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О несущих многообразиях
многомерных диффеоморфизмов Морса–Смейла
с двумя седловыми периодическими точками
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В статье описывается топологическая структура замкнутых многообразий
размерности не меньшей четырех, на которых существуют диффеоморфизмы
Морса–Смейла такие, что их неблуждающее множество содержит произволь-
ное число стоковых периодических точек, произвольное число источниковых
периодических точек и две седловые периодические точки. Приводится также
описание несущих многообразий диффеоморфизмов Морса–Смейла с меньшим
числом седловых периодических точек.
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Введение. Системы Морса–Смейла – структурно устойчивые динамические сис-
темы с нулевой топологической энтропией. Замечательным свойством этих систем
является глубокая взаимосвязь между динамическими свойствами и топологической
структурой несущих многообразий (см. сравнительно недавний обзор [1]), и то, что
они существуют на любых (гладких) замкнутых многообразиях [2], [3]. В данной
статье мы ограничимся рассмотрением систем Морса–Смейла с дискретным вре-
менем. Динамическая система с дискретным временем порождается диффеомор-
физмом несущего многообразия, и такая система представляет собой совокупность
итераций порождающего диффеоморфизма. В случае систем Морса–Смейла этот
порождающий диффеоморфизм называется диффеоморфизмом Морса–Смейла (см.
точные определения в следующем разделе).

Ясно, что структура несущего многообразия не изменится, если вместо исходного
диффеоморфизма рассматриваются его итерации. Поэтому, не уменьшая общности,
можно (и мы будем) рассматривать диффеоморфизмы Морса–Смейла, у которых
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периодические точки являются неподвижными точками. Через 𝑀𝑆(𝑀𝑛; 𝑎, 𝑏, 𝑐) обо-
значим множество диффеоморфизмов Морса–Смейла замкнутого гладкого 𝑛-мерно-
го многообразия 𝑀𝑛 такое, что неблуждающее множество 𝑁𝑊 (𝑓) любого диффео-
морфизма 𝑓 ∈ 𝑀𝑆(𝑀𝑛; 𝑎, 𝑏, 𝑐) состоит из 𝑎 стоковых неподвижных точек (стоков),
𝑏 источниковых неподвижных точек (источников) и 𝑐 седловых неподвижных точек
(седел). Смейл [2] доказал, что всегда 𝑎 > 1, 𝑏 > 1. В размерности 𝑛 = 1 всегда 𝑐 = 0
и 𝑎 = 𝑏, а несущее многообразие является окружностью 𝑀1 = 𝑆1. Для размерно-
стей 𝑛 = 2, 3 имеется большое число работ о взаимосвязи топологической структуры
несущих многообразиях с динамикой диффеоморфизмов Морса–Смейла (см. обзо-
ры [1], [4] и книгу [5] с обширной библиографией). Поэтому далее мы рассматриваем
несущие многообразия размерности 𝑛 > 4 (см. замечание в конце статьи).

Известно, что если 𝑐 = 0, то 𝑎 = 𝑏 = 1 и несущее многообразие 𝑀𝑛 является
𝑛-мерной сферой S𝑛 [6]. Имеется описание топологической структуры несущего
многообразия 𝑀𝑛 и троек (𝑎, 𝑏, 𝑐) в случае 𝑐 = 1, см. предложение 4. Настоящая
работа посвящена описанию топологической структуры замкнутых несущих много-
образий 𝑀𝑛, 𝑛 > 4, и троек (𝑎, 𝑏, 𝑐) в случае 𝑐 = 2.

Сначала рассматривается случай, когда оба седла диффеоморфизма 𝑓 ∈ 𝑀𝑆(𝑀𝑛;
𝑎, 𝑏, 2) являются седлами коразмерности один (т.е. одно из инвариантных многооб-
разий седел одномерно). В следующей теореме через 𝑁 ⊗ 𝑆1 обозначено тотальное
пространство локально тривиального расслоения над 𝑆1 со слоем 𝑁 . Многообразие
𝑁 ⊗𝑆1 получается из 𝑁 × [0; 1] отождествлением 𝑁 ×{0} с 𝑁 ×{1} посредством не-
которого диффеоморфизма 𝜏 : 𝑁 → 𝑁 . Везде далее D𝑘 означает 𝑘-мерный замкну-
тый диск, а S𝑘 – 𝑘-мерную сферу.

Теорема 1. Пусть оба седла диффеоморфизма 𝑓 ∈ 𝑀𝑆(𝑀𝑛; 𝑎, 𝑏, 2), 𝑛 > 4, явля-
ются седлами коразмерности один. Тогда выполнено одно из следующих двух усло-
вий:

1) диффеоморфизм 𝑓 ∈ 𝑀𝑆(𝑀𝑛; 1, 1, 2) и 𝑀𝑛 гомеоморфно объединению двух эк-
земпляров D𝑛−1 ⊗ 𝑆1 ;

2) 𝑓 ∈ 𝑀𝑆(S𝑛, 2, 2, 2) ∪𝑀𝑆(S𝑛, 1, 3, 2) ∪𝑀𝑆(S𝑛, 3, 1, 2).

В случае, когда имеется только одно седло коразмерности один, доказывается
следующий результат.

Теорема 2. Пусть одно седло диффеоморфизма 𝑓 ∈ 𝑀𝑆(𝑀𝑛; 𝑎, 𝑏, 2), 𝑛 > 4,
является седлом коразмерности один, а второе седло не является седлом кораз-
мерности один. Если замыкания одномерных сепаратрис седла коразмерности один
образуют сегмент, то

1) размерность несущего многообразия может принимать только одно из сле-
дующих значений 𝑛 ∈ {4, 8, 16};

2) 𝑓 ∈ 𝑀𝑆(𝑀𝑛; 1, 2, 2) ∪𝑀𝑆(𝑀𝑛; 2, 1, 2);
3) многообразие 𝑀𝑛 является дизъюнктивным объединением открытого ша-

ра B𝑛 и 𝑛/2-мерной сферы 𝑆𝑛/2 , топологически вложенной в 𝑀𝑛 , причем
если 𝑛 ∈ {8, 16}, то 𝑆𝑛/2 локально плоско вложена в 𝑀𝑛 .

Для случая, когда нет седел коразмерности один, мы доказываем следующий
результат.

Теорема 3. Пусть диффеоморфизм 𝑓 ∈ 𝑀𝑆(𝑀𝑛; 𝑎, 𝑏, 2), 𝑛 > 4, не имеет седел
коразмерности один. Тогда 𝑓 ∈ 𝑀𝑆(𝑀𝑛; 1, 1, 2) и многообразие 𝑀𝑛 односвязное.
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Замечание 1. Все множества диффеоморфизмов Морса–Смейла в выше приве-
денных утверждениях, непустые:

𝑀𝑆(D𝑛−1 ⊗ 𝑆1 ∪ D𝑛−1 ⊗ 𝑆1; 1, 1, 2) ̸= ∅, 𝑀𝑆(S𝑛, 2, 2, 2) ̸= ∅,

𝑀𝑆(S𝑛, 1, 3, 2) ̸= ∅, 𝑀𝑆(S𝑛, 3, 1, 2) ̸= ∅, 𝑀𝑆(𝑀𝑛; 1, 2, 2) ̸= ∅,

𝑀𝑆(𝑀𝑛; 2, 1, 2) ̸= ∅, 𝑀𝑆(S𝑛, 1, 1, 2) ̸= ∅.

Структура статьи следующая. В п. 1 приводятся основные определения и вспо-
могательные предложения, необходимые для доказательства основных результатов.
Все основные результаты доказываются в п. 2.

1. Вспомогательные утверждения. Пусть 𝑓 : 𝑀𝑛 → 𝑀𝑛 – диффеоморфизм
замкнутого гладкого 𝑛-мерного (𝑛 > 1) многообразия 𝑀𝑛. Напомним, что точка
𝑥 ∈ 𝑀𝑛 называется неблуждающей, если для любой ее окрестности 𝑈 и любого
натурального числа 𝑁0 найдется 𝑛0 ∈ Z такое, что

|𝑛0| > 𝑁0 и 𝑓𝑛0(𝑈) ∩ 𝑈 ̸= ∅.

Множество неблуждающих точек диффеоморфизма 𝑓 обозначается через 𝑁𝑊 (𝑓).
Очевидно, периодическая точка является неблуждающей. Периодическая точка
𝑥0 ∈ Per(𝑓), 𝑓𝑞(𝑥0) = 𝑥0, называется гиперболической, если производная

𝐷𝑓𝑞(𝑥0) : 𝑇𝑥0𝑀
𝑛 → 𝑇𝑥0𝑀

𝑛,

рассматриваемая как линейное отображение касательного пространства в себя, не
имеет собственных чисел, равных по модулю единице. Для гиперболической точ-
ки 𝑥0 существуют так называемые устойчивое 𝑊 𝑠(𝑥0) и неустойчивое 𝑊𝑢(𝑥0) мно-
гообразия, которые можно определить как множества точек 𝑦 ∈ 𝑀𝑛 таких, что

𝜚𝑀 (𝑓𝑞𝑘𝑥0, 𝑓
𝑞𝑘𝑦) → 0 при 𝑘 → +∞ и 𝑘 → −∞ соответственно,

где 𝜚𝑀 – это метрика на 𝑀𝑛. Заметим, что неустойчивое многообразие 𝑊𝑢(𝑥0)
есть устойчивое многообразие относительно 𝑓−1. Известно, что 𝑊 𝑠(𝑥0) и 𝑊𝑢(𝑥0)
гомеоморфны (во внутренней топологии) евклидовым пространствам Rdim 𝑊 𝑠(𝑥0)

и Rdim 𝑊 𝑢(𝑥0) соответственно, и являются инъективными погружениями последних
в 𝑀𝑛

Диффеоморфизм 𝑓 называется диффеоморфизмом Морса–Смейла, если 𝑁𝑊 (𝑓)
гиперболическое, состоит из конечного числа периодических точек и инвариант-
ные многообразия 𝑊 𝑠(𝑥), 𝑊𝑢(𝑦) пересекаются трансверсально (если пересечение не
пусто) для любых точек 𝑥, 𝑦 ∈ 𝑁𝑊 (𝑓).

Пусть 𝑓 : 𝑀𝑛 → 𝑀𝑛 – диффеоморфизм Морса–Смейла. Неподвижная гипербо-
лическая точка 𝑝 ∈ 𝑁𝑊 (𝑓) называется узлом, если либо dim 𝑊 𝑠(𝑝) = 𝑛 (в этом
случае 𝑝 является стоком), либо dim 𝑊𝑢(𝑝) = 𝑛 (в этом случае 𝑝 является источ-
ником). Гиперболическая неподвижная точка 𝜎 ∈ 𝑁𝑊 (𝑓) называется седлом, если
ее устойчивое и неустойчивое многообразия имеют ненулевую топологическую раз-
мерность. Если dim 𝑊𝑢(𝜎) = 𝑖, то каждую компоненту множества 𝑊𝑢(𝜎) ∖ {𝜎}
будем называть 𝑖-мерной неустойчивой сепаратрисой, а каждую компоненту мно-
жества 𝑊 𝑠(𝜎)∖{𝜎} будем называть (𝑛−𝑖)-мерной устойчивой сепаратрисой. Седло
𝜎 ∈ 𝑁𝑊 (𝑓) называется седлом коразмерности один, если одна из его сепаратрис
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одномерная. Из того, что точка разбивает одномерное евклидово пространство, но
не разбивает евклидово пространство большей размерности следует, что одномерное
(устойчивое или неустойчивое) многообразие седловой периодической точки состоит
из самой седловой точки и двух одномерных сепаратрис, а 𝑖-мерное многообразие
при 𝑖 > 2 состоит из седловой точки и одной 𝑖-мерной сепаратрисы.

Пусть 𝑊 𝜏 (𝜎) – инвариантное многообразие седла 𝜎 размерности 𝑖 > 1, где 𝜏
означает символ 𝑢 или 𝑠. Если 𝑖 > 2, то обозначим через 𝑊 𝜏

sep(𝜎) сепаратрису сед-
ла 𝜎, принадлежащую 𝑊 𝜏 (𝜎). Если 𝑖 > 2 (т.е. инвариантное многообразие 𝑊 𝜏 (𝜎)
одномерное), то 𝑊 𝜏

sep(𝜎) означает одну из двух сепаратрис, которые при необходи-
мости мы будем обозначать через 𝑊 𝜏

sep,1(𝜎), 𝑊 𝜏
sep,2(𝜎). Будем говорить, что сепара-

триса 𝑊 𝜏
sep(𝜎) не имеет гетероклинических пересечений, если она не пересекается

с другими сепаратрисами. Нам понадобятся следующие известные утверждения
(см. [1]).

Предложение 1. Пусть 𝑊
𝑢(𝑠)
sep (𝜎) – 𝑑-мерная сепаратриса седла 𝜎 диффеомор-

физма Морса–Смейла, не имеющая гетероклинических пересечений. Тогда сепа-
ратриса 𝑊

𝑢(𝑠)
sep (𝜎) принадлежит области притяжения 𝑊 𝑠(𝑝) (соответственно

отталкивания 𝑊𝑢(𝑝)) ровно одной стоковой (соответственно источниковой) пе-
риодической точки 𝑝.

Более того, если 𝑑 > 2, то топологическое замыкание clos 𝑊
𝑢(𝑠)
sep (𝜎) сепаратри-

сы 𝑊
𝑢(𝑠)
sep (𝜎) равно

clos 𝑊𝑢(𝑠)
sep (𝜎) = 𝑊𝑢(𝑠)

sep (𝜎) ∪ {𝑝}

и является топологически вложенной 𝑑-мерной сферой.
Если 𝑑 = 1 и каждая одномерная сепаратриса 𝑊

𝑢(𝑠)
sep,j(𝜎), 𝑗 = 1, 2, принадле-

жит области притяжения 𝑊 𝑠(𝑝𝑗) (соответственно отталкивания 𝑊𝑢(𝑝𝑗)) ров-
но одной стоковой (соответственно источниковой) периодической точки 𝑝𝑗 , то
топологическое замыкание clos(𝑊𝑢(𝑠)

sep,1(𝜎)∪𝑊
𝑢(𝑠)
sep,2(𝜎)) есть либо топологически вло-

женный замкнутый сегмент при 𝑝1 ̸= 𝑝2 , либо топологически вложенная окруж-
ность при 𝑝1 = 𝑝2 .

Предложение 2. Пусть 𝜎 – седло коразмерности один диффеоморфизма Мор-
са–Смейла 𝑓 : 𝑀𝑛 → 𝑀𝑛 , 𝑛 > 4, и предположим, что обе одномерныесепаратри-
сы Sep1(𝜎), Sep2(𝜎) седла 𝜎 не имеют гетероклинических пересечений.

Если clos(Sep1(𝜎) ∪ Sep2(𝜎)) есть топологически вложенная окружность 𝑆0 ,
то 𝑆0 имеет замкнутую окрестность 𝑇 гомеоморфную D𝑛−1 ⊗ 𝑆1 и содержащую
только две неподвижные точки: седло sigma и некоторый узел 𝑛0 .

Более того, если 𝑛0 – сток, то окрестность 𝑇 вперед-инвариантна, а если 𝑛0 –
источник, то 𝑇 назад-инвариантна.

Предложение 3. Пусть 𝜎 – седло коразмерности один диффеоморфизма Мор-
са–Смейла 𝑓 : 𝑀𝑛 → 𝑀𝑛 , 𝑛 > 4, и предположим, что обе одномерные сепаратри-
сы Sep1(𝜎), Sep2(𝜎) седла 𝜎 не имеют гетероклинических пересечений.

Если clos(Sep1(𝜎) ∪ Sep2(𝜎)) есть топологически вложенный сегмент 𝐼 , то 𝐼
имеет замкнутую окрестность 𝐵 гомеоморфную 𝑛-мерному диску и содержащую
только три неподвижные точки: седло 𝜎 и два узла 𝑛1 , 𝑛2 .

Более того, если 𝑛1 , 𝑛2 – стоки, то окрестность 𝐵 вперед-инвариантна, а
если 𝑛1 , 𝑛2 – источники, то 𝐵 назад-инвариантна.
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Для случая, когда диффеоморфизм Морса–Смейла 𝑓 : 𝑀𝑛 → 𝑀𝑛, 𝑛 > 4, имеет
ровно одно седло, т.е. 𝑓 ∈ 𝑀𝑆(𝑀𝑛; 𝑎, 𝑏, 1), мы для ссылок приводим следующее
утверждение, которое можно извлечь из работ [7], [8].

Предложение 4. Пусть 𝑓 : 𝑀𝑛 → 𝑀𝑛 – диффеоморфизм Морса–Смейла замк-
нутого 𝑛-мерного многообразия 𝑀𝑛 , 𝑛 > 4, и предположим, что неблуждающее
множество 𝑁𝑊 (𝑓) состоит из 𝑎 стоков 𝜔1, . . . , 𝜔𝑎 , 𝑏 источников 𝛼1, . . . , 𝛼𝑏 и одно-
го седла 𝜎 . Тогда имеет место один из следующих случаев:

1) 𝑎 + 𝑏 = 3, т.е. 𝑎 = 1, 𝑏 = 2 или 𝑎 = 2, 𝑏 = 1, и многообразие 𝑀𝑛 является
сферой S𝑛 ; более того, в случае 𝑎 = 1, 𝑏 = 2 неустойчивый индекс Морса
седла 𝜎 равен (𝑛 − 1), а в случае 𝑎 = 2, 𝑏 = 1 неустойчивый индекс Морса
седла 𝜎 равен единице;

2) 𝑎 = 𝑏 = 1, и размерность многообразия принимает одно из следующих значе-
ний 𝑛 ∈ {4, 8, 16}; более того, 𝑀𝑛 является дизъюнктивным объединением
открытого шара B𝑛 и 𝑛/2-мерной сферы 𝑆𝑛/2 , топологически вложенной
в 𝑀𝑛 , причем если 𝑛 ∈ {8, 16}, то 𝑆𝑛/2 локально плоско вложена в 𝑀𝑛 ;
кроме этого, седло 𝜎 имеет 𝑛/2-мерные сепаратрисы.

2. Доказательства основных результатов. В этом разделе доказываются
основные результаты статьи. Мы будем использовать следующую операцию разре-
зания многообразия 𝑀𝑛 вдоль подмногообразия коразмерности один. Пусть 𝑁𝑛−1 ⊂
𝑀𝑛 – (𝑛 − 1)-мерное подмногообразие. Под разрезанием 𝑀𝑛 вдоль 𝑁𝑛−1 пони-
мается удаление из 𝑀𝑛 достаточно малой окрестности 𝑈 подмногообразия 𝑁𝑛−1,
гомеоморфной 𝑁𝑛−1 × (0; 1), так что получается (возможно, несвязное) многообра-
зие clos(𝑀𝑛 ∖ 𝑈) с двумя дополнительными граничными компонентами, каждая из
которых гомеоморфна 𝑁𝑛−1. Строгое обоснование возможности такой операции см.
в [9].

Доказательство теоремы 1. Сперва рассмотрим ситуацию, когда сепаратри-
сы коразмерности один обоих седел не пересекаются с одномерными сепаратриса-
ми. Пусть Sep1(𝜎𝑖), Sep2(𝜎𝑖) – одномерные сепаратрисы седла 𝜎𝑖, 𝑖 = 1, 2. Согласно
предположению,

(Sep1(𝜎1) ∪ Sep2(𝜎1)) ∩ (𝑊 𝑠(𝜎2) ∪𝑊𝑢(𝜎2)) = ∅,

(Sep1(𝜎2) ∪ Sep2(𝜎2)) ∩ (𝑊 𝑠(𝜎1) ∪𝑊𝑢(𝜎1)) = ∅.

Согласно предложению 1, имеются следующие три возможности
(a) clos(Sep1(𝜎1) ∪ Sep2(𝜎1)) = 𝑆1 и clos(Sep1(𝜎2) ∪ Sep2(𝜎2)) = 𝑆2 – окружности;
(b) clos(Sep1(𝜎1) ∪ Sep2(𝜎1)) и clos(Sep1(𝜎2) ∪ Sep2(𝜎2)) суть сегменты;
(c) clos(Sep1(𝜎1) ∪ Sep2(𝜎1)) – окружность, а clos(Sep1(𝜎2) ∪ Sep2(𝜎2)) – сегмент.
В случае (a), в силу предложения 2, окружность 𝑆𝑖 имеет окрестность 𝑇𝑖, гомео-

морфную D𝑛−1⊗𝑆1, 𝑖 = 1, 2. Покажем, что одна из окрестностей 𝑇𝑖 вперед-инвари-
антна, а другая окрестность – назад-инвариантна.

Предположим противное. Для определенности предположим, что обе окрест-
ности 𝑇1 , 𝑇2 назад-инвариантны, т.е. 𝑓−1(𝑇𝑖) ⊂ 𝑇𝑖, 𝑖 = 1, 2. Так как диффеомор-
физм 𝑓 Морса–Смейла имеет только две устойчивые сепаратрисы Sep1(𝜎𝑖), Sep2(𝜎𝑖),
𝑖 = 1, 2, принадлежащие 𝑇1 ∪ 𝑇2, то в множестве 𝑀𝑛 ∖ (𝑇1 ∪ 𝑇2) нет источников. Из
связности множества 𝑀𝑛 ∖ (𝑇1 ∪ 𝑇2) вытекает, что в 𝑀𝑛 ∖ (𝑇1 ∪ 𝑇2) имеется ровно
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один сток. Следовательно, 𝑓 имеет три узла. Поскольку неустойчивые многообра-
зия 𝑊𝑢(𝜎1), 𝑊𝑢(𝜎2) не пересекаются, то в силу [10], число узлов диффеоморфизма 𝑓
должно быть четным. Полученное противоречие доказывает, что одна из окрестно-
стей 𝑇𝑖 вперед-инвариантна, а другая окрестность – назад-инвариантна.

Предположим для определенности, что окрестность 𝑇1 назад-инвариантна, а ок-
рестность 𝑇2 вперед-инвариантна. Тогда 𝑇1 содержит источник 𝛼 ∈ 𝑆1 ⊂ 𝑇1, а 𝑇2

содержит сток 𝜔 ∈ 𝑆2 ⊂ 𝑇2. Покажем, что в множестве 𝑀𝑛 ∖ (𝑇1∪𝑇2) нет неподвиж-
ных точек диффеоморфизма 𝑓 .

Предположим противное. Не уменьшая общности, можно считать, что имеет-
ся сток 𝜔0 ∈ 𝑀𝑛 ∖ (𝑇1 ∪ 𝑇2). Заметим, что поскольку инвариантное многообра-
зие 𝑊𝑢(𝜎1) односвязно, его предельное множество Lim(𝑊𝑢(𝜎1)) является связным
множеством. По условию диффеоморфизм 𝑓 имеет только два неустойчивых много-
образия. Отсюда и включений 𝑊𝑢(𝜎2) ⊂ 𝑇2, 𝜔0 ∈ 𝑀𝑛 ∖ (𝑇1 ∪ 𝑇2) следует включение
𝜔0 ∈ Lim(𝑊𝑢(𝜎1)). Так как Lim(𝑊𝑢(𝜎1)) связно, то Lim(𝑊𝑢(𝜎1)) не может содер-
жать 𝑊𝑢(𝜎2) ∪ {𝜔} ⊂ 𝑇2. Следовательно,

𝑊𝑢(𝜎1) ∩𝑊 𝑠(𝜎2) = ∅.

В силу предложения 1 объединение 𝑊𝑢(𝜎1) ∪ {𝜔0} = 𝑆𝑛−1
0 есть топологически

вложенная (𝑛 − 1)-мерная сфера, которую мы обозначим через 𝑆𝑛−1
0 . Поскольку

ее коразмерность строго больше двух, то 𝑆𝑛−1
0 является локально плоско вложен-

ной сферой [11], [12]. Она не разбивает многообразие 𝑀𝑛, так как окружность
clos(Sep1(𝜎1) ∪ Sep2(𝜎1)) пересекает 𝑆𝑛−1

0 трансверсально ровно в одной точке. По-
этому разрезание 𝑀𝑛 вдоль 𝑆𝑛−1

0 дает связное многообразие ̂︁𝑀𝑛 с двумя гранич-
ными компонентами 𝑀1, 𝑀2, каждая из которых гомеоморфна 𝑆𝑛−1

0 . Заклеим 𝑀1,
𝑀2 𝑛-мерными шарами 𝐵𝑛

1 , 𝐵𝑛
2 соответственно.

Тогда мы получим замкнутое многообразие ̃︁𝑀𝑛. Поскольку в исходном много-
образии 𝑀𝑛 сфера 𝑆𝑛−1

0 имела назад-инвариантную окрестность, то 𝑓 можно про-
должить на многообразие ̃︁𝑀𝑛 до диффеоморфизма Морса–Смейла ̃︀𝑓 : ̃︁𝑀𝑛 → ̃︁𝑀𝑛

с двумя стоками 𝜔𝑖 ∈ 𝐵𝑛
𝑖 , 𝑖 = 1, 2. Тогда неблуждающее множество диффеомор-

физма ̃︀𝑓 состоит из седла 𝜎2, источника 𝛼 и, хотя бы трех стоков 𝜔, 𝜔𝑖, 𝑖 = 1, 2, что
противоречит предложению 4.

Таким образом,

𝑁𝑊 (𝑓) = {𝛼} ∪ {𝜔} ∪ {𝜎1} ∪ {𝜎2} ∈ 𝑇1 ∪ 𝑇2.

Более того, множество 𝑆1 ⊂ 𝑇1 отталкивающее, а множество 𝑆2 ⊂ 𝑇2 – притягиваю-
щее. Так как 𝜕𝑇1 суть компакт, существует 𝑘 ∈ N такое, что 𝑓𝑘(𝜕𝑇1) ⊂ 𝑇2. Отсюда
следует, что 𝑓 ∈ 𝑀𝑆(𝑀𝑛; 1, 1, 2), а многообразие 𝑀𝑛 гомеоморфно объединению
двух экземпляров D𝑛−1 ⊗ 𝑆1.

В случае (b) обозначим сегменты clos(Sep1(𝜎1)∪Sep2(𝜎1)), clos(Sep1(𝜎2)∪Sep2(𝜎2))
через 𝐼1 и 𝐼2 соответственно. Рассмотрим сначала случай, когда 𝐼1 является оттал-
кивающим множеством, а 𝐼2 – притягивающим. Тогда имеются окрестности 𝑈𝑖 ⊃ 𝐼𝑖,
𝑖 = 1, 2, такие, что 𝑈1 ⊂ 𝑓(𝑈1) и 𝑓(𝑈2) ⊂ 𝑈2. Поэтому в 𝑈1 ∪ 𝑈2 можно модифици-
ровать 𝑓 так, чтобы получить диффеоморфизм Морса–Смейла ̃︀𝑓 : 𝑀𝑛 → 𝑀𝑛 такой,
что ̃︀𝑓 будет иметь один источник 𝛼0 ∈ 𝑈1, один сток 𝜔0 ∈ 𝑈2, и ̃︀𝑓 будет совпадать с 𝑓
вне 𝑈1 ∪ 𝑈2. Поэтому ̃︀𝑓 является диффеоморфизмом Морса–Смейла без седловых
периодических точек. Следовательно, ̃︀𝑓 ∈ 𝑀𝑆(S𝑛, 1, 1, 0) и 𝑓 ∈ 𝑀𝑆(S𝑛, 2, 2, 2).
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Предположим теперь, что 𝐼1 и 𝐼2 являются отталкивающими множествами. Ис-
пользуя вышеприведенный метод удаления седел и предложение 4, можно пока-
зать, что ̃︀𝑓 ∈ 𝑀𝑆(S𝑛, 1, 2, 1) ∪𝑀𝑆(S𝑛, 2, 1, 1), и следовательно, 𝑓 ∈ 𝑀𝑆(S𝑛, 1, 3, 2) ∪
𝑀𝑆(S𝑛, 3, 1, 2).

Докажем, что случай (c) не реализуется. Предположим противное. Удалив сед-
ло 𝜎2, принадлежащее сегменту clos(Sep1(𝜎2) ∪ Sep2(𝜎2)), мы получим диффеомор-
физм Морса–Смейла ̃︀𝑓 ∈ 𝑀𝑆(𝑀𝑛; 1, 1, 1). Согласно предложению 4, обе сепаратри-
сы оставшегося седла 𝜎1 должны быть 𝑛/2-мерными. Это противоречит тому, что
по условию 𝜎1 является седлом коразмерности один.

Теперь рассмотрим ситуацию, когда сепаратриса коразмерности один одного из
седел, скажем 𝜎1, пересекает одномерную сепаратрису другого седла 𝜎2. Покажем,
что тогда 𝑓 ∈ 𝑀𝑆(S𝑛, 2, 2, 2). Будем для определенности считать, что одномерные
сепаратрисы седел 𝜎𝑖, 𝑖 = 1, 2, являются устойчивыми сепаратрисами. Поскольку
в графе Смейла периодические точки не образуют циклов, то

𝑊𝑢(𝜎2) ∩𝑊 𝑠(𝜎1) = ∅.

Отсюда и предложения 1 следует, что clos(𝑊𝑢(𝜎2)) = 𝑆𝑛−1 является топологиче-
ски вложенной (𝑛− 1)-мерной сферой, содержащей сток 𝜔. Так как 𝑛 > 4, то 𝑆𝑛−1

является локально плоско вложенной (𝑛− 1)-мерной сферой [11], [12]. Разрезав 𝑀𝑛

вдоль 𝑆𝑛−1, получим многообразие ̂︁𝑀𝑛 с двумя граничными компонентами 𝑀1, 𝑀2,
каждая из которых гомеоморфна S𝑛−1. Приклеив к 𝑀1, 𝑀2 𝑛-мерные шары 𝐵𝑛

1 , 𝐵𝑛
2

соответственно, мы получим замкнутое многообразие ̃︁𝑀𝑛. Поскольку 𝑆𝑛−1 суть
притягивающее множество, 𝑓 можно продолжить на ̃︁𝑀𝑛 так, чтобы получить диф-
феоморфизм Морса–Смейла ̃︀𝑓 : ̃︁𝑀𝑛 → ̃︁𝑀𝑛 со стоками 𝜔𝑖 ∈ 𝐵𝑛

𝑖 , 𝑖 = 1, 2. Отме-
тим, что диффеоморфизм ̃︀𝑓 имеет только одно седло 𝜎1 и не имеет неподвижных
точек 𝜎2, 𝜔.

Если многообразие ̃︁𝑀𝑛 связно, то неблуждающее множество 𝑁𝑊 ( ̃︀𝑓 ) содержит
только одно седло 𝜎1 с неустойчивым индексом Морса (𝑛 − 1) и, по крайней мере,
два стока 𝜔𝑖, 𝑖 = 1, 2. Это противоречит предложению 4. Если многообразие ̃︁𝑀𝑛 не-
связно, то одна из его компонент ̃︁𝑀𝑛

2 не содержит седел. Следовательно, ̃︁𝑀𝑛
2 = S𝑛,

а неблуждающее множество 𝑁𝑊 ( ̃︀𝑓 ) ∩ ̃︁𝑀𝑛
2 в ̃︁𝑀𝑛

2 состоит из стока и источника. От-
сюда вытекает, что 𝑀𝑛 = ̃︁𝑀𝑛

1 ♯ S𝑛 гомеоморфно ̃︁𝑀𝑛
1 , и 𝑁𝑊 ( ̃︀𝑓 ) содержит только

один источник. Из предложения 4 следует, что ̃︀𝑓 ∈ 𝑀𝑆(S𝑛; 1, 2, 1). Поэтому 𝑓 ∈
𝑀𝑆(S𝑛, 2, 2, 2).

Доказательство теоремы 2. Для определенности будем считать, что 𝑓 имеет
седло 𝜎 коразмерности один с устойчивыми одномерными сепаратрисами и седло 𝜎0,
которое не является седлом коразмерности один. Так как инвариантные многообра-
зия седловых периодических точек диффеоморфизма Морса–Смейла должны пере-
секаться трансверсально, одномерные сепаратрисы седла 𝜎 не имеют гетероклини-
ческих пересечений. Согласно предложению 3 топологическое замыкание clos 𝑊 𝑠(𝜎)
является сегментом 𝐼, на концах которого расположены источники 𝛼1, 𝛼2.

Более того, 𝐼 имеет замкнутую назад-инвариантную окрестность 𝐵 гомеоморф-
ную 𝑛-мерному диску, т.е. int 𝑓(𝐵) ⊂ 𝐵. Поэтому в 𝐵 можно модифицировать 𝑓
так, чтобы получить диффеоморфизм Морса–Смейла ̃︀𝑓 : 𝑀𝑛 → 𝑀𝑛 такой, что ̃︀𝑓
будет иметь в 𝐵 один источник 𝛼0 ∈ 𝐵, и ̃︀𝑓 будет совпадать с 𝑓 вне 𝐵. Другими
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словами, по сравнению с 𝑓 , диффеоморфизм ̃︀𝑓 имеет на один источник и на одно
седло меньше. Поскольку ̃︀𝑓 имеет ровно одно седло, коразмерность которого больше
единицы, в силу предложения 4 размерность многообразия 𝑀𝑛 может принимать
только одно из следующих значений 𝑛 ∈ {4, 8, 16}, и 𝑀𝑛 является дизъюнктивным
объединением открытого шара B𝑛 и 𝑛/2-мерной сферы 𝑆𝑛/2 причем если 𝑛 ∈ {8, 16},
то 𝑆𝑛/2 локально плоско вложена в 𝑀𝑛; кроме этого, седло 𝜎0 имеет 𝑛/2-мерные
сепаратрисы. Более того, так как ̃︀𝑓 ∈ 𝑀𝑆(𝑀𝑛; 1, 1, 1), то 𝑓 ∈ 𝑀𝑆(𝑀𝑛; 1, 2, 2).

Ясно, что если предположить, что седло 𝜎 коразмерности один имеет неустойчи-
вые одномерные сепаратрисы, то получим 𝑓 ∈ 𝑀𝑆(𝑀𝑛; 2, 1, 2).

Доказательство теоремы 3. Хорошо известно, что если диффеоморфизм
Морса–Смейла не содержит седел коразмерности один, то он является полярным
диффеоморфизмом, т.е. 𝑎 = 𝑏 = 1 [1], [6]. Осталось доказать, что многообразие 𝑀𝑛

односвязное. Рассмотрим отображение 𝛾 : 𝑆1 → 𝑀𝑛, представляющее элемент фун-
даментальной группы 𝜋1(𝑀𝑛). Не уменьшая общности, можно считать 𝛾 гладким
вложением [13]. Более того, деформацией отображения 𝛾 можно добиться того,
чтобы образ 𝛾(𝑆1) не содержал неподвижных точек диффеоморфизма 𝑓 .

Поскольку инвариантные многообразия седел являются образами гладких иммер-
сий евклидовых пространств, и их конечное число, то последовательно деформи-
руя 𝛾, можно добиться того, чтобы образ 𝛾(𝑆1) пересекался трансверсально со
всеми инвариантными многообразиями седел. Действительно, сперва трансвер-
сальность пересечения можно получить с сепаратрисами, которые не имеют гете-
роклинических пересечений, поскольку вне некоторых окрестностей неподвижных
точек эти сепаратрисы являются вложениями компактных областей евклидовых
пространств [13]. Вне некоторых окрестностей этих сепаратрис, остальные сепа-
ратрисы (с гетероклиническими пересечениями) также являются вложениями ком-
пактных областей евклидовых пространств. Таким образом, можно считать, что
𝛾(𝑆1) трансверсально пересекает все инвариантные многообразия седел.

По условию коразмерность всех инвариантных многообразий седел больше еди-
ницы. Так как 𝛾(𝑆1) суть окружность, трансверсальность пересечения 𝛾(𝑆1) с инва-
риантными многообразиями седел означает, что 𝛾(𝑆1) принадлежит области притя-
жения или отталкивания стока или источника соответственно. Поскольку такая
область гомеоморфна открытому шару, кривая 𝛾(𝑆1) стягиваема в точку. Это вле-
чет односвязность многообразия 𝑀𝑛.

Замечание 2. Анализ доказательства теоремы 3 показывает, что ее утвержде-
ние справедливо для произвольного числа седел. Мы благодарим рецензента, обра-
тившего на это наше внимание.

Замечание 3. Для удобства читателя приведем список замкнутых двумерных и
трехмерных многообразий, допускающих диффеоморфизмы Морса–Смейла с одним
и двумя седлами. Единственными двумерными многообразиями, допускающими
диффеоморфизмы Морса–Смейла с одним седлом являются сфера и прективная
плоскость. Единственным трехмерным многообразием, допускающим диффеомор-
физмы Морса–Смейла с одним седлом является сфера. Единственными двумер-
ными многообразиями, допускающими диффеоморфизмы Морса–Смейла с двумя
седлами являются сфера, тор, бутылка Клейна и прективная плоскость. Трехмер-
ными многообразиями, допускающими диффеоморфизмы Морса–Смейла с двумя
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седлами являются линзы, сфера, прямое и косое произведение двумерной сферы на
окружность.
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