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The Leaky Competing Accumulator model (LCA) of Usher and McClelland is able

to simulate the time course of perceptual decision making between an arbitrary

number of stimuli. Reaction times, such as saccadic latencies, produce a typical

distribution that is skewed toward longer latencies and accumulator models have

shown excellent fit to these distributions. We propose a new implementation called

the Spatial Leaky Competing Accumulator (SLCA), which can be used to predict the

timing of subsequent fixation durations during a visual task. SLCA uses a pre-existing

saliency map as input and represents accumulation neurons as a two-dimensional

grid to generate predictions in visual space. The SLCA builds on several biologically

motivated parameters: leakage, recurrent self-excitation, randomness and non-linearity,

and we also test two implementations of lateral inhibition. A global lateral inhibition, as

implemented in the original model of Usher and McClelland, is applied to all competing

neurons, while a local implementation allows only inhibition of immediate neighbors. We

trained and compared versions of the SLCA with both global and local lateral inhibition

with use of a genetic algorithm, and compared their performance in simulating human

fixation latency distribution in a foraging task. Although both implementations were able

to produce a positively skewed latency distribution, only the local SLCA was able to

match the human data distribution from the foraging task. Our model is discussed for its

potential in models of salience and priority, and its benefits as compared to other models

like the Leaky integrate and fire network.

Keywords: information accumulation, fixations latency distribution, visual search, reaction time, saliency map,

lateral inhibition

INTRODUCTION

We are able to process incoming sensory information rather quickly and efficiently despite limited
processing resources available in the brain and the high energy costs of neuronal computations
(Lennie, 2003). Given the need to allocate energy for various task demands, attention is commonly
described as a system that can select a subset of available sensory information for further processing.
In visual attention, selection is often likened to a moving spotlight across the visual field in order
to highlight the regions that are most distinguishable and relevant for the task (Carrasco, 2011).
In this model, a relatively small region of the entire visual field can be selected and hence attended
at any moment, and would result in a boost of perceptual processing in the selected area. Shifts
of attention can be driven by bottom-up or top-down factors. The latter follow the task goal and
volitional control, while bottom-up factors are task-independent and are determined by objective
physical characteristics of the stimulus (Posner, 1980).
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Models of bottom-up attention can be used to predict where
humans will look in tasks like free examination of a scene or
visual search (with some limitations, as the scope of top-down
influence may vary a lot depending on the nature of the stimuli).
The algorithms at the heart of these models are often based on the
idea that attention can be captured by the physical characteristics
of the retinal input. In general, objects most different from their
surroundings are considered the most salient. These models
are consistent with the feature integration theory of attention
in that saliency can be computed pre-attentively for different
features (Treisman and Gelade, 1980). At the early pre-attentive
stage, elementary perceptual properties (shape, color, brightness
et al.) of a stimulus are perceived in parallel and encoded into
separate feature maps. The attentive stage is for normalizing and
integrating the feature maps into a higher-level representation—
a saliency map. This map corresponds to the spatial dimensions
of the initial visual field and encodes the overall saliency of that
region. The saliency map provides a representation of the visual
field, where the most conspicuous locations are emphasized.

There are multiple candidate areas for locus of a saliency
map in the brain. Zhaoping et al. argued that neurons of the
primary visual area (V1) respond to basic low-level features
of the image and constitute a saliency map, basing this
assumption on psychophysical tests (Zhaoping and May, 2007)
and neuroimaging recordings (Zhang et al., 2012). For Gottlieb
(2007), a salience representation of the incoming image in
monkeys is best matched by the lateral intraparietal area (LIP)
with the most analogous brain area in humans being intraparietal
sulcus (IPS) (Van Essen et al., 2001). Some authors argue that the
concept of saliency map might be biologically invalid (Fecteau
and Munoz, 2006), since top-down modulations interfere with
bottom-up visual processing at all intermediate and higher levels
of the visual system (such as LIP, FEF, and SC). They suggested
a brain representation of the attentional map as a priority rather
than a saliency map. A priority map emphasizes that allocating
spatial attention is based on both bottom-up saliency and top-
down goal-related prioritization of the information (Fecteau and
Munoz, 2006; Bisley and Mirpour, 2019).

Although originally focused on bottom-up processing, more
recent saliency models have extended the idea to include top-
down attention. Feature biasing, for example, has been used to
assign weights to feature maps when building a saliency map.
This can be implemented through supervised learning (Borji
et al., 2012) or with use of eye movements recordings (Zhao
and Koch, 2011; also see Itti and Borji, 2013 for a review).
Alternatively, spatial biasing could favor certain locations that
are important for scene context (Torralba et al., 2006; Peters
and Itti, 2007). Another class of models operates on objects
rather than feature salience, and requires an object recognition
component (see Krasovskaya andMacInnes, 2019 for review). An
example is the object-based visual attention model of Sun and
Fisher (2003) which includes competition between objects, their
grouping and consequent hierarchical attention shifts with use of
top-down modulations.

The most interesting examples of saliency models, from a
cognitive neuroscience perspective, include a strong theoretical
basis along with neurally plausible computational approaches.

For example, gaussian pyramids are used to reflect center-
surround receptive fields in the primary visual cortex, and
also show a good fit to human data for spatial localization
of salient stimuli (Merzon et al., 2020). However, according
to MIT/Tuebingin Saliency Benchmark (Bylinskii et al., 2018),
classical implementations of saliency models are inferior to
novel approaches, such as deep neural networks (Kümmerer
et al., 2017; Jia and Bruce, 2020) that turn the problem
into one of spatial classification. Nevertheless, biological
plausibility of saliency models provides good interpretability and
theoretical value.

Another advantage of saliency models is that some
implementations (e.g., Walther and Koch, 2006) have the
capability to predict temporal dynamics of gaze responses.
In general, modeling attentional shifts at the computational
level can be tested in a variety of ways including their spatial
and temporal components. Spatial models predict where we
allocate attention, and their performance is often measured with
overt attention, i.e., locations of gaze fixations and tested using
established metrics like Accuracy Under Curve or AUC-Judd
(Judd et al., 2009). Models that include temporal predictions are
less common and may predict the order of these eye movements
(a scanpath) and/or their latency distribution. Although early
salience models were able to predict fixation latencies (Walther
and Koch, 2006), the classical saliency model was shown to
have serious limitations in simulating the temporal dynamics of
human data (Merzon et al., 2020). At the same time, alternative
deep learning-based approaches usually focus on the spatial
component alone, and very few of these models address the
temporal aspect at all.

Other alternatives have been recently introduced that have
adapted Bayesian or diffusion techniques to generate fixations in
both space and time. For example, Ratcliff (2018) implemented
a spatial version of the drift diffusion model. The Spatially
Continuous Diffusion Model (SCDM) allowed input from a 2-
dimensional plane and predicted decision responses when a
location on a planar threshold was reached allowing spatial-
temporal prediction from touch or eyemovement responses. This
model was not tested specifically on salience map input, though
the planar input used would likely allow this use case.

Additionally, the model LATEST (Tatler et al., 2017)
implements a Bayesian decision process to model each fixation
as a stay vs go competition to predict fixation latencies and
locations. Temporally, the Bayesian process is shown to be an
excellent fit to human fixation latencies. Spatially, the model
calculated pixel-wise decisions based in part on maps derived
from image salience, but also include a map of semantic
importance as defined by human rating. Fixations were planned
in parallel over the full image using decision maps (as opposed
to salience or priority maps) and tended to choose fixations that
landed within the high salience areas (Judd et al., 2012).

Computational saliency models can be conceptualized as
sequential modules consisting of processing units likened to
neuronal populations. At the first stage basic physical properties
of visual stimuli are encoded in feature maps, which are further
normalized and aggregated into a single saliency or priority map.
While many saliency models stop at these spatial predictions,
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an additional temporal level of the model might generate shifts
of attention in a winner-take-all (WTA) fashion: first, the most
salient location is attended, with subsequent fixations steered
toward novel locations with an inhibitory mechanism like
inhibition of return (Posner, 1980). This allocation of attention to
each fixational point at the temporal layer could be implemented
via a spiking neuron model (Trappenberg et al., 2001; Adeli
et al., 2017). Processing units imitate neuronal populations
which build up electrical potential and fire when exceeding a
certain threshold.

However, many current saliency models have focused on
predicting spatial fixations and not retained the ability to imitate
spiking processes and predict temporal information. Although
the classical saliency model is able to generate a fixation latency
distribution, it does not show a good fit to human data (Merzon
et al., 2020). We believe there is a gap in the current literature for
an alternative mechanism of fixation selection that works with
existing saliency map spatial localization.

One candidate to implement a spatial saliency map is the
Leaky competing accumulator (LCA; Usher and McClelland,
2001). The Leaky Competing Accumulator has a two-layered
structure: the first layer consists of multiple (usually two) visual
input stimuli, and the second computational layer includes a
range of neuron-like processing units. Each processing unit
corresponds to a single input element. Over time, the processing
units accumulate information from the input layer, i.e., gradually
increase their values over time. When the value of some unit
exceeds a threshold, a decision is made and the corresponding
input is considered selected. Thus, human fixation latency
is simulated as the amount of time it took the model to
decide about the next fixation. In comparison with related
accumulator models (Ratcliff et al., 2007; Brown and Heathcote,
2008; Ratcliff and McKoon, 2008), the LCA includes a range
of additional parameters: information leakage, recurrent self-
excitation, randomness, and lateral inhibition. Each of the
parameters is well-justified from a biological point of view, and
we briefly describe below the psychophysiological phenomena
imitated by the model parameters.

Neural currents can be characterized in terms of their passive
decay over time. This decay has exponential properties and
results in a partial loss, or leakage of information from visual
input (Abbott, 1991). The LCA model implements this decay,
which leads to a slower increase in the unit values and also filters
out weak stimulations that produce insufficient excitation and
vanish with decay over time. A second important mechanism,
which counteracts and balances such decay, is recurrent self-
excitation. This allows neural units to maintain their activity
over time and decrease the rate of information leakage (Amit,
1989). Self-excitation is implemented in the model as bottom-up
excitatory input to all accumulator units.

Thirdly, LCA incorporates lateral inhibition as a mechanism
for neural competition. Although axonal projections from one
brain region to others are overwhelmingly excitatory, within
a single brain area there are both excitatory and inhibitory
interactions (Chelazzi et al., 1993). Lateral inhibition accounts
for each active neuron inhibiting adjacent neurons to it in a
lateral direction. In the original LCA, the value of each processing

unit is decreased by a sum of all others’ values at every time
moment. Thus, self-excitation and lateral inhibition balance each
other with units multiplied by their own scaled values from
the previous time moment and simultaneously decreased by the
values of others.

PROPOSAL

We propose a model of allocating attention as a series of
spatio-temporal decisions about where to make the next saccade.
The suggested model belongs to the family of information
accumulators that represent perceptual decision making as a
stochastic process that is gradually evolving over time (Smith,
1995; Usher and McClelland, 2001; Brown and Heathcote, 2008;
Ratcliff andMcKoon, 2008). Thesemodels are extremely accurate
in reproducing temporal response distributions (MacInnes,
2017) and can also model neural accumulation in areas like the
superior colliculus (Ratcliff et al., 2007).

Specifically, our model is based on the Leaky Competing
Accumulator (the LCA; Usher and McClelland, 2001) for
calculating information accumulation.

Lateral inhibition is a key mechanism allowing multiple
inputs to the LCA model (Usher and McClelland, 2001), but
one challenge for adopting an accumulator model to simulate
a salience map construction is that traditional algorithms most
often select between only two abstract alternatives. Practically,
neural competition between multiple alternatives can be imitated
by feed-forward inhibition with each input unit sending a
positive signal to a corresponding accumulator unit and similar
negative values to all others (Heuer, 1987). However, with
the increasing number of alternatives, all neurons except the
most active would receive excess inhibition, drop below zero
quickly and hence fail to compete. Thus, accurate modeling
becomes challenging. While race models can also be extended
to multiple competing alternatives, each random accumulator
added shifts the response distribution to an earlier bias (Wolfe
and Gray, 2007). Lateral inhibition, however, may allow for
accurate modeling of this neuronal competitive interplay. All
inputs to processing units would be excitatory, and the value
of inhibition would not need to be as drastic as that of feed-
forward. The most active accumulator unit could inhibit the
others significantly but gradually and would not result in negative
activation after the first iteration. However, in the original LCA
model, each neuronal unit sends inhibitory signals to all others,
which is not entirely biologically plausible, especially as we
consider neurons on a spatial salience map.

We suggest an implementation of LCA that uses a saliency
map as an input and operates in both temporal and spatial
domains, generating fixation coordinates over time. Thus, the
leaky competing accumulator becomes a spatial leaky competing
accumulator (SLCA). The number of internal processing units
corresponds to the size of the input saliency map, and each
of these units represent a corresponding neuronal population.
Although these salience maps often describe their size in terms
of “pixels,” we will only use the term in the abstract sense of a
population’s receptive field.
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FIGURE 1 | SLCA model architecture. We use EML-Net to produce the

salience maps, which are then used as input to our model.

We further propose an alternative implementation of lateral
inhibition in LCA, so that each neuron-like unit could influence
only its immediate neighbors. In this light, a key advantage of our
SLCA would be its mechanism of lateral inhibition, allowing the
model to simulate the neuronal competition in visual pathways.
Each processing unit would accumulate information over time,
and only the first unit to achieve a threshold fires at the moment.
Neuron-like elements are thus competing for limited brain
attention resources, and their competition is driven by a range
of physiologically accurate mechanisms.

SLCA Model Architecture
Our model shares the two-layer network structure and the base
algorithm for the update of unit values with the original LCA
model. Please see the full model architecture on Figure 1.

The first layer includes the external input to the model. Our
SLCA model does not work directly with image or retinal input,
but uses salience/priority map as input. As such, we used an off
the shelf implementation of EML-Net to provide the salience
maps from the images for our training and testing procedures.
The original LCA model operates with several input choice
alternatives but without consideration for the spatial proximity
of those choices. In our case, a fundamental consideration was
that the input would be a two-dimensional salience or priority
map, so spatial proximity was added.

The second layer is the same for SLCA and LCA and it
consists of accumulator units which are roughly analogous to
neural activation clusters processing information about different
alternatives. Finally, a winner-take-all selection mechanism was
implemented to act iteratively on this layer. Many models use
Inhibition of return (IOR) to reduce the likelihood of refixating
salient locations but we chose not to implement this mechanism
at this time since the previous simple mechanisms implemented
may not match the two forms that are proposed to exist (Redden
et al., 2021). In terms of processing mechanisms, LCA and our
SLCA are quite similar. Much of the description below applies to
both models but we highlight where key differences occur.

Accumulator units can be characterized in terms of their
input and output values. Input values correspond to the neural
population current, i.e., neural activation. The output values
stand for population firing rate, which is calculated with use of
a linear threshold function. This function can well-approximate
relations between the firing rate and the input current (Mason
and Larkman, 1990; Jagadeesh et al., 1992). The response is
triggered by the unit whose activation first reaches a threshold.
Thus, the time required for reaching this criterion value simulates
human RT before the next saccade.

Algorithm
The mechanism of information processing in both LCA and our
SLCA models is implemented in the dynamic behavior of the
units’ activations and their continuous interplay. The algorithm
describes how values of the accumulator units increase over
time until one of them reaches the threshold. The original LCA
model used a constant threshold value, however, our temporal
predictions largely depend on the input saliency map values and
are sensitive to its changes. Models like the original salience map
(Itti and Koch, 2000) normalized the conspicuity maps prior to
the leaky integrate and fire layer. However, we achieved this result
with a dynamic threshold parameter that depends on the input
saliency map values, in the Equation (1).

T = T0 + m∗(S > 0.6) (1)

Here, T stands for the unit activation threshold, which is the sum
of two terms. T0 stands for the default threshold value, which is
independent from the saliencymap values. S stays for the saliency
map values, and m is the special saliency multiplication factor.
The larger m is, the more the resulting threshold value depends
on the saliency map.

In general, the model tends to behave as a charging capacitor
with an exponential approach. The formula for updating unit
values in the original LCAmodel is presented in the Equation (2).

dxi = [ρi − kxi − β
∑

j 6=i

xj]
∗ dt

t
+ f + Ei

√

dt

t
(2)

xi → (xi, 0)

j ∈ (0, n)

Here, dxi describes the change of the i-th accumulator unit

activation value for the time interval dt
t . This change is driven by

the external input ρi, the excitatory input xi and overall inhibition
β

∑

j 6=i xj. k stands for the overall net leakage. Ei stands for

Gaussian random noise, f –for offset. n is the total number of
accumulator units. In order to achieve biological plausibility, an
additional restriction is introduced in the model: if the activation
value of any accumulator unit has a value lower than 0, it should
be immediately truncated to 0.

The external feed-forward input ρi is a weighted sum of all
inputs of the first layer to the i-th accumulator unit. Greater
weight is assigned for the i-th input in comparison with all others.

Frontiers in Computer Science | www.frontiersin.org 4 May 2022 | Volume 4 | Article 866029

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Zemliak and MacInnes Spatial Leaky Competing Accumulator Model

Note that it is possible via simplifying assumption that all of
the input units have a zero value before stimuli presentation,
and after it these values change in accordance with stimuli
saliency values.

The k term stands for the overall net leakage, which
is the difference between the recurrent self-excitation and
information decay. The corresponding formula is presented in
the Equation (3).

k = λ a (3)

Here, a is a scaling factor for the recurrent self-excitation, while
λ represents information decay, or leakage of activation. They
function together as factors for excitatory input, and the resulting
k factor represents balance between self-excitation and leakage.
With k > 0 the system is stable and tends to zero activation
over time, whereas k < 0 allows for self-amplifying and hence
instability of the system.

The overall inhibition of a unit in the original LCA model
depends on the input from the other units. It is represented by
a sum of other units’ activations multiplied by a scaling term β .
Thus, during the accumulation process, each alternative sends
inhibiting signals to all others.

The original LCA model uses inputs abstracted in space, such
as several choice alternatives. Regardless of the number of inputs,
there is no sense of spatial proximity between units. It operates
only in the temporal domain, predicting each units’ activation
over time. In contrast, our proposed Spatial LCAmodel accounts
for data in two dimensions and predicts activation on this map
over time. We use a saliency map as an input to the model thus
extending the number of choice alternatives up to the number
of input units in the saliency map. The second layer of the
SLCA model consists of a 2-dimensional array of information
accumulation units. These units are likened to neural activation
clusters representing a spatial location.

One may consider a simple visual search task, with each
location on the saliency map represented by a single node
of the input level. The second level of the network includes
an equivalent number of units with each corresponding to a
certain location. Thus, the external feed-forward input becomes
a weighted sum of all inputs of the saliency map to the ij-th
accumulator unit. The entire model is a simulation of fixation
selection as perceptual decision making over a stimulus picture
for each time step.

A spatial implementation, however, raises an important
question of the degree to which neighboring neurons can
influence the rest of the grid. To this end, we implemented
two versions of the algorithm for SLCA values update with
the crucial difference being whether the lateral inhibition
parameter had global or local. The global version is analogous
to the original LCA algorithm, where each accumulator unit is
potentially inhibited by all others. We propose an alternative
local implementation of lateral inhibition where each unit
inhibits only its immediate neighbors. Thus, there are eight
inhibited neighbors for all non-borderline units. As for those
corresponding to units on the physical border of the saliency
map, the number of neighbors to inhibit varies from three

to five units. Equation (4) contains the resulting formula for
values update.

dxi = [ρi − kxi − β
∑

j 6=i

xj]
∗ dt

t
+ f + Ei

√

dt

t
(4)

xi → (xi, 0)

j ∈ (i ± 1, i± w, i± w± 1)

The Equation (4) shares the parameters dxi, ρi, k, xi, β , f , Ei,
dt
t

with the equation (2). Also, a new parameter w is introduced. It
stands for the width of the original stimulus image and is used to
identify the coordinates of neighboring units, which are further
used for calculating the local inhibition.

MATERIALS

Evaluating the model performance was accomplished by
comparing it with human data. We used data from a visual
foraging task using natural indoor scenes as stimuli. Forty six
participants had to search real photos of scenes for multiple
instances of either cups or pictures. These images were taken
from the LabelMe dataset (Russell et al., 2008), which provides
images of indoor and outdoor scenes. Data were collected
using an eye tracker EyeLink 1000+, with the sampling rate
1,000Hz. Fixation detection was set to a velocity threshold of
35 degrees per second. Fixations with RT < 100 and >750ms
were dropped as outliers. The dataset size after outliers’ exclusion
was 55,400 sample fixations. A detailed description of the data
collection process was provided in Merzon et al. (2020). The
data was collected with ethical approval from the HSE ethics
committee and conforms to the protocols listed in the declaration
of Helsinki.

All data was divided into a test and training set. The data from
36 randomly chosen participants were used for the optimization
procedure, and data from the remaining 10 participants were
used for testing. Each participant viewed 23 pictures, so the total
number of training samples was 828, and the number of test
samples was 230.

Saliency Map Input
The input to the SLCA was saliency maps generated from
the raw images used in the experiments described above. The
development of the algorithm for generating the saliency map
is out of scope of the paper, since there are a wide variety of
published solutions for generating salience maps from images
(Bylinskii et al., 2018) and our model is capable of working
with the data produced by any of these solutions. Predicting the
spatial locations of fixations using these solutions is well-tested
(Bylinskii et al., 2018) and the spatial accuracy of our SLCA
wouldmostly be determined by the approach used to generate the
salience map itself. For example, the top rated model for spatial
predictions at the time of writing was DeepGaze IIE (Linardos
et al., 2021) with an AUC-JUDD score of 0.8829 (as of Sept, 2021;
Bylinskii et al., 2018). For this reason, we focused on the temporal
predictions in this paper.
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FIGURE 2 | Example image with a heatmap for the reference, and resulting salience map. Our proposed SLCA accepts the salience map as input and is agnostic of

the algorithm used to produce that map.

To generate the saliency maps, we used the EML-NET model
(Jia and Bruce, 2020), which was pre-trained on the ImageNet
(Deng et al., 2009) dataset. It consists of 3.2million images in total
and is commonly used for various computer vision tasks. We
chose the EML-NET model for the saliency map generation due
to its excellent performance: it was ranked in third place in the
MIT/Tübingen Saliency Benchmark (as of Sept, 2021; Bylinskii
et al., 2018) by the AUC-Judd metric, and rated at 0.876.

The images from our dataset were fed into the pre-trained
EML-NET, which then generated the saliency maps. These
saliency maps were then used as an input to our SLCA model to
generate the final fixation latencies. See Figure 2 for the example
of the generated saliency map and the corresponding human
fixations heatmap. Each saliency map had a size of 120 × 68
pixels, or 8,160 pixels in total. Hence, the accumulator layer of
the model consists of 8,160 neuron-like units, each of which
processed information from the corresponding pixel of the input
saliency map.

METHODS

We tested two versions of the SLCA model—with the global and
local inhibition parameter—in their ability to simulate human
fixation latency in a visual search task. Both variants of the model
were able to produce a sequence of fixations with predictions
for both latency and location coordinates. Nonetheless, in this
work we focus on the temporal aspect only since the accuracy
of spatial predictions are largely influenced by the choice of
model used to generate the salience map. The models were
implemented in programming language Python 3 in an object-
oriented style with use of additional library numpy for efficient
mathematical calculations.

We also implemented a machine learning based genetic
algorithm (GA) in order to find the optimal set of SLCA
parameters for better model performance. The genetic algorithm
belongs to a family of evolutionary algorithms and is inspired
by the principles of evolution and natural selection (Mitchell,
1996). It is based on three biologically inspired computational
operators: mutation, crossover and selection. Each algorithm
iteration includes slightly modifying model parameters, running
the model with these parameters and evaluating fitness to
human data. Thus, the goal of optimization was to find
the set of parameters which could help to simulate the

human data more accurately. For evaluating fitness, we used
Kolmogorov-Smirnov statistic as a loss function. The KS test
was chosen because it has already proved its efficiency for
evolutionary algorithms (see Weber et al., 2006; MacInnes,
2017).

Firstly, both variants of the SLCA model were tested with
the default parameters. Then they were tested with the best
parameters sets found during the GA optimization procedure.
All data was divided into a training and testing set. Data of 36
participants was used for training, 10—for testing the models.

For the optimization process, 40 fixation latencies were
simulated for each of 23 images for each of 36 training
participants. They were gathered into a single set, as long as
the human fixation latencies for each image. Then 500 values
were then randomly sampled for 30 times from both human and
simulation datasets. To compare their distributions, we averaged
30 KS-statistic values for these samples. The same procedure was
applied for 10 test participants.

For evaluating fitness, we used Kolmogorov-Smirnov (KS)
statistic chosen because it already proved its efficiency for
evolutionary algorithms (see MacInnes, 2017). We used a two-
sampled KS implementation from the scipy library in Python 3,
which produces two values as an output: KS statistic and p-value.
Thus, we attempted to minimize the KS statistic.

We ran the GA algorithm for optimization at 100 iterations
(epochs).We initialized the LCAmodel with different parameters
set, evaluated the results of each iteration with use of the KS
statistic and subjected them to mutation, crossover and selection
operations of GA. Throughout these iterations we attempted to
optimize up to 7 parameters: (1) the leakage term λ; (2) self-
excitation a; (3) input strength of the feedforward weights ρij;
(4) standard deviation of random noise Ei; (5) lateral inhibition
β

∑

j 6=i xj; (6) cross talk of the feedforward weights; (7) the offset

f ; (8) the salience multiplier term for threshold change m. To

prevent overparameterization of the model, two parameters of

the SLCAmodel were fixed: (1) the time-step size t; (2) the default

activation threshold T0.

Other fixed parameters included: (1) 40 trials, (2) maximum
of 750 time steps during each trial, (3) 8,160 accumulator units
with respect to the input map size.

When 100 training epochs were completed, the two variants of
the SLCA model with best parameter sets found were estimated
on the test set.
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FIGURE 3 | (A) The KS-statistic is equal to 0.08 (p < 0.05) for local SLCA; (B) the KS-statistic is equal to 0.32 (p < 0.05) for global SLCA.

RESULTS

We compared the performance of the two SLCA model
variants with different implementations of the lateral inhibition
parameter: (1) the original global lateral inhibition by Usher
and McClelland (2001); (2) the proposed local lateral inhibition,
where each unit inhibits only its immediate neighbors.

The performance of both models was evaluated with use of
the two-sided Kolmogorov-Smirnov test: the data generated with
a given set of parameters was compared with real human data
from the visual search task. Each algorithm was run for each
of 23 images and 10 test participants, which is 23 ∗ 10 = 230
times in total. Both human and simulated data were gathered
into two big sets. Then 500 values were randomly sampled
for 30 times from both human and simulation datasets. To
compare their distributions, we averaged 30 KS-statistic values
for these samples. See Figure 3 for visualization of distributions
for best data simulated by a local SLCA (Figure 3A) and
a global SLCA (Figure 3B) models in comparison with the
human samples.

The typical human saccadic latency distribution can be
characterized by slight skewness toward longer latencies. The
SLCA with local inhibition was able to simulate the basic pattern
of this time-course, although it was not always able to capture
the slower responses of the distribution. The final parameter set
for local and global versions were tested against the human data
by running 30 iterations of model results and comparing them
against sampled human data. Comparisons used the KS test with
alpha set to 0.05. Over 30 iterations the model simulated data that
rejected the null hypothesis (human and model were different)
23 times. Thus, in 46% cases SLCA with local inhibition was able
to simulate the data reliably. As for the SLCA with the original
global inhibition, even with the best parameters set it was not
able to reject the null hypothesis that the model and simulated
data were from different distributions. The best KS value for data
generated by the SLCA with local inhibition was 0.08, whereas
the best KS value of the original version was 0.32. See Table 1

TABLE 1 | KS statistics for SLCA with global and local inhibition.

SLCA with local inhibition SLCA with global inhibition

Mean KS statistic 0.16 0.437

Min KS statistic 0.08 0.32

TABLE 2 | Best parameters found via optimization.

Model parameter SLCA with

local inhibition

SLCA with

global

inhibition

Time step size* 0.01 0.01

Default threshold* 5.0 5.0

Leakage 0.256 0.4

Competition (lateral inhibition) 1.379 0.024

Recurrent self-excitation 0.372 0.41

Input strength of feedforward weights 0.64 0.1

Cross-talk of feedforward weights 0.097 1.001

Offset 0.312 0.1

Standard deviation of noise 1.043 1.0

Saliency multiplication factor 4.654 0.178

*It marks the fixed parameters that were not subjects to optimization.

with the average and maximum KS statistic, for which the p
< 0.05.

Parameters
During the training/optimization procedure, two sets of
parameters were found: for the SLCA with local and global
inhibition. The optimization procedures were run for 100 epochs
each. Please see Table 2 for optimal parameter sets found.

The parameters marked with ∗ were fixed. The most
drastic differences can be observed in the following parameters:
competition, cross-talk of feedforward weights, and saliency
multiplication factor. The saliency multiplication factor defines
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the influence of the overall saliency of the image on the threshold.
The more salient regions the image has—the greater activation
threshold will be. Interestingly, the local SLCAmodel parameters
tend to have higher thresholds.

At the same time, the value of competition, which defines
the inhibition strength, was several times greater than in the
global SLCA. We can suggest the following explanation to this
fact: although each neuron was only inhibited by its immediate
neighbors, their inhibition strength should have been comparable
with the inhibition in the global SLCAmodel, where each neuron
was inhibited by all others. Thus, the inhibitory power of each
neuron should have been much greater in the SLCA model
to compensate.

The model could have alternatively evolved to smaller
excitation values, and we can partially observe this in cross-
talk of feed-forward weights. This parameter contributes to the
excitation, and it was greater in the global SLCA in comparison
with the local one. It should be noted that the genetic algorithms
were not guaranteed to converge to a global minimum, so the
parameters could have been evolved in other ways.

DISCUSSION

We proposed and implemented a two-dimensional version of
the leaky competing accumulator (LCA) model that allowed
for calculations based on neural proximity in an accumulation
grid. This Spatial LCA allowed us to modify the global lateral
inhibition parameter of the LCA so that only proximal neurons
in the network were inhibited. We also introduced a dynamic
threshold to the model, so that it could flexibly adjust to the
inputs of different image average saliency. This allowed us to train
and test the SLCAmodel on various images with various saliency
with no need to adjust the parameters to each of them separately.

Finally, we tested the SLCA as a potential replacement for
other spiking layers (like LIF) that are frequently used to generate
shifts of attention based on a salience map generated from input
images. We optimized two versions of the SLCA with global and
local lateral inhibition against human fixation data from a visual
foraging task.

Performance
The SLCAmodel with local lateral inhibition was able to generate
plausible distribution of fixation latencies across the various
images and participants. In contrast, the model using global
lateral inhibition was not able to match human latencies on
the full dataset. Lateral inhibition, as a mechanism, encourages
sensitivity to variability over uniformity in the visual field. Any
stimulation from a uniform visual field would equally suppress
neighboring regions and thus inhibit responses. Our SLCAmodel
with local lateral inhibition limited the interaction of spatial
neurons to only those most adjacent on the two-dimensional
grid. Although we use the term lateral in a literal, spatial sense,
it is interesting to note that lateral inhibition is also believed
to work in a more abstract sense to inhibit alternatives of non-
spatial modalities (Carpenter, 1997), and this may be closer to
the non-spatial implementation of the original LCA.

The model performance can be compared with other existing
solutions. For instance (Merzon et al., 2020) tested the LIF
algorithm used in Walther and Koch (2006) and showed that
the algorithm was only able to generate latency distributions
by using the inherent salience differences between the images
and was unable to produce any variation in responses given a
single image. This comparison holds extra validity, since Merzon
and colleagues applied the LIF model to data from the same
task as the current mode—reconstructing latency distribution for
visual search. Although there may be room for improvement in
our results, we would emphasize that by implementing neurons
with spatial proximity, we were able to use lateral inhibition
with limited, local scope. Although both versions of the lateral
inhibition—with the local and global scope—were able to learn
skewed distributions typical of human latencies, the local scope
consistently was a better fit for the human data.

Lateral inhibition plays a role in saccadic responses in the
intermediate layers of the superior colliculus (Munoz and Istvan,
1998), but may not need to be a component of modeling
saccadic behavior. For example, Ratcliff et al. (2011) did not
find evidence of inhibition in the SC, contrary to expectations.
Subsequently, recent spatial models have been shown to model
human temporal data without lateral inhibition (Ratcliff, 2018).
Ratcliff ’s Spatially Continuous Diffusion Model (SCDM) uses
a noise parameter added during accumulation over a spatial
continuum and decisions occurring when signal reaches a planar
threshold. This model was shown correctly simulate many
aspects of saccadic responses including reaction time distribution
and response angle to salient locations on a generated annulus.
Although SCDM was not tested with salience maps generated
from real images, many of the stimuli used contained salient
patches amidst noise and could be comparable to the current
SLCA results. Similar to our model, SCDM was not tested
on sequences of saccades as this would require a suppression
mechanism, like IOR, to prevent refixations on previously fixated
locations. A direct comparison of results between SCDM and
SLCA is not possible with the current data, but should be
possible in future work and could provide a theoretical test
on the utility of lateral inhibition. Another strong comparable
is the recent LATEST model using Bayesian stay/go decision
processes (Tatler et al., 2017). The LATEST model goes beyond
simple saccadic decisions, however, and includes the creation
of a full “decision map.” This map is built in LATEST using
bottom up image salience in addition to top down semantic
information produced by human judgements on those images.
A full comparison of all recent approaches is certainly warranted,
but would require a common dataset with semantic information
for the LATEST model.

Spatial Predictions
Although the SLCA model generates both spatial and temporal
predictions, we focused on the temporal aspect—in particular,
on the latency of fixations. Our model could be used as the
basis to achieve more accurate spatial predictions. First of all,
if fixations are allocated according to attention on the saliency
map we might implement a mechanism like inhibition of return
(IOR). IOR is believed to be a foraging facilitator and a low-level
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mechanism that could help reduce the likelihood of revisiting
previously attended locations (Klein and MacInnes, 1999; Bays
and Husain, 2012; MacInnes et al., 2014; but see Smith and
Henderson, 2011). This could provide insights on distributions
of fixation sequences, but also improve our understanding of
inhibition of return itself (Redden et al., 2021).

Bottom-Up and Top-Down Mechanisms
Our model used salience maps as the input layer to our SLCA
implementations, but it was truly agnostic to the algorithm used
to generate these maps. For example, we did not include any top-
down attentional modulations in the current implementation,
but our SLCA could easily fit as a layer on a priority map or
decision map instead. Although models of bottom-up salience
have produced valuable insights in visual processing, the idea
of a priority map with top-down influence is closer to what we
observe in human and primate biology (Fecteau and Munoz,
2006; Bisley and Goldberg, 2010). Bottom up saliency might
be enough for predicting distributions of fixation latency, but
locations and even order would certainly need various degrees
of top down and contextual information depending on the task.
When presented with real-life like scenes, the human visual
system obviously makes use of top-down information, perhaps
to an even greater degree than bottom up salience (Chen and
Zelinsky, 2006).

Introducing top-down processes into the SLCA model could
be understood as simply operating with a priority map rather
than a saliency map, which means moving upwards in visual
processing hierarchy and modeling feedback connections from
higher structures, such as LIP or FEF. This would be similar to
the approach taken by LATEST (Tatler et al., 2017) who used
maps created from human judgements as a proxy for areas of
semantic importance. The problem is that incorporation of top-
down attention modulators would be task and scene specific and
require pre-training in order to adapt a model to a particular
situation, i.e., to train it for recognizing specific objects, patterns
or locations. On the contrary, bottom-up saliency models do not
require specific training and are able to operate with any kind
of input, hence are more versatile and need no tuning for a
particular task.

Behavioral and Neuronal Data
Another promising area for further research would be testing
how well the SLCA could fit not only behavioral, but also
neuronal data. Numerous accumulator models are based on
biological principles and have been shown to match neural
processing of the perceptual decision making in various brain
areas, i.e., superior colliculus (Ratcliff et al., 2003, 2007). As soon
as the SLCA is capable of simulating human behavioral data
accurately, it could also be tested in predicting neural responses
in brain areas involved in visual processing at the level of the
saliency or the priority mapping, such as V1, SC, LIP, and
FEF (Fecteau and Munoz, 2006; Gottlieb, 2007; Zhang et al.,
2012).
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