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Abstract
We propose a superconducting spin valve based on a Josephson junction with B20-family
magnetic metal as a barrier material. Our analysis shows that the states of this element can be
switched by reorienting the intrinsic non-collinear magnetization of the spiral magnet. This
reorientation modifies long-range spin-triplet correlations and thereby strongly influences the
critical Josephson current. Compared to superconducting spin valves proposed earlier, our
device has the following advantages: (a) it contains only one barrier layer, which makes it easier
to fabricate and control; (b) its ground state is stable, which prevents uncontrolled switching;
(c) it is compatible with devices of low-T Josephson electronics. This device may switch
between two logical states which exhibit two different values of critical current, or its positive
and negative values. I.e. 0-π switch is achievable on a simple Josephson junction.

Keywords: electronic, switchable, spiral, Josephson, junction, superconducting spin valves

(Some figures may appear in colour only in the online journal)

1. Introduction

The urgent need for low-power computing facilities has
put a lot of focus on the development of the next gen-
eration of superconducting computers [1–4]. In particular,
there is a strong need for novel designs of small and effect-
ive superconducting memory elements [5, 6]. To meet this
demand, we propose a superconducting memory element,
which shows certain advantages compared to earlier proposed
devices.

Current semiconductor-based computing facilities require
large amounts of electricity for operation and cooling pur-
poses [1, 2]. Due to the growing demand for data processing,

∗
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the search for a low-power solution has gained high priority
[3, 7]. Superconducting logical devices are promising alternat-
ives to semiconductor-based ones, because they offer the pos-
sibility to exchange information with extreme low energy loss
over zero-resistance conductors. However, it is a non-trivial
task to design suitablememory elements, which operate effect-
ively at low temperatures and can be miniaturized [5, 6].

Early proposals for superconducting memory elements
based on SQUIDs [8, 9] had a relatively large size. Their suc-
cessors combined SQUIDs with conventional CMOS techno-
logy [10, 11] which is better miniaturizable but has a higher
energy consumption. The next idea was to use Josephson
devices including magnetic interlayers [12–16] which prom-
ise a considerable reduction of the element size while stay-
ing energy efficient. This idea led to many different proposals
e.g. based on φ junctions [17–19], external-field support [20],
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triplet-superconductivity [21–23], spin-valves [24–26], spin
torque [27], Abrikosov vortices [28], phase domains [29] and
nanowires [30].

All these proposals are quite advanced, but also suffer from
disadvantages like a difficult fabrication procedure due to a
complex design or unstable ground state. In this respect, a
superconducting spin valve (SSV) based on a Josephson junc-
tion with a single magnetic layer (M) between the supercon-
ducting electrodes (S) holds a great promise for applications.
A crucial requirement for this type of SSVs is the imple-
mentation of magnetic materials with noncollinear magnetic
configurations that can be switched with a weak magnetic
field. Therefore, itinerant cubic helimagnets of B20 family
[31] like MnSi are suitable candidates. B20 family nanoma-
terials were already proposed to use in a spin valve config-
uration [23, 32], where the critical temperature Tc changes
with the change of the spiral vector direction, possible in B20
family crystals. In recent years, transition metal silicides and
germanides being members of the chiral B20 magnets has
become a topic of prime interest both for basic research and
from the perspective of possible applications. A key charac-
teristic of these compounds is a lack of inversion symmetry
with respect to the magnetic ions which gives rise to the anti-
symmetric Dzyaloshinski-Moriya interaction. In combination
with ferromagnetic exchange and magnetocrystalline aniso-
tropy, the B20 magnets exhibit a variety of spin structures
starting from spin helices at low external magnetic fields.
In MnSi weak crystal-field effects point the helix propaga-
tion vector along the < 111> directions of the cubic unit
cell [33], whereas in Fe1−xCoxSi the helix vector tends to ori-
ent along < 100> [34]. For larger fields, the helix vector is
unpinned from the equilibrium direction and aligns parallel to
the magnetic field resulting in a conical spin state, which com-
pletely transforms into a collinear spin alignment in the high
field regime [35]. In the vicinity of the ordering temperature
a topological spin structure occurs which is referred to as a
skyrmion lattice. In MnSi and Fe1−xCoxSi two-dimensional
skyrmions are observed in a small pocket of the H-T-diagram,
whereas three-dimensional skyrmions are present in MnGe
and Mn1−xFexGe most likely due to enhanced spin–orbit
coupling [36].

The occurrence of skyrmionic spin textures holds the pro-
spect of being used for new types of data storage and spintronic
devices.

In this workwe introduce a SSV based on a Josephson junc-
tion with a single magnetic layer. An essential feature of our
spin valve is the presence of magnetic order which is char-
acterized by magnetic moments aligned in a spiral around a
spiral vector Q. This noncollinear magnetic configuration can
be switched under the control of a weak parallel magnetic field
of circa 100 mT for MnSi [35], which is still much less than
the second critical field of Nb electrodes in such Josephson
junctions. The magnetic field switch off returns the MnSi film
to the initial spiral magnetic state, in a contrast to Er or Ho
[37, 38]. We consider the change of the critical current density
jc with the change of the magnetization from the spiral to the
uniform one.

This work was also motivated by experiments with thin
films of Ho and Er [37, 38] in the MS bilayers. It was shown
that the switch of the magnetic configuration from the spiral to
uniform turns out the change of the critical temperature of the
proximate thin superconducting film. Although helimagnetic
metals Ho and Er are not the best choice because being par-
tiallymagnetized they return in the ground state only at anneal-
ing above theNeel temperature, which is higher than the super-
conducting critical temperature. This fact makes them difficult
to use in superconducting nanoelectronic devices.

The jc changes with the transformation of the magnetic
order from the spiral antiferromagnetic to the ferromagnetic
one because the non-collinear magnetic moments originating
from the spiral vector Q create long-range spin-triplet correl-
ations (LRTC) [39–42]. These superconducting correlations
have a non-zero total spin projection on the quantization axis.
Due to this property, exchange magnetic field do not suppress
equal spin triplet pairs, which thus penetrate far into the mag-
netic region and thereby enhance the critical current. Our idea
is to control the LRTC by changing the magnetic moments
mutual orientation and in this way to control the critical cur-
rent density. It was shown that in the case α= 0 LRTC was
not generated [43] like at the uniform magnetization. How-
ever, in contrast to our case, the magnetic moments considered
by Champel et al [43] were not aligned perpendicular to the
z axis, but arranged as cycloidal spin modulations in the SM
interface plane. Volkov et al [44, 45] has shown that at the
spiral vector orthogonal to the junction plane α= 90◦ the cre-
ated LRTC components led to an enhancement of the critical
current. However, in that approach [44] the strict assumptions
on the involved wave vectors were used in contrast to our case.

Similar as described by Zyuzin et al [46], who analyzed
a topological insulator with helical spin states our considera-
tion will also reveal that changing the magnetization can lead
to supercurrent reversals due to 0-π crossovers, which can be
used to identify the states of SSV.

In section 2, we develop the model that describes the spiral
reorientation in MnSi by using linearized Usadel equations.
Further we use the solution of these equations as a basis to
calculate the critical current density and to show how its modi-
fication can be used to discriminate SSV states, which we
present in section 4. We also address the question of writ-
ing and readout of the logical states in our proposed SSV
used as a memory element. Therefore, the introduced cryo-
genic Josephson spin valve holds a promise as a new mem-
ber of the superconductor-based elements with advantages in
terms of fabrication and control, together with compatibility
and robustness.

2. Spiral magnetization

The considered Josephson junction is sketched in figure 1.
We have chosen the x axis perpendicular to the SM inter-

faces and the M layer has a thickness dM. The spiral vector Q
points along the z axis. The magnetic moments are oriented
perpendicular to Q and are aligned along a spiral around Q.
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Figure 1. The Josephson junction configuration we consider. A
spiral alignment of magnetic moments in the magnet M between the
superconductors S, can be switched to uniform magnetization.

To determine the critical current density of this Josephson
junction, we solve the linearized Usadel equations [47] which
are valid in the diffusive limit. This is reasonable because
low-temperature superconducting nanostructures made by
sputtering are usually diffusive. The linearization step is valid
close to Tc, where superconducting correlations are weak
although qualitatively the results remain true in a wide range
of the temperature.

We describe the superconducting correlations by using the
singlet spin component f s and the triplet spin components ft =
( ftx, fty, ftz) of the anomalous Green’s function. The corres-
ponding linearized Usadel equations can be written as [48, 49]

(
DM∇2 − 2 ω

)
fs = 2 iωh · ft,(

DM∇2 − 2 ω
)
ft = 2 iωhfs (1)

in the magnet and in the superconductor as(
Ds∇2 − 2 ω

)
f Ss =−2 π∆,(

Ds∇2 − 2 ω
)
f St = 0. (2)

Here, we use the diffusion coefficients DM in the magnet and
Ds in the superconductor, the superconducting order para-
meter∆ and the positiveMatsubara frequencies 0⩽ ω ≡ ωn =
πT(2n+ 1), where n is an integer and T the temperature.

The magnetic vector h≡ h[cos(Qz),sin(Qz),0] with the
value h of the exchange energy splitting is aligned along the
local magnetization, which rotates in space around the spiral
vectorQ, as sketched in figure 1. The spiral phaseQz describes
the rotation of the magnetic moments around Q with a con-
stant wave vectorQ≡ 2π/λ, where λ is the period of the mag-
netic spiral. The equation for fzz separates and we can choose
fzz = 0. Since the structure which we consider is homogen-
eous in y direction, we only consider the differential operator
∇2 = ∂2/∂x2 + ∂2/∂z2. To further reduce equations (2), we
follow the idea of Champel et al [48, 49] and perform a Fourier
transformation of f s and ft along the direction z. Similar to the
results of this group, we conclude that z-independent Fourier
components are energetically favorable, because they repres-
ent homogeneous superconducting correlations far away from
the SM interface.

Using the unitary transformation f± = (∓fx+ ify)exp(±iQz)
we rewrite the Usadel equations (1) in the form(

∂2

∂x2
− k2ω

)
fs = ik2h( f− − f+)(

∂2

∂x2
∓ 2 iQ

∂

∂x
−Q2 − k2ω

)
f± =∓2 ik2h fs (3)

and the equations (2) of the superconducting parts read(
∂2

∂x2
− k2s

)
f Ss =−2π

∆

DS(
∂2

∂x2
− k2s

)
f⃗ S± = 0. (4)

We defined kω ≡
√
2ω/DM, kh ≡

√
h/DM and ks ≡

√
2ω/Ds.

These equations are supplemented by boundary conditions
according to Kupriyanov and Lukichev [50]. The derivations
are transformed to ∂

∂z →
∂
∂z+or−iQ as a result of the unit-

ary transformation we made, in contrast to works [48, 49],
where Q was parallel to the layers and the boundary condi-
tions remained unchanged. At x=±dM/2 they now read

∂

∂z
f Ss = γ

∂

∂z
fs, f Ss = fs − γB

∂

∂z
fs,

∂

∂z
f S+ = γ

(
∂

∂z
∓iQ

)
f+, f S+ = f+ − γB

(
∂

∂z
∓iQ

)
f+,

∂

∂z
f S− = γ

(
∂

∂z
±iQ

)
f−, f S− = f− − γB

(
∂

∂z
±iQ

)
f−.

(5)

Here, we used the interface parameters γb = RbσMA and γ =
σM/σs the resistance Rb and the area A of the SM interface.
The parameters σM and σs are the conductivities of the M and
S material, respectively.

We use these boundary conditions to determine the solu-
tions of the differential equations (3) and (4).We then use these
solutions to derive an analytical description of the critical cur-
rent density of the Josephson junction.

The growth of an MnSi thin film of a high quality may
require a special substrate. It is shown that a thin normal
metal or insulating interlayer in a magnetic Josephson junction
changes the boundary conditions, and consequently, shifts the
positions of extrema in the dependence jc(dM) [51]. If the con-
ductivity of this normal interlayer is similar to one of M or S
metals, jc(dM) does not change. So, if we take into account
some substrate, the picture would remain qualitatively true,
perhaps, with a shift along the dM axis. This idea may be
applied also to a bridge-like Josephson junction [52] based on
a spiral magnet with controlling state. The control of LRTC
appearance may be implemented by the same way and yield
qualitatively similar results. Although the solution of related
2-dimensional problem is rather complicated and lie out of the
framework of the proposed investigation.
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3. Critical current density

To calculate the critical current density we consider

j≡ jc sinφ=
πT
eρ

∑
ω>0

Im

[
fs
∗ ∂

∂x
fs −

1
2

(
f−

∗ ∂

∂x
f−

+f+
∗ ∂

∂x
f+

)]
x=0

. (6)

Here, φ is the phase difference between the two superconduct-
ors, e is the elementary charge and ρ describes the resistivity
of the magnetic material.

We derive solutions of the Usadel equations in the magnetic
layer (3) and in the superconducting layer (4) and use them for
an analytical representation of the critical current density.

Using the routine described in supplementary material A
we come to the critical current density

jc =
πT
eρ

∑
ω>0

|κ|2

|∥M∥|2∑
j,l

Re

{
kj

[(
O+−
j,l −O−+

j,l

)(
Us
j,l−U++

j,l /2
)

−
(
X+−
j,l −X−+

j,l

)
·
(
Us
j,l+U+−

j,l /2
)]}

(7)

where the abbreviations for O...
j,l ,U

...
j,l and X

...
j,l are done in sup-

plementary section.
This description of the critical current density is the basis

for the logical-states which we describe below.

4. SSV states

Furthermore, we discuss the dependence of the critical current
density jc on the vector Q in detail, taking into account that
in magnetic saturation Q= 0, and explain how our proposed
Josephson device may be used as a spin valve.

The transition-metal compounds of the MnSi family crys-
tallize in a noncentrosymmetric cubic B20 structure that
allows a linear gradient invariant [53]. This gives rise to a long-
period spiral magnetic structure with wavelength λ= 18 nm.
It may be switched to the magnetic saturation in low mag-
netic field. This device would be an analogue to the exchange
coupled spin valves, the well known devices of traditional
spintronics.

Further parameters for our figures are based on the public-
ations [54, 55], where transport properties of MnSi have been
studied in detail. That is, we chose the superconducting coher-
ence length ξM = 4.2 nm, the exchange energy h= 100 meV
for conducting electrons and the interface parameter γ= 0.7
which involves the material conductivities. From the Fermi
velocities, we estimated γB = 0.7.

As a material for the superconducting electrodes, we chose
Nb because it is commonly used in superconducting circuits.
Therefore, we use the critical temperature Tc = 9.2 K and
ξs = 11 nm from [56]. Additionally, we chose the temperature

Figure 2. Critical current density | jc| as a function of dM calculated
from equation (7) in the case of in-plane spiral magnetization
Q= 0.35 and in the homogeneous ferromagnetic case Q= 0,
corresponding to two logical states of the proposed Josephson SSV.
For two working points dM indicated by arrows, we show the critical
current density as a function of the temperature T in figure 3.

T= 0.5 Tc. By using these parameters, we depicted the critical
current density (7) in figure 2. It can be seen that for values lar-
ger than dM ≈ 3.7 nm the value of the critical current density
in the spiral state Q= 0.35nm−1 is larger than in the satura-
tion Q= 0. This means that for a high operating current, our
proposed device can be switched between a superconducting
state, which may be identified as logical state 1, and a res-
istivity state, which may be identified as logical state 0. Since
the values of the critical current density are in the same range
as those of conventional ferromagnetic Josephson junctions
[57–59], our proposed device should be well compatible with
other elements of Josephson low-temperature logics.

The difference in critical current density between both con-
figurations is mainly due to long-ranged triplet correlations
[23, 44, 60]. These superconducting correlations have a non-
zero total spin projection on the quantization axis and can
therefore penetrate far into the magnetic region and thereby
enhance the critical current. They are responsible for the large
critical current with a smooth decay at dM > 3.7 nm in the
spiral magnetic configuration. In the first working point at
dM ≈ 3.2 nm the applied magnetic field may switch the crit-
ical current density from zero or some small value to a finite
value of the order of 10kAcm−2. It is an unusual situation
where an external magnetic field does not suppress, but oppos-
itely, restores superconductivity and enhances the Josephson
current.

Our proposed device offers another interesting application
at values of dM, where the 0 state (positive critical current
density) of one configuration overlaps with the π state (negat-
ive critical current density) of other configuration. This is the
case e.g. in the range between dM ≈ 3.2 nm and dM ≈ 4 nm.
Here, the phase shift could be related to the logical states,
because it can be reversed by an external magnetic field.

In addition to choosing a specific length dM to find a
working point, where external magnetic field can be used to
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Figure 3. Critical current density jc as a function of T for
dM = 3.2 nm in (a) and for dM = 4 nm in (b). These figures show
that one can also use the temperature T to tune our proposed device
into a regime, where the critical current at the spiral magnetization
has a positive sign (0 state), while the sign of the critical current in
the saturation at Q= 0 is negative (π state).

switch between 0 and π states, one can also tune the temperat-
ure T. Although, the linear approximation is well at T around
Tc, the results remain qualitatively true at lower temperatures.
This can be seen in figure 3, where we depicted the critical cur-
rent density jc as a function of T for values dM = 3.2 nm (a)
and dM = 4 nm (b), which are indicated by arrows in figure 2.
In figure 3(a), a situation of opposite critical current signs can
be obtained by choosing a temperature T/Tc < 0.5, while in
figure 3(b) a temperature T/Tc > 0.5 leads to this situation.

The proposed mechanism of switching between the logical
states could be used to change from the spiral case to a
homogeneous ferromagnetic case in an external magnetic field
applied in the junction plane. Such a field would fully penet-
rate into a weak link of a short Josephson junction. The latter
situation is represented by the limitQ= 0, which we depicted
in figures 2 and 3. As can be seen in the supporting material,
the critical current density atQ= 0 behaves similar to the case
α= 0. In both cases long-range triplet correlations are absent.
Similar magnetization changes have already been observed
with helimagnets Ho [38, 61, 62] and Er [37], and also at the
magnetization of Py [63] in superconducting devices.

Figure 4. The Josephson junction configuration we consider. A
spiral alignment of magnetic moments in the magnet M between the
superconductors S, can be switched to uniform magnetization.

5. Two ground states

We propose a SSV based on a Josephson junction with a single
magnetic layer (M) between the superconducting electrodes
(S).

Magnetic materials with suitable properties, are itiner-
ant cubic helimagnets of B20 family [31] like MnSi. MnSi
thin films usually have magnetic anisotropy that prevents the
switch of the spiral vector between a few different directions
like in MnSi monocrystals [64] and the spiral vector is perpen-
dicular to the thin-film plane. The switch between few differ-
ent Q directions in a case of compensated anisotropy is con-
sidered below.

The plane magnetic anisotropy in SF heterostructures may
be compensated in some cases [65]. We may assume that the
magnetic layer of some MnSi family compound has the same
properties as a crystal, i.e. has a cubic magnetic anisotropy
that allows few different equivalent directions (ground states)
of the spiral vector Q. If the vector Q follows crystal axes
(111) and equivalent ones, like in a MnSi crystal, and one axis
aligned along the junction plane along OZ, then other equival-
ent axis may have a maximal angle α= 0.34 with this plane.
Figure 4 presents the scheme of our junction with possible dir-
ections of the spiral.

The direction of the vector of local magnetization hmay be
expressed as

h≡ h

 cosαcosβ
sinβ

−sinαcosβ

 , β ≡ Q(zcosα+ xsinα). (8)

It rotates in space around the spiral vector Q. As sketched
in figure 4, the angle α characterizes a rotation of Q around
the axis y. The angle β describes the rotation of the magnetic
moments around Q.

The equation for fzz separates andwe can again choose fzz =
0, that yields the additional condition ftz = ftx tanα. Further-
more, we use the calculation method described in sections 2
and 3. The unitary transformation has a more complicated
form and is made in a way to align the quantization axes along
the local magnetization in every point.
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Figure 5. Critical current density | jc| as a function of dM calculated
from equation (7). As parameters, we chose ξs = 11 nm,
ξM = 4.2 nm, Tc = 9.2 K, T= 0.5 Tc, h= 100 meV, γ= 0.7 and
γB = 0.7. For values larger than dM ≈ 3.6 nm, the critical current
density in the case α= 70.5◦ is larger than in the case α= 0. It is
also larger compared to the homogeneous ferromagnetic case Q= 0.
We propose to use the configuration of large critical current density
as one logical state and one of the configurations of lower critical
current density as the second logical state of a superconducting spin
valve. Moreover, one may use the 0 state (positive critical current)
and π state (negative critical current) for discrimination of logical
states. For the values dM indicated by two arrows, we show the
critical current density as a function of the temperature T in figure 7.

When the spiral vectorQ inclined at the angleα to the junc-
tion plane, the additional factor cosα enters in the combination
Qcosα in the equations (3) and (5). MnSi family compounds
usually have long spiral period λ= 18 nm for MnSi crystals
and Q has a relatively small value. We can neglect the terms
with Qsin(α)≪ kω,kh.

Here, we used the same parameters for MnSi in the calcu-
lations as in section 4.

For our analysis of the critical current density, we have
chosen the angles α= 0◦ and α= 70.5◦, because in MnSi,
the spiral wave vector Q is aligned along [111] and along
equivalent directions of the cubic lattice. The angle between
these directions is α= arccos(1/3) = 70.5◦. Moreover, the
transition-metal compounds of the MnSi family crystallize in
a noncentrosymmetric cubic B20 structure that allows a linear
gradient invariant [53]. This gives rise to a long-period spiral
magnetic structure.

By using these parameters, we depicted the critical current
density (7) in figure 5. It can be seen that for values larger
than dM ≈ 3.6 nm the value of the critical current density in
the configuration α= 70.5◦ is larger than in the configuration
α= 0◦. This means that for a high operating current, our pro-
posed device can be switched viaα between a superconducting
state, which may be identified as logical state 1 and a resisting
state, whichmay be identified as logical state 0. Since the value
of the critical current density is in the same range as that of
the conventional ferromagnetic Josephson junctions [57], our
proposed device should be well compatible with other logical
elements based on ferromagnetic Josephson junctions.

Figure 6. The singlet contribution (a) and triplet contribution (b) of
the critical current density | jc| as a function of dM calculated from
equations (A15) and (A16), respectively. The significant increase of
the critical current density in (b) with a change of α indicates that
the source of the critical current enhancement in our proposed
device are triplet correlations.

The difference in the critical current density between both
configurations, analogously to the case considered below, is
due to long-ranged triplet correlations [39–42]. These super-
conducting correlations have a non-zero total spin projection
on the quantization axis and can therefore penetrate far into
the magnetic region and thereby enhance the critical current.
In order to highlight this effect, we depicted in figure 6 the
critical current density originating from the singlet contribu-
tion (A15) in (a) and from the triplet contribution (A16) in (b).

While the critical current density in figure 6(a) does not
change significantly with α, the critical current density for
α= 70.5◦ is strongly increased in figure 6(b).

In addition to choosing a specific length dM to obtain a
situation, where α can be used to switch between 0 and π
states, one can also tune the temperature T. This can be seen
in figure 7, where we depicted the critical current density jc
as a function of T for values dM = 3.2 nm (a) and dM = 4 nm
(b), which are indicated by arrows in figure 5. In figure 7(a),

6
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Figure 7. Critical current density jc as a function of T for
dM = 3.2 nm in (a) and for dM = 4 nm in (b). These figures show
that one can also use the temperature T to tune our proposed device
into a regime, where the critical current in the case α= 70.5◦ has a
positive sign (0 state), while the sign of the critical current in the
case α= 0 and the homogenous ferromagnet case Q= 0 is negative
(π state).

a situation of opposite critical current signs can be obtained
by choosing a temperature T/Tc < 0.5, while in figure 3(b) a
temperature T/Tc > 0.5 leads to this situation.

As a possible mechanism to change the angle of the spiral
vector Q, we propose applying a short magnetic pulse along
the y axis that is, perpendicular to Q and parallel to the
superconducting layers. As a result, the magnetic field would
not be suppressed by S electrodes. If the pulse length is
chosen correctly, a spin precession is induced, which will
rotate the magnetic moments and thereby switch the vector Q
[32].

6. Conclusion

We have calculated the critical current density of a Josephson
junction with a spiral magnet as a barrier material. The mag-
netic moments in this material are aligned in a spiral around a
spiral vector Q which is usually perpendicular to the thin film
plane. The amplitude of the critical current density changes
and may go to zero with the saturation of magnetization. This
effect is due to the change of long ranged triplet correlations.

We propose to use this Josephson junction as a spin valve,
where the logical states are defined by spiral and uniform
magnetization. Additionally, supercurrent reversals due to 0-π
crossovers can be used to identify the logical states. This cros-
sover may be reached at other thicknesses of the M layer.
The logical states which belong to the rotation of vector Q
towards the plane of the superconducting interface were also
considered (see supplementary material B).

In summary, the single-barrier design, stable ground states
and compatibility with other Josephson devices make our pro-
posed device a promising candidate for a novel cryogenic
Josephson spin valve.
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Appendix A. Critical current calculation

Starting from the expression of the current density (6), we
insert here the general solutions

fs(x) =
2∑
j=0

Ajus,je
−kjx+Bjυs,je

+kjx,

f+(x) =
2∑
j=0

Aju+,je
−kjx+Bjυ+,je

+kjx,

f−(x) =
2∑
j=0

Aju−,je
−kjx+Bjυ−,je

+kjx (A9)

of the differential equations in the magnetic layer (3). This
leads us to the singlet contribution[

fs
∗ ∂

∂x
fs

]
x=0

=
2∑

j,l=0

(
kjus,ju

∗
s,l

)
(−AjA∗

l +BjB
∗
l ++BjA

∗
l −AjB

∗
l ) (A10)
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and the triplet contribution[
f+

∗ ∂

∂x
f+ + f−

∗ ∂

∂x
f−

]
x=0

=
2∑

j,l=0

(−Aju+,jkj−Bju−,jkj)
(
A∗
l u

∗
+,l−B∗

l u
∗
−,l

)
+(−Aju−,jkj−Bju+,jkj)

(
A∗
l u

∗
−,l−B∗

l u
∗
+,l

)
. (A11)

For the a complete description of the current density, the
three parameters kj, the vectors uj ≡ (us,j,u+,j,u−,j)

T and v≡
(υs, j,υ+, j,υ−, j)

T and the six constants Aj and Bj are required.
In order to determine the parameters kj, we insert the solu-

tions (A9) into the differential equations (3). Solving the cor-
responding characteristic equation leads us to the values kj.
For MnSi we take kh ≈ 0.7 nm−1, Q≈ 0.35 nm−1 and kω ≈
0.14 nm−1 [54, 55]. By using kj together with the solutions
(A9) in the differential equation (3), we obtain the vectors uj
and vj. In the limit k2h ≫ Q2, k2ω our solution coincide with one
in the work [44].

To determine the six constantsAj andBj, wemake use of the
boundary conditions (5). First, we insert the solutions f S−s,± for
x⩽−dM/2 and the solutions f S+s,± for x⩾ dM/2 of the Usadel
equations (4) in the superconductor. By assuming an expo-
nential decay of the triplet correlations in the superconducting
material, we write them as

f S±s (x) =
π

ω
∆e±iφ/2 +C±

s e
(∓x+dM/2)ks ,

f S±+ (x) = C±
+e

(∓x+dM/2)ks ,

f S±− (x) = C±
−e

(∓x+dM/2)ks , (A12)

where we introduced the six constants C±
s,±.

By using the S-layer solutions (A12) and M-layer solutions
(A9) in the boundary conditions (5) at −dM/2 and +dM/2,
we obtain 12 equations with 12 constants. We eliminate the
constants C±

s,± in order to reduce the system to

M


A0

A1

A2

B0

B1

B2

=


κe+iφ/2

0
0

κe−iφ/2

0
0

 , (A13)

where M is a 6× 6 matrix and we defined κ≡ π∆/ω. The
solution of the system (A13) can be written as as

Aj = κ
a+j e

+iφ/2 + a−j e
−iφ/2

∥M∥
,

Bj = κ
b+j e

+iφ/2 + b−j e
−iφ/2

∥M∥
, (A14)

where a±j and b±j are the coefficients according to Cramer’s
rule and ∥M∥ is the determinant of the matrix M.

We insert the constants (A14) into the singlet part (A10) to
obtain

[ fs
∗∂z fs]z=0 =

|κ|2

|∥M∥|2
∑
j,l

kj

×
[
i sinφ

(
O+−
j,l −O−+

j,l −X+−
j,l +X−+

j,l

)]
U0
j,l

(A15)

and into the triplet part (A11) to obtain

[ f+
∗∂z f+ + f−

∗∂z f−]z=0

=
|κ|2

|∥M∥|2
∑
j,l

kj

{
i sinφ

[(
O+−
j,l −O−+

j,l

)
U++
j,l

+
(
X+−
j,l −X−+

j,l

)
U+−
j,l

]}
. (A16)

Here we used abbreviations

Xm,nj,l ≡ amj b
n
l
∗ − bmj a

n
l
∗

Om,n
j,l ≡ bmj b

n
l
∗ − amj a

n
l
∗

Um,n
j,l ≡ um,jun,l

∗ + u−m,ju−n,l
∗

Us
j,l ≡ us,jus,l

∗. (A17)

By inserting the singlet contribution (A15) and the triplet con-
tribution (A16) into equation (6), we obtain the critical current
density (7).
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GarcÃa-Santiago A, Aarts J and Attanasio C 2017
Long-range proximity effect in Nb-based heterostructures
induced by a magnetically inhomogeneous permalloy layer
New J. Phys. 19 023037

[64] Menzel D, Engelke J, Reimann T and Süllow S 2013 Enhanced
critical fields in MnSi thin films J. Kor. Phys. Soc.
62 1580

[65] Sickinger H, Lipman A, Weides M, Mints R G, Kohlstedt H,
Koelle D, Kleiner R and Goldobin E 2012 Experimental
evidence of a φJosephson junction Phys. Rev. Lett
109 107002

10

https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevB.71.220506
https://doi.org/10.1103/PhysRevB.71.220506
https://doi.org/10.1103/PhysRevB.72.054523
https://doi.org/10.1103/PhysRevB.72.054523
https://doi.org/10.1088/1367-2630/17/11/113022
https://doi.org/10.1088/1367-2630/17/11/113022
https://doi.org/10.1103/PhysRevB.81.214518
https://doi.org/10.1103/PhysRevB.81.214518
https://doi.org/10.1088/0022-3719/13/31/002
https://doi.org/10.1088/0022-3719/13/31/002
https://doi.org/10.1103/PhysRevB.75.172403
https://doi.org/10.1103/PhysRevB.75.172403
https://doi.org/10.1126/science.1195709
https://doi.org/10.1126/science.1195709
https://doi.org/10.1038/nphys3486
https://doi.org/10.1038/nphys3486
https://doi.org/10.1103/PhysRevLett.96.197003
https://doi.org/10.1103/PhysRevLett.96.197003
https://doi.org/10.1103/PhysRevB.97.144511
https://doi.org/10.1103/PhysRevB.97.144511
https://doi.org/10.1103/PhysRevB.86.060509
https://doi.org/10.1103/PhysRevB.86.060509
https://doi.org/10.1134/S0021364018050119
https://doi.org/10.1134/S0021364018050119
https://doi.org/10.1103/PhysRevLett.115.067201
https://doi.org/10.1103/PhysRevLett.115.067201
https://doi.org/10.1038/ncomms9053
https://doi.org/10.1038/ncomms9053
https://doi.org/10.1088/1367-2630/aa5de8
https://doi.org/10.1088/1367-2630/aa5de8
https://doi.org/10.3938/jkps.62.1580
https://doi.org/10.3938/jkps.62.1580
https://doi.org/10.1103/PhysRevLett.109.107002
https://doi.org/10.1103/PhysRevLett.109.107002

	Switchable spiral Josephson junction: a superconducting spin-valve proposal
	1. Introduction
	2. Spiral magnetization
	3. Critical current density
	4. SSV states
	5. Two ground states
	6. Conclusion
	Acknowledgments
	Appendix A. Critical current calculation
	References


