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Introduction

0.1. S-cells. Following [Lu2, 0.1], recall that for a connected complex reduc-

tive group G, its Weyl group Wfin is partitioned into S-cells:1

Wfin =
⊔
O∈U

WO

parameterized by the set U of nilpotent G-orbits in g = LieG as follows.

Given w ∈ Wfin, we take Borel subalgebras b, b′ ⊂ g in relative position w and

consider the intersection nb ∩ nb′ of their nilpotent radicals. There is a unique

nilpotent orbit O such that the intersection O∩ nb ∩ nb′ is open in nb ∩ nb′ . By

definition, w ∈ WO.

Lusztig showed that for any nilpotent orbit O, the S-cell WO is the image of

a map

� : [Spra]× [Spra] →Wfin

defined as follows: let a ∈ O be an arbitrary element, let Spra be the Springer

fiber over a, that is, the space of Borel subalgebras containing a, let [Spra] be

the set of the irreducible components of Spra, and finally �(X,X ′) ∈ Wfin is

the relative position of generic points of irreducible components X,X ′ ∈ [Spra].

Indeed, recall the Springer resolution μ : T ∗B = Ũ → U , where B is the flag

variety of G, and U ⊂ g is the nilpotent cone. It is known that μ is strictly

semismall, i.e., for any nilpotent orbit O ⊂ U , its codimension in U is exactly

twice the dimension of the Springer fiber Spra = μ−1(a) for any a ∈ O. In other

words, all the nilpotent orbits are the relevant strata [BM, 1.1] of the Springer

morphism μ. The strict semi-smallness of μ implies that the Steinberg variety

of triples

StG := Ũ ×U Ũ
is equidimensional of dimension 2 dimB. On the other hand, the irreducible

components of StG are nothing but the conormal bundles T ∗
Ow

(B ×B) to orbits

of G acting diagonally on B × B (such orbits are pairs of Borel subalgebras in

relative position w ∈Wfin). Thus both WO and �([Spra]× [Spra]) parameterize

the set of irreducible components of StG whose generic points lie above the

generic point of O.

1 S stands for Steinberg, Spaltenstein and Springer.



Vol. TBD, 2021 S-CELLS IN AFFINE WEYL GROUPS 3

0.2.Affine S-cells. In caseG is almost simple simply connected, Lusztig [Lu2]

defined a partition of the affine Weyl group

W =
⊔

w∈Wfin/Ad

Ww

into affine S-cells parameterized by the conjugacy classes of Wfin, and conjec-

tured a second description of affine S-cellsWw in terms of affine Springer fibers,

which is analogous to the one described in 0.1

The goal of this work is to prove a weak form of Lusztig’s conjecture re-

placing the argument of 0.1 by its affine analog. In the affine case, the role

of the nilpotent cone U is played by the space of topologically nilpotent el-

ements N ⊂ Lg = g((t)) in the loop Lie algebra of g, while the role of the

partition U =
⊔

O∈U O is played by the Goresky–Kottwitz–MacPherson strati-

fication [GKM] of N . The affine Springer resolution Ñ → N is semi-small, but

not strictly semi-small; the relevant strata are parameterized byWfin/Ad [BKV,

Lemma 4.4.4(d)] (in particular, [Lu2, Conjecture 3.3] follows). This implies a

weak form of Lusztig’s conjecture [Lu2, 2.3]: the second description of affine

S-cells holds not for arbitrary elements of the relevant GKM strata, but only

for generic elements. As a consequence, we show Lusztig’s conjecture [Lu2,

2.4] asserting that for any w ∈ Wfin/Ad, the corresponding S-cell Ww ⊂ W is

non-empty, and that Ww is finite if and only if w is elliptic.

Note that all geometric objects involved are infinite-dimensional ind-schemes,

therefore the classical notion of dimension does not make sense in this setting.

Instead we apply the dimension theory developed in [BKV].

In case G is of type A it is expected that affine S-cells coincide with the two-

sided Kazhdan–Lusztig cells (the latter cells are explicitly described in [Lu1]);

see in particular [Lu2, 1.4] where this is pointed out forG=SL(3) and [La] where

this is established for related (but a priori different) S̃-cells defined in [Lu2,

Section 4]. In certain (rectangular) special cases this follows from the recent

result of [BYY] together with our main theorem. More precisely, in [BYY]

relative positions of generic points in components of certain affine Springer

fibers are computed; the answer turns out to be related to Kazhdan–Lusztig

cells (as conjectured by R. Bezrukavnikov to hold more generally for groups of

type A). These relative positions are related to S-cells by our main theorem.

In the next six subsections we provide definitions and more precise formula-

tions of the results.
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0.3. The affine Steinberg variety. (a) Let G be a connected reductive

group over an algebraically closed field k, Wfin the Weyl group of G, and R the

set of roots of G. We assume that the characteristic of k does not divide the

order of Wfin.

(b) Let LG be the loop group of G, I ⊂ LG an Iwahori subgroup scheme,

and F� = LG/I the affine flag variety. We denote by g the Lie algebra of G,

by Lg the corresponding loop algebra, and by I+ ⊂ Lg the Lie algebra of the

prounipotent radical I+ of I. More generally, for every [g] ∈ F�, we set

I+
g := Adg(I+).

(c) Let N ⊂ Lg be the locus of topologically nilpotent elements of Lg. More

precisely, let c be the Chevalley space of g, L+(c) ⊂ Lc be the arc and the loop

spaces of c, respectively, ev : L+(c) → c the evaluation map, and Lχ : Lg → Lc
the morphism, induced by the canonical morphism χ : g → c. Then we denote

by

L+(c)tn := ev−1(0) ⊂ L+(c)

the locus of topologically nilpotent elements, and set

N := Lχ−1(L+(c)tn) ⊂ LG.

(d) Let Ñ be the affine Springer resolution of N , which is a closed ind-

subscheme of N ×F� consisting of points (γ, [g]) such that γ ∈ I+
g .

(e) The affine Steinberg variety is the fibered product St := Ñ ×N Ñ . It is

a closed ind-subscheme of N × F� × F� consisting of points (γ, [g′], [g′′]) such

that γ ∈ I+
g′,g′′ := I+

g′ ∩ I+
g′′ .

0.4. Stratification by LG-orbits. (a) Let f : X → Y be a morphism

of ind-schemes (or stacks). Then every stratification {Yα}α∈A of Y by locally

closed sub-ind-schemes (or stacks) over k induces a stratification {Xα}α∈A of X

such that Xα = f−1(Yα) for all α ∈ A.

(b) Recall that there is a natural bijection

x �→ (F�×F�)x := LG(1, x)

between elements of the extended affine Weyl group W of G and LG-orbits
in F�×F�. In particular, we get a stratification {(F�×F�)x}x∈W of F�×F�.
(c) Combining (a) and (b), we get a stratification {Stx}x∈W of St.
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0.5. The Goresky–Kotwitz–MacPherson stratification. (a) As in

[GKM] and [BKV, 3.3.4] the regular semisimple part

L+(c)rss := L+(c) ∩ (Lg)rss

of L+(c) has a natural stratification by finitely presented locally closed irre-

ducible subschemes cw,r, parameterized by Wfin-orbits of pairs (w, r), where

• w is an element of the Weyl group Wfin,

• r is a function R → Q≥0, and

• Wfin acts by the formula u(w, r) = (uwu−1, u(r)) for all u ∈Wfin.

(b) Namely, denote by h the order of Wfin, fix the primitive h-th root of

unity ξ ∈ k, and let σ ∈ Aut(k[[t1/h]]/k[[t]]) be the automorphism given by the

formula

σ(t1/h) = ξt1/h.

Let t be the abstract Cartan Lie algebra of g, and let t → c be the natural

projection. Then every z ∈ L+(c)(k) = c(k[[t]]) has a lift z̃ ∈ t(k[[t1/h]]).

The GKM stratification of L+(c)rss is characterized by the condition

that z ∈ L+(c)w,r if and only if we have σ(z̃) = w−1(z̃) and r(α) equals the

valuation of α(z̃) ∈ k((t1/h))× for all α ∈ R.

(c) Applying observation of 0.4(a) to the projection Lχ : N → L+(c), we get

that the GKM stratification of L+(c)rss induces stratifications of the regular

semisimple part of N and hence also of I+, Ñ and St. Note that if the stratum

Nw,r (resp. I+
w,r) is non-empty, then r > 0, that is, r(α) > 0 for every α ∈ R.

(d) For every w ∈ Wfin, we denote by tw the twisted form of t over O
(see [GKM] or [BKV, 3.3.3]). The GKM stratification cw,r of L+(c)rss induces

a stratification tw,r of L+(tw)
rss. Let L+(tw)tn ⊂ L+(tw) be the locus of topo-

logically nilpotent elements. Then we have an inclusion tw,r ⊂ L+(tw)tn if and

only if r > 0.

0.6. Minimal GKM pairs. (a) We call a pair (w, r), where w ∈ Wfin and r

is a function R → Q>0, a GKM pair, if the stratum cw,r of L+(c)rss is non-

empty. We denote the set of Wfin-orbits of GKM pairs by P, and for every

GKM pair (w, r) we denote its class in P by [w, r].

(b) Fix w ∈ Wfin. We call a GKM pair (w, r) (or its class [w, r] ∈ P)

minimal, if the stratum tw,r ⊂ L+(tw)tn is open. Explicitly, r is a minimal

element among functions R → Q>0 such that (w, r) is a GKM pair.
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(c) Notice that since each L+(tw)tn is irreducible (see [BKV, 3.4.4]), it has

a unique open GKM stratum tw,r. Namely, it is the GKM stratum, containing

the generic point of L+(tw)tn. Therefore for each w ∈ Wfin there exists a unique

minimal GKM pair (w, r).

(d) We denote by Pmin ⊂ P the set of minimal classes in P.

Following Lusztig, we are now going to relate the two stratifications of the

affine Steinberg variety St defined above.

0.7. Main construction. Recall that St is a closed ind-subscheme of the

product N × (F�×F�).
(a) By 0.4(a) and 0.5(c), for every pair (g′, g′′)∈F�×F�, the regular semisimple

part of the fiber Stg
′,g′′⊂N is equipped with a GKM-stratification {Stg′,g′′w,r }[w,r]∈P.

Similarly, for every γ∈N , the reduced Steinberg fiber Stγ⊂F�×F� is equipped
with a stratification {Stxγ}x∈W (see 0.4(a),(b)).

(b) Since Stg
′,g′′=I+

g′,g′′ is irreducible while every GKM stratum Stg
′,g′′
w,r ⊂Stg

′,g′′

is a finitely presented locally closed subscheme, there exists a unique class

π̃(g′, g) = [w, r] ∈ P such that the stratum Stg
′,g′′
w,r ⊂ Stg

′,g′′ is open (com-

pare 0.6(c)). Moreover, since the GKM stratification of N is LG-equivariant,
the class π̃(g′, g) only depends on the LG-orbit of (g′, g′′).
(c) By (b) and 0.4(b), for every x ∈ W there exists a unique class

π(x) = [w, r] ∈ P such that

π̃(g′, g′′) = [w, r] for every (g′, g′′) ∈ (F�×F�)x.

We also denote by

π(x) := [w] ∈ Wfin/Ad

the conjugacy class of w.

(d) Assume from now on that γ ∈ N ⊂ Lg is regular semisimple. Then the

reduced affine Springer fiber F�γ is an equidimensional scheme locally of finite

type over k (see [KL]). Hence the same is true for Stγ = F�γ ×F�γ . Moreover,

by the formula of Bezrukavnikov–Kazhdan–Lusztig [B], for every class [w, r] ∈ P

there exists δw,r ∈ Z≥0 such that dimF�γ = δw,r for every γ ∈ Nw,r.

(e) Following Lusztig, we define a subset σ(γ) ⊂ W to be the set of all

x ∈ W such that the locally closed subscheme Stxγ ⊂ Stγ is of full dimension

dim Stγ = 2δw,r. Alternatively, x ∈ σ(γ) if and only if there exist irreducible

components C′, C′′ of F�γ such that (C′×C′′)x ⊂ C′×C′′ is an open subscheme.
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0.8. Lusztig’s conjectures. Lusztig conjectured that the two maps defined

above are closely connected. More precisely, Lusztig [Lu2, Conjectures 3.3

and 2.3] conjectured that:

(a) For every x ∈W , the class π(x) = [w, r] ∈ P is minimal.

(b) For every [w, r] ∈ Pmin and γ ∈ Nw,r, we have an equality

σ(γ) = π−1([w, r]).

In other words, for [w, r] ∈ Pmin, x ∈ W and γ ∈ Nw,r, we have

π(x) = [w, r] if and only if dimStxγ = 2δw,r.

Lusztig [Lu2, 2.4] also remarked that assertions (a) and (b) imply that:

(c) For every w ∈ Wfin, the preimage π−1([w]) is non-empty.

(d) Assume that G is semisimple. Then π−1([w]) is finite if and only if w

is elliptic.

0.9. What is done in this work? Our goal is to prove Conjecture 0.8(a)

and to show that Conjecture 0.8(b) holds for “generic” elements. More pre-

cisely, we show the existence of an LG-invariant open dense sub-indscheme
xNw,r ⊂ Nw,r (depending on x ∈ W ) such that for every γ ∈ xNw,r, we have

π(x) = [w, r] if and only if dimStxγ = 2δw,r. As a consequence, we deduce

Conjectures 0.8(c),(d). Finally, we show that the full Conjecture 0.8(b) follows

from a certain flatness conjecture.

0.10. Our strategy. (a) To every morphism f : X → Y of schemes of finite

type over k we associate a dimension function dimf : X → Z given by

dimf (z) := dimzX − dimf(z) Y for z ∈ X.

(b) Our dimension function satisfies the property that for every z ∈ X we

have an inequality dimf (z) ≤ dimz f
−1(f(z)) and that there exists an open

dense subset U ⊂ Y such that we have an equality

dimf (z) = dimz f
−1(f(z))

for every z ∈ f−1(U).

(c) Our main observation is that the dimension function of (a) can be defined

for locally finitely presented morphisms between certain infinite-dimensional

schemes, and that property (b) still holds in this case. Namely, it can be done

when Y is placid, that is, locally has a presentation as a limit Y � limi Yi,

where each Yi is of finite type, and all transition maps are smooth affine.
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(d) Fix x ∈ W and [w, r] ∈ P. We would like to apply the construction (c)

to the projection p : Stxw,r → Nw,r. Unfortunately, we can not do it directly,

because both source and target of p are infinite-dimensional ind-schemes, rather

than schemes. To overcome this, we observe that the projection p is LG-
equivariant, and there exists a natural embedding tw,r ↪→ Nw,r, unique up

to an LG-conjugacy, such that the composition tw,r ↪→ Nw,r → [LG\Nw,r]

is surjective. Therefore we can replace p by its pullback pt : Stxt,w,r → tw,r

to tw,r ⊂ Nw,r.

It turns out that the reduced ind-scheme (Stxt,w,r)red is actually a scheme,

locally finitely presented over tw,r, therefore the construction of (c) applies to

pt,red : (St
x
t,w,r)red → tw,r. Furthermore, there is a discrete group Λ′ acting freely

and discretely on Stxt,w,r over tw,r such that the quotient [Λ′\(Stxt,w,r)red] is a

scheme, finitely presented over tw,r. Thus an analog of (b) applies to pt,red as

well.

(e) Our main technical result asserts that function dimpt,red equals

2δw,r + a+w,r − b(x)+w,r,

where a+w,r is a non-negative integer such that a+w,r = 0 if and only if the

class [w, r] ∈ P is minimal, and b(x)+w,r is a non-negative function such that

b(x)+w,r = 0 if and only if π(x) = [w, r].

(f) Both Conjecture 0.8(a) and a weak form of Conjecture 0.8(b) easily

follow from the combination of (e) and (b). Namely, when π(x) = [w, r],

these assertions imply that for a generic γ ∈ tw,r, we have an inequality

dim Stxγ ≥ 2δw,r + a+w,r, which implies that a+w,r = 0, thus [w, r] is minimal.

Conversely, if [w, r] is minimal, then for a generic γ ∈ tw,r, we have an equality

dimγ̃ St
x
γ = 2δw,r − b(x)+w,r(γ̃)

for every γ̃ ∈ Stxγ , which implies that dim Stxγ = 2δw,r if and only if π(x) = [w, r].

0.11. Plan of the paper. The paper is organized as follows. In the first two

sections we introduce our main ingredients, namely placid stacks and dimension

functions, mostly repeating the corresponding parts from [BKV]. Then, in the

next three sections we prove Lusztig conjecture 0.8(a) and a weak form of 0.8(b),

and deduce conjectures 0.8(c),(d) from them. Finally, in the last section we

deduce the full Lusztig conjecture 0.8(b) from a certain flatness conjecture.
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1. Placid stacks

In this and the next sections we will review the material that appears in [BKV].

To make the exposition simpler, most of our notions are more restrictive than

those considered in [BKV].

1.1. Schemes admitting placid presentations. (a) We say that a schemeX

over k admits a placid presentation, if it has a presentation X � limi∈NXi,

where each Xi is a scheme of finite type over k, and every projection Xi+1 → Xi

is smooth and affine.

(b) Let f : Y → X be a finitely presented morphism of schemes such that X

admits a placid presentation X � limiXi. Then there exists an index i and a

morphism fi : Yi → Xi of schemes of finite type over k such that f is a pullback

of fi. In particular, Y � limj≥i(Yi ×Xi Xj) is a placid presentation of Y .

(c) We call a morphism of schemes f : X → Y strongly pro-smooth, if X

has a presentation X � limiXi over Y , where X0 → Y is smooth and finitely

presented, while all projections Xi+1 → Xi are smooth, finitely presented and

affine.

(d) The class of (c) is closed under compositions and pullbacks (see [BKV,

1.1.3]). It follows that if f : X → Y is strongly pro-smooth, and Y admits a

placid presentation, then X admits a placid presentation as well.

(e) Notice that a scheme X admitting a placid presentation is irreducible if

and only if it has a placid presentation X � limiXi such that Xi is irreducible

for all i.
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1.2. Placid algebraic spaces and smooth morphisms. (a) We call a

scheme/an algebraic space X placid, if it has an étale covering by schemes

admitting placid presentations. Using 1.1(b), one deduces that if f : X → Y is

a locally finitely presented morphism of algebraic spaces and Y is placid, then X

is placid.

(b) We call a morphism f : X → Y of algebraic spaces smooth, if locally in

the étale topology it is a strongly pro-smooth morphism of schemes. Explicitly

this means that there exist étale coverings {Yα}α of Y and {Xα,β}β of

f−1(Yα) = X ×Y Yα

by schemes such that every Xα,β → Yα is strongly pro-smooth. Using 1.1(d)

one sees that if f : X → Y is a smooth morphism of algebraic spaces and Y is

placid, then X is placid as well.

(c) The class of smooth morphisms is closed under compositions and pullbacks

(by 1.1(d)).

(d) As in [BKV], our smooth morphisms are not assumed to be locally finitely

presented. On the other hand, all smooth morphisms are automatically flat.

Remark 1.3: For the purpose of this work, we could avoid talking about alge-

braic spaces, and restrict ourselves to schemes instead (compare Remark 4.3).

Furthermore, all placid schemes appearing in this work have Zariski open cov-

erings by schemes admitting placid presentations.

1.4. Placid stack. (a) By a stack over k, we mean a stack in groupoids

in the étale topology. Using observation 1.2(c), we can talk about smooth

representable morphisms between stacks.

(b) A stack X over k is called placid, if there exists a smooth representable

surjective morphism X → X from a placid algebraic space X . Such a map is

called a placid atlas.

(c) A representable morphism of stacks f : X → Y is called (locally) finitely

presented, if for every morphism Y → Y from an algebraic space Y , the

pullback X ×Y Y → Y is a (locally) finitely presented morphism of algebraic

spaces.

(d) Assume that in the situation of (c) the stack Y is placid. Then X is placid

as well. Indeed, if Y → Y is a placid atlas, then X ×Y Y → X is a placid atlas

by 1.2(c).
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Example 1.5: Let G be a strongly pro-smooth group scheme acting on a placid

algebraic space X . Then the quotient stack X = [G\X ] is placid, and the

projection X → X is a placid atlas.

1.6. The underlying set. (a) Recall that to every stack X over k, one asso-

ciates the underlying set X , whose points are equivalent classes of pairs (K, z),

whereK is a field extension of k, z∈X (K) and (z1,K1)∼(z2,K2), if there exists

a larger field K ⊃ K1,K2 such that points z1|K , z2|K ∈ X (K) are isomorphic.

(b) Note that whenX is an algebraic space, then X is the underlying set ofX .

More generally, if X is the quotient stack [G\X ] as in Example 1.5, the X is

the set of orbits G\X.

(c) To simplify the notation, we will denote the set X simply by X .

1.7. Reduction. (a) Recall that to every scheme/algebraic spaceX one can as-

sociate the corresponding reduced scheme/algebraic spaceXred. Moreover,Xred

is placid, if X is such (see [BKV, Lemma 1.4.5]).

(b) More generally, to every placid stack X one can associate a reduced

placid stack Xred (see [BKV, 1.4]). Furthermore, the assignment X �→ Xred is

functorial, we have a canonical functorial finitely presented closed embedding

Xred → X , and the induced map Xred → X of the underlying sets is a bijection.

2. Dimension theory

2.1. Dimension function: schemes of finite type. (a) To every map of

sets f : X → Y and a function φ : Y → Z, we associate the function

f∗(φ) = φ|X := φ ◦ f : X → Z.

(b) For a scheme X of finite type over k and z ∈ X , we denote by dimz(X)

the maximum of dimensions of irreducible components of X , containing z. As

in [BKV, 2.1.1], one associates to X a dimension function dimX : X → Z,

defined by dimX(z) = dimz(X) for every z ∈ X .

(c) Then, as in [BKV, 2.1.2], to every morphism f : X → Y between schemes

of finite type over k, we associate the dimension function

dimf = dim(X/Y ) := dimX − f∗(dimY ) : X → Z.

In other words, we define dimf (z) := dimz(X)− dimf(z)(Y ) for every z ∈ X .

Next we are going to extend these notions to placid schemes and stacks.
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2.2. Dimension function: placid stacks. (see [BKV, Lemmas 2.2.4 and

2.2.5]).

(a) For every finitely presented morphism f : X → Y of schemes admitting

placid presentations, there exists a unique dimension function

dimf = dim(X/Y ) : X → Z

such that for every placid presentation Y � limi Yi of Y and morphism fi:Xi→Yi

as in 1.1(b), we have dimf = π∗
i (dimfi), where dimfi was defined in 2.1, and

πi : X → Xi is the projection. In other words, we have dimf (z) = dimfi(πi(z))

for every z ∈ X .

(b) For every locally finitely presented morphism f : X → Y of placid alge-

braic spaces, there exists a unique function dimf = dim(X/Y ) : X → Z such

that for every commutative diagram

(2.1)

X ′ f ′
−−−−→ Y ′

h

⏐⏐�
⏐⏐�g

X
f−−−−→ Y,

where f ′ : X ′ → Y ′ is a finitely presented morphism of schemes admitting placid

presentations, and g and h are étale, we have an equality h∗(dimf ) = dimf ′ ,

where dimf ′ was defined in (a).

(c) For every representable locally finitely presented morphism f : X → Y of

placid stacks, there exists a unique function dimf = dim(X/Y) : X → Z such

that for every Cartesian diagram

X
f ′

−−−−→ Y

h

⏐⏐�
⏐⏐�g

X f−−−−→ Y,
where g and h are placid atlases, we have h∗(dimf ) = dimf ′ , where dimf ′ was

defined in (b).

Example 2.3: In the situation of Example 1.5, let f : Y → X be a G-equivariant

finitely presented morphism of algebraic spaces. Then f induces a finitely

presented morphism [f ] : [G\Y ] → [G\X ] between quotient stacks, and our

construction 2.2(c) says that the function dimf : Y → Z is the pullback of

dim[f ] : G\Y → Z.
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2.4. Properties. (a) The dimension function is additive, that is, for every

pair X f→ Y g→ Z of morphisms as in 2.2(c), we have an equality

dimgf = dimf + f∗(dimg)

(see [BKV, Lemma 2.2.5]).

(b) For every f as in 2.2(c), the induced morphism fred : Xred → Yred is

a representable locally finitely presented morphism of placid stacks as well

(see 1.7(b)), and the dimension function dimfred
: Xred → Z is the pullback

of dimf (see [BKV, Corollary 2.2.8]).

Notation 2.5: (a) We say that a finitely presented representable f is of constant

dimension, if the dimension function dimf is constant. In this case, we often

write dimf = dim(X/Y ) instead of dimf = dim(X/Y ).

(b) For a finitely presented locally closed embedding ι : Y ↪→ X , we define

codimX(Y ) := −dimι.

Again, we write codimX(Y ) instead of codimX(Y ), when ι is of constant di-

mension.

Lemma 2.6: Let f : X → Y be a finitely presented morphism between placid

algebraic spaces.

(a) For every z ∈ X , we have an inequality dimf (z) ≤ dimz(f
−1(f(z)).

(b) If f is open, then the inequality of (a) is an equality for all z ∈ X .

(c) Set dim ∅ = −∞. Then there exists an open dense subspace U ⊂ Y

such that the function y �→ dim f−1(y) is locally constant on U , and for

every z ∈ f−1(U), the inequality of (a) is an equality.

(d) Assume that X is non-empty, Y is irreducible, and the inequality of (a)

is an equality for all z ∈ X . Then for every U as in (c) and every y ∈ U ,

the fiber f−1(y) is non-empty.

Proof. Assume first that X and Y are schemes of finite type over k. In this

case the assertions (a) and (b) are well-known (see, for example, [EGA, 14.2.1]

or [Stacks, 0B2L]).

Next, (c) is easy. Namely, shrinking Y , one can assume that every connected

component of Y is irreducible, thus reduce to the case, when Y is irreducible.

Next, it is enough to show the assertion for the restriction fα : Xα → Y of f to

each irreducible component of X , thus we can assume that X is irreducible as

well. In this case, the assertion is standard.
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Finally, to show (d) we let Y ′ ⊂ Y be the closure of f(X). Then, by our

assumption and (a), for every z ∈ X we have

dimz(X)− dimf(z)(Y
′) ≤ dimz(f

−1(f(z)) = dimz(X)− dimf(z)(Y ),

thus dimf(z)(Y
′) = dimf(z)(Y ). Since X is non-empty and Y is irreducible, this

implies that f is dominant, which implies the assertion.

Assume now that X and Y are schemes admitting placid presentations.

Then f is a pullback of a certain morphism f ′ : Y ′ → X ′ of schemes of finite

type over k, and the assertion for f follows from the corresponding assertion

for f ′. Namely, if U ′ ⊂ X ′ satisfies the condition of the lemma for f ′, then its

preimage U ⊂ X satisfies the condition for f .

The general case now easily follows. Indeed, choose an étale covering {Yα}α
of Y by schemes Yα admitting placid presentations. Then the assertion for f

follows from the corresponding assertion for X ×Y Yα → Yα. Thus we can

assume that Y is a scheme admitting a placid presentation. Finally, choose an

étale covering X ′ → X by a scheme admitting a placid presentation. Then the

assertion for f follows from the corresponding assertion for X ′ → X
f→ Y .

3. Proof of Conjecture 0.8(a)

We fix x ∈ W and [w, r] ∈ P.

Notation 3.1: (a) Set Y := Ñ ×N I+. Then Y ⊂ I+ × F� is a closed ind-

subscheme.

(b) Using embedding W ↪→ F�, we can view x as a point of F�, and set

F�x := Ix ⊂ F�.
We denote by Yx ⊂ Y the preimage of F�x ⊂ F�, and by Yxw,r ⊂ Yx the

preimage of I+
w,r ⊂ I+.

(c) Notice that I+ is an affine scheme admitting a placid presentation,

I+
w,r ⊂ I+ is a finitely presented locally closed subscheme, while both projec-

tions Yx → I+ and Yxw,r → I+
w,r are finitely presented. Thus I+

w,r,Yx and Yxw,r
are schemes admitting placid presentations (by 1.1(b)).
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Notation 3.2: (a) Set

I(x) := I ∩ xIx−1 ⊂ LG and I(x)+ := I+ ∩ Adx(I+) ⊂ Lg.
Note that I(x)+ was denoted by I+

1,x in 0.3(e).

(b) Note that I(x)+ is a scheme admitting a placid presentation, and

I(x)+w,r ⊂ I(x) is a finitely presented locally closed subscheme. Then I(x)+w,r
admits a placid presentation (by 1.1(b)), and we can consider the codimension

function

(3.1) b(x)+w,r := codimI(x)+(I(x)+w,r) : I(x)+w,r → Z.

(c) Note that I(x) is a strongly pro-smooth group scheme. Since I(x)+
and I(x)+w,r are Ad I(x)-equivariant, we can form quotient stacks [I(x)\I(x)+w,r]
and [I(x)\I(x)+], both of which are placid (see Example 1.5). Using Exam-

ple 2.3, the codimension function b(x)+w,r of (3.1) is induced by the codimension

function codim[I(x)\I(x)+]([I(x)\I(x)+w,r]), which we also denote by b(x)+w,r.

Remark 3.3: If x ∈ W is the unit element, then I(x)+ = I+. In this case,

by [BKV, 3.4.4(a) and Corollary 3.4.9], the function

b(x)+w,r := codimI+(I+
w,r)

is the constant function with value codimL+(c)tn(cw,r) = codimL+(c)(cw,r) − r,

that was denoted by b+w,r in [BKV, 3.4.4(d)]. Here r = dim c is the rank of G.

Lemma 3.4: (a) We have b(x)+w,r = 0 if π(x) = [w, r], and b(x)+w,r > 0

otherwise.

(b) We have natural isomorphisms

[I\Yx] � [I(x)\I(x)+] and [I\Yxw,r] � [I(x)\I(x)+w,r].
(c) The projection Yx → I+ is affine finitely presented, and

dim(Yx/I+) = 0.

Proof. (a) By definition, π(x) = [w, r] is the unique class such that the GKM

stratum I(x)+w,r ⊂ I(x)+ is open dense. This implies the assertion.

(b) By definition, Yx is an I-invariant closed subscheme of N × F�x con-

sisting of points (γ, [g]) such that γ ∈ I+
g ∩ I+, where I acts by the formula

h(γ, g) = (Adh(γ), hg). Since I acts transitively in F�x and I(x) ⊂ I is the sta-

bilizer of x ∈ F�, the isomorphism [I\Yx] � [I(x)\I(x)+] follows. The second

isomorphism follows from the first by taking preimages of cw,r ⊂ L+(c).
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(c) Taking the quotient by I, it suffices to show that the projection

[I\Yx] → [I\I+]

is affine finitely presented of constant dimension zero (compare Example 2.3).

Using (b), this projection can be identified with the composition

[I(x)\I(x)+] → [I(x)\I+] → [I\I+].

Since I(x)+ ⊂ I+ is a closed finitely presented subscheme, while

I/I(x) � I+/I(x)+

is non-canonically isomorphic to an affine space, the assertion follows.

Notation 3.5: (a) As in [BKV, 3.4.1], we set

dr :=
∑
α∈R

r(α), cw := dim t− dim tw,

where tw ⊂ t denotes the space of w-invariants, and

δw,r :=
1

2
(dr − cw).

(b) Note that tw,r ⊂ L+(tw)tn is a connected strongly pro-smooth finitely

presented locally closed subscheme (see [BKV, 3.3.3]) of constant codimension

(see [BKV, Lemma 2.2.10]). As in [BKV, 3.4.4(d)], we set

a+w,r := codimL+(tw)tn(tw,r).

(c) Using Lemma 3.4(b), we have a natural projection

Yxw,r → [I\Yxw,r] � [I(x)\I(x)+w,r].
Denote by b(x)+w,r|Yx

w,r
the pullback of the codimension function

b(x)+w,r : [I(x)\I(x)+w,r] → Z

(see Notation 3.2(c)).

Remark 3.6: Since L+(tw)tn is irreducible, it has a unique open dense stra-

tum tw,r, while all other strata are of positive codimension. Therefore a class

[w, r] ∈ P is minimal (see 0.6(b)) if and only if a+w,r = 0.

Lemma 3.7: We have an equality

dim(Yxw,r/I+
w,r) = δw,r + a+w,r − (b(x)+w,r|Yx

w,r
).



Vol. TBD, 2021 S-CELLS IN AFFINE WEYL GROUPS 17

Proof. By the additivity of the dimension function (see 2.4(a)), we have

dim(Yxw,r/I+) = dim(Yxw,r/I+
w,r)− (codimI+(I+

w,r)|Yx
w,r

)

and

dim(Yxw,r/I+) = (dim(Yx/I+)|Yx
w,r

)− codimYx(Yxw,r).
Thus

dim(Yxw,r/I+
w,r) = (codimI+(I+

w,r)|Yx
w,r

) + (dim(Yx/I+)|Yx
w,r

)− codimYx(Yxw,r).
Note that it follows from [BKV, Corollaries 3.4.5 and 3.4.9] that the closed

subscheme I+
w,r ⊂ I+ is of constant codimension codimI+(I+

w,r) = δw,r + a+w,r.

Since dim(Yx/I+) = 0 by Lemma 3.4(c), it suffices to show the equality

codimYx(Yxw,r) = (b(x)+w,r|Yx
w,r

),

which follows from Example 2.3 and Lemma 3.4(b).

Now we are ready to show the first part of Lusztig’s conjecture.

Theorem 3.8: For every x ∈ W , the class π(x) = [w, r] is minimal.

Proof. By the formula of Bezrukavnikov–Kazhdan–Lusztig (see [B]), all fibers

of the projection Yw,r → I+
w,r are of dimension δw,r. Therefore all fibers

of Yxw,r → I+
w,r are of dimension at most δw,r, hence by Lemma 2.6(a) we have

dim(Yxw,r/I+
w,r) ≤ δw,r.

It now follows from Lemma 3.7 that a+w,r ≤ b(x)+w,r. Next, since π(x) = [w, r],

we conclude by Lemma 3.4(a) that b(x)+w,r = 0. Thus a+w,r = 0, hence the

class [w, r] is minimal by Remark 3.6.

4. Proof of Conjecture 0.8(b) for generic elements

We continue to fix x ∈W and [w, r] ∈ P.

Notation 4.1: (a) Recall (see [BKV, 4.1.5]) that element w ∈ Wfin gives rise to

a maximal torus Tw ⊂ Gk((t)), hence to an ind-subgroup scheme L(Tw) ⊂ LG,
both defined uniquely up to conjugacy. Moreover, we have a natural L(Tw)-
equivariant embedding tw,r ↪→ Nw,r, defined uniquely up to conjugacy, where

L(Tw) acts trivially on tw,r.
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(b) We set

Ñt,w,r := tw,r ×Nw,r Ñw,r and Stxt,w,r := tw,r ×Nw,r St
x
w,r .

Both Ñt,w,r and Stxt,w,r are ind-schemes over tw,r.

(c) Consider the composition

pr : Stx ↪→ St = Ñ ×N Ñ pr1−→ Ñ .

It is LG-equivariant, and therefore induces an LG-equivariant projection

pr : Stxw,r → Ñw,r, hence an L(Tw)-equivariant projection prt : Stxt,w,r → Ñt,w,r.

(d) Let Λw := X∗(Tw) be the group of cocharacters of Tw, defined over k((t)).

It is a finitely generated free abelian group, and we have natural embedding

Λw ↪→ L(Tw), λ �→ λ(t).

In particular, the projection prt : Stxt,w,r → Ñt,w,r from (c) is Λw-equivariant.

Lemma 4.2: (a) We have natural isomorphisms

[LG\Ñw,r] � [I\I+
w,r] and [LG\ Stxw,r] � [I\Yxw,r].

(b) The quotient stacks [LG\Ñw,r] and [LG\ Stxw,r] are placid, and the pro-

jection

[pr] : [LG\ Stxw,r] → [LG\Ñw,r]

is affine and finitely presented.

(c) The reduced ind-schemes (Ñt,w,r)red and (Stxt,w,r)red are placid schemes,

locally finitely presented over tw,r, while the projection

prt,red : (St
x
t,w,r)red → (Ñt,w,r)red

is affine and finitely presented.

(d) The quotients [Λw\(Ñt,w,r)red] and [Λw\(Stxt,w,r)red] are placid algebraic

spaces, finitely presented over tw,r.

Proof. (a) follows from the observation that both pr : Stx → Ñ from 4.1(c) and

the projection Ñ → F� are LG-equivariant, and the fiber of pr over [1] ∈ F� is
the projection Yx → I+.

(b) Since the projection Yx → I+ and its pullback Yxw,r → I+
w,r are affine and

finitely presented (by Lemma 3.4(c)), all assertions follows from Example 1.5

and the statement and the proof of (a).
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(c) It follows from [BKV, Theorem 4.3.3], that (Ñt,w,r)red is a scheme, locally

finitely presented over tw,r. Since tw,r is placid (compare Notation 3.5), we

conclude that (Ñt,w,r)red is a placid scheme by 1.2(a). Next, using identifications

(4.1)
Ñt,w,r � tw,r ×[LG\Nw,r] [LG\Ñw,r] and

Stxt,w,r � tw,r ×[LG\Nw,r] [LG\ Stxw,r],

we deduce from (b) that the projection prt : Stxt,w,r → Ñt,w,r is affine and finitely

presented. Therefore the remaining assertions follow from 1.7(a) and 1.2(a).

(d) By [BKV, Theorem 4.3.3], the quotient [Λw\(Ñt,w,r)red] is an algebraic

space, finitely presented over tw,r. Therefore it is placid by 1.2(a). Moreover,

we conclude from (c) that the projection [Λw\(Stxt,w,r)red] → [Λw\(Ñt,w,r)red]

is affine and finitely presented, which implies that [Λw\(Stxt,w,r)red] is a placid

algebraic space, finitely presented over tw,r.

Remark 4.3: By [BKV, Corollary 4.3.4(a)], there exists a subgroup of finite

index Λ′
w ⊂ Λw such that the quotient [Λ′

w\(Ñt,w,r)red] is a scheme finitely

presented over tw,r. Thus, using Lemma 4.2(c), one deduces that the quotient

[Λ′
w\(Stxt,w,r)red] is a scheme finitely presented over tw,r as well. In particular,

for the purpose of this work we could restrict ourselves to schemes instead of

algebraic spaces.

Notation 4.4: (a) Composing isomorphisms of Lemma 4.2(a) and Lemma 3.4(b),

we get an isomorphism [LG\ Stxw,r] � [I\Yxw,r] � [I(x)\I(x)+w,r].
(b) By (a), we have a natural projection

Stxt,w,r → Stxw,r → [LG\ Stxw,r] � [I(x)\I(x)+w,r].

Therefore we can consider the pullback b(x)+w,r|(Stxt,w,r)red
(see Notation 3.2(c)).

(c) For every γ̃ ∈ Stxw,r, we denote its image in [I(x)\I(x)+w,r] by [γ̃].

The following assertion is the main technical result of this work.

Proposition 4.5: We have an equality

dim((Stxt,w,r)red/tw,r) = 2δw,r + a+w,r − (b(x)+w,r|(Stxt,w,r)red
).

Before giving the proof of Proposition 4.5, we are going to explain how

Lusztig’s conjecture 0.8(b) for generic elements follows from it.
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Corollary 4.6: (a) There exists an open dense subscheme xtw,r ⊂ tw,r

such that the function γ �→ dimStxγ is constant on xtw,r, and for every

γ ∈ xtw,r and γ̃ ∈ Stxγ we have an equality

dimγ̃ St
x
γ = 2δw,r + a+w,r − b(x)+w,r([γ̃]).

(b) If [w, r] is minimal and π(x) = [w, r], then for every γ ∈ xtw,r, the fiber

Stxγ is non-empty and equidimensional of dimension 2δw,r.

Proof. (a) Recall that the projection f : [Λw\(Stxt,w,r)red] → tw,r is finitely pre-

sented by Lemma 4.2(d), and let xtw,r ⊂ tw,r be the largest open dense subset

satisfying the condition of Lemma 2.6(c) for f . For every γ̃ ∈ Stxγ , let γ̃
′ be the

projection of γ̃ to [Λw\(Stxt,w,r)red].
Then we have a sequence of equalities

dimγ̃ St
x
γ = dimγ̃′ f−1(γ) = dimf (γ̃

′)

= dim((Stxt,w,r)red/tw,r)(γ̃)

= 2δw,r + a+w,r − b(x)+w,r([γ̃]),

where

• the first equality follows from the identification [Λw\ Stxγ ] � f−1(γ)red;

• the second one follows from the assumption on xtw,r;

• the third equality is clear;

• the last one follows by Proposition 4.5.

(b) If π(x) = [w, r] is minimal, then a+w,r = 0 (by Remark 3.6) and b(x)+w,r = 0

(by Lemma 3.4(a)). In this case, assertion (a) implies that for every γ ∈ xtw,r,

the fiber Stxγ is either equidimensional of dimension 2δw,r or empty. Thus

it remains to show that each Stxγ is non-empty. Equivalently, in the nota-

tion of the proof of (a) it remains to show that for each γ ∈ xtw,r, the fiber

f−1(γ)red = [Λw\ Stxγ ] is non-empty.

Since tw,r is irreducible, it remains to show that dimγ̃′ f−1(γ) ≤ dimf (γ̃
′) for

every γ ∈ tw,r and γ̃′ ∈ f−1(γ) (by Lemma 2.6(a),(d)). Arguing as in (a), it

suffices to show that

dimγ̃ St
x
γ ≤ dim((Stxt,w,r)red/tw,r)(γ̃).

But this follows from the fact that the RHS equals 2δw,r by Proposition 4.5,

and the LHS is at most dimStγ = 2δw,r.
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Notation 4.7: (a) Let xtw,r ⊂ tw,r be the largest open subscheme satisfying

the property of Corollary 4.6(a). Since the map Lχ : tw,r → cw,r is finite étale

(see [BKV, 3.3.4(c)]), the image

xcw,r := Lχ(xtw,r)
is an open dense subscheme of cw,r.

(b) We set

xNw,r := Lχ−1(xcw,r) ⊂ Nw,r.

Corollary 4.8: (a) For every γ ∈ xNw,r and γ̃ ∈ Stxγ we have an equality

dimγ̃ St
x
γ = 2δw,r + a+w,r − b(x)+w,r([γ̃]).

(b) If [w, r] is minimal, and π(x) = [w, r], then the fiber Stxγ is non-empty

and equidimensional of dimension 2δw,r.

Proof. By construction, for every γ ∈ xNw,r there exists γ′ ∈ xtw,r such that

Lχ(γ′) = Lχ(γ).
Thus there exists g ∈ LG such that Adg(γ) = γ′. Then g induces an isomor-

phism g : Stxγ
∼→ Stxγ′ , thus dimγ̃ St

x
γ = dimg(γ̃) St

x
γ′ . Since [g(γ̃)] = [γ̃] (see No-

tation 4.4) and the corresponding assertions for Stxγ′ were shown in Corollary 4.6,

the assertion for Stxγ follows.

As a particular case, we deduce Lusztig’s conjecture 0.8(b) for generic ele-

ments.

Theorem 4.9: Assume that the class [w, r] ∈ P is minimal. Then for every

γ ∈ xNw,r, the fiber Stxγ satisfies:

• dimStxγ = 2δw,r, if π(x) = [w, r].

• dimStxγ < 2δw,r, if π(x) �= [w, r].

Proof. Since [w, r] is minimal, we have a+w,r=0 (see Remark 3.6). If π(x) �=[w, r],

we have b(x)+w,r > 0 (by Lemma 3.4(a)). Then Corollary 4.8(a) implies that

dimγ̃ St
x
γ < 2δw,r for every γ̃ ∈ Stxγ , thus dimStxγ < 2δw,r. The assertion for

π(x) = [w, r] follows from Corollary 4.8(b).

For completeness, we now deduce Lusztig’s conjectures 0.8(c),(d) from The-

orem 4.9.
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Corollary 4.10: (a) For every w ∈ Wfin, the preimage π−1([w]) is non-

empty.

(b) Moreover, if G is semisimple, then π−1([w]) if finite if and only if w is

elliptic.

Proof. Choose the unique function r : R → Q>0 such that the GKM pair

(w, r) is minimal (see 0.6(c)). Then, by Theorem 3.8, we have an equal-

ity π−1([w]) = π−1([w, r]). Next we recall that the GKM stratum cw,r is irre-

ducible (see [BKV, 3.3.4]), and choose a geometric point γ ∈ Nw,r whose image

Lχ(γ) ∈ cw,r is supported at a generic point. Then γ ∈ xNw,r for every x ∈W .

Since Stγ is equidimensional of dimension 2δw,r, it follows from Theorem 4.9

that the preimage π−1([w]) = π−1([w, r]) consists of all x ∈ W such that Stxγ
contains a generic point (of some irreducible component) of Stγ . From this both

assertions follow:

(a) Let γ̃ ∈ Stγ be a generic point of Stγ . Then γ̃ ∈ Stxγ for some x ∈ W ,

which by the observation above implies that x ∈ π−1([w]).

(b) Let now G be semisimple, and assume that w is elliptic. Then the affine

Springer fiber F�γ , and hence also the affine Steinberg fiber Stγ = F�γ × F�γ
has finitely many generic points, which implies that π−1([w]) is finite.

Assume now that w is not elliptic, thus Λw �= 0. Choose a generic point

γ̃ = (γ, g1, g2) ∈ Stγ of Stγ . Then for every λ ∈ Λw, the translate

γ̃λ := (1, λ)(γ̃) = (γ, g1, λg2)

is a generic point of Stγ as well, and γ̃λ ∈ Stxλ

γ , where xλ is the class

[g−1
1 λg2] ∈ I\LG/I =W.

Thus the assertion follows from the observation that the set {xλ}λ∈Λw ⊂ W is

infinite.

5. Proof of Proposition 4.5

5.1. By the additivity of the dimension function (see 2.4(a)), it suffices to show

equalities

(5.1) dim((Ñt,w,r)red/tw,r) = δw,r

and

(5.2) dim((Stxt,w,r)red/(Ñt,w,r)red) = δw,r + a+w,r − (b(x)+w,r|(Stxt,w,r)red
).
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Applying Lemma 2.6(b) to the projection f : [Λw\(Ñt,w,r)red] → tw,r, equal-

ity (5.1) will follow if we show that f is open, and all the fibers of f are equidi-

mensional of dimension δw,r. While the first assertion was proved in [BKV,

Corollary 4.3.4(c)] (compare the proof of Proposition 6.3 below), the second

one follows from the fact that for every γ ∈ tw,r we have

f−1(γ)red � [F�γ/Λw]

and the formula in [B] for the dimension of affine Springer fibers.

5.2. To show equality (5.2), notice that we have a Cartesian diagram

(5.3)

Stxt,w,r
ψ′′

w,r−−−−→ [LG\ Stxw,r] ∼−−−−→ [I\Yxw,r] ∼−−−−→ [I(x)\I(x)+w,r]
prt

⏐⏐� [pr]

⏐⏐� px
⏐⏐�

⏐⏐�
Ñt,w,r

ψ′
w,r−−−−→ [LG\Ñw,r]

∼−−−−→ [I\I+
w,r] [I\I+

w,r],

where the middle horizontal isomorphisms are those of Lemma 4.2(a), and the

right top horizontal isomorphism is that of Lemma 3.4(b). Using Lemma 3.7,

we therefore conclude that

(5.4) dim[pr] = dimpx = δw,r + a+w,r − b(x)+w,r.

5.3. Consider the commutative diagram

(5.5)

(Stxt,w,r)red
ψ′′

w,r,red−−−−−→ [LG\ Stxw,r]red
prt,red

⏐⏐� [pr]red

⏐⏐�
(Ñt,w,r)red

ψ′
w,r,red−−−−−→ [LG\Ñw,r]red⏐⏐�

⏐⏐�
tw,r

ψw,r−−−−→ [LG\Nw,r]red.

Combining (5.4) with 2.4(b), it suffices to show the equality

dimprt,red
= (ψ′′

w,r,red)
∗(dim[pr]red

).
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5.4. By [BKV, Corollary 4.1.12], the projection ψw,r : tw,r → [LG\Nw,r]red is

a placid atlas. Since tw,r is reduced, it follows from identification

(Xred ×Yred
Zred)red � (X ×Y Z)red

(see [BKV, 1.4.1(e)]), identities (4.1) and [BKV, Lemma 1.4.4] that the bottom

inner square and the exterior square of (5.5) are Cartesian. Therefore the

top inner square of (5.5) is Cartesian as well. Hence the pullbacks ψ′
w,r,red

and ψ′′
w,r,red of ψw,r are placid atlases as well, thus the assertion of 5.3 follows

from the definition of the dimension function in 2.2(c).

6. Flatness conjecture

Conjecture 6.1: For every x ∈ W and [w, r] ∈ P, we have either I(x)+w,r = ∅,
or the projection I(x)+w,r → cw,r is faithfully flat.

Example 6.2: Note that the projection I+ → L+(c) is flat (see [BKV, Corollary

3.4.8]), and it is known to be surjective at least when the characteristic of k is

sufficiently large. Therefore Conjecture 6.1 holds for x = 1. Moreover, in this

case, I(x)+w,r �= ∅ for all [w, r] ∈ P.

The following result shows that Conjecture 6.1 implies the full Lusztig con-

jecture 0.8(b).

Proposition 6.3: Assume that Conjecture 6.1 holds for a triple (x,w, r).

(a) Then for every γ ∈ Nw,r and γ̃ ∈ Stxγ , we have

dimγ̃ St
x
γ = 2δw,r + a+w,r − b(x)+w,r([γ̃]).

(b) Assume that [w, r] ∈ P is minimal. Then for every γ ∈ Nw,r, we have

dimStxγ = 2δw,r, if π(x) = [w, r]; and dimStxγ < 2δw,r, if π(x) �= [w, r].

Proof. As in Theorem 4.9, assertion (b) follows from (a). So it remains to show

assertion (a). If I(x)+w,r is empty, we get

[LG\ Stxw,r] � [I(x)\I(x)+w,r] = ∅
(see Notation 4.4(a)), hence Stxt,w,r is empty. Assume from now on that

I(x)+w,r → cw,r

is faithfully flat.
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Using Lemma 2.6(b), and arguing as in Corollary 4.6(a) and Corollary 4.8(a),

it suffices to show that the projection [Λw\(Stxt,w,r)red] → tw,r or, equivalently,

projection p : (Stxt,w,r)red → tw,r is open and surjective.

To prove the assertion, we basically repeat the argument of [BKV, Proposition

4.3.1]. Since this proof uses a lot of terminology, which was not discussed in

this work, we provide a direct argument instead.

Choose a GKM pair (w, r) in the class [w, r], and let Ww,r ⊂ Wfin be the

stabilizer of (w, r). Then Ww,r acts freely on tw,r and induces an isomorphism

[Ww,r\tw,r] � cw,r

(see [BKV, 3.3.4(d)]). Moreover, the projection tw,r → [LG\Nw,r] is Ww,r-

invariant. Therefore the projection p is Ww,r-equivariant, so it suffices to show

that the composition p : (Stxt,w,r)red
p→ tw,r → cw,r is universally open and

surjective.

Consider commutative diagram

(6.1)

X (2)−−−−→ (Stt,w,r)red
p−−−−→ cw,r

(4)

⏐⏐� (3)

⏐⏐�
∥∥∥

I(x)+w,r,red
(1)−−−−→ [I(x)\I(x)+w,r]red −−−−→ cw,r,

where the left square is Cartesian, morphism (1) is the projection, and mor-

phism (3) is induced by the top horizontal arrow of (5.3).

As mentioned in 5.4, the map (3) is a placid atlas. Therefore it is surjective,

so surjectivity of p follows from that of I(x)+w,r,red → cw,r.

Next, since p is locally finitely presented, in order to show that it is universally

open, it suffices to show that generalizations lift along every base change of p

(see [Stacks, Tag 01U1]).

Since (2) is a pullback of (1), it is an I(x)-torsor. In particular, X is a

scheme, and the map (2) is surjective. Thus, using the commutativity of (6.1),

it suffices to show that generalizations lift along every base change of maps (4)

and I(x)+w,r,red → cw,r.

Since (4) is a pullback of (3), it is smooth. Thus (4) is flat, so both assertions

follow from the fact that generalizations lift along flat morphisms of schemes

(see [Stacks, Tag 03HV]).
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