ and φ are uniquely determined from their dimension vectors
up to isomorphism. We give the argument for ψ ; the one for φ is symmetric. Let
C ⊆ {1, . . . , r} be a subset of indices such that dimψ = ∑

i∈C β(i). (This set is
unique except in case (b2) with dimψ = α(2) = α − δ.) There exists a unique
i ∈ C such that (β(i), dimφ) = −1 (since (α(1), α(2)) = −1). Now, define θ ′′ :=
θ ′|supp dimψ − (θ ′ · dimψ)ev , where v is the unique vertex in supp dimψ which
has nonzero Cartan pairing with supp dimφ (so (dimψ)v = 1). By construction,
θ ′′ · dimψ = 0 = θ ′′ · dimφ. Moreover, θ ′′ · β(j) = θ ′ · β(j) for j ∈ C \ {i}. We
claim that ψ is θ ′′-stable. By definition of θ ′-stability, every nonzero submodule η

of ψ satisfies θ ′ · dim η < 0. Now, if β(i) �≤ dim η, then θ ′′ · dim η = θ ′ · dim η < 0.
On the other hand, if η is a proper submodule of ψ with β(i) ≤ dim η, then ψ/η is
a nonzero quotient module with β(i) �≤ dim(ψ/η). Then (dim(ψ/η), dimφ) = 0.
By Proposition 2.2, Ext1(φ,ψ/η) = 0. Therefore, we have an exact sequence 0 →
η → ρ′ → (ψ/η)⊕ φ → 0. As a consequence, ψ/η itself is a quotient module of
ρ′. It follows that θ ′ · dim(ψ/η) > 0. Therefore, θ ′′ · dim(ψ/η) = θ ′ · (ψ/η) > 0.
Therefore, θ ′′ · η < 0. We conclude that ψ is θ ′′-stable, as desired. By induction on
α, ψ is then uniquely determined up to isomorphism.
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This completes the proof of uniqueness. We move on to existence, which is
similar. Begin with a decomposition given by Theorem 6.16 of type (b1) or (b2). Let
us keep the notation α(1), α(2) defined above. The same construction as above yields
modifications θ(1), θ (2) of θ ′ such that θ(i) ·α(i) = 0. By induction, we can take θ(i)-
stable representations φ,ψ of dimension vectors α(i). Then since (α(1), α(2)) = −1,
dim Ext1(φ,ψ) = dim Ext1(ψ, φ) = 1. Assume that θ ′ · φ < 0; otherwise, swap
φ and ψ . Then form a nontrivial extension 0 → φ → ρ′ → ψ → 0. The same
computation as above guarantees that ρ′ is θ ′-stable. �
Corollary 6.25 In the situation of the proposition, the normalization of
Mq,θ (Q, α) is a symplectic singularity.

Proof This follows since we have constructed a symplectic resolution (see Propo-
sition 4.5 or Remark 4.6). �
Remark 6.26 Note that the main step of the proof is to show that Mq,θ ′(Q, α) →
Mq,θ (Q, α) is birational for suitable θ ′ ≥ θ . For this, we did not need the
hypothesis that α is q-indivisible. On the other hand, by Theorems 6.13 and 6.16,
when α ∈ Σ̃q,θ \ Σq,θ , α is actually indivisible (not merely q-indivisible). For
α ∈ Σq,θ , the birationality statement is Corollary 2.21, which is easy. (Moreover,
the full statement of Theorem 6.23 was established for α ∈ Σq,θ in Sect. 4.1.) So
it does not really add anything to state the birationality property without the q-
indivisibility hypothesis.

6.5 Symplectic Resolutions for General α

Theorem 6.27 Assume that Mq,θ (Q, α) is non-empty and that the decomposition
of Theorem 6.17(ii) has no elements β(i) of the forms (a) β(i) = 2γ for γ ∈ Nq,θ

and p(γ ) = 2, or (b) β(i) = mγ for m ≥ 2 and γ ∈ Σ iso
q,θ . Then:

• The normalization of Mq,θ (Q, α) is a symplectic singularity.
• Each factor Mq,θ (Q, β(i)) with β(i) /∈ Σq,θ admits a symplectic resolution.
• If for any factor β(i) there exists a θ -stable representation of dimension γ (i) =

1
m
β(i) with m ≥ 2, then Mq,θ (Q, α) does not admit a symplectic resolution. In

fact, it has an open, singular, terminal, factorial subset.

Proof The first statement follows if we show that the normalization of each factor
Mq,θ (Q, β(i)) is a symplectic singularity. For the factors such that β(i) is in Σq,θ ,
this is a consequence of Theorem 1.5. For β(i) /∈ Σq,θ , after applying admissible
reflections, it follows from Theorem 6.16 that it is indivisible. Hence, β(i) is
itself indivisible. By our assumptions, β(i) is flat. The result then follows from
Theorem 6.23. This also proves the second statement.

We proceed to the third statement. Under the hypotheses, since we have excluded
the isotropic and (2, 2)-cases, an open subset of Mq,θ (Q, β(j)) is factorial terminal
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singular by Theorem 1.5 (see Theorem 4.14). Hence so is an open subset of
Mq,θ (Q, α), which therefore does not admit a symplectic resolution. �

6.6 Classifications of Symplectic Resolutions of Punctured
Character Varieties

Here, we combine the results of this section and Theorem 5.1 to get a classification
of all the character varieties of punctured surfaces which admit a symplectic
resolution, modulo the conjectural results of the (2, 2)-cases. As explained in
Sect. 3, in order to get such a result, it suffices to consider multiplicative quiver
varieties of crab-shaped quivers, where the parameter q and the dimension vector α
are chosen in an appropriate way; see Theorem 3.6.

Let Q be a crab-shaped quiver, q ∈ (C×)Q0 and α ∈ Nq,θ , and consider
the corresponding quiver variety Mq,θ (Q, α). Then, if α /∈ F(Q), we can apply
the algorithm of Theorem 6.17 and obtain a decomposition where the dimension
vectors of the factors are in the fundamental region (such dimension vectors are the
connected components of the reflection of α). Moreover, note that in the crab-shaped
case, all the vector components not containing the central vertex are Dynkin quivers
of type A: Therefore, the associated multiplicative quiver variety is just a point. This
implies that we can assume, without loss of generality, that α be sincere (αi > 0 for
all i) and in the fundamental region. After having performed this reduction, we can
prove the following.

Corollary 6.28 LetQ be a crab-shaped quiver and α ∈ Nq,θ a sincere vector in the
fundamental region. Further assume that (Q, α) is not one of the following cases:

(a) β = 1
2α ∈ Nq,θ and (Q, β) is one of the quivers in Theorems 5.1 and 5.3.

(b) Q is affine Dynkin (of type Ã0 (i.e., the Jordan quiver with one vertex and one
arrow), D̃4 or Ẽ6, Ẽ7, Ẽ8) and α is a q-divisible multiple of the indivisible
imaginary root δ of Q.

Then:

• The normalization of Mq,θ (Q, α) is a symplectic singularity.
• If α is q-indivisible, Mq,θ (Q, α) admits a symplectic resolution.
• If α = mβ for m ≥ 2 and there exists a θ -stable representation of Λq(Q)

of dimension β, then Mq,θ (Q, α) does not admit a symplectic resolution (it
contains an open singular factorial terminal subset).

• In the case that α is q-divisible, the condition of the preceding part is always
satisfied, except possibly in the case: (c)Q = Qe∪{∗} is an affine Dynkin quiver
Qe of type Ã0, D̃4, Ẽ6, Ẽ7, or Ẽ8 together with an additional vertex {∗} and an
additional arrow from this vertex to one with dimension vector 1 in δ, and α

has the form (p, p�δ) for p ≥ 2 a prime, �δ q-indivisible. Here, δ denotes the
indivisible imaginary root of Qe.
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Remark 6.29 In the final part of the corollary, expectation (*) from the introduction
predicts that the exception indeed fails to satisfy the conditions of the preceding part.
Nonetheless, we believe that, also in this case, there should not exist a projective
symplectic resolution; this would be implied by Conjecture 7.15 in the appendix
together with the consequence stated after it, thanks to [BS21, Theorem 1.5].

Proof of Corollary 6.28 By Theorem 6.17, we know that α is flat unless it is a
positive integral multiple of an isotropic root, excluded in case (b). Then the first
and third statements follow from Theorems 1.5 and the second from 6.23. For the
fourth statement, we apply Theorem 6.16. to see that, in the crab-shaped case, the
dimension vector can only be in the fundamental region but not in Σq,θ if the
quiver is a framed affine Dynkin quivers of types Ã0, D̃4, Ẽ6, Ẽ7, and Ẽ8, and the
dimension vector is (1, �δ). Thus, only prime multiples of this vector can be q-
divisible but have no factor in Σq,θ .

It then remains only to show that Mq,θ (Q, β) �= ∅ for β ∈ Σq,θ , not of the form
(1, �δ) for a framed affine Dynkin quiver. Let us first assume that θ = 0. In the
star-shaped case, the result follows from [CBS06, Theorem 1.1]. In the crab-shaped
case with g > 0 loops at the central vertex, with θ = 0, it suffices by Theorem 3.6
and Remark 3.7 to show that for all conjugacy classes C1, . . . , Cm ⊂ GL(n,C)

with product of determinants equal to one, there exists a solution to the equations
[A1, B1] · · · [Ag,Bg] = C1 · · ·Cm for Ci ∈ Ci . This follows because there is a
solution to the equation [X1, Y1] = C for arbitrary C ∈ SL(n,C) (by Thompson
[Tho61, Theorems 1, 2]).

Now, assume θ �= 0. In most cases (excepting the case of one loop and one
branch), one can extend [CBS06, Theorem 1.1] to this case using [Yam08, §4.3,
4.4]; however, we may give a more direct argument. Since we are not in the situation
of a framed affine Dynkin quiver with dimension vector (1, �δ), note that α ∈ Σq,0
as well, so from the θ = 0 case and [CBS06, Theorem 1.11], we know that there
exists a simple representation of Λq of dimension α. This is automatically θ -stable,
so we obtain the desired non-emptiness statement. �
Remark 6.30 The assumptions made in the above theorem relate to the fact that
in cases (a) and (b), it is still unknown whether a symplectic resolution exists,
as this problem seems to be solvable only through a deep understanding of the
local structure of the variety. Nonetheless in case (a), we expect such symplectic
resolutions to exist and to be constructible by using analogous techniques to the
ones used by Bellamy and the first author in [BS21, Theorem 1.6] (see Remark 1.8).

6.7 Proof of Theorems 1.1 and 1.3

Theorems 1.1 and 1.3 follow from Corollary 6.28, together with Theorem 3.6, as
follows.

First, we claim that q-divisibility for the collection of conjugacy classes C coin-
cides with the same-named property for the dimension vector α of the corresponding
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crab-shaped quiver. To see this, first note that m · C indeed corresponds to m · α. So
we only have to show that the condition that

∏
i det Ci = 1 is equivalent to qα = 1.

This is true by construction.
Next, we claim that, for g = 0, the condition � ≥ 2n of Theorem 1.1 is

equivalent to the condition that α ∈ F(Q), whereas for g > 0, we have α ∈ F(Q)

unconditionally. By the chosen ordering of the ξi,j , we have (α, ei) ≤ 0 for all
i ∈ Q0 except possibly the node. There, the condition � ≥ 2n is equivalent to
(α, ei) ≤ 0. On the other hand, when g ≥ 1, then as there is a loop at the node, it
is automatic that (α, ei) ≤ 0 for i ∈ Q0 the node, and hence in this case α ∈ F(Q)

automatically.
We now claim that the dimension of X (g, k, C) equals 2p(α) when the quiver

is not Dynkin or affine Dynkin and moreover � ≥ 2n or g ≥ 1. This follows from
Theorems 6.16 and 3.6 (see also Remark 3.7), provided that α is not both q-divisible
and isotropic. However, the latter conditions, for α ∈ F(Q), are equivalent to saying
that the graph ΓC is affine Dynkin and α is q-divisible.

With the preceding claims established, we proceed to the proof of the theorems.
Note that applying reflections as earlier in this section preserves the property that
a dimension vector is one corresponding to a character variety (by Theorem 3.6).
So we can always reduce to case that α ∈ F(Q), unless we end up with something
with Dynkin support (hence, X (g, k, C) is a point) or something where α becomes
negative (hence, X (g, k, C) is empty). This proves the first part of Theorem 1.1. The
remaining assertions of the theorems follow from the above claims, which allow us
to translate Corollary 6.28 into the given results via Theorem 3.6.

7 Open Questions and Future Directions

In this section, we pose some questions concerning the cases which are left out
from the analysis carried out in the previous sections. This includes the question of
to what extent the decomposition in Theorem 6.17 can be refined, as in the additive
case in [CB02].

One interesting direction of research which naturally arises from the results
proved in this paper and the work [Tir19] of the second author is the study of
analogous problems in the context of the Higgs bundle moduli spaces, which appear
in the picture via the non-abelian Hodge correspondence.

We also say a few words on how one might hope to study the local structure of
formal moduli spaces of polystable objects in a 2-Calabi–Yau category and prove
that, under suitable conditions, formal neighborhoods of such moduli spaces are
quiver varieties associated to a quiver which arises from the deformation theory
of the objects parametrized by the moduli spaces. This is relevant to the present
context as it would make it possible to give an alternative and more insightful proof
of Proposition 4.3, as explained at the beginning of Sect. 4.

Before getting into these issues, we begin by discussing some cases where the
multiplicative quiver varieties are known to be non-empty.
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7.1 Non-emptiness of Multiplicative Quiver Varieties

As explained in the previous sections, one of the subtleties in the study of
multiplicative quiver varieties is the fact that it is not known in general when they
are non-empty (nor how many connected components they have). On the other hand,
there are special cases in which non-emptiness can be shown. For example, when
q = 1, then, for any quiver Q and any vector α ∈ N

Q0 , the zero representation is
a suitable element of Rep(Λq, α), since the invertibility condition is automatically
satisfied as well as the multiplicative preprojective relation. Thus, M1,0(Q, α) �= ∅.
More generally, for every real root β ∈ R+q,θ , then by applying reflection sequences
as in Sect. 6.1 (see also the discussion after Corollary 6.18), we conclude that
Mq,θ (Q, β) �= ∅. As a result, if α can be expressed as a sum of real roots in R+q,θ
(not necessarily coordinate vectors), then Mq,θ (Q, α) �= ∅.

Another important and less trivial case in which we are guaranteed that
Mq,θ (Q, α) is non-empty is when Q is crab-shaped (for arbitrary α ∈ Nq,θ ):
This follows from the arguments of the proof of Corollary 6.28 (relying on [CB13]
and [Tho61]). We remark that, by the arguments of [Yam08, §4.3, 4.4], relying on
the correspondence between character varieties of punctured surfaces and moduli
of parabolic bundles and [Ina13, §5], it follows that these varieties are in fact
irreducible except possibly in certain cases of a crab-shaped quiver with a single
loop (when, after reducing to the fundamental region, the support includes exactly
one branch).

We can also ask when the stable locus Ms
q,θ (Q, α) �= ∅. Note that an answer to

this question for all α also answers the question of non-emptiness of the entire locus,
since every point in Mq,θ (Q, α) is represented by a polystable representation.
More explicitly, Mq,θ (Q, α) �= ∅ if and only if α can be represented as a sum
of roots α(i) for which Ms

q,θ (Q, α(i)) �= ∅. Note that when α ∈ Σq,θ , then non-
emptiness of Mq,θ (Q, α) is equivalent to that of Ms

q,θ (Q, α), by Proposition 2.19.
Our expectation (*) says that Ms

q,θ (Q, α) �= ∅ implies α ∈ Σq,θ .

7.2 Refined Decompositions for Multiplicative Quiver Varieties

Recall Crawley-Boevey’s canonical decomposition in the additive case (Theo-
rem 6.2, Lemma 6.1). It is useful to ask to what extent such a decomposition holds
in the multiplicative setting, refining the one of Theorem 6.17. Let β(i), α(i,j) be as
in Theorem 6.17, and group together the α(i,j) that are equal, yielding distinct γ (i,j)

each occurring ri,j ≥ 1 times. Note that when γ (i,j) is anisotropic, then ri,j = 1,
since ri,j γ

(i,j) ∈ Σq,θ , by the uniqueness of the decomposition in Theorem 6.17.(i).

Conjecture 7.1 We have a decomposition as follows:

Mq,θ (Q, α) ∼=
∏

i,j

Sri,jMq,θ (Q, γ (i,j)). (7.2.1)
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The following proposition partly resolves the conjecture modulo expectation (*).

Proposition 7.2 If (*) holds, then the decomposition of Theorem 6.17.(iv) refines to
one of the form

Mq,θ (Q, α) ∼=
∏

i,j

Mq,θ (Q, ri,j γ
(i,j)). (7.2.2)

Moreover, in this case, the direct sum map

Sri,jMq,θ (Q, γ (i,j))→Mq,θ (Q, ri,j γ
(i,j)) (7.2.3)

is surjective.

Proof It suffices to decompose each of the Mq,θ (Q, β(i)). By Proposition 6.16, the
first statement follows by the arguments of [CB02, Section 5] verbatim, replacing
simple representations by θ -stable ones. For the second statement, if ri,j > 1,
then γ (i,j) is isotropic. Then, the canonical decomposition of ri,j γ

(i,j) appearing
in Theorem 6.17.(i) is just as a sum of ri,j copies of γ (i,j). Thus, the statement
follows from Theorem 6.17.(i) and expectation (*), since every representation in
Mq,θ (Q, ri,j γ

(i,j)) is represented by a polystable one. �
Therefore, modulo (*), Conjecture 7.1 reduces to the following statement: The
natural map (7.2.3) an isomorphism. This should have a positive answer if
Conjecture 7.15 holds, since as explained in Sect. 7.5, the multiplicative quiver
varieties would formally locally be additive quiver varieties, compatibly with the
direct sum map; then the statement reduces to Theorem 6.2.

Example 7.3 Suppose that β(i) is the following dimension vector supported on a
framed type Ẽ6 quiver:

(7.2.4)

Then, by the star-shaped case of Theorem 3.6 (proved in [CBS06, Section 8]), the
variety M1,0(Q, β(i)) is isomorphic to the character variety of rank 3n local systems
on the three-punctured sphere Σ0,3 = P

1 \ {0, 1,∞} with unipotent monodromies:
About the first two punctures, there should be n Jordan blocks of size three (or some
refinement), and about the third puncture, there should be n − 2 Jordan blocks of
size three, one Jordan block of size four, and one of size two (or some refinement).
On the other hand, M1,0(Q, δ) is the character variety of rank 3 local systems on
Σ0,3 with arbitrary unipotent monodromies. Conjecture 7.1 then asks whether the
first variety is isomorphic to the n-th symmetric power of the second; it does not
seem so obvious that this should be the case.
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One of the difficulties in trying to adapt the proof of the analogous statement to
Conjecture 7.1 in the additive case [CB02, Section 3] is that, in the multiplicative
case, it is no longer guaranteed that one of the components of γ (i,j) equals one
(since γ (i,j) need only be q-indivisible, not indivisible). It seems it may be a better
approach to prove Conjecture 7.15, as stated above.

Note finally that the proof of Theorem 6.2 [BS21, Theorem 1.4], in the additive
case, relied on hyperkähler twistings, for which one needs to assume that the
parameter λ is real. In fact, some of the issues we face (such as expectation (*)) are
not yet resolved, to our knowledge, in the general additive case where both λ /∈ R

and θ �= 0.

7.3 Symplectic Resolutions and Singularities

In view of our results and the flexibility of symplectic singularities, as well as the
relationships between multiplicative and additive quiver varieties, we propose the
following:

Conjecture 7.4 Every multiplicative quiver variety is a symplectic singularity.

Note that a product of Poisson varieties is a symplectic singularity if and only if
each of the factors is (because normality and being symplectic on the smooth locus
have this property, and in the definition of symplectic singularity it is equivalent to
check the extension property for one or all resolutions of singularities). Therefore,
the conjecture reduces to the case of factors appearing in Theorem 6.17 and, if (*)
holds, to the case α ∈ Σq,θ ∪ N≥2Σ

iso
q,θ by Proposition 7.2. If Conjecture 7.1 holds,

then we can furthermore reduce to the case α ∈ Σq,θ . In that case, by Theorem 1.3,
the only issue is normality, which would be implied if the variety is formally locally
an additive one, as predicted by Conjecture 7.15 and the discussion thereafter.

Next, we ask to what extent the property of having a symplectic resolution is
equivalent to the same property for the factors.

Question 7.5

(i) Is it true that Mq,θ (Q, α) admits a symplectic resolution if and only if each of
the factors Mq,θ (Q, β(i)) does?

(ii) Suppose that (*) holds. Is it true that Mq,θ (Q, α) admits a symplectic
resolution if and only if each of the factors Mq,θ (Q, ri,j γ

(i,j)), appearing in
Proposition 7.2, does?

Note that when ri,j > 1, then γ (i,j) ∈ Σ iso
q,θ , and hence is q-indivisible. Therefore, in

this case, Mq,θ (Q, γ (i,j)) has a symplectic resolution by varying θ , by Lemma 2.12
and Corollary 2.21. Since it is a surface, so does its ri,j -th symmetric power, by the
corresponding Hilbert scheme. Therefore, if Conjecture 7.1 holds, we can ignore
these factors in (ii) above and only consider the ones with ri,j = 1. Also notice
that all q-indivisible factors, including those with γ (i,j) /∈ Σq,θ , admit symplectic
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resolutions. Also, if any factor γ (i,j) appears which is a ≥ 2 multiple of the
dimension vector of a θ -stable representation, there can be no symplectic resolution
of Mq,θ (Q, α), nor of Mq,θ (Q, γ (i,j)). So again, for the question (ii), it is enough
to consider only the factors γ (i,j) which are anisotropic, q-divisible, and not a ≥ 2
multiple of the dimension vector of a θ -stable representation.

7.4 Moduli of Parabolic Higgs Bundles and the Isosingularity
Theorem

We restrict the attention to the case of crab-shaped quivers, the corresponding
multiplicative quiver varieties of which, as explained in Sect. 3, lead to the study
of character varieties of (possibly non-compact) Riemann surfaces.

Character varieties of compact Riemann surfaces are important, among many
reasons, as they appear as the Betti side of the non-abelian Hodge correspondence,
which is a series of results that establish isomorphisms between apparently unrelated
moduli spaces; see [Sim94a]. Such a correspondence holds also in the case of non-
compact curves, thanks to the work of Simpson; see [Sim90].

For the compact case, in [Tir19], the second author exploited a fundamental
result of Simpson, called the Isosingularity theorem, [Sim94b], to show how the
statements proved in [BS] could be translated to the Dolbeault side of the non-
abelian Hodge correspondence, that is, to the moduli spaces of semistable Higgs
bundles of degree 0.

In the light of the results of this paper and the non-abelian Hodge correspondence
in the non-compact setting, it is a natural question to ask whether an analogue of the
main theorems of [Tir19] holds for the Dolbeault moduli spaces defined on complex
curves with punctures, which turn out to be the moduli spaces of parabolic Higgs
bundles. Before stating some conjectural results, we recall the relevant definitions.
Motivated by the work of Simpson, [Sim90], we recall filtered local systems,
following [Yam08, §4], which gives a slightly different but nonetheless equivalent
definition from the one given in Simpson, [Sim90].

Definition 7.6 [Yam08, Definition 4.5] Let X be a compact Riemann surface and
D ⊂ X be a finite subset. Let L be a local system on X \ D. For a collection of
nonnegative integers l = (lp)p∈D , a filtered structure on L of filtration type l is a
collection (Up, Fp)p∈D , where for each p ∈ D:

(i) Up is a neighborhood of p in X (we set U∗p := Up \ {p}); and
(ii) Fp is a filtration

L|U∗p = F 0
p(L) ⊃ F 1

p(L) ⊃ · · · ⊃ F
lp
p (L) ⊃ F

lp+1
p (L) = 0

by local subsystems of L|U∗p .
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Two filtered structures (Up, Fp)p∈D, (U ′p, F ′p)p∈D of the same filtration type are
equivalent if for each p ∈ D, there exists a neighborhood Vp ⊂ Up ∩U ′p of p such
that Fp and F ′p coincide on V ∗p . A local system L together with an equivalence class
of filtered structures F = [(Up, Fp)p∈D] is called a filtered local system on (X,D)

of filtration type l.

From [Yam08] one has also the following definition of (semi)stability.

Definition 7.7 [Yam08, Definition 4.6] Let (L, F ) be a filtered local system on
(X,D) of filtration type l. Let β = (β

j
p | p ∈ D, j = 0, . . . , lp) be a collection

of rational numbers satisfying βi
p < β

j
p for any p and i < j—such a collection is

called a weight. The pair (L, F ) is said to be β-semistable if for any nonzero proper
local subsystem M ⊂ L, the following inequality holds:

∑

p∈D

∑

j

β
j
p

rank
(
M ∩ F

j
p (L)

)
/
(
M ∩ F

j+1
p (L)

)

rank M
≤
∑

p∈D

∑

j

β
j
p

rank
(
F

j
p (L)/F

j+1
p (L)

)

rank L
.

(L, F ) is β-stable if the strict inequality always holds.

Yamakawa established a correspondence between semistable filtered local systems
and multiplicative quiver varieties of star-shaped quivers. This is, as mentioned, a
particular case of the correspondence outlined in Sect. 3. To shed more light on this
correspondence, we spell out the correspondence between the parameters q, α, θ

defining a multiplicative quiver variety Mq,θ (Q, α) of a star-shaped quiver and the
weights β of a filtered local system (L, F ): Start with a crab-shaped quiver Q with
vertex set Q0 = {0, (i, j)i∈{1,...n},j∈{1,...,li }}—that is, Q has n legs, each of which
has length li , for i = 1, . . . , n. Moreover, let α be a dimension vector, α ∈ N

Q0 ,
ξ ∈ (C×)Q0 a collection of nonzero complex numbers, and β ∈ Q

Q0 a collection of
rational numbers. Then, on one side, one can consider filtered local systems (L, F )

on (P1, {p1, . . . , pn}), where pi, i = 1, . . . , n are pairwise distinct points in P
1,

with stability parameter β and such that:

(1) rank(L) = α0,
(2) dimF

j
pi
(L) = αi,j ,

(3) the local monodromy of F
j
pi
(L)/F

j+1
pi

(L) around pi is given by the scalar

multiplication by ξ
j
pi

for all i, j .

On the other side, one can consider the multiplicative quiver variety Mq,θ (Q, α),
where Q and α are as above and q and θ are given as

q0 :=
∏

i

(ξ0
pi
)−1, qi,j = ξ

j−1
pi

/ξ
j
pi

θ0 :=
∑

i,j θi,j αi,j

α0
, θi,j = β

j
pi
− β

j−1
pi

.
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The other main concept in the non-abelian Hodge correspondence on non-
compact curves is that of parabolic Higgs bundle, which we recall below (note that
in [Sim90], the term filtered Higgs bundle is used instead).

Definition 7.8 Let X and D be a compact Riemann surface and a reduced divisor
on X, respectively. Let E → X be a holomorphic vector bundle on X. A parabolic
structure on E is the datum of weighted flags (Ei,p, αi,p)p∈D

Ep = E1,p ⊇ E2,p ⊇ · · · ⊇ El+1,p = 0,

0 ≤ α1,p < · · · < αl,p < 1,

for each p ∈ D. A morphism of parabolic vector bundles is a morphism of
holomorphic vector bundles which preserves the parabolic structure at every point
p ∈ D.

Definition 7.9 Given a parabolic bundle (E, (Ei,p, αi,p)p∈D), its parabolic degree
is defined to be

pardeg(E) = deg(E)+
∑

p∈D

∑

i

mi(p)αi,p,

where mi(p) = dimEi,p − dimEi,p+1 is called the multiplicity of αi,p.

Remark 7.10 Given the notion of parabolic degree, stability and semistability of a
parabolic bundle are defined as in the case of vector bundles, using the parabolic
degree in place of the ordinary degree; see [LM10, §2] for more details and an
outline on some geometric properties of the corresponding moduli spaces.

Definition 7.11 A parabolic Higgs bundle on (X,D) is a parabolic bundle
(E, (Ei,p, αi,p)p∈D) together with a meromorphic map Φ : E → E ⊗ KX with
poles of order at most 1 at the points p ∈ D. The residue of Φ at marked points is
assumed to preserve the corresponding filtration.

From the Riemann-Hilbert correspondence, we know that representations of the
fundamental group of a punctured surface with fixed monodromies correspond
bijectively to filtered local systems. Moreover, in [Sim90], the following theorem
is proved.

Theorem 7.12 [Sim90, Theorem, p. 718] There is a one-to-one correspondence
between (stable) filtered local systems and (stable) parabolic Higgs bundles of
degree zero.

Even though we will not go into the details of this correspondence, we shall at least
explain how it works at the level of parameters α and β. To this purpose, let X be a
compact Riemann surface and D ⊂ X a finite subset of distinct points of X. Fixing
p ∈ D, consider the sets
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{(λ, αj
p) ∈ C× [0, 1) | the action of RespΦ on Ej,p/Ej−1,p has an eigenvalue λ},

{

(ξ, βk
p) ∈ C

× × R | the monodromy of Fk
p(L)/F k+1

p (L)

along a simple loop around p has an eigenvalue ξ

}

.

Then the correspondence between these two sets is explicitly given by (λ, α) �→
(ξ, β), where

β := α −-λ, ξ := exp(−2π
√−1λ).

Another fundamental result of Simpson that is crucially used in [Tir19] is the
Isosingularity theorem, which, roughly speaking, states that the moduli spaces of
the non-abelian Hodge theorem in the compact case, that is, with no punctures, are
étale isomorphic at corresponding points. It is still not known whether the same
result holds in the non-compact case.

Conjecture 7.13 The Isosingularity theorem holds between the moduli space of
semistable filtered local systems for fixed parameters and the moduli space of
semistable parabolic Higgs bundles of degree zero with corresponding parameters.

From the above conjectural result, in combination with the results proved in Sect. 4
and Conjecture 7.15 below, one should be able to deduce the following:

Conjecture 7.14 The moduli space of semistable parabolic Higgs bundles of
degree zero with fixed parameters is a symplectic singularity, admitting a symplectic
resolution if and only if the corresponding character variety admits a symplectic
resolution.

A possible strategy to prove the results listed above would be to study the local
structure of moduli spaces of (semistable) objects in Calabi–Yau categories. More
details are provided in the next subsection.

7.5 Moduli Spaces in 2-Calabi–Yau Categories

As mentioned above, the problem of studying the singularities of a variety can be
carried out by analyzing the local structure of the variety itself around a point.

This method is powerful in certain cases, for example, when one is able to prove
some locally étale isomorphism between the variety of interest and another variety
whose singularities are well known: For example, this is carried out by Kaledin and
Lehn in [KL07] and later by Arbarello and Saccà in [AS18], where they prove that
given a strictly semistable bundle in the moduli space of semistable sheaves on a
K3 surface with a fixed nongeneric polarization, there exists an étale neighborhood
around that point that is isomorphic to an affine quiver variety, which depends on the
point itself. Similar computations, which find their inspiration from [KL07], were
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also performed by the Bellamy and the first author in [BS21, BS] in the context of
quiver and character varieties.

The fact that such a technique can be used and gives the same results in so many
apparently different situations suggests that these are indeed particular cases of a
series of theorems which should apply in much greater generality, namely, in the
context of 2-Calabi–Yau categories. In the work [BGV16], the authors carry out a
detailed study of the deformation theory of representation spaces of 2-Calabi–Yau
algebras, and they show that among all semisimple representations, the ones that
correspond to smooth points are precisely the simple ones. It is known that when Q

is a Dynkin quiver and q = 1, there is an isomorphism

Λ1(Q) ∼= Π0(Q),

between the multiplicative preprojective algebra and the additive preprojective
algebra, as shown in [CB13, Corollary 1]. Moreover, given that the additive
preprojective algebras of Dynkin quivers with at least one arrow have infinite homo-
logical dimension, the above isomorphism suggests that, in general, multiplicative
preprojective algebras are not 2-Calabi–Yau. On the other hand, a conjectural
statement can be made for the case of non-Dynkin quivers.

Conjecture 7.15 Let Q be a connected non-Dynkin quiver and q ∈ (C×)Q0 . Then
Λq(Q) is a 2-Calabi–Yau algebra.

Assuming the above conjecture, then [BGV16, Theorem 6.3, 6.6] implies the
following for θ = 0: Given a dimension vector α ∈ Σq,θ and a point x ∈
Mq,θ (Q, α), then formally locally around x, we have an isomorphism

̂Mq,θ (Q, α)
x
∼= ̂M0,0(Q′, α′)0

for some appropriate quiver Q′ and dimension vector α′. If we can generalize this to
arbitrary θ and prove the conjecture, there would be many interesting consequences.
First, it would make it possible to handle the (2, 2)-case, where one may construct
a symplectic resolution by first performing GIT (replacing θ by suitably generic θ ′)
and then performing a blowup of the singular locus. Moreover, this result would
imply normality for Mq,θ (Q, α), without any assumption on α and θ .

Secondly, it would be interesting to extend such arguments and results to coarse
moduli spaces of objects in 2-Calabi–Yau categories. This would indeed make it
possible to reduce the study of singularities of a numerous class of moduli spaces
to answering the following question: does the moduli space parametrize objects of
a 2-Calabi–Yau category?

Knowing more about the singularities of coarse moduli spaces of objects in
Calabi–Yau categories might allow one to prove a generalization of the Isosin-
gularity theorem in the non-compact case, provided that a suitable version of the
2-Calabi–Yau condition holds for the category of parabolic Higgs bundles.
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7.6 Character Varieties and Higgs Bundles for Arbitrary
Groups

Another interesting problem would be to analyze whether the results of the present
paper can extend to character varieties of (punctured) Riemann surfaces with
representations in arbitrary groups and, via the non-abelian Hodge correspondence,
to the moduli spaces of (parabolic) Higgs principal bundles. Since the results on
punctured character varieties contained in the present paper are deduced based on
the correspondence described in Sect. 3, which heavily relies on the fact that one
considers representations and conjugacy classes inside GL(n,C), it seems unlikely
that the techniques used here could be applied in the more general setting of G-
representations. On the other hand, a possible approach could be the one outlined
in the previous subsection. To this end, the question to be answered would be the
following: given an algebraic groupG, are there cases other thanG = GLn, where
the category of morphisms ρ : π1(X)→ G is 2-Calabi–Yau?
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