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Abstract: This paper considers the transformation of a sine wave in the framework of the extended
modified Korteweg–de Vries equation or (2+4) KdV, which includes a combination of cubic and
quintic nonlinearities. It describes the internal waves in a medium with symmetric vertical density
stratification, and all the considerations in this study are produced for the reasonable combinations
of the signs of the coefficients for nonlinear and dispersive terms, provided by this physical problem.
The features of Riemann waves—solutions of the dispersionless limit of the model—are described
in detail: The times and levels of breaking are derived in an implicit analytic form depending on
the amplitude of the initial sine wave. It is demonstrated that the shock occurs at two (for small
amplitudes) or four (for moderate and large amplitudes) levels per period of sine wave. Breaking
at different levels occurs at different times. The symmetric (2+4) KdV equation is not integrable,
but nevertheless it has stationary solutions in the form of traveling solitary waves of both polarities
with a limiting amplitude. With the help of numerical calculations, the features of the processes
of a sinusoidal wave evolution and formation of undular bores are demonstrated and analyzed.
Qualitative features of multiple inelastic interactions of emerging soliton-like pulses are displayed.

Keywords: nonlinearity; dispersion; KdV-hierarchy equations; solitary wave; soliton; wave steepening;
Riemann wave; wave breaking; wave interaction

1. Introduction

Nonlinear partial differential equations of evolutionary type often arise as an approxi-
mate mathematical formulation for complex nonlinear physical phenomena. The equations
of the Korteweg–de Vries (KdV) family describe nonlinear wave effects in a number of
physical contexts: in hydrodynamics (shallow water waves and internal waves in stratified
basins) [1–3], plasma physics [4–6], quantum fluid dynamics [7], and some others [8–11];
they appear in many areas of applied sciences and engineering. Exact travelling wave
solutions of such nonlinear evolution equations can perform a significant part in the un-
derstanding of different physical processes because they describe various phenomena
in nature.

Energy cascades from long to short waves are inherent in many physical systems,
and here it is important to understand the features and details of the disintegration of
long disturbances, alongside their steepening and decomposition into solitary waves and
small-scale dispersive trains of linear waves. KdV-type equations also serve as generic
mathematical models for the description of undular bores’ formation, when the effects of
higher-order nonlinearity become important [12,13]. In fact, solitons and undular bores
appear as intermediate asymptotics in all models describing a nonlinear process of long
wave disintegration in a weakly dispersive medium [14,15].
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This paper considers an extended modified Korteweg–de Vries equation ((2+4) KdV)
containing a combination of third- and fifth-degree nonlinear terms in the same order
of smallness:

∂ζ

∂t
+ α1ζ2 ∂ζ

∂x
+ α3ζ4 ∂ζ

∂x
+ β

∂3ζ

∂x3 = 0, (1)

where alpha and beta are constants determined in the physical context. This equation
improves the description of wave dynamics near the point of zero cubic nonlinearity due
to the fifth-degree nonlinearity, and such a generalization naturally highlights a variety of
qualitatively new phenomena in the dynamics of localized, solitonic (nonradiating) waves.
Equation (1) is an analogue of the Gardner equation [12,13], which is valid for describing
situations with a change in the sign of the quadratic nonlinearity coefficient. Equation (1),
also called the (2+4) KdV equation, was particularly derived for mode I waves at interfaces
in a three-layer fluid flow symmetric with respect to half-depth [16,17]. Nonlinearity and
dispersion coefficients are determined by a specific physical situation and depend on the
parameters of the medium in which the waves propagate.

It should be noted that, from a purely mathematical point of view, Equation (1) can
have “parasitic” solutions corresponding to the case of large nonlinear corrections. For
example, if the quintic nonlinearity term prevails, then field self-focusing is possible with
the formation of singularities [8,18]. Such effects, however, are nonphysical and are far
beyond the application of the considered equation in the context of weakly nonlinear
internal waves in a three-layer fluid.

Within the framework of Equation (1), we will consider the process of transformation
of a long sinusoidal wave. This transformation includes the stages of (i) steepening, (ii) the
formation of short-period solitary waves, and (iii) their further multiple interactions.

The process of steepening or nonlinear wave deformation, when the dispersion effects
are still vanishingly small, can be analytically described in terms of Riemann waves, and
this approach is classical (see, for example, Whitham (1974)) but it was usually considered
in the case of weak (quadratic and cubic) nonlinearities [19,20]. Equation (1) provides us
with a context for studying wave steepening in a highly nonlinear case.

The dynamics of soliton ensembles are often studied in the context of the “soliton gas”
or “soliton turbulence” [21,22]. These phenomena can also be of interest within the frame-
work of Equation (1), since it admits various regimes of solitonic interactions, including
those of different polarities; moreover, they are inelastic. The property of inelasticity of
solitonic interactions was stated for generalized KdV-type equations [23,24].

The main goal of this study is to analyze the process of the transformation of long sine
waves within the extended nonintegrable symmetric version of the modified KdV equation
and to underline qualitatively new phenomena. The structure of this paper is arranged
as follows: The (2+4) KdV equation and its analytical solutions are briefly described in
Section 2. The Riemann wave solutions of the corresponding dispersionless equation are
discussed in Section 3. Undular bores and solitary wave ensembles developing from the
initial sine disturbances for different amplitudes are numerically investigated in Section 4,
and the obtained results are summarized in Section 5.

2. (2+4) KdV Equation and Its Localized Stationary Solutions

From the perspective of wave dynamics, the information about the signs of the coeffi-
cients of various terms in Equation (1) is important. It should be noted that for the special
case of a symmetric three-layer fluid indicated above, the coefficient of cubic nonlinearity
α1 changes signs at a critical ratio of layer thicknesses, while the coefficient of fifth-degree
nonlinearity α3 is negative. The dispersion coefficient, β, is always positive. We will
consider here just such a combination of the signs of the coefficients of Equation (1).

Equation (1) is not integrable, but it has at least three conservation laws. The conserva-
tive or divergent form of Equation (1) of the following:

∂ζ

∂t
+

∂

∂x

(
α1

3
ζ3 +

α3

5
ζ5 + β

∂2ζ

∂x2

)
= 0, (2)
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immediately provides the “mass conservation” integral as follows:

d
dt

I1 =
d
dt

∫
ζdx = 0, (3)

where integration is performed over the entire axis x or over a period for periodic waves.
By multiplying Equation (1) by ζ and integrating over the required interval, the momentum
equation can be derived as follows.

d
dt

I2 =
d
dt

∫
ζ2

2
dx =

∫
∂

∂x

(
α1

4
ζ4 +

α3

6
ζ6 + βζ

∂2ζ

∂x2 −
β

2

(
∂ζ

∂x

)2
)

dx = 0. (4)

Equation (1) can be presented in the following Hamiltonian form [25–27]:

∂ζ

∂t
=

∂

∂x

(
δH
δu

)
, (5)

where the Hamiltonian is H =
∫

H̃dx with the following density.

H̃ =
β

2

(
∂ζ

∂x

)2
−
(α1

12
+ α3

)
ζ4 − α3

30
ζ6. (6)

The Hamiltonian form provides the conservation of the Hamiltonian.

d
dt

H =
d
dt

∫ (
β

2

(
∂ζ

∂x

)2
−
(α1

12
+ α3

)
ζ4 − α3

30
ζ6

)
dx = 0. (7)

The conserved quantities I1, I2, and H are very useful in developing asymptotic
methods and perturbation techniques, as well as helping to control the stability of solutions
and accuracy of numerical schemes in the process of building the numerical solution of the
initial problem for Equation (1).

For α1 > 0, Equation (1) has analytical one-soliton solutions limited in amplitude and
broadening as the amplitude approaches this limit [16,17]. Stationary localized solutions of
Equation (1) have the following form:

ζ(Y) = ±
√√√√ 60V

5α1 +
√

25α2
1 + 240α3Vcos h

(
2Y
√

V
β

) , (8)

where Y = x − Vt, and V is the wave speed. The amplitude and velocity of this solitary
wave are interconnected to each other and are determined by the following relations.

a =

√√√√ 60V

5α1 +
√

25α2
1 + 240α3V

, V =
α1

6
a2 +

α3

15
a4 (9)

However, they cannot exceed the following limiting values.

Vlim = −
5α2

1
48α3

, alim =
1
2

√
5α1

−α3
. (10)

For low velocities, Equation (1) implements the classical solitons of the modified KdV
(mKdV) equation [11,28], which then broadens to infinity as the velocity approaches Vlim.
In this case, the amplitude of the soliton tends to alim. The soliton solutions–given by
Equation (8) can have either polarity; it does not depend on the signs of the coefficients
of Equation (1), as it only depends on the shape of its initial disturbance. With the loss of



Symmetry 2022, 14, 668 4 of 14

integrability, Equation (1) loses the property of elastic interactions of solitary waves with
each other and with the rest of the wave field. This process for the case of interaction of
two solitary waves was studied in detail [17].

To minimize the number of parameters in numerical calculations, the dimensionless
form of Equation (1) will be used:

qθ + q2qχ − q4qχ + qχχχ = 0, (11)

where the nondimensional variables are given by the following.

θ =

∣∣∣∣α1
3

α3

∣∣∣∣3/4

(β)−1/2t, χ =

∣∣∣∣∣α3
1

α3

∣∣∣∣∣
1/4

(β)−1/2x, q =

∣∣∣∣α1

α3

∣∣∣∣1/2
ς. (12)

The dimensionless limiting amplitude, Equation (10), of solitons, Equation (8), is then
equal to qlim =

√
5/2 ≈ 1.118.

We used a long sinusoidal wave on an interval equal to its period to initialize the
evolutionary problem governed by Equation (11):

q(χ, θ = 0) = F(χ) = A sin
2πχ

L
= A sin(kχ),−L/2 ≤ χ ≤ L/2, K = 2π/L, (13)

where A ∈ < is the wave amplitude, L was chosen to be 600 dimensionless units, and it is
significantly larger than the characteristic length of the solitons. At intermediate times, it
steepens and transforms into an undular bore. Furthermore, the wave field is transformed
into an ensemble of a large number of solitary waves propagating on an inhomogeneous
pedestal and interacting with each other inelastically due to the nonintegrability of the
(2+4) KdV equation and Equations (1) and (11).

3. Riemann Waves

The results of numerical calculations at the initial stages will be compared with the
exact analytical solution (Riemann wave) of the dispersionless version of Equation (11),
and this rigorous solution can be easily written in the following implicit form:

q(χ, θ) = F(χ−V(q)θ), V(q) = q2(1− q2), (14)

where F(z) is the initial condition given by Equation (13).
The properties of similar Riemann waves for the equations of KdV-hierarchy for lower-

order nonlinearities are described in detail [19,20,29]. The purely nonlinear deformation
of the wave shape over time yields the progressive growth of wave steepness and results
in wave breaking at a finite moment of time, which can be found following the procedure
described in the following equation [30].

θbr = min
z

− 1
dV
dq

∣∣∣
q=F(z)

dF
dz

 =
1

max
z

(
− dV

dq

∣∣∣
q=F(z)

dF
dz

) . (15)

Let us denote p(z) the expression to be maximized in the denominator of Equation (15)
and consider the initial conditions (Equation (13)).

p(z) =

(
− dV

dq

∣∣∣
q=F(z)

dF
dz

)
= − d

dz
(

F2 − F4)∣∣
F=Asin(kz)

= −A2k sin(2kz)
(

A2 cos(2kz)− A2 + 1
)
.

(16)
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To determine the extrema, one should find its derivative with respect to z:

dp
dz

= 2A2k2
(
−2A2y2 + (A2 − 1)y + A2

)
, (17)

where y = cos(2kz).
The roots of the algebraic equation dp/dz = 0 provides us with the possible extrema

of p(z):

y± =
A2 − 1±

√
D

4A2 , (18)

where D = 9A4 − 2A2 + 1 is always positive, and both roots have real values. Both y± are
even functions of A, so we will consider only A > 0. We only need roots with values in the
interval [−1; 1]. For y±, for which its behavior is demonstrated in Figure 1, the following
relations are valid.

(1) lim
A→0

y+ = 0, lim
A→∞

y+ = 1, y+ ∈ (0; 1) for A > 0;

(2) y− → −∞
A→0

, lim
A→∞

y− = −1/2, y− ∈ (−1; −1/2) for A > A* =
√

2/2.
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initial wave amplitude, A.

Thus, for small amplitudes A < A*, there exists only one y+ branch, while for larger
amplitudes A > A*, both y± branches can provide the extrema of p(z). The maxima of p(z)
are reached when we substitute the following:

cos(2kz) = y+ and sin(2kz) = −
√

1− y2
+ (19)

or
cos(2kz) = y− and sin(2kz) =

√
1− y2

− (20)

into the expression (Equation (16)), and two branches of max p(z) = p±(A) can be found.
They are illustrated in Figure 2a as functions of the initial sine wave amplitude A (for A > 0).
Figure 2b displays the corresponding graphs of breaking time given by Equation (15).
Breaking time decreases with increasing amplitude A of the initial wave. For A < A*, the
function, p(z), has the only maximum p+(A), which corresponds to the only breaking point
on the positive half of the initial sine wave. For A > A*, the function p(z) has two maxima;
thus, there are two breaking points on the positive half of the initial sine wave. At A = 1,
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both branches p±(A) intersect, meaning that the shocks occur simultaneously at two points
of the Riemannian wave (these points are still different, and they do not merge into one)
for this value of the amplitude. For amplitudes A ∈(A*; 1), θbr+ < θbr−; therefore, the shock
first occurs at the point corresponding to the “+”-branch and then at the point determined
by “−”-branch. For A > 1, the scenario of the development of the Riemann wave changes,
and breaking happens first for the “−”-location and after some time for the “+”-location.
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Figure 2. Two branches of max p(z) (a) and breaking time (b) versus initial sine wave amplitude A.
The red solid curves correspond to y+ and the change of variables (19), and the blue dashed curves
are computed for y− and the change of variables (20). Vertical dashed lines mark the characteristic
amplitudes A = A* =

√
2/2, where y− starts, and A = 1, where both branches intersect.

It should be noted that expressions (15)–(18) depend on A2 due to the symmetry of
Equation (1); therefore, all solutions are also valid for the lower half-wave within the initial
sine wave.

To determine the points where the shock first occurs on the Riemann wave profile, it is
necessary to find the values of kzbr from relations (19) and (20) using y± from Equation (18)
for the given amplitude A. The ordinates qbr in the initial wave profile corresponding to
these abscissas give us the level at which the gradient catastrophe will first occur at time
moment θ = θbr. Breaking level qbr+ is closer to the zero level, while qbr− is a larger level
located closer to the crest/trough. The described algorithm for constructing points and
levels of breaking is illustrated in Figure 3a for amplitude A < A*, where the only level,
±qbr+, exists, and in Figure 3b for amplitude A ∈(A*; 1), when breaking at level ±qbr−
occurs later than at level ±qbr+ (θbr− > θbr+). Riemann waves (13) for θ = θbr+ are also
demonstrated. Wave shapes for case A = 1 (simultaneous breaking at the levels ±qbr±,
θbr− = θbr+) and A > 1 (breaking at level±qbr− occurs earlier than at level±qbr+, θbr− < θbr+)
are illustrated in Figure 4a,b.

All these features of the purely nonlinear solutions (14) are clearly observed in the
numerical simulation described in Section 4 at the initial stages of wave evolution in the
framework of Equation (11).
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Figure 3. Points kzbr± (large markers, red for “+” and blue for “−”) and levels of breaking ±qbr±
(solid horizontal lines, red for “+” and blue for “−”) for the Riemann wave (14) for cases A < A* (a) and
A* < A < 1 (θbr− > θbr+) (b). Solid black line corresponds to initial wave F(z)|θ=0, and solid magenta
line corresponds to nonlinearly deformed wave F(z)|θ=θbr+

. Complementary components are also
illustrated; they include functions cos(2kz) and sin(2kz) (dash-dot black lines), levels of y+ (dotted
lines, red for “+” and blue for “−”), and coordinates providing the minima of p(z) (small markers).



Symmetry 2022, 14, 668 8 of 14

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 14 
 

 

  
(a) (b) 

Figure 4. Riemann waves (14) for cases A = 1 (θbr− = θbr+) (a) and A > 1 (θbr− < θbr+) (b). All notations 
are the same as for Figure 3, but 

br
F(z)

−θ=θ
 is colored magenta in panel (b). 

All these features of the purely nonlinear solutions (14) are clearly observed in the 
numerical simulation described in Section 4 at the initial stages of wave evolution in the 
framework of Equation (11). 

4. Numerical Simulations and Results 
The study of nonlinear dynamics in the framework of Equation (11) with the initial 

condition (13) was carried out using numerical integration based on an implicit pseudo-
spectral scheme [31] using periodic boundary conditions and including control over the 
numerical domain of the conservation of “mass” (I1 = 0) and “momentum” (I1 = A2L/2) and 
Hamiltonian H integrals mentioned above (Equations (3), (4), and (7), respectively). The 
spatial domain was chosen to equal the length of the sine wave. The numerical scheme 
was tested on the exact soliton solutions of the mKdV equation and stationary solutions 
(Equation (8)), of (2+4) KdV (in nondimesional variables, Equation (12)). In addition, the 
results were compared to those obtained with a doubled number of resolving points. 

The first numerical run was performed for the initial wave of moderate amplitude (А 
= 0.5). From the point of view of the previous section, this case is A < A*, and steepening 
occurs at small times kθ < kθbr≈ 5, most intensively on the levels of ±qbr+ ≈ 0.32 at the face 
slope of the wave. The initial stages of the evolving wave field at different time moments 
are displayed in Figure 5. The evolution scenario is similar to the scenario within the 
mKdV equation; the wave field is completely vertically symmetrical, but the changes 
within the higher-order (2+4) KdV equation occur faster. The initial harmonic wave 
steepens at short times due to nonlinearity; then, short-period localized perturbations of 
positive and negative polarities are generated. A fully undular bore was formed for θ > 
2000 (kθ > 21) for this run, and due to periodicity, the collisions of solitary impulses from 
two neighbor periods were observed. 

This process is also illustrated in the spacetime diagram (Figure 6), where the 
trajectories of the local extrema of the wave field and the phase shifts between the soliton-
like waves are clearly visible. In this case, it is clearly visible that small-amplitude solitons 
move backward when they interact with larger-amplitude solitons. The effect of changing 
the direction of propagation for small solitons in the framework of the KdV-hierarchy 
equations was noted in [32]. Further evolution for θ ≥ 4000 in the form of snapshots is 
displayed in Figure 7, which illustrates how the resulting wave pattern loses symmetry 
and becomes irregular since many small dispersion tails appear due to nonintegrability. 
Inelasticity is the most pronounced in the interaction of unipolar pulses. 
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4. Numerical Simulations and Results

The study of nonlinear dynamics in the framework of Equation (11) with the initial
condition (13) was carried out using numerical integration based on an implicit pseudo-
spectral scheme [31] using periodic boundary conditions and including control over the
numerical domain of the conservation of “mass” (I1 = 0) and “momentum” (I1 = A2L/2)
and Hamiltonian H integrals mentioned above (Equations (3), (4), and (7), respectively).
The spatial domain was chosen to equal the length of the sine wave. The numerical scheme
was tested on the exact soliton solutions of the mKdV equation and stationary solutions
(Equation (8)), of (2+4) KdV (in nondimesional variables, Equation (12)). In addition, the
results were compared to those obtained with a doubled number of resolving points.

The first numerical run was performed for the initial wave of moderate amplitude
(A = 0.5). From the point of view of the previous section, this case is A < A*, and steepening
occurs at small times kθ < kθbr ≈ 5, most intensively on the levels of ±qbr+ ≈ 0.32 at the face
slope of the wave. The initial stages of the evolving wave field at different time moments
are displayed in Figure 5. The evolution scenario is similar to the scenario within the mKdV
equation; the wave field is completely vertically symmetrical, but the changes within
the higher-order (2+4) KdV equation occur faster. The initial harmonic wave steepens at
short times due to nonlinearity; then, short-period localized perturbations of positive and
negative polarities are generated. A fully undular bore was formed for θ > 2000 (kθ > 21)
for this run, and due to periodicity, the collisions of solitary impulses from two neighbor
periods were observed.

This process is also illustrated in the spacetime diagram (Figure 6), where the trajec-
tories of the local extrema of the wave field and the phase shifts between the soliton-like
waves are clearly visible. In this case, it is clearly visible that small-amplitude solitons
move backward when they interact with larger-amplitude solitons. The effect of changing
the direction of propagation for small solitons in the framework of the KdV-hierarchy
equations was noted in [32]. Further evolution for θ ≥ 4000 in the form of snapshots is
displayed in Figure 7, which illustrates how the resulting wave pattern loses symmetry
and becomes irregular since many small dispersion tails appear due to nonintegrability.
Inelasticity is the most pronounced in the interaction of unipolar pulses.
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The effects of fifth-degree nonlinearity in the (2+4) KdV equation, Equation (11),
become more noticeable when the amplitude of the initial wave increases. The calculation
results for A = 1 are displayed in Figures 8–10. A special feature of early-stage wave
dynamics here (Figure 8) is the appearance of extra breaking points and, accordingly, the
formation of four wave bores. This is the case when shock occurs simultaneously (at the
moment θbr± ≈ 191, kθbr± ≈ 2) on both the back and face slopes of each half wave on
the nonzero levels of ±qbr−, with qbr− ≈ 0.94, and ±qbr+, with qbr+ ≈ 0.42, respectively.
Conversely, the value of the initial harmonic wave amplitude A = 1 is less than the limiting
amplitude of a wide soliton qlim ≈ 1.118, but the “thick” solitons of both polarities were
generated here with amplitudes tending to (but less in absolute value than) qlim. One can
observe these “thick” solitary waves as wide red and blue stripes on the spatiotemporal
plots (Figure 9). Their widths are comparable to the length, L, of the initial harmonic wave.
Simultaneously, narrow solitons are generated and begin to propagate along the crests of
wide solitons with a change of polarity, which is clearly visible in Figures 8–10. Due to
multiple collisions, the band trajectories of wide solitons deviate from linear and appear to
be “trembling”.
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Let us also consider the case A = 1.2 for the initial sine wave amplitude, which is
larger than the limiting amplitude qlim of the wide solitary wave. This run is illustrated by
Figures 11–13. Here, four breaking points are also formed (two for each of positive and
negative half waves) at the levels of ±qbr−, with qbr− ≈ 1.13, and ±qbr+, with qbr+ ≈ 0.62 on
the back (earlier, at θbr− ≈ 63) and face (later, at θbr+ ≈ 155) slopes, respectively (Figure 11).
With an increase in the initial wave amplitude, the width of the “thick” solitons turns out
to be larger, and for the case where A = 1.2, the total width of both positive and negative
“thick” solitons exceeds half of the spatial domain (Figure 12); they occupy more than half
of the length of the initial sine wave. Here, most of the interactions that small-scale solitons
have with each other, and with dispersive wave “tails,” occur on the crests of the “thick”
solitons as on the pedestals.

Figures 10 and 13 demonstrate an increase in the number of small-scale perturbations
arising and accumulating due to the inelasticity of pair and multiple interactions of solitons.
Over a longer period of time, this effect can lead to the slow damping of solitary waves.
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5. Conclusions

The transformation of the initial long perturbation of a sinusoidal shape in the frame-
work of the nonintegrable version of the mKdV equation, so-called (2+4) KdV equation,
which includes a combination of cubic and quintic nonlinearities, is considered. The rea-
sonable combinations of the signs of the coefficients for nonlinear and dispersive terms
were used, provided by the physical context of hydrodynamics: internal gravity waves in a
fluid with symmetric vertical density stratification.

For the dispersionless version of the (2+4) KdV equation, we studied the features of
the Riemann wave profile. The time for the shock to occur (breaking time), depending
on the amplitude of initial sine wave, was derived in the implicit analytical form. It
decreases nonlinearly with increasing wave amplitude A. The shock appears only on the
face slopes for the small amplitudes (A <

√
2/2), while for larger amplitudes, breaking

occurs at different levels on both face and back slopes. Generally, it happens at different
time moments, except for A = 1, when the gradient catastrophes are simultaneous for
both slopes.

Our numerical calculations within the (2+4) KdV equation demonstrate the features
of the development of undular bores/solibores from the initial sine wave. As a result of
its evolution, symmetric solitons of both polarities are formed, and they propagate and
interact, forming a complex wave pattern. If the wave amplitude is large enough, two
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“thick” solitons of both negative and positive polarities are formed, in addition to bipolar
groups of small-amplitude solitons passing through them. The nonlinear interactions
between soliton-like pulses results in a decrease in the velocity of small-amplitude waves
and, sometimes, to a change in the direction of their propagation. Multiple inelastic
collisions of solitons of different polarities are accompanied by the appearance of weak
irregular short waves. For longer evolutions, this effect becomes more significant and
results in a distortion of trajectories and the slow damping of the solitons, breaking the
symmetry of the wave field.
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