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1. Introduction

Let G be a complex reductive group and M its symplectic representation
of a form N⊕N∗. (N will be fixed hereafter.) In [Nak16, Part II] we gave
a mathematically rigorous definition of the Coulomb branch of a 3d N = 4
gauge theory associated with (G,M) as follows. We introduce an infinite
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dimensional variety R = RG,N (the variety of triples), and define a convo-
lution product on its GO = G[[z]]-equivariant homology HGO

∗ (R), which is
commutative. Then we define the Coulomb branchMC ≡MC(G,N) as the
spectrum of HGO

∗ (R). It is an affine algebraic variety.
Suppose that we have a flavor symmetry, i.e. N is a representation of

a larger group G̃ containing G as a normal subgroup. We further assume
GF := G̃/G is a torus. Then we can consider the Coulomb branchMC(G̃,N)
for the larger group G̃. We showed that the originalMC(G,N) is the Hamil-
tonian reduction MC(G̃,N)///G∨

F of MC(G̃,N) by the dual torus G∨
F , see

[Part II, Proposition 3.18]. See [Nak16, §5] for a motivation of this state-
ment, and references in physics literature. SinceMC(G,N) is a hamiltonian
reduction by a torus, one can take the reduction at a different value of the
moment map, or can consider a GIT quotientMκ

C(G,N) with respect to a
stability condition, which is a character κ : G∨

F → C×. The former gives a
deformation ofMC(G,N) parametrized by SpecH∗

GF
(pt). The latter gives

a quasi-projective varietyMκ

C(G,N) equipped with a projective morphism
π :Mκ

C(G,N)→MC(G,N). This is birational. See Remark 1.1 below.
We could understand this construction as follows. (See [Part II, §3(ix)].)

Let us denote the variety of triples for the larger group (G̃,N) by R̃. Let π̃
be the natural projection R̃ → GrGF

. We identify GrGF
with the coweight

lattice of GF , which is the weight lattice of G∨
F . For a coweight κ of GF , the

inverse image π−1(κ) is denoted by R̃κ. (In [Part II, §3(ix)] a coweight was
denoted by λF .) Note that R̃0 is nothing but the original variety of triples
R. The convolution product defines a multiplication

HGO
∗ (R̃κ)⊗C HGO

∗ (R̃κ
′

)→ HGO
∗ (R̃κ+κ

′

).

In particular HGO
∗ (R̃κ) is an HGO

∗ (R)-module, hence defines a sheaf on
MC(G,N) = Spec(HGO

∗ (R)). We only take coweights in Z≥0κ for a fixed
κ, and consider Proj(

⊕
n≥0H

GO
∗ (R̃nκ)). This is nothing but the GIT quo-

tient Mκ

C(G,N). It is a quasi projective variety, equipped with a natural
projective morphism π : Mκ

C(G,N)→MC(G,N). We have HGO
∗ (R̃κ) =

Γ(MC(G,N),π∗OMκ

C (G,N)(1)).
In this paper, we study Mκ

C(G,N) for a framed quiver gauge theory
of type ADE or affine A. The original Coulomb branch MC(G,N) was
identified with a generalized slice in the affine Grassmannian [Quiver], and
a Cherkis bow variety [NT17] respectively. In both cases the variety has a
natural partial resolution (actual resolution for type A or affine type A),
and we identify it with the GIT quotient.
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The paper is organized as follows. In §2 we show that the multiplication
on
⊕

HGO
∗ (R̃nκ) is equal to one given by the tensor product of line bundles

for a framed quiver gauge theory of type A1. This case was studied in detail
in [Ring, §4(i)]∼[Ring, §4(iii)], and this section is its supplement. In §3 we
show that the determinant line bundle on the Hilbert scheme of points in A2

arises in our construction. In §4 we study the Coulomb branch of a framed
quiver gauge theory of affine type A and identify our construction of a partial
resolution with a bow variety with an appropriate stability condition. In
§5 we study the Coulomb branch of a framed quiver gauge theory of type
ADE and identify our construction of a partial resolution with a convolution
diagram over a generalized slice in the affine Grassmannian.

Remark 1.1. Let us show that π is birational. By [Part II, §5(iv)] we can
replace the representationN by 0. Thus we need to compareMC(G̃, 0)///κG

∨
F

andMC(G, 0). Note that we have a finite covering G′
F of GF such that the

corresponding covering of G̃ becomes the product G×G′
F . Moreover we can

replace κ by its positive power, hence we may assume it lifts to G′
F . Then we

getMC(G×GF , 0)///κG
∨
F =MC(G, 0)×MC(GF , 0)///κG

∨
F , which is obvi-

ouslyMC(G, 0).

Notation

We basically follow the notation in [Part II], [Quiver] and [Ring].
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2. Multiplication morphism

This section is a supplement to [Ring, §4(i)]∼[Ring, §4(iii)].
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Let N be an integer greater than 1. Let SN denote the hypersurface
ZY = WN in A3, π : S̃N → SN its minimal resolution, and S◦N := SN \ {0}.
We change z, y, w to capital letters to avoid a confusion later. A weight λ
of SL(N) defines a line bundle Lλ over S̃N . Let Fλ denote the torsion free
sheaf π∗Lλ on SN for dominant λ. (To be consistent with other parts of this
paper, we should denote a weight by κ, but we keep notation in [Ring, §4].)
Let us recall the notation briefly. We identify SN with A2//(Z/NZ), where
ζ ∈ Z/NZ acts on A2 by ζ · (u, v) = (ζu, ζ−1v). We have W = uv, Z = uN ,
Y = vN . The line bundle Lωi

for a fundamental root ωi is defined so that
Γ(S̃N ,Lωi

) = Γ(SN ,Fωi
) is the space of the semi-invariants C[A2]χi with

χi(ζ) = ζi (i = 1, . . . , N − 1). If we identify a weight λ of SL(N) with (λ1 ≥
· · · ≥ λN ) up to simultaneous shifts of all λi, we have Lλ =

⊗L⊗(λi−λi+1)
ωi

.
We realize SN and S̃N as Coulomb branches as follows: V with dimV =

1,W with dimW = N ,G = GL(V ) = C×, G̃ = (GL(V )× T (W ))/C×, where
T (W ) is a maximal torus of GL(W ) consisting of diagonal matrices, C× is
the diagonal scalar subgroup, GF = T (W )/C×, and N = Hom(W,V ). Then
MC(G,N) is SN and Γ(SN ,Fλ) ∼= HGO

∗ (R̃λ). Note that HGO
∗ (R̃λ) is de-

noted by i!λA
for in [Ring, §4], as it is a costalk of a ring object Afor at λ.

We choose isomorphisms Γ(SN ,Fλ)
∼−→ HGO

∗ (R̃λ) for any λ (defined
uniquely up to multiplication by a scalar).

Lemma 2.1. The multiplication morphism Γ(SN ,Fλ)⊗ Γ(SN ,Fµ)→
Γ(SN ,Fλ+µ) (resp. H

GO
∗ (R̃λ)⊗HGO

∗ (R̃µ)→ HGO
∗ (R̃λ+µ) ) is surjective for

any dominant λ, µ.

Proof. It suffices to consider the case µ = ωn = (1, . . . , 1, 0, . . . , 0) (n 1’s) for
1 ≤ n ≤ N − 1. Recall that the C× × C×-character of Γ(SN ,Fλ+µ) given
by [Ring, Lemma 4.2] is multiplicity free. So it suffices to represent each
summand x

∑
N
i=1((λ+ωn)i−m)t

∑
N
i=1 |(λ+ωn)i−m| as a product of two summands

x
∑

N
i=1(λi−m′)t

∑
N
i=1 |λi−m′| and x

∑
N
i=1((ωn)i−m′′)t

∑
N
i=1 |(ωn)i−m′′|. Now if m ≥

λn + 1, we take m′ = m− 1, m′′ = 1, and if m ≤ λn, we take m
′ = m, m′′ =

0. The same argument works for HGO
∗ (R̃?) due to the monopole formula. In-

deed, the morphism HGO
∗ (R̃λ)⊗HGO

∗ (R̃µ)→ HGO
∗ (R̃λ+µ) respects the bi-

grading. And the induced morphism HGO
∗ (R̃λ)⊗

H
GO
∗ (R)

HGO
∗ (R̃µ)→

HGO
∗ (R̃λ+µ) is an isomorphism generically due to the localization theo-

rem. □
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Lemma 2.2. The diagram

Γ(SN ,Fλ)⊗C[SN ] Γ(SN ,Fµ)
∼−−−−→ HGO

∗ (R̃λ)⊗
H

GO
∗ (R)

HGO
∗ (R̃µ)

y
y

Γ(SN ,Fλ+µ)
∼−−−−→ HGO

∗ (R̃λ+µ)

commutes up to multiplication by a scalar for any dominant λ, µ.

Proof. The kernels of both vertical morphisms coincide with the torsion in
the upper row. Thus it suffices to check the claim generically. But generically
all the four modules in question are free of rank 1. So it suffices to check
the commutativity for a single C× × C×-eigensection of Γ(SN ,Fλ)⊗C[SN ]

Γ(SN ,Fµ), and this follows from the multiplicity free property ofHGO
∗ (R̃λ+µ).

□

Remark 2.3. At the end of [Ring, §4(iii)], we wrote down an explicit iso-
morphism Γ(SN ,Fλ)

∼−→ HGO
∗ (R̃λ) when λ is a fundamental coweight ωi as

r(m,ωi) 7→
{
vN−iY m−1 if m > 0,

uiZ−m if m ≤ 0,

where r(m,ωi) (denoted by rm in [Ring, §4(iii)]) is the fundamental cycle of the
fiber of R̃ → GrG̃ over (m, 1, . . . , 1︸ ︷︷ ︸

i times

, 0, . . . , 0︸ ︷︷ ︸
N − i times

). Thanks to Lemma 2.2 we gen-

eralize it for general dominant λ by products. Then Lemma 2.2 holds without
ambiguity of a scalar under the generalized isomorphism. Namely it is char-
acterized by

⊗N−1
i=1 (r(1,ωi))⊗(λi−λi+1) 7→⊗N−1

i=1 (vN−i)⊗(λi−λi+1). By [Part II,
§4] the left hand side is nothing but the fundamental class over (λ1 −
λN , λ1 − λN , λ2 − λN , . . . , λN−1 − λN , 0) = (λ1, λ1, λ2, . . . , λN−1, λN )
(the first entry corresponds to GL(V ) of G̃ and others to T (W )).

Remark 2.4. We have another way1 to understandMκ

C(G,N). We iden-
tify G̃ = C× × (C×)N/C× with (C×)N by (r, r1, . . . , rN ) mod C× 7→
(r1/r, . . . , rN/r). The projection G̃→ GF is just the quotient by the di-
agonal subgroup C×. Then N ∼= CN is just the product of N copies of
the dual of the standard representation of C×, hence the Coulomb branch
MC(G̃,N) ∼= C2N . The action of π1(G̃)∧ is the (C×)N -action on C2N given

1H.N. thanks Alexei Oblomkov for motivating him to considering this approach.
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by (s1, . . . , sN ) · (x1, y1, . . . , xN , yN ) = (s1x1, s
−1
1 y1, . . . , sNxN , s−1

N yN ). See
[Part II, §4]. We note that

(C×)N−1 ∼= π1(GF )
∧ → π1(G̃)∧ ∼= (C×)N

is given by (t1, . . . , tN−1) 7→ (t1, t2/t1, t3/t2, . . . , tN−1/tN−2, 1/tN−1). Hence
MC(G,N) is the hamiltonian reduction of C2N by the action

(t1x1, t
−1
1 y1, t2/t1x2, t1/t2y2, . . . , t

−1
N−1xN , tN−1yN ).

This is nothing but a quiver variety of type AN−1 with dimension vectors v =
(1, . . . , 1),w = (1, 0, . . . , 0, 1), which is known to be SN . It is also known that
the GIT quotient gives a minimal resolution of SN such that the tautological
line bundle for the i-th C× is identified with Lωi

.

3. Determinant line bundle on the Hilbert scheme

In this section we identify the determinant line bundle on the Hilbert scheme
Hilbn(A2), or rather global sections of its pushforward to SymnA2, with the
module over the Coulomb branch of the Jordan quiver gauge theory arising
from the construction of [Part II, §3(ix)]. (See also [Ring, §2], though it is
not essentially used.)

3(i). Degree 2

We consider the case of the Hilbert scheme Hilb2(A2) of two points in this
subsection. We have the dilatation action of C× on A2 : t(u, v) = (t−1u, t−1v).
It induces a C×-action on Hilb2(A2). The determinant line bundle L on
Hilb2(A2) carries a natural C×-equivariant structure. We have Hilb2(A2) ≃
S̃2 × A2, and L ≃ OS̃2

(1)⊠OA2 . Hence, from [Ring, Lemma 4.2], for l ∈ N,

the character of Γ(Hilb2(A2),Ll) equals

(1− t2)−1(1− t)−2
∑

m∈Z

t|l−m|+|m|.

On the other hand, we consider G = GL(V ) = GL(2), GF = C×, G̃ =
G×GF . The G = GL(V )-module N = V ⊕ gl(V ) carries a commuting di-
latation GF -action; these two actions together give rise to the action of G̃ on
N. According to [Quiver, Proposition 3.24], the Coulomb branchMC(G,N)
is identified with Sym2(A2). Recall the setup of [Part II, §3(ix)]. (See also
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[Ring, §2(iv)] and [Ring, §2(vi)].) We consider the variety of triple R̃ for the
larger group G̃ and N, regarded as a representation of G̃. Let π̃ : R̃ → GrGF

be the projection. The affine Grassmannian GrGF
is identified with Z. We

denote the fiber over l by R̃l. The fiber R̃0 over 0 is nothing but the original
variety of triple R whose equivariant Borel-Moore homology HGO

∗ (R) is the
coordinate ring of the Coulomb branch, i.e. C[Sym2(A2)] = C[Hilb2(A2)] in
this case. For l ∈ N ⊂ Z = GrGF

, the homology HGO
∗ (R̃l) is a module over

HGO
∗ (R), see [Part II, §3(ix)]. We will denote the coherent sheaf on Sym2(A2)

associated to this module by Gl.
We want to identify this module with Γ(Hilb2(A2),Ll). The module

HGO
∗ (R̃l) is nothing but the costalk i!lA

for in the setup in [Ring, §2(iv)].
By the monopole formula [Ring, (4.1)] for the character of HGO

∗ (R̃l), we
have

Pmod
t = (1− t2)−2

∑

λ1>λ2∈Z

t−2|λ1−λ2|+|λ1−λ2+l|+|λ2−λ1+l|+2l+|λ1+l|+|λ2+l|

+ (1− t2)−1(1− t4)−1
∑

λ∈Z

t4l+2|λ+l|.

Lemma 3.1. Pmod
t = t2l(1− t2)−1(1− t)−2

∑
m∈Z t

|l−m|+|m|.

Proof. The sum in the RHS splits into 3 summands according to m ≤ 0, 0 <
m ≤ l, m > l, equal respectively, to tl

1−t2
, ltl, tl+2

1−t2
. The second sum in the

LHS splits into 2 summands according to λ ≤ −l, λ > −l, equal respectively,
to t4l

1−t2
, t4l+2

1−t2
. The first sum in the LHS splits into 6 summands according

to −l ≥ λ1 > λ2, λ1 − λ2 ≥ l, or −l ≥ λ1 > λ2, λ1 − λ2 < l, or λ1 > λ2 ≥
−l, λ1 − λ2 ≥ l, or λ1 > λ2 ≥ −l, λ1 − λ2 < l, or λ1 > −l > λ2, λ1 − λ2 ≥
l, or λ1 > −l > λ2, λ1 − λ2 < l. These summands are equal respectively, to

t3l

(1−t2)(1−t) ,
t3l+1(1−tl−1)
(1−t2)(1−t) ,

t3l

(1−t2)(1−t) ,
t3l+1(1−tl−1)
(1−t2)(1−t) ,

t3l

(1−t)2 + (l−2)t3l

1−t
, (l−2)t3l+1

1−t
−

t3l+2(1−tl−1)
(1−t)2 . Now a straightforward calculation finishes the proof. □

The evident action of G2
a on A2 induces the natural free action of G2

a

on Sym2A2 such that G2
a\ Sym2A2 = S2. Moreover, we have a projection

add: SymA2 → A2, ((u1, v1), (u2, v2)) 7→ (u1 + u2, v1 + v2); altogether we
obtain an isomorphism Sym2A2 ∼−→ S2 × A2.

Proposition 3.2. Under the identification HGO
∗ (R) ≃ C[Sym2A2], the

HGO
∗ (R)-module HGO

∗ (R̃l) is isomorphic to the C[Sym2A2]-module
Γ(Hilb2(A2),Ll). More precisely,

(a) The restriction G◦
l of Gl to S◦2 × A2 ⊂ S2 × A2 = Sym2A2 is a line

bundle isomorphic to Ll|S◦
2×A2.
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(b) An isomorphism in (a) is defined uniquely up to multiplication by a
scalar.

(c) An isomorphism in (a) extends to an isomorphism HGO
∗ (R̃l)

∼−→
Γ(Hilb2(A2),Ll).

Proof. We consider the elements E1[1] and F1[1] of [Quiver, (A.7)] in
HGO

∗ (R) ≃ C[Sym2A2]. They have degree 1/2 with respect to the modified
grading as in [Part II, Remark 2.8](2), see [Quiver, (A.4)]. Clearly, E1[1] =
u1 + u2, F1[1] = v1 + v2. The corresponding hamiltonian vector fields
HE1[1] and HF1[1] on MC = Sym2A2 commute since the Poisson bracket
{E1[1], F1[1]} acts as multiplication by 2 (the number of points), and its
hamiltonian vector field vanishes. The degrees of both HE1[1] and HF1[1] are
−1/2 since the degree of the Poisson bracket is −1. Since the degrees of
HGO

∗ (R) and HGO
∗ (R̃l) are all nonnegative by the monopole formula, both

HE1[1] and HF1[1] are locally nilpotent. Hence they integrate to the action of

G2
a on HGO

∗ (R) and HGO
∗ (R̃l). The action of G2

a on HGO
∗ (R) = C[Sym2A2]

comes from the action on Sym2A2 discussed before the proposition. We con-
clude that the coherent sheaf Gl on Sym2A2 is Gm ⋉G2

a-equivariant (the
action of Gm comes from the modified grading).

In particular, Gl is a pullback of a Gm-equivariant sheaf Fl on

G2
a\ Sym2A2 = S2.

Both Gl and Fl are generically of rank 1; hence both Fl|S◦
2
and G◦

l := Gl|S◦
2×A2

are line bundles. Recall that Pic(S◦2 ) = Z/2Z; the trivial line bundle is de-
noted F0̄, and the nontrivial one is denoted F1̄ in accordance with notations
of [Ring, §4(ii)]. Lemma 3.1 and the argument in the proof of [Ring, Lemma
4.3] show that Fl|S◦

2
≃ Fl̄, where l̄ = l (mod 2). This proves (a), and the

same argument as in the proof of [Ring, Lemma 4.3] establishes (b).
For (c), we have to identify Fl ⊂ j∗Fl̄ and Fλ ⊂ j∗Fl̄ in notations of [Ring,

§4(ii)], where λ = (l, 0). We start with l = 1 case. Then Fλ = j∗F1̄, and the
character of (the global sections of) F1 coincides with the character of j∗F1̄.
Hence F1 = j∗F1̄ = Fλ.

For l > 1 we have to identify Γ(S2,Fl) inside Γ(S◦2 ,Fl (mod 2)) with

Γ(S̃2,Lλ) = Γ(T ∗P1,O(l)) =⊕k≥0 Γ(P
1,O(l + 2k)). However, the latter

submodule is clearly characterized by its t-character which coincides with the
t-character of Γ(S2,Fl) by Lemma 3.1. Hence Γ(Hilb2(A2),Ll) = HGO

∗ (R̃l).
□

Recall that the G̃-module N = V ⊕ gl(V ) splits as a direct sum. If we set
′N = gl(V ), then from [Part II, Remark 5.14] we obtain a homomorphism
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HGO
∗ (R) →֒ HGO

∗ (′R) of algebras and a compatible homomorphism of mod-
ules HGO

∗ (R̃l) →֒ HGO
∗ (′R̃l) (where ′R, ′R̃ are varieties of triples for (G, ′N),

(G̃, ′N) respectively, ′R̃l is the fiber of the projection ′R̃ → GrGF
over l).

According to [Quiver, Proposition 3.24], the Coulomb branch MC(G, ′N)
is identified with Sym2(S0), and the homomorphism HGO

∗ (R) →֒ HGO
∗ (′R)

corresponds to the morphism ȷ2 : Sym2(S0) →֒ Sym2(A2) arising from the
open embedding ȷ : S0 →֒ A2, (u, v) 7→ (u, u−1v), u ̸= 0. We denote by ′Gl the
coherent sheaf on Sym2 S0 associated to the HGO

∗ (′R)-module HGO
∗ (′R̃l)).

We would like to identify the coherent sheaves pr∗ Ll and ′Gl on Sym2(S0),
where pr : Hilb2(S0)→ Sym2(S0) is the Hilbert-Chow morphism. The lo-
calization of the morphism HGO

∗ (R̃l) →֒ HGO
∗ (′R̃l) factors through Gl →֒

ȷ2∗ȷ
2∗Gl = ȷ2∗ pr∗ Ll →֒ ȷ2∗

′Gl. The restriction of the latter morphism to Sym2 S0
is denoted by θ : pr∗ Ll →֒ ′Gl.

Corollary 3.3. The morphism θ : pr∗ Ll →֒ ′Gl of coherent sheaves on
Sym2 S0 is an isomorphism.

Proof. Let T ⊂ GL(V ) = GL(2) be the diagonal torus with Lie algebra t ⊂
gl(V ) = gl(2), with coordinates w1, w2. The canonical projection Sym2A2 =
MC(G,N)→ t/S2 = Sym2A1 is the symmetric square of the morphism
A2 → A1, (u, v) 7→ uv. The generalized roots in t∨ are w1, w2, w1 − w2. We
change the base to t→ t/S2 and localize at a general point t of the diagonal
w1 − w2 = 0. The corresponding fixed point sets coincide: (′R̃l)t = (R̃l)t;
hence θ is an isomorphism over the general points of diagonal.

Now let t be a general point of the divisor w2 = 0. Then the fixed point
set (′R̃l)t (resp. (R̃l)t) splits as a product GrT1

×GrT2
(resp. GrT1

×RT2,N′).
Here T1 (resp. T2) is a 1-dimensional torus with coordinate w1 (resp. w2)
with differential w1 (resp. w2), and N′ is the 1-dimensional representation
of T2 with character w2. Note that the flavor group disappeared since its
action is absorbed into the action of T2. The morphism of localizations

(
C[t1 × T∨

1 ]⊗ C[A2]
)
t
= HTO

∗ ((R̃l)t)t → HTO
∗ ((′R̃l)t)t

=
(
C[t1 × T∨

1 ]⊗ C[S0]
)
t

at the level of spectra is nothing but (id×ȷ)t. The same argument takes
care of the general points of the divisor w1 = 0. Hence the base change of
θ is an isomorphism over the general points of all the root hyperplanes. We
conclude that θ is an isomorphism. □
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3(ii). Factorization

The projection ϖ1 : S1 = A2 → A1, (u, v) 7→ w = uv, induces the projection

ϖn : Hilbn(S1) = Hilbn(A2)
πn−→ SymnA2 Πn−→ SymnA1 = A(n). The embed-

ding Gm ⊂ A1 induces the embedding G
(n)
m ⊂ A(n). We denote by G̊

(n)
m ⊂

G
(n)
m the open subset formed by the complement to all the diagonals; we

have a Galois Sn-covering G̊n
m → G̊

(n)
m . We have

(3.4) G̊n
m ×G̊

(n)
m

ϖ−1
n (G̊(n)

m ) = G̊n
m ×G̊

(n)
m

Π−1
n (G̊(n)

m ) = G̊n
m ×Gn

m

with coordinates w1, . . . , wn on the first factor, and v1, . . . , vn on the sec-
ond factor. We denote the base change An ×A(n) Hilbn(A2) (resp. An ×A(n)

SymnA2) by Hilbn(A2) (resp. SymnA2). We have factorization isomorphisms
for n = n′ + n′′:

Hilbn(A2)|(An′×An′′ )disj

∼−→ (Hilbn
′

(A2)×Hilbn
′′

(A2))|(An′×An′′ )disj ,

SymnA2|(An′×An′′ )disj

∼−→ (Symn′

A2 × Symn′′

A2)|(An′×An′′ )disj

compatible with (3.4). By the definition of the determinant line bundle, we
also have the following factorization isomorphisms:

(
Hilbn(A2)|(An′×An′′ )disj

,Ll
)

∼−→
(
(Hilbn

′

(A2)×Hilbn
′′

(A2))|(An′×An′′ )disj ,Ll ⊠ Ll
)
,

(
SymnA2|(An′×An′′ )disj

,πn∗Ll
)

(3.5)

∼−→
(
(Symn′

A2 × Symn′′

A2)|(An′×An′′ )disj ,πn′∗Ll ⊠ πn′′∗Ll
)

compatible with the Sn-equivariant trivialization

(
G̊n

m ×G̊
(n)
m

ϖ−1
n (G̊(n)

m ),Ll
)
=
(
G̊n

m ×G̊
(n)
m

Π−1
n (G̊(n)

m ),πn∗Ll
)

(3.6)

=

(
G̊n

m ×Gn
m,O ◦

Gn
m×Gn

m

)

arising from the factorization and the identification

(3.7)
(
ϖ−1

1 (Gm),Ll
)
=
(
Π−1

1 (Gm),π1∗Ll
)
= (Gm ×Gm,OGm×Gm

) .
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We will need the following particular case of the above factorization isomor-
phisms:

(
(G(n−1)

m × A1)disj ×A(n) Hilbn(A2),Ll
)

∼−→
(
(G(n−1)

m × A1)disj ×A(n−1)×A1 (Hilbn−1(A2)× A2),Ll ⊠ Ll
)
,

(
(G(n−1)

m × A1)disj ×A(n) SymnA2,πn∗Ll
)(3.8)

∼−→
(
(G(n−1)

m × A1)disj ×A(n−1)×A1 (Symn−1A2 × A2),πn−1,∗Ll ⊠ π1∗Ll
)
.

3(iii). Determinant sheaves via homology groups of fibers

We change slightly the setup of §3(i): we consider G = GL(V ) = GL(n),
GF = C×, G̃ = G×GF . The G = GL(V )-module N = V ⊕ gl(V ) carries a
commuting dilatation GF -action; these two actions together give rise to the
action of G̃ on N. According to [Quiver, Proposition 3.24], the Coulomb
branch MC(G,N) is identified with Symn(A2). In this case we have
HGO

∗ (R) ∼= C[Symn(A2)] = C[Hilbn(A2)], see [Quiver, Proposition 3.24]. For
l ∈ N ⊂ Z = GrGF

, HGO
∗ (R̃l) forms a module over the algebra HGO

∗ (R) as in
the case n = 2, and we want to identify this module with Γ(Hilbn(A2),Ll) =
Γ(SymnA2,πn∗Ll). Recall that SpecH∗

GO
(pt) = A(n) ← An = SpecH∗

TO
(pt),

and the base change under A(n) ← An gives HTO
∗ (R̃l), where T is a Cartan

torus of G. If we further localize to G̊n
m ⊂ An, we have a localization isomor-

phism z∗ι−1
∗ : HTO

∗ (R̃l)loc
∼−→ HTO

∗ (π̂−1(l))loc where π̂ : GrT×GF
→ GrGF

is
the obvious projection. But HTO

∗ (π̂−1(l)) ∼= HTO
∗ (GrT ) = C[An ×Gn

m] by
[Part II, Remark 3.24](2). All in all, we obtain an Sn-equivariant trivial-
ization

(3.9) HTO
∗ (R̃l) ∼= O ◦

Gn
m×Gn

m

.

Composing with the trivialization (3.6), we obtain a rational isomorphism
of C[SymnA2]-modules θ : Γ(SymnA2,πn∗Ll) 99K HGO

∗ (R̃l).

Theorem 3.10. The rational isomorphism θ : Γ(SymnA2,πn∗Ll) 99K
HGO

∗ (R̃l) extends to the regular isomorphism of C[SymnA2]-modules θ :
Γ(SymnA2,πn∗Ll) ∼−→ HGO

∗ (R̃l).

Proof. We follow the standard scheme, see e.g. the proof of [Quiver, Theo-
rem 3.10]. We have to check that θ extends through the general points of
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the boundary divisor An \ G̊n
m. If a point lies on a diagonal divisor wr = ws,

we are reduced by localization and factorization (3.5) to Corollary 3.3. If
a point lies on a coordinate hyperplane wr = 0, we are reduced by local-
ization and factorization (3.8), (3.7) to the evident case n = 1. We con-
clude by an application of [Part II, Theorem 5.26] and [Part II, Remark
5.27]. The condition Πn∗πn∗Ll ∼−→ j∗Πn∗πn∗Ll|Hilbn(A2)• of [Part II, Re-
mark 5.27] is satisfied since the complement of Hilbn(A2)• in Hilbn(A2)
is of codimension 2. The latter claim follows from the semismallness of
πn : Hilbn(A2)→ SymnA2. □

4. Line bundles on Cherkis bow varieties

We can modify the proof of the last section to the case of quiver gauge theo-
ries of affine type An−1 replacing Hilbert schemes by Cherkis bow varieties,
and using results in [NT17]. We use the notation in [NT17], hence we assume
the reader is familiar with it.

4(i). Resolution for bow varieties

Given dimension vectors v = (v0, . . . ,vn−1), w = (w0, . . . ,wn−1) we con-
sider

G ≡ GL(v)
def.
=

n−1∏

i=0

GL(vi),

N ≡ N(v,w) =

n−1⊕

i=0

Hom(Cvi ,Cvi+1)⊕Hom(Cwi ,Cvi)

with the natural G-action on N. Let ℓ =
∑n−1

i=0 wi. The Coulomb branch
MC(G,N) is isomorphic to a bow variety M(v,w) with a balanced con-
dition, defined as in [NT17, §2.2]. The definition of [NT17, §2.2] is more
general: we have parameters κσ ∈ Q (σ = 1, . . . , ℓ) of the stability condition
for the GIT quotient, whereMC(G,N) corresponds to the case κσ = 0 for
σ = 1, . . . , ℓ.2 We have a Q-line bundle from the construction, which is an
actual line bundle if κσ ∈ Z for σ = 1, . . . , ℓ. We suppose κσ ∈ Z hereafter.

2It was denoted by νR
σ
in [NT17], as we also have complex parameters νC = (νC

σ
)σ,

which we set 0 for brevity here.
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There is one more extra parameter κ∗ ∈ Z, which was not explicitly
explained in [NT17].3 It corresponds to the quotient where either one of the
stability conditions (C-S1) or (C-S2) is required in [NT17, Prop. 6.4].

Let us number vector spaces appearing in the definition of bow varieties
as in [NT17, §6.1].

V
wi−1

i−1

Bi−1

��
Ai−1 //

bi−1 ��

V 0
i

B′
i

��

C1,i

// V 1
i

D1,ioo
C2,i

//
D2,ioo

Cwi−1,i

// V wi−1
i

Dwi−1,ioo
Cwi,i

// V wi

i

Dwi,ioo

Bi

��
Ai //

bi ��

V 0
i+1

B′
i+1

��

C

ai

DD

C

ai+1

CC
.

In particular, σ (σ = 1, . . . , ℓ) is indexed as (α, i) (i = 0, . . . , n− 1, α =
1, . . . ,wi). We introduce the character corresponding to parameters4 κ∗,
κα,i by

(4.1)

n−1∏

i=0

(detV 1
i )

−κ1,i+κ2,i · · · (detV α
i )−κα,i+κα+1,i · · ·

(detV wi−1
i )−κwi−1,i+κwi,i(detV wi

i )−κwi,i
+κ1,i+1+δi+1,0κ∗ .

Note that the simultaneous shift κα,i 7→ κα,i + s, while keeping κ∗, is irrel-
evant.

We assume

(4.2) κ1,i ≥ κ2,i ≥ · · · ≥ κwi,i.

In particular, all powers appearing in (4.1) except the last one are nonposi-
tive. This assumption is not essential, as it is satisfied if we renumber κα,i.
Alternatively we apply reflection functors for quiver varieties [Nak03] on two
way parts. Here we regard V 0

i and V wi

i as framing vector spaces, and do not
touch for reflection functors.

These powers, especially the last one, look slightly different from [NT17,
(6.3)], where the corresponding complex parameters νC∗ , ν

C

α,i are put in the
defining equation. But it is implicit in the proof of [Tak16, Prop. 2.9] (see

3In the original description [NT17, §2.1] of bow varieties as solutions of Nahm’s
equations, parameters κσ, κ∗ are put as the level of real part of the hyper-Kähler
moment map.

4We consider the ‘corresponding’ complex parameter νC
∗
in [NT17, 6.2], but we

put it for all i. But the sum over i only matters, so our κ∗ should be compared
with nνC

∗
.
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also [NT17, Prop. 3.2] and the numerical criterion [NT17, Def. 2.7]) that we
have an isomorphism

(4.3) detV wi

i
∼= detV 0

i+1,

hence the appearance of κ1,i+1 in detV wi

i is natural. Let us denote the
corresponding GIT quotient by Mκ(v,w), where κ should be understood
as κ∗ ∈ Z, (κα,i) ∈ Zℓ/Z. Let us denote the corresponding line bundle by
Lκ. We have the projective morphism π :Mκ(v,w)→M0(v,w). Let Av =∏n−1

i=0 Avi/Svi
. We have a factorization morphism Ψ:Mκ(v,w)→ Av, given

by eigenvalues of Bi with multiplicities, which are same as eigenvalues of B′
i

thanks to the defining equation of bow varieties. We can apply [Part II, The-
orem 5.26] later, as Mκ(v,w) is normal ([NT17, Th. 6.15]) and all fibers
of Ψ have the same dimension ([NT17, Prop. 6.13]), hence the condition of
[Part II, Remark 5.27] is satisfied. Note that Ψ factors through π.

We have the factorization property

Mκ(v,w)×Av (Av
′ × Av

′′

)disj
∼=
(
Mκ(v

′,w)×Mκ(v
′′,w)

)
×Av

′×Av
′′ (Av

′ × Av
′′

)disj.

See [NT17, Th. 6.9]. From its construction the line bundle Lκ is compati-
ble with the factorization, namely Lκ onMκ(v,w) is sent to Lκ ⊠ Lκ on
Mκ(v

′,w)×Mκ(v
′′,w). This is because Lκ is coming from the charac-

ter κ, given by the product of determinants of GL(vi) as in (4.1), and it
factors according to a decomposition V α

i = (V α
i )′ ⊕ (V α

i )′′. Note that this
construction chooses an isomorphism between Lκ and Lκ ⊠ Lκ canonically.
This choice will become more explicit in the factorization formula (4.5) of a
section yαi later. This is a generalization of statements in §3(ii).

Let Å|v| denote the open subset of A|v| consisting of wk
i ̸= wl

i (k ̸= l),
wk
i ̸= wl

i+1, w
k
i ̸= 0 (for i with wi ̸= 0). Let Åv = Å|v|/

∏
Svi

. It is the com-
plement of union of all generalized root hyperplanes of (G,N) in the sense
of [Part II, §5(i)].

We order eigenvalues of Bi (which are also eigenvalues of B′
i) as wi,1, . . . ,

wi,vi
. We consider them as coordinates of Avi , and functions on

Mκ(v,w)×Av A|v|. (Here |v| =∑vi.) Define a section yαi,k of the vector
bundle (V α

i )∗ by

yαi,k
def.
= bi

∏

1≤l≤vi

l ̸=k

(Bi − wi,l)Cwi,i · · ·Cα+1,i
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and a rational section yαi of the line bundle (detV α
i )∗ defined over Ψ−1(Åv)

by

(4.4) yαi
def.
= yαi,1 ∧ yαi,2 ∧ · · · ∧ yαi,vi

∏

k>l

(wi,k − wi,l)
−1.

Note that this is Svi
-invariant, as signs from yαi,1 ∧ yαi,2 ∧ · · · ∧ yαi,vi

and∏
k>l(wi,k − wi,l) cancel.
We also define sections z0i+1,k (k = 1, . . . ,vi+1) of V

0
i+1 and z0i+1 of detV

0
i+1

by

z0i+1,k
def.
=

∏

1≤l≤vi+1

l ̸=k

(B′
i+1 − w′

i+1,l)ai+1,

z0i+1
def.
= z0i+1,1 ∧ z0i+1,2 ∧ · · · ∧ z0i+1,vi+1

∏

k>l

(w′
i+1,k − w′

i+1,l)
−1.

We regard z0i+1 as a section of detV wi

i via (4.3).
They are compatible with the factorization as follows. Let y′αi,k (1 ≤ k ≤

v′
i), y

′α
i , y′′αi,k (v′

i + 1 ≤ k ≤ vi), y
′′α
i be defined for Mκ(v

′,w), Mκ(v
′′,w)

respectively. As in [NT17, Lem. 6.11], we have

yαi,k =

{
y′αi,k

∏
vi

l=v′
i+1(wi,k − wi,l) if 1 ≤ k ≤ v′

i,

y′′αi,k
∏v

′
i

l=1(wi,k − wi,l) if v′
i + 1 ≤ k ≤ vi,

and hence

(4.5) yαi = y′αi ∧ y′′αi

v
′
i∏

k=1

vi∏

l=v′
i+1

(wi,k − wi,l).

We have a similar formula for z0i+1.
Let yκ be a section of Lκ given by

yκ
def.
=

n−1∏

i=0

(y1i )
κ1,i−κ2,i · · · (yαi )κα,i−κα+1,i · · · (ywi−1

i )κwi−1,i−κwi,i

(4.6)

×
{
(ywi

i )κwi,i
−κ1,i+1−δi+1,0κ∗ if κwi,i − κ1,i+1 − δi+1,0κ∗ ≥ 0,

(z0i+1)
−κwi,i

+κ1,i+1+δi+1,0κ∗ otherwise.

Note that powers in the first line are nonnegative by the assumption (4.2).
The power in the second line is nonnegative by the definition.
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By factorization Mκ(v,w) is isomorphic to product of bow varieties
with dimV 0

i = dimV 1
i = · · · = dimV wi

i = 1, dimV α
j = 0 (j ̸= i) over Å|v|.

Those bow varieties are [NT17, 6.5.1] (n = 1) and [NT17, 6.5.3] (n > 1). In
either cases, they are locally isomorphic to C× C×, as we exclude wk

i = 0.
We also see that yαi , z

0
i+1 are nonvanishing over Å|v|, hence yκ also.

Let us turn to the gauge theory side. We define the flavor symmetry
as follows: We consider the action of T (w) =

∏
i T

wi on N induced from
the standard action of Twi on Cwi . Together with G, we have an action
of (G× T (w))/C×, where C× is embedded in G×∏i T

wi as the diago-
nal scalars. We have an extra C×

dil acting on N by scaling on the component
Hom(Cvn−1 ,Cv0). Let G̃ = C×

dil × (G× T (w))/C×, GF = G̃/G = C×
dil ×

T (w)/C×. Then HGO
∗ (R̃κ) is a module over HGO

∗ (R) = C[MC(G,N)] by
the construction in [Part II, §3(ix)]. Here π̃ : R̃ = RG̃,N → GrGF

and R̃κ =

π̃−1(κ) as before, and κ = (κ∗,κα,i) is a coweight of GF , regarded as a
point in GrGF

. We can also considerMκ

C(G,N) = Proj(
⊕

n≥0H
GO
∗ (R̃nκ)),

which is endowed with a projective morphismMκ

C(G,N)→MC(G,N). Let
us use the standard basis of Cvi to take a maximal torus T of G consist-
ing of diagonal matrices. We identify Av with the spectrum of H∗

G(pt) =
H∗

T (pt)
∏

Svi . We have ϖ : MC(G,N)→ Av given by the structural ho-
momorphism H∗

G(pt)→ HGO
∗ (R) when κ = 0. We compose Mκ

C(G,N)→
MC(G,N) with ϖ to apply [Part II, Theorem 5.26] toMκ

C(G,N) later.
Let NT denote N regarded as a T -module. We have the pushforward ho-

momorphism ι∗ : H
TO
∗ (RT,NT

)→ HTO
∗ (RG,N) = HGO

∗ (RG,N)⊗H∗
G(pt) H

∗
T (pt)

of the inclusion RT,NT
→ RG,N (see [Part II, §5(iii)]). We put the flavor

symmetry as above for T , i.e., T̃
def.
= C×

dil × (T × T (w))/C×. We have T̃/T =
C×
dil × T (w)/C× = GF . We consider π̃T : RT̃,NT

→ GrGF
as above, and

π̃−1
T (κ). We have a natural inclusion π̃−1

T (κ)→ R̃κ = π̃−1(κ), denoted again
by ι, and the pushforward homomorphism

ι∗ : H
TO
∗ (π̃−1

T (κ))→ HGO
∗ (R̃κ)⊗H∗

G(pt) H
T
∗ (pt).

Let πT : RT̃,NT
→ GrT̃ be the projection.

Next we introduce a class yκ ∈ HTO
∗ (π̃−1

T (κ)), whose image under ι∗ will
be identified with yκ. We begin with y

α
i , z

0
i+1, which will be identified with

yαi , z
0
i+1 respectively. For yαi we choose κ so that

(4.7)
the corresponding component −κα,i + κα+1,i (or −κwi,i +
κ1,i+1 + δi+1,0κ∗ if α = wi) is −1, and all others appearing
in powers of (4.1) are zero.
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For z0i we choose κ so that −κwi,i + κ1,i+1 + δi+1,0κ∗ is 1 instead. A choice
of κ is unique up to overall shifts of T (w)-component. We lift this coweight
κ of GF to T̃ by setting the T -component as

(4.8) (κ1,i, . . . ,κ1,i︸ ︷︷ ︸
vi times

)n−1
i=0 .

Let us denote the lift by κ̃. We define y
α
i and z

0
i as the fundamental class

of π−1
T (κ̃) according to the choice of κ̃. This is an analog of yi,k considered

in [NT17, §6.8.1]. By the localization theorem, it is nonvanishing over Å|v|.
For general κ we define yκ as the product in (4.6) with yαi , z

0
i+1 replaced by

y
α
i , z

0
i+1.
We define a rational isomorphism

θ : Γ(M0(v,w),π∗(Lκ)) 99K H
GO
∗ (π̃−1(κ))

by sending yκ to ι∗y
κ. It is

∏
Svi

-equivariant, hence it is indeed an isomor-
phism as above.

Theorem 4.9. Under the assumption (4.2) θ extends to an isomorphism
Γ(M0(v,w),π∗(Lκ))

∼−→ HGO
∗ (R̃κ) of C[M0(v,w)] = HGO

∗ (R)-modules.

Proof. As in the proofs of [Quiver, Theorem 3.10], [NT17, Th. 6.18], we need
to study how the Coulomb branch and the bow variety look like around the
general points t of the boundary divisor in A|v|. In our case,

(a) wi−1,k(t) = wi,l(t) for some i, k, l, but all others are distinct. Moreover
wj,r(t) ̸= 0 if wj ̸= 0. (We understand i ̸= i− 1, hence n ≥ 2.)

(b) wi,k(t) = wi,l(t) for distinct k, l and some i, but all others are distinct.
Moreover wj,r(t) ̸= 0 if wj ̸= 0.

(c) All pairs like in (a),(b) are distinct, but wi,k(t) = 0 for i with wi ̸= 0.

See the proof of [NT17, Th. 6.18]. The gauge theory (G,N, G̃) with the fla-
vor symmetry group G̃ is replaced by (ZG(t),N

t, ZG̃(t)). In our case, ZG̃(t) =
C×
dil × (ZG(t)× T (w))/C×, and (ZG(t),N

t) = (GL(v′)× T |v′′|,N(v′,w′)),
where v′,w′ are given below, v′′ = v − v′ and T |v′′| acts trivially onN(v′,w′):

(a) w′ = 0, v′
i = 1 = v′

i−1 and other entries are 0.

(b) w′ = 0, v′
i = 2 and other entries are 0.

(c) v′
i = 1, w′

i = wi and other entries are 0.
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The extra factor T (w) acts trivially in (a),(b), while it acts through T (w)→
Twi in (c). On the other hand C×

dil acts trivially in (b),(c) and (a) with i ̸= 0.
By the same argument as in the proofs of [Quiver, Theorem 3.10], [NT17,

Th. 6.18] both yκ and y
κ are related to y′κ, y′κ by nonvanishing regular

functions defined on a neighborhood of t in A|v| under the factorization.
Therefore it is enough to check that the isomorphism θ extends for the local
models (a),(b),(c) above.

Consider the case (a) with n ≥ 3. Let us consider the local model for the
bow variety side. It is [NT17, 6.5.6]:

C

wi−1

��
A //

bi−1 ��

C

wi

��

bi ��
C

ai−1

CC

C

ai

CC

C.

Since we assume wi−1, wi ̸= 0, the relevant Cα,i−1, Dα,i−1, Cβ,i, Dβ,i (α =
1, . . . ,wi−1, β = 1, . . . ,wi) are isomorphisms, hence can be normalized by
the group action and defining equations. Thus they are omitted. It is also
clear that the κ-stability condition is automatically satisfied, hence

Mκ(v
′,w′) ∼=M0(v

′,w′).

We normalize ai−1 = 1, bi = 1 thanks to the conditions (S1),(S2). The
defining equation is (wi − wi−1)A = aibi−1. On the other hand, we have in-
troduced functions yi−1, yi, yi−1,i in [NT17, 6.5.6], which are yi−1 = bi−1ai−1

= bi−1, yi = biai = ai, yi−1,i = A. (We change yi−1,i in [NT17] by its inverse.)
The varietyM0(v

′,w′) is

{(wi−1, wi, yi−1, yi, y
±1
i−1,i) | yi−1yi = yi−1,i(wi − wi−1)}.

In this case, line bundles detV α
i−1, (detV

β
i )∗ are trivialized by their non-

vanishing sections Cα,i−1 · · ·C1,i−1ai−1 = yi−1/y
α
i−1, biCwi,i · · ·Cβ+1,i = yβi ,

and sections yαi−1, z
0
i , y

β
i , z

0
i+1 are identified with yi−1, yi, 1, 1 respectively.

Therefore

yκ=

{
y
κ1,i−1−κ1,i−δi,0κ∗

i−1 if κwi−1,i−1 − κ1,i − δi,0κ∗≥0,

y
κ1,i−1−κwi−1,i−1

i−1 y
−κwi−1,i−1+κ1,i+δi,0κ∗

i otherwise.

Next let us consider the local model in the Coulomb branch side. The
group T (w) acts trivially on N(v′,w′). The extra C×

dil-action appears when
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i = 0, but it can be absorbed to the GL(vi−1)-action, as we assume n ≥ 3.
We take an isomorphism ZG̃(t)

∼= C× × C× × T |v′′| ×GF , then HGO
∗ (R̃κ) ∼=

HGO
∗ (R). It means that the line bundle is trivialized. Then y

α
i−1, z

0
i , y

β
i or z0i+1

is the fundamental class of the fiber over the coweight (κ1,i−1 − δi0κ∗,κ1,i)
of GL(vi−1)×GL(vi) according to a suitable choice of κ as in (4.7). (The
ambiguity of shifts does not matter, as it only gives an invertible func-
tion.) Now recall yi−1, yi, yi−1,i are fundamental classes of fibers over (1, 0),
(0, 1), (1, 1) respectively under MC(v

′,w′) ∼= {yi−1yi = yi−1,i(wi − wi−1)}
by [Part II, Theorem 4.1]. Thus yαi−1, z

0
i , y

β
i , z

0
i+1 are equal to yi−1, yi, 1, 1

up to invertible functions respectively. Since both yκ and y
κ are defined as

products, they are equal up to an invertible function. Therefore the isomor-
phism of line bundles extends overM0(v

′,w′).
For (a) with n = 2, the gauge theory side is reduced to the case

(GL(v′),N(v′, 0)) = (C× × C×,C⊕ C) with the C× × C×-action (t0, t1)
· (x, y) = (t1t

−1
0 x, t0t

−1
1 y) and the flavor group GF remains only as the C×

dil-
action by t∗ · (x, y) = (x, t∗y) for t∗ ∈ C×

dil. Since the diagonal subgroup C× ⊂
C× × C× acts trivially on C⊕ C, the action factors through the quotient
C× × C× → C×; (t0, t1) 7→ t0t

−1
1 . The Coulomb branch has the correspond-

ing factor C× C× =MC(C
×, 0). We can change the second summand C of

C⊕ C by its dual thanks to [Part II, §4(v)]. Hence we are reduced to the
situation in [Ring, §4(iii)] with V = C, W = C2. In particular,

MC(GL(v′),N(v′, 0)) = C× C× ×MC(C
×,C2) = C× C× × S2,

and the correspondingMκ

C(GL(v′),N(v′, 0)) is C× C× × T ∗P1. According

to the choice of κ as in (4.7), the section y
α
0 , y

β
1 , z

0
0 or z01 is the fundamental

class of fiber over (κ1,0 − κ1,1,−κ∗, 0) ∈ GrG̃ if we identify GrG̃ with the

coweight lattice of G̃ = C× × C× × C×/C×, and also with Z3/Z. Concretely
(κ1,0 − κ1,1,−κ∗, 0) is (1, 1, 0), (0, 1, 0), (−1,−1, 0), (0,−1, 0) for yα0 , yβ1 , z01,
z
0
0 respectively.

On the other hand, the local model of the bow variety is given in [NT17,
6.5.4] with w1 = w2 = 0. Since A0 is an isomorphism by the conditions
(S1),(S2), we can normalize it to 1. Then we can factor out (w1, A1) ∈
C× C×, and the remaining factor is S2 and its resolution T ∗P1. Line bundles
are given by characters of C× acting on C on the right side:

C

w0

��
A0 //

b0 ��

id

C

w1

��
A1 //

b1 ��

C ∼= C

w1

--
A1

qq

b0A1

�� b1 ��
C

a1

DD

C

a0

DD

C

a1

DD

C.

a0

[[
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Moreover yα0 (resp. yβ1 ) is identified with b0A1 (resp. b1). Since we identify
the fundamental class of fiber over (1, 1, 0) (resp. (0, 1, 0)) with b0A1 (resp.
b1) as in the end of [Ring, §4(iii)], we conclude that the isomorphism of line
bundles extends. For κ∗ = 1, corresponding to the case z

0
0 or z

0
1, we need

to use the opposite stability condition, and P1 is replaced by the dual P1.
We replace linear maps above by its transpose to apply [Ring, §4(iii)]. Then
the fundamental class for (−1,−1, 0) (resp. (0,−1, 0)) are identified with a1
(resp. a0), and hence z01 (resp. z00). Therefore the assertion is true also in
this case. It is also true for general κ thanks to Lemma 2.2.

Next consider the case (b). First suppose n ≥ 2. The local model for the
bow variety is [NT17, 6.5.5]:

C2

B

��

b

��
C

a

CC

C,

where we drop subscripts i. Linear maps Cα,i, Dα,i (α = 1, . . . ,wi) are iso-
morphisms thanks to the assumption that eigenvalues of B are nonzero.
Therefore they are normalized by the group action and defining equations,
and omitted. We haveMκ(v

′,w′) ∼=M0(v
′,w′) as before.

Let w1, w2 be eigenvalues of B. Then C[M0(v
′,w′)×A2 A2] is

C[w1, w2,
′y±1 ,

′y±2 , ξ]/(
′y1 − ′y2 = ξ(w1 − w2))

where ′y1 = b(B − w2)a,
′y2 = b(B − w1)a, ξ = ba. Thanks to the conditions

(S1),(S2) we trivialize the dual of the vector bundle associated with V = C2

by a frame {b, bB}. The factorization morphism is given by

C

w1

��

b1

��
C

a1

CC

C

C

w2

��

b2

��
C

a2

CC

C

7−→ C2

B=
[
w1 0
0 w2

]

��

b=[ b1 b2 ]

��
C

a=[ a1
a2
]

CC

C

.

Hence the trivialization b ∧ bB of detV ∗ is b1b2(w1 − w2) over the open
subset w1 ̸= w2. On the other hand the section yα of (4.4) is b1b2(w1 − w2).
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(cf. (4.5).) Therefore yα = b ∧ bB. Thus yα extends to a nonvanishing section
overM0(v

′,w′). The same is true for z0.
On the other hand, we have an isomorphism

H
GL(2)O
∗ (R̃κ) ∼= H

GL(2)O
∗ (GrGL(2))

if we choose an isomorphism ZG̃(t)
∼= GL(2)× T |v′′| ×GF . The homology

class yκ is identified with a power of ′y1,
′y2, which is an invertible function.

Therefore the isomorphism of line bundles extends overM0(v
′,w′).

For (b) with n = 1, we are reduced to the situation of Corollary 3.3 if
ν∗ < 0. Thus the local model Mκ

C(GL(2), gl(2)) is Hilb2(S0), and the line
bundle is a power of the determinant line bundle. On the other hand, the
local model of the bow variety is given in [NT17, 6.5.2] with w = 0. It
coincides with the description in [Nak99, §1] with constraint A being in-
vertible. It is nothing but Hilb2(S0) and the relevant line bundles coincide.
Moreover our definition of the section yκ is compatible with the open em-
bedding Sym2(S0) \∆S0

→֒ Sym2(A2) \∆A2 (∆? denotes the diagonal) as in
Corollary 3.3. And the isomorphism is unique up to a multiplicative scalar
on Sym2(A2) \∆A2 by Proposition 3.2(b). Therefore our isomorphism coin-
cides with one in Corollary 3.3, hence extends over ∆S0

. If ν∗ > 0, we take
transposes of linear maps to deduce the assertion from the ν∗ < 0 case.

Let us consider the case (c). First suppose n > 1. The local model for
the bow variety side is [NT17, 6.5.3]:

C

w

��

C1

// C
D1oo

C2

// · · ·
D2oo

CN

// C

w

��DNoo

b ��
C

a

DD

C,

where we set N = wi and drop subscripts i. We have M0(v
′,w′) ∼= SN =

{Y Z = WN}. Here a and b are normalized to 1 thanks to the conditions
(S1),(S2), and we set y = CN · · ·C1, z = D1 · · ·DN . The section yα (α =
1, . . . , N) of the line bundle (detV α)∗ is bCN · · ·Cα+1. Sections yN , z0 are
nowhere vanishing, as well as the corresponding y

N , z0. So let us ignore yN ,
y
N , z0, z0 hereafter. In particular, we omit the second line in (4.6) for the
definition of yκ.

After the normalization a = b = 1, it becomes a quiver variety of type
AN−1. When κ1,i > κ2,i > · · · > κwi,i, it is easy to see that Mκ(v

′,w′) is

the minimal resolution S̃N of yz = wN so that (detV 1)∗, . . . , (detV N−1)∗
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correspond to line bundles Lω1
, . . . , LωN−1

, corresponding to weights ω1, . . . ,
ωN−1 in [Ring, §4(i)]. On the other hand, (detV N )∗ is the trivial line bun-
dle OS̃N

. (The κ-stability under the assumption κ1,i > κ2,i > · · · > κwi,i

coincides with the stability used in [Nak98].) Moreover the section yα is
vN−α under the isomorphism Γ(S̃N ,Lωα

) ∼= C[A2]χωα . (This holds even for
α = N .) This remains true if κα−1,i > κα,i, and other inequalities may not

be strict if we replace S̃N by a partial resolution of SN . Thus yκ is a sec-

tion of the line bundle Lκ =
⊗N−1

α=1 L
⊗(κα,i−κα+1,i)
ωα

, given by the product⊗N−1
α=1 (v

N−α)⊗(κα,i−κα+1,i).
The gauge theory (GL(v′),N(v′,w′)) is one studied in [Ring, §4(iii)]

with N = w′
i. We have an extra C×

dil in the flavor symmetry group, but
it acts trivially on N(v′,w′). Let us ignore C×

dil from now on. Recall yκ

is the fundamental class of π−1
T (κ̃) where κ̃ = (κ1,i,κ1,i,κ2,i, . . . ,κN,i) is a

coweight of (C× × TN )/C× = (GL(v′
i)× Tw

′
i)/C×. This is so for the lift κ̃

of a particular κ as in (4.7), but remains to be true for κ̃ of arbitrary κ

with (4.2) if we ignore the second line in (4.7). See [Part II, Theorem 4.1].
On the other hand, the fundamental class of π−1

T (ω̃α) corresponds to vN−α

by the computation in [Ring, §4(iii)], where ω̃α = (1, 1, . . . , 1︸ ︷︷ ︸
α times

, 0, . . . , 0︸ ︷︷ ︸
N − α times

) is

also a coweight of (C× × TN )/C×. Since

N−1∑

α=1

(κα,i − κα+1,i)ω̃α = κ

holds (up to shift), the class yκ is equal to
⊗N−1

α=1 (v
N−α)⊗(κα,i−κα+1,i), which

is nothing but yκ. This is nothing but the isomorphism normalized as in
Remark 2.3. Thus the isomorphism extends overMκ(v

′,w′).
If n = 1, we have N(v′,w′) = End(C)⊕Hom(Cw

′
i ,C) and GL(v′) = C×

acts trivially on the summand End(C). On the other hand C×
dil acts on

End(C) by scaling and trivially on Hom(Cw
′
i ,C). Then we can separate

End(C) and Hom(Cw
′
i ,C), and both are already treated. □

4(ii). Computation

For a later purpose we compute the case (a) with n ≥ 3 in more detail. Let
us drop the assumption w′ = 0 and study general cases with w′

i, w
′
i−1. Let

us also write j instead of i− 1. Let us suppose i ̸= 0 for brevity. Therefore
we ignore κ∗. Let us also drop ‘′’ from dimension vectors.
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Let us consider the local model for the bow variety side. It is [NT17,
6.5.6]:

C

wj

��

C1,j

// C
D1,joo

C2,j

// · · ·
D2,joo

Cwj ,j

// C

wj

��
A //

bj   

Dwj ,joo
C

wi

��

C1,i

// C
D1,ioo

C2,i

// · · ·
D2,ioo

Cwi,i

// C

wi

��

bi   

Dwi,ioo

C

aj

>>

C

ai

>>

C

Note that C[M0(v,w)] written in [NT17, 6.5.6] is wrong, hence we will
give a detail.

We normalize aj = 1, bi = 1 thanks to the conditions (S1),(S2). We also
know that A ̸= 0 thanks to (S1),(S2). The defining equation for the middle
triangle is (wi − wj)A = aibj .

We introduce functions

zj = D1,j · · ·Dwj ,jA
−1ai, zi = bjA

−1D1,i · · ·Dwi,i,

zj,i = D1,j · · ·Dwj ,jA
−1D1,i · · ·Dwi,i,

yj = bjCwj ,j · · ·C1,j , yi = Cwi,i · · ·C1,iai,

yj,i = Cwi,i · · ·C1,iACwj ,j · · ·C1,j .

Then

zjzi = (wi − wj)zj,i,

yjyi = (wi − wj)yj,i, zj,iyj,i = wwi

i w
wj

j ,

ziyi = (wi − wj)w
wi

i ,

zjyj = (wi − wj)w
wj

j

ziyj,i = wwi

i yj , zjyj,i = w
wj

j yi, yizj,i = wwi

i zj , yjzj,i = w
wj

j zi.

We have M0(v,w) ∼= {(wj , wi, yj , yi, yj,i, zj , zi, zj,i) | above equations}. On
the other hand, this is isomorphic to the Coulomb branch, where yj , yi, yj,i
are fundamental classes of fibers over (1, 0), (0, 1), (1, 1), and zj , zi, zj,i are
those over (−1, 0), (0,−1), (−1,−1).

Let us suppose wj , wi ̸= 0. Then all Cα,j ,Dα,j , Cβ,i,Dβ,i become isomor-
phisms. Since zj,iyj,i = wwi

i w
wj

j , zj,i and yj,i are invertible. We can eliminate

zj,i, zi = y−1
j,i w

wi

i yj , zj = y−1
j,i w

wj

j yi. Hence

M0(v,w)|wj ,wi ̸=0
∼= {(w±1

j , w±1
i , yj , yi, y

±1
j,i ) | yjyi = yj,i(wi − wj)}.
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On the other hand when wj ̸= wi, we can eliminate yj,i = (wi − wj)
−1yjyi,

zj,i = (wi − wj)
−1zjzi. Hence

M0(v,w)|wj ̸=wi

∼= {(wj , wi, yj , yi, zj , zi) | yjzj
= (wi − wj)w

wj

j , yizi = (wi − wj)w
wi

i }|wi ̸=wj
.

This is an open subset in the product of type Awj−1 and Awi−1 simple
singularities.

Let us recall sections yαj = bjCwj ,j · · ·Cα+1,j , y
β
i = biCwi,i · · ·Cβ+1,i of

(detV α
j )∗, (detV β

i )∗ respectively. We consider other sections

′yαj = Cwi,i · · ·C1,iACwj ,j · · ·Cα+1,j , zαj
def.
= D1,j · · ·Dα,j ,

zβi
def.
= bjA

−1D1,i · · ·Dβ,i,
′zβi

def.
= D1,j · · ·Dwj ,jA

−1D1,i · · ·Dβ,i.

We have
yj

′yαj = yj,iy
α
j

zjy
α
j = (wi − wj)w

wj−α
j zαj ,

yiy
α
j = (wi − wj)

′yαj ,

zj,iy
α
j = w

wj−α
j ziz

α
j .

Note ziz
α
j = bjA

−1D1,i · · ·Dwi,iD1,j · · ·Dα,j . Similarly we have

yjz
α
j = wα

j y
α
j ,

yj,iz
α
j = wα

j
′yαj .

Let us consider the local model in the Coulomb branch side. Let us take a
coweight (m, 1α, 0wj−α, n, 0wi) of (GL(Vj)× Twj ×GL(Vi)× Twi)/C×. Let
αrm,n denote the fundamental class of the fiber for the projection R̃ → GrG̃.
We can compute products of αrm,n with yi, yj , yj,i, zi, zj , zj,i by the formula
in [Part II, §4]. A calculation shows that

(4.10) αrm,n =





ym−n−1
j ynj,iy

α
j if m > n ≥ 0,

z−n
i ym−1

j yαj if m > 0 ≥ n,

yn−m
i ym−1

j,i
′yαj if n ≥ m > 0,

yni z
−m
j zαj if n ≥ 0 ≥ m,

zm−n
i z−m

j,i zαj if 0 ≥ m ≥ n,

zn−m
j z−n

j,i z
α
j if 0 ≥ n ≥ m

gives an isomorphism of C[M0(v,w)]-modules.
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5. Determinant line bundles on convolution diagram over
the affine Grassmannian

In this section we identify the determinant line bundles on the convolution
diagrams over slices in the affine Grassmannian, or rather global sections
of their pushforwards to the slices, with the modules over the Coulomb
branches of the corresponding quiver gauge theories arising from the con-
struction of [Part II, §3(ix)].

5(i). Slices revisited

Recall the setup and notations of [Quiver, §2(x)]. We define the iterated

convolution diagram W̃λ
µ as the moduli space of the following data:

(a) a collection of G-bundles Ptriv = P0,P1, . . . ,PN on P1;
(b) a collection of rational isomorphisms σs : Ps−1 → Ps, 1 ≤ s ≤ N ,

regular over P1 \ {0}, with a pole of degree ≤ ωis at 0;
(c) a B-structure ϕ on PN of degree w0µ having fiber B− ⊂ G at∞ ∈ P1

(with respect to the trivialization σ := σN ◦ · · · ◦ σ1).
We have an evident proper birational projection π : W̃λ

µ →Wλ
µ (where

λ =
∑N

s=1 ωis), sending (P0, . . . ,PN , σ1, . . . , σN , ϕ) to (PN , σ, ϕ).

More generally, we will need an evident generalization π : W̃λ
µ →Wλ

µ for
an arbitrary sequence of dominant coweights λ = (λ1, . . . , λn),

∑n
s=1 λs = λ,

in place of (ωi1 , . . . , ωiN ).
Now recall the setup and notations of [Quiver, §2(ix)]; in particular, we

set α = λ− µ. We pick N[Q0] ∋ γ ≤ α, and set β = α− γ.

Proposition 5.1. We have a factorization isomorphism of the varieties
over (Gβ∗

m × Aγ∗

)disj:

(Gβ∗

m × Aγ∗

)disj ×Aα∗ W̃λ
µ

∼−→ (Gβ∗

m × Aγ∗

)disj ×Aβ∗×Aγ∗ (Z̊β∗ × W̃λ
λ−γ).

It is compatible with the factorization isomorphism of zastava (see [Quiver,
§2(i)]) under projection sλµ ◦ π.

Proof. The same argument as in the proof of [BFGM02, Proposition 2.4]. □

We fix i ∈ Q0; recall that αi is the corresponding simple coroot. In what
follows we will use a particular case of Proposition 5.1 similar to [Quiver,
Proposition 2.9], where γ = αi and β = α− αi. Here we are additionally able

to identify W̃λ
µ with the minimal resolution of the Kleinian surface S⟨λ,α∨

i ⟩
.
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Recall the birational isomorphism of [Quiver, §2(ix)]

φ : (Gβ∗

m × A1)disj ×Aα∗ Wλ
µ 99K (G

β∗

m × A1)disj ×Aβ∗×A1 (Z̊β∗ × S⟨λ,α∨
i ⟩
).

Proposition 5.2. The birational isomorphism φ extends to a regular iso-
morphism of the varieties over (Gβ∗

m × A1)disj:

(Gβ∗

m × A1)disj ×Aα∗ W̃λ
µ

∼−→ (Gβ∗

m × A1)disj ×Aβ∗×A1 (Z̊β∗ × S̃⟨λ,α∨
i ⟩
).

Proof. Like in the proof of [Quiver, Proposition 2.9], it suffices to prove
the claim over

•

Zα∗

. So we restrict to this open subset without further
mentioning this and introducing new notations for the corresponding open
subsets in the convolution diagrams over slices. Like in [Quiver, Proposi-

tion 2.10], we will identify W̃λ
µ with a certain blowup of Wλ

µ. To this end

we consider a convolution diagram Grλ1

G ×̃ · · · ×̃Grλn

G → GrλG,
∑n

s=1 λs = λ,

and denote it by π : G̃r
λ

G → GrλG. Then just as in [Quiver, §2(ii)], we have

W̃λ
µ = G̃r

λ

G ×′BunG(P1) Bun
w0µ
B (P1). The sequences λ we need will have at

most one term not equal to a fundamental coweight, so that

λ = (ωj1 , . . . , ωjd−1
, λd, ωjd+1

, . . . , ωjn).

In fact, we can choose a collection of sequences (λ) = (0)λ, (1)λ, . . . , (a)λ = λ =

(ωi1 , . . . , ωiN ) such that for any b < a the sequence (b+1)λ is obtained from

the sequence (b)λ by the procedure (b)λ⇝ (b)λ′ =: (b+1)λ described in three
cases (i–iii) below.
(i) In case λd is not a fundamental coweight, but ⟨λd, α

∨

j⟩ = 1 for certain
vertex j (which may or may not happen to coincide with our chosen vertex
i), we set

n′ = n+ 1, λ′
d = λd − ωj , λ′ = (ωj1 , . . . , ωjd−1

, λ′
d, ωj , ωjd+1

, . . . , ωjn).

Then the convolution morphism ϖ : G̃r
λ′

G → G̃r
λ

G is an isomorphism up to

codimension 2, and hence the convolution morphism ϖ : W̃λ′

µ → W̃
λ
µ is an

isomorphism (recall that we restricted ourselves to the open subset over
•

Zα∗

).
(ii) If λ = (ωj1 , . . . , ωje , ωje+1

, . . . , ωjn), we set

n′ = n, λ = (ωj1 , . . . , ωje+1
, ωje , . . . , ωjn),

i.e. we just swap two neighbouring fundamental coweights. It follows from

(i) above that W̃λ′

µ = W̃λ
µ (over

•

Zα∗

).
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(iii) In case ⟨λd, α
∨

j⟩ ≥ 2, we set

n′ = n+ 2, d′ = d+ 1, λ′
d′ = λd − 2ωj ,

λ′ = (ωj1 , . . . , ωjd−1
, ωj , λ

′
d′ , ωj , ωjd+1

, . . . , ωjn).

We also set n′′ = n, λ′′
d = λd − αj , λ′′ = (ωj1 , . . . , ωjd−1

, λ′′
d, ωjd+1

, . . . , ωjn).

We have an open subvariety ◦
jGrλd

G := Grλd

G ⊔Gr
λd−αj

G ⊂ Grλd

G , and also

an open subvariety ◦
jG̃r

λ

G := Gr
ωj1

G ×̃ · · · ×̃◦
jGrλd

G ×̃ · · · ×̃Gr
ωjn

G ⊂ G̃r
λ

G. We have

a closed subvariety ◦
jG̃r

λ′′

G := Gr
ωj1

G ×̃ · · · ×̃Gr
λ′′
d

G ×̃ · · · ×̃Gr
ωjn

G ⊂ ◦
jG̃r

λ

G. We will

denote the restriction of the convolution morphism ϖ : G̃r
λ′

G → G̃r
λ

G to
◦
jG̃r

λ

G ⊂ G̃r
λ

G by ϖ : ◦
jG̃r

λ′

G → ◦
jG̃r

λ

G. Similarly, if j ̸= i but λd − αi is dominant,

we define the open subsets ◦
iGrλd

G := Grλd

G ⊔Grλd−αi

G ⊂ Grλd

G and ◦
iG̃r

λ

G ⊂ G̃r
λ

G.

Then (if j ̸= i) the convolution morphism ϖ : ◦
iG̃r

λ′

G → ◦
iG̃r

λ

G is an isomor-

phism, while ϖ : ◦
jG̃r

λ′

G → ◦
jG̃r

λ

G is the blowup of ◦
jG̃r

λ

G along the closed sub-

variety ◦
jG̃r

λ′′

G ⊂ ◦
jG̃r

λ

G.

Indeed, étale-locally, ◦
jG̃r

λ

G splits as a product ◦
jG̃r

λ′′

G × SNj
where Nj :=

⟨λd, α
∨

j⟩, and ϖ splits as a product Id×ϖ where ϖ : S ′Nj
→ SNj

is the restric-
tion of ϖ to any slice SNj

. Now S ′Nj
is a normal surface, smooth if Nj = 2,

and the fiber of ϖ over 0 ∈ SNj
is the projective line if Nj = 2. Furthermore,

if Nj > 2, then the fiber of ϖ over 0 ∈ SNj
is a union of two projective lines

intersecting at a point; this point in S ′Nj
has Kleinian ANj−3-singularity (in

particular, it is smooth if Nj = 3). The check reduces to the case of rank 1 by
the argument of [MOV05, Section 3]. In rank 1 it follows e.g. from [MV03].
We conclude that ϖ : S ′Nj

→ SNj
is the blowup of SNj

at 0 ∈ SNj
(in effect,

the minimal resolution S̃ ′Nj
of S ′Nj

must coincide with the minimal resolu-

tion S̃Nj
of SNj

, hence S ′Nj
must be obtained from S̃Nj

by blowing down all
the exceptional divisor components except for the two outermost ones), and

hence ϖ : ◦
jG̃r

λ′

G → ◦
jG̃r

λ

G is the blowup of ◦
jG̃r

λ

G along the closed subvariety

◦
jG̃r

λ′′

G ⊂ ◦
jG̃r

λ

G.

We define ◦
jW̃

λ
µ := ◦

jG̃r
λ

G ×′BunG(P1) Bun
w0µ
B (P1), ◦

iW̃
λ
µ := ◦

iG̃r
λ

G ×′BunG(P1)

Bunw0µ
B (P1), and we define ϖ : ◦

jW̃
λ′

µ → ◦
jW̃

λ
µ ⊃ ◦

jW̃
λ′′

µ , ϖ : ◦
iW̃

λ′

µ → ◦
iW̃

λ
µ sim-

ilarly. By the argument used in the proof of [Quiver, Lemma 2.16], the

morphisms G̃r
λ

G

p◦π−→ ′BunG(P
1)← Bunw0µ

B (P1) are Tor-independent, hence

ϖ : ◦
jW̃

λ′

µ → ◦
jW̃

λ
µ is the blowup of ◦

jW̃
λ
µ along the closed subvariety ◦

jW̃
λ′′

µ ⊂
◦
jW̃

λ
µ, while ϖ : ◦

iW̃
λ′

µ → ◦
iW̃

λ
µ is an isomorphism (if j ̸= i).
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In case j ̸= i, the open subvariety (Gβ∗

m × A1)disj ×Aα∗
◦
iW̃

λ
µ ⊂ (Gβ∗

m ×
A1)disj ×Aα∗ W̃λ

µ coincides with the whole of (Gβ∗

m × A1)disj ×Aα∗ W̃λ
µ. Hence

the convolution morphismϖ : (Gβ∗

m × A1)disj ×Aα∗ W̃λ′

µ → (Gβ∗

m × A1)disj ×Aα∗

W̃λ
µ is an isomorphism.

In case j = i, the open subvariety (Gβ∗

m × A1)disj ×Aα∗
◦
jW̃

λ
µ ⊂ (Gβ∗

m ×
A1)disj ×Aα∗ W̃λ

µ coincides with the whole of (Gβ∗

m × A1)disj ×Aα∗ W̃λ
µ. Fur-

thermore, the closed subvariety (Gβ∗

m ×A1)disj×Aα∗
◦
jW̃

λ′′

µ ⊂(Gβ∗

m ×A1)disj×Aα∗

W̃λ
µ coincides with the singular locus (with its reduced scheme structure)

of (Gβ∗

m × A1)disj ×Aα∗ W̃λ
µ. Arguing by induction, we conclude that (Gβ∗

m ×
A1)disj ×Aα∗ W̃λ

µ coincides with Bl
⌊
⟨λ,α∨

i
⟩

2
⌋
, where Bl0 := (Gβ∗

m × A1)disj ×Aα∗

Wλ
µ
∼= (Gβ∗

m × A1)disj ×Aβ∗×A1 (Z̊β∗ × S⟨λ,α∨
i ⟩
), and Blb is the result of blowup

of Blb−1 at its singular locus, b = 1, . . . , ⌊ ⟨λ,α∨
i ⟩

2 ⌋. Hence, Bl
⌊
⟨λ,α∨

i
⟩

2
⌋
∼= (Gβ∗

m ×
A1)disj ×Aβ∗×A1 (Z̊β∗ × S̃⟨λ,α∨

i ⟩
).

The proposition is proved. □

5(ii). Determinant line bundles

Note that we have a whole collection of morphisms from W̃λ
µ to GrG: for

1 ≤ s ≤ N we set ps(P0, . . . ,PN , σ1, . . . , σN , ϕ) := (Ps, σs ◦ . . . ◦ σ1). Recall
the determinant line bundle L on GrG (see e.g. [Quiver, §2(iii)]). For 1 ≤
s ≤ N we define the relative determinant line bundle Ds on W̃λ

µ as Ds :=
p∗sL ⊗ p∗s−1L−1 (where p∗0L is understood as a trivial line bundle). For a
collection of integers κ = (k1, . . . , kN ) ∈ ZN , we define a line bundle Dκ on

W̃λ
µ as

⊗N
s=1D⊗ks

s . In other words, for the obvious projection p : W̃λ
µ → G̃r

λ
G

and similarly defined line bundle Dκ

Gr on the Grassmannian convolution

diagram G̃r
λ
G, we haveDκ = p∗Dκ

Gr. In particular,D(1,1,...,1) = p∗NL is trivial.
For i ∈ Q0, we set Ni = ⟨λ, α∨

i⟩ = ♯{s : ωis = ωi}. We order the set of

indices s such that ωis = ωi : s
(i)
1 < · · · < s

(i)
Ni
. We associate to κ ∈ ZN a

collection of coweights κ(i) =
∑Ni−1

n=1 (k
s
(i)
n
− k

s
(i)
n+1

)ωn, i ∈ Q0, of PGL(Wi).

We will denote by Λ+
F ⊂ ZN the set of all κ such that k

s
(i)
1
≥ k

s
(i)
2
≥ · · · ≥

k
s
(i)
Ni

for any i ∈ Q0. We will denote by Λ++
F ⊂ Λ+

F the set of all κ such that

ks1 ≥ ks2 for any 1 ≤ s1 < s2 ≤ N .

Proposition 5.3. The factorization isomorphism of Proposition 5.1 lifts
to a canonical (in the sense explained during the proof) isomorphism of line
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bundles
(
(Gβ∗

m × Aγ∗

)disj ×Aα∗ W̃λ
µ, O(Gβ∗

m ×Aγ∗ )disj
⊗Dκ

)
∼−→

(
(Gβ∗

m × Aγ∗

)disj ×Aβ∗×Aγ∗ (Z̊β∗ × W̃λ
λ−γ), O(Gβ∗

m ×Aγ∗ )disj
⊗O

Z̊β∗ ⊠Dκ

)
.

Proof. The factorization isomorphism of Proposition 5.1 associates to the
data of (P0, . . . ,

PN , σ1, . . . , σN , ϕ) the data of (P
(1)
0 = · · · = P

(1)
N , σ

(1)
1 = · · · = σ

(1)
N = id, ϕ(1))

and (P
(2)
0 , . . . ,P

(2)
N , σ

(2)
1 , . . . , σ

(2)
N , ϕ(2)). By construction, the relative deter-

minant of Ps and Ps−1 coincides with the relative determinant of P
(2)
s and

P
(2)
s−1. □

We consider the Kleinian surface resolution S̃Ni

π−→ SNi

Π−→ A1 with a
line bundle Lκ(i) . See [Ring, §4(i)].

Corollary 5.4. The factorization isomorphism of Proposition 5.2 lifts to
a canonical (in the sense explained during the proof) isomorphism of line
bundles
(
(Gβ∗

m × A1)disj ×Aα∗ W̃λ
µ, O(Gβ∗

m ×A1)disj
⊗Dκ

)
∼−→

(
(Gβ∗

m × A1)disj ×Aβ∗×A1 (Z̊β∗ × S̃Ni
), O(Gβ∗

m ×A1)disj
⊗O ◦

Zβ∗
⊠ Lκ(i)

)
.

Proof. Due to Proposition 5.3, it suffices to construct an isomorphism
(W̃λ

λ−αi
,Dκ)

∼−→ (S̃Ni
,Lκ(i)). This reduces to the case of rank 1 by the

argument of [MOV05, Section 3]. In rank 1 we compare the weights of the
Cartan torus in the fixed points.

Namely, G = GL(2), ω is the fundamental weight (1, 0), λ is a sequence
(ω, . . . , ω) (N times), α = (1,−1) is the simple root, λ = Nω = (N, 0), λ−
α = (N − 1, 1), and we will write W̃ for W̃λ

λ−α. Then W̃ is a locally closed

subvariety of the convolution diagram GrωG×̃ · · · ×̃GrωG (N times). The lat-
ter convolution diagram is the moduli space of flags of lattices L0 ⊃ L1 ⊃
· · · ⊃ LN where L0 = V ⊗ C[[z]], V = Ce1 ⊕ Ce2, and dimLn/Ln+1 = 1 for

any n = 0, . . . , N − 1. The fixed points W̃T = {p0, . . . , pN−1} (where T ⊂
GL(2) = GL(V ) is the diagonal torus) are as follows: pr = (L

(r)
0 ⊃ · · · ⊃ L

(r)
N )

where L
(r)
n is spanned by zne1, e2 for 0 ≤ n < r, and by zn−1e1, ze2 for r ≤

n ≤ N − 1. In particular, L
(r)
0 = L0, and L

(r)
N = zN−1C[[z]]e1 ⊕ zC[[z]]e2. The

fiber of Ds at pr is Cz
s−1e1 for 1 ≤ s ≤ r, and Ce2 for s = r + 1, and Czs−2e1

for r + 1 < s ≤ N . Let T1 be the image of T ⊂ GL(2) in PGL(2). The nat-
ural action of T on the convolution diagram factors through T1, and the
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action of T1 lifts to an action on Ds: the character of the fiber (at a fixed
point) isomorphic to Czle1 (resp. Czle2) is 1 (resp. x−1

1 ). Here x1 is the gen-

erator of X∗(T1). Recall the action of C× × C× on S̃N in [Ring, §4(i)]. We
will be interested in the action of the first copy of C×. It factors through the
quotient modulo the subgroup of N -th roots of unity: C×

↠ C×/ N
√
1. We

identify C×/ N
√
1 with T1 so that the pullback of x1 ∈ X∗(T1) to C

× coincides

with xN . Then the identification S̃N ≃ W̃ is C×
↠ T1-equivariant, it takes

pr ∈ S̃N to pr ∈ W̃, and the characters of C× in the fibers of Lωs−ωs−1
and

Ds at the respective fixed points in S̃N and W̃ match up to an overall twist
(independent of a fixed point) by the character x of C×.

This defines the desired isomorphism (W̃,Ds)
∼−→ (S̃N ,Lωs−ωs−1

) up to

multiplication by an invertible constant, and hence (W̃,Dκ)
∼−→ (S̃N ,Lκ)

(also up to multiplication by an invertible constant). This is the only ambi-
guity in the choice of isomorphism of corollary. □

5(iii). Sections of determinant line bundles

For 1 ≤ s ≤ N , we set λs := ωi1 + · · ·+ ωis . Then the projection ps : W̃λ
µ →

GrG lands into Grλs

G . The determinant line bundle

L|Grλs
G
≃ OGrλs

G

(
∑

i∈Q0

⟨λs, α
∨

i⟩Sλs−αi
∩Grλs

G

)

has a canonical section zλs
vanishing to the order ⟨λs, α

∨

i⟩ at the semiinfinite
orbit Sλs−αi

intersecting Grλs

G in codimension 1. For κ = (k1 ≥ · · · ≥ kN ) ∈
Λ++
F , the line bundle Dκ =

⊗N
s=1 p

∗
sL⊗(ks−ks+1) (we set kN+1 = 0) has a

section zκ :=
⊗N

s=1 p
∗
sz

ks−ks+1

λs
. In particular, recall that D(1,1,...,1) = p∗NL is

trivial, but the section z(1,1,...,1) = p∗NzλN
̸= 1 since it vanishes along some

semiinfinite orbits.

5(iv). Example

We consider G = SL(3), µ = 0, λ = (ωj , ωi), λ = ωi + ωj = αi + αj . The

slice Wλ
µ is the closure of the minimal nilpotent orbit in sl3, and W̃λ

µ is the
cotangent bundle T ∗P2 where P2 = P(V ), and V has a basis b1, b2, b3, and V ∗

has the dual basis a1, a2, a3. We assume that these bases are eigenbases for a
Cartan torus T , and the weight of a1 equals ωi, wt(a2) = ωi − αi, wt(a3) =
−ωj . The zastava Zλ is given by equation yiyj = (wi − wj)yj,i, and the open
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zastava Z̊λ ⊂ Zλ is given by yj,i ̸= 0. The weights wt(yi) = αi, wt(yj) =
αj , wt(wi) = wt(wj) = 0, wt(yj,i) = λ.

We have the canonical projections W̃λ
µ →Wλ

µ → Zλ, and a section Z̊λ →֒
Wλ

µ. We consider the incidence quadric Q ⊂ V × V ∗ given by a1b1 + a2b2 +

a3b3 = 0. Its categorical quotient modulo the ‘hyperbolic’ C×-action is Wλ
µ,

and the composed projection Q→ Zλ acts as

yi = a1b2, yj = a2b3, yj,i = a1b3, wi = −a1b1, wj = a3b3, wi − wj = a2b2.

The preimage of the open zastava Z̊λ ⊂ Zλ is given by a1 ̸= 0 ̸= b3. The
composition Z̊λ →֒ Wλ

µ →֒ GrλSL(3) → B (the flag variety of SL(3)) is nothing

but the evaluation at 0 ∈ P1 morphism (viewing Z̊λ as based maps from P1

to B).
The Picard group Pic(W̃λ

µ) ≃ Z, generated by the first determinant bun-
dle L1 = D1 that coincides with the pullback of O(1) from P2. The global

sections Γ(W̃λ
µ,D1) are the functions on the incidence quadric Q having

weight 1 with respect to the hyperbolic C×. In particular, this line bundle
has T -eigensections a1, a2, a3. The restriction of a1 to Z̊λ ⊂ W̃λ

µ is nowhere
vanishing. The restriction of a2 vanishes along the divisor div(yj) ⊂ Z̊λ,
and the restriction of a3 vanishes along the divisor div(wj) ⊂ Z̊λ. Note that

a3 = p∗1zλ1
∈ Γ(W̃λ

µ,D1). Furthermore, the section of the trivial line bundle
(i.e. a function) p∗2zλ2

= −a3b1.
Comparing with §4(ii), we conclude that (in our situation α = 1)

zi = −a2b1, zj = a3b2, zj,i = −a3b1, y1j = a2,
′y1j = a1, z1j = a3.

From (4.10) we conclude that 1r0,0 = z1j = a3 (the fundamental class of
the preimage of the cocharacter (0, 1, 0, 0) ∈ X∗(GL(Vj)× Twj ×GL(Vi)×
Twi)).

Similarly, the fundamental class of the preimage of the cocharacter
(0, 0, 0, 1) ∈ X∗(GL(Vj)× Twj ×GL(Vi)× Twi) is the section b1 of the pull-

back of O(1) from P(V ∗) to T ∗P(V ∗) = W̃λ′

µ where λ′ = (ωi, ωj).
More generally, the fundamental class of the preimage of the cocharacter

(min(k1, k2), k1,
min(k1, k2), k2) restricted to Z̊λ vanishes to the order k1 − k2 at the divisor
wj = 0 if k1 ≥ k2, and to the order k2 − k1 at the divisor wi = 0 if k1 ≤
k2, and is invertible elsewhere, in particular at wi = wj . Hence for k ≥ 0
the fundamental class of the preimage of the cocharacter (min(k1, k2)−
k, k1,min(k1, k2)− k, k2) restricted to Z̊λ is invertible off the zero divisors
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of wi and wj . This follows from (4.10) (note that zj,i is invertible at the
generic point of the divisor wi = wj).

5(v). Determinant sheaves on slices via
homology groups of fibers

We recall the setup of [Quiver, §3(iii)] and [Quiver, §3(v)]. We set G =
GL(V ), GF = T (W ), G̃ = G×GF . The group G̃ acts on Nλ

µ. According
to [Quiver, Theorem 3.10], the Coulomb branch MC(G,N) is identified
with Wλ∗

µ∗ . Our choice of basis of the character lattice of T (W ) defines a

cone of dominant coweights of GL(W ) ⊃ T (W ). It is nothing but Λ+
F in-

troduced in §5(ii). For κ ∈ Λ+
F , the homology HGO

∗ (R̃κ) forms a module
over the algebra HGO

∗ (R), and for κ ∈ Λ++
F we want to identify this mod-

ule with Γ(W̃λ∗

µ∗ ,Dκ) = Γ(Wλ∗

µ∗ ,π∗Dκ). Here the assumption κ ∈ Λ++
F is not

essential, as we can renumber i1, . . . , iN so that k1 ≥ k2 ≥ · · · ≥ kN .
First we consider the case κ = (1, . . . , 1, 0, . . . , 0), i.e. Dκ = p∗sL. We al-

low s = N , so that κ = (1, . . . , 1). LetNT denoteN regarded as a T -module.
We have the pushforward homomorphism ι∗ : H

TO
∗ (RT,NT

)→ HTO
∗ (R) =

HGO
∗ (R)⊗H∗

G(pt) H
∗
T (pt) of the inclusion RT,NT

→ R (see [Part II, §5(iii)]).

We set T̃ := T ×GF = T × T (W ). We consider π̃T : RT̃,NT
→ GrGF

, and

the fiber π̃−1
T (κ). We have a natural inclusion π̃−1

T (κ)→ π̃−1(κ) = R̃κ, de-
noted again by ι, and the pushforward homomorphism

ι∗ : H
TO
∗ (π̃−1

T (κ))→ HGO
∗ (R̃κ)⊗H∗

G(pt) H
T
∗ (pt).

Let πT : RT̃,NT
→ GrT̃ be the projection. We lift the coweight κ of GF to

T̃ by setting the wi,r-coordinate of the T -component to be 0 for any wi,r, i ∈
Q0, 1 ≤ r ≤ ai. Let us denote it by κ̃. We consider the fundamental class of
π−1
T (κ̃) and denote it by z

κ. By the localization theorem, it is nonvanishing

over Å|α|. Note that the lift κ̃ has different T component from one in (4.8).
The class zκ is different from y

κ used in §4.
We define a rational isomorphism θ : Γ(Wλ∗

µ∗ ,π∗Dκ) 99K HGO
∗ (R̃κ) by

sending zκ to ι∗z
κ. It is Sα-equivariant, hence it is indeed an isomorphism

as above.

Theorem 5.5. The rational isomorphism θ : Γ(Wλ∗

µ∗ ,π∗Dκ) 99K HGO
∗ (R̃κ)

extends to the regular isomorphism of C[Wλ∗

µ∗ ]-modules θ : Γ(Wλ∗

µ∗ ,π∗Dκ)
∼−→

HGO
∗ (R̃κ).
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Proof. We follow the standard scheme, see e.g. the proof of [Quiver, Theorem
3.10]. We have to check that θ extends through the general points of the

boundary divisor A|α| \ G̊|α|
m . Namely,

(a) wj,s(t) = wi,r(t) for some i ̸= j connected by an edge, r, s, but all
others are distinct. Moreover wk,p(t) ̸= 0 if Nk ̸= 0.

(b) wi,r(t) = wi,s(t) for distinct r, s and some i, but all others are distinct.
Moreover wj,p(t) ̸= 0 if Nj ̸= 0.

(c) All pairs like in (a),(b) are distinct, but wi,r(t) = 0 for i with Ni ̸= 0.

The gauge theory (G,N, G̃) with the flavor symmetry group G̃ is replaced by
(ZG(t),N

t, ZG̃(t)). In our case, ZG̃(t) = ZG(t)× T (W ), and (ZG(t),N
t) =

(GL(V ′)× T ′′,N(V ′,W ′)), where V ′, W ′ are given below, V = V ′ ⊕ V ′′ and
T ′′ acts trivially on N(V ′,W ′):

(a) W ′ = 0, V ′
j = C = V ′

i and other entries are 0.

(b) W ′ = 0, V ′ = C2 and other entries are 0.

(c) V ′
i = 1, W ′

i = CNi and other entries are 0.

The extra factor T (W ) acts trivially in (a),(b), while it acts through T (W )→
T (Wi) in (c).

By the same argument as in the proofs of [Quiver, Theorem 3.10], both
zκ and z

κ are related to z′κ, z′κ by nonvanishing regular functions defined on
a neighborhood of t in A|α| under the factorization. Therefore it is enough to
check that the isomorphism θ extends for the local models (a),(b),(c) above.

(a) According to §5(iv), both z′κ and z
′κ are invertible at the general

points of the divisor wi = wj (recall that we assume wi ̸= 0 ̸= wj).
(b) The zero divisor of z′κ is the union of the zero divisors of wi,1 and wi,2;

in particular, z′κ is invertible at the general points of the divisor wi,1 = wi,2

(recall that we assume wi,1 ̸= 0 ̸= wi,2). The homology class z′κ is invertible
as well.

(c) We make use of the C× × C×-action on S̃Ni
of [Ring, §4(i)]. A dom-

inant weight λ of [Ring, §4(i)] is now κ(i) = ωn = (1, . . . , 1, 0, . . . , 0) (n 1’s,
and we allow the possibility n = Ni, when κ(i) = (1, . . . , 1)). The fundamen-
tal class z

′κ(i)

is an eigenvector of C× × C× with the eigencharacter xntn.
Since all the eigenspaces are 1-dimensional, it suffices to check that z′κ

(i)

has the same eigencharacter. Now the x-character of z′ωn is xn since z′ωn is
a highest vector of the irreducible GL(2)-module with highest weight (n, 0).
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The exponent of the t-character of z′ωn is minimal among all such exponents
with the fixed x-character. Hence the t-character of z′ωn is tn.

For the sake of completeness, note that the divisor of z′ωn is the union of
E1, . . . , En−1 and the strict transform of {Z = 0} (notation of the beginning
of §2 and [Ring, §4(i)]).

We conclude by an application of [Part II, Theorem 5.26] and [Part II,
Remark 5.27]. The condition Π∗π∗Dκ ∼−→ j∗Π∗π∗Dκ|

(W̃
λ∗

µ∗ )•
of [Part II, Re-

mark 5.27] is satisfied since W̃λ∗

µ∗ is Cohen-Macaulay, and the complement

of (W̃λ∗

µ∗)• in W̃λ∗

µ∗ is of codimension 2. The latter claim follows from the

semismallness of π : W̃λ∗

µ∗ →Wλ∗

µ∗ as in the proof of [Quiver, Lemma 2.7],
and the Cohen-Macaulay property is proved the same way as in [Quiver,
Lemma 2.6] and [Quiver, Lemma 2.16]. □

Now we construct an isomorphism θκ : Γ(Wλ∗

µ∗ ,π∗Dκ)
∼−→ HGO

∗ (R̃κ) for
arbitrary κ ∈ Λ++ inductively, with Theorem 5.5 as the base of induc-
tion. More precisely, we write κ =

∑
l κl, where each κl is of the form

(1, . . . , 1, 0, . . . , 0) considered in Theorem 5.5.

Theorem 5.6. There is a unique isomorphism θκ : Γ(Wλ∗

µ∗ ,π∗Dκ)
∼−→

HGO
∗ (R̃κ) making the following diagram commutative:

l⊗
C[Wλ∗

µ∗ ]
Γ(Wλ∗

µ∗ ,π∗Dκl)
∼−−−−→

l⊗
θκl

l⊗
H

GO
∗ (R)

HGO
∗ (R̃κl)

y
y

Γ(Wλ∗

µ∗ ,π∗Dκ)
∼−−−−→ HGO

∗ (R̃κ).

Proof. Assume κ = κ′ + κ′′, and θκ′ , θκ′′ are already constructed. Then

we restrict to (Wλ∗

µ∗)•
j→֒ Wλ∗

µ∗ , and note that j∗π∗Dκ is the quotient of

j∗π∗Dκ
′ ⊗ j∗π∗Dκ

′′

modulo torsion, due to factorization and Lemma 2.1.
Similarly, j∗HGO

∗ (R̃κ) is the quotient of j∗HGO
∗ (R̃κ

′

)⊗ j∗HGO
∗ (R̃κ

′′

) mod-
ulo torsion. So we define j∗θκ as the quotient of j∗θκ′ ⊗ j∗θκ′′ modulo tor-
sion. Finally, we define θκ as j∗j

∗θκ. The resulting diagram commutes thanks
to Lemma 2.2. □
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Erratum to [Ring]

As pointed out by Bielawski [Bie21], the statement of Proposition 5.20 is
not correct. The action of G∨ on the second factor should be twisted by the
automorphism of G∨ interchanging conjugacy classes of g and g−1. We use
the automorphism in the proof of Proposition 5.20, as CG∨ is induced from
that. The same correction applies to the last sentence of Remark 5.22.

We also need to twist the first factor of the diagonal embedding GrG →
(GrG)

2 in Proposition 5.23 by the automorphism induced by g 7→ g−1,
G((z))→ G((z)). The induced automorphism CG on DG(GrG) corresponds
to CG∨ under the derived Satake equivalence Ψ. The latter appeared in line
−6 at page 318.
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