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Reduction of collective dynamics of large heterogeneous populations to low-dimensional mean-field models is
an important task of modern theoretical neuroscience. Such models can be derived from microscopic equations,
for example with the help of Ott-Antonsen theory. An often used assumption of the Lorentzian distribution
of the unit parameters makes the reduction especially efficient. However, the Lorentzian distribution is often
implausible as having undefined moments, and the collective behavior of populations with other distributions
needs to be studied. In the present Letter we propose a method which allows efficient reduction for an arbitrary
distribution and show how it performs for the Gaussian distribution. We show that a reduced system for several
macroscopic complex variables provides an accurate description of a population of thousands of neurons. Using
this reduction technique we demonstrate that the population dynamics depends significantly on the form of its
parameter distribution. In particular, the dynamics of populations with Lorentzian and Gaussian distributions
with the same center and width differ drastically.
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Large networks of interacting neurons may demonstrate
quite a rich repertoire of collective behavior, including syn-
chronization and collective oscillations [1,2], multistability
[3–5], collective irregular dynamics and chaos [6–8], transient
activity [9–11], and spatiotemporal patterns [12,13]. A long-
standing task in theoretical neuroscience is obtaining reduced
models describing the collective dynamics of large neural
populations in terms of low-dimensional dynamical systems
for averaged variables [14–16]. Such mean-field models or
neuron mass models can be obtained heuristically or derived
analytically from the equations for microscopic dynamics.
In the latter directions, several approaches have been devel-
oped, including the refractory density method [17,18], the
master equation formalism [19–21], the Ott-Antonsen ansatz
[22–25], and the Lorentzian ansatz [26–28].

The latter two closely related methods allow us to ob-
tain mean-field equations for populations of all-to-all coupled
neurons which are exact in the thermodynamic limit. The
reduction turns out to be especially effective for heteroge-
neous populations with the Lorentzian (Cauchy) distribution
of internal parameters of the neurons. For such distributions,
use of the residue theory allows us to reduce the popula-
tion dynamics to just a single equation for a complex order
parameter. However, a sufficient drawback is that the first
and higher moments of the Lorentzian distribution are un-
defined, which makes it uncommon for realistic systems.
Although one can consider the Lorentzian distribution as
paradigmatic, it remains unclear how precisely it approx-
imates the dynamics of populations with more plausible
distributions of parameters. Below we show that the difference
can be striking even for distributions with the same mean and
width. Therefore obtaining and studying efficient mean-field
models for populations with realistic forms of heterogene-
ity (i.e., distributions of parameters) remains an important
problem.

In the current Letter we address this problem by studying
a population of quadratic integrate-and-fire neurons with a
Gaussian distribution of bias currents. Note that the Gaussian
distribution is chosen only as an example, and our approach
is applicable for arbitrary distributions as well. Although the
probability density function of the Gaussian distribution does
not allow us to use the residue theory directly, we construct
a series of approximating distributions in the form of rational
functions which allow us to overcome this limitation and so to
perform the reduction of the population dynamics. The higher
the dimension of the reduced system, the better it reproduces
the dynamics of the original one, and 5–10 equations for
complex variables turn out to be enough to approximate a
population of as many as 104 neurons. Our results reveal that
the populations with Lorentzian and Gaussian distribution are
quite different in terms of both asymptotic and transient dy-
namics. This observation further underlines the importance of
developing reduction approaches for populations with various
forms of heterogeneity.

As the basic model we consider a network of quadratic
integrate-and-fire neurons

V̇j = V 2
j + η j + Js(t ) + I (t ), (1)

where Vj is the membrane potential of the j neuron, η j is
a heterogeneous component of the external current, I (t ) is a
common time-dependent component of the external input, J
is the synaptic weight, and s(t ) is the normalized output signal
of the network. Each time a potential Vj reaches the threshold
value Vp, it is reset to the value Vr , and the neuron emits a
spike which contributes to the network output:

s(t ) = 1

N

N∑
j=1

∑
k

δα (t ′ − t k
j ), (2)
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where t k
j is the moment of the kth spike of the jth neuron, and

δα (t ) = χ (t )αe−αt [χ (·) being the Heaviside function] de-
scribes the contribution of a single spike. Further, we consider
the limit α → ∞, for which δα (t ) becomes the Dirac delta
function δ(t ). We also set Vp = −Vr = ∞ since the quadratic
nonlinearity on the right-hand side of (1) allows Vj to reach
infinity in a finite time.

Recently, Montbrió et al. [26] suggested a method for
reduction of a system (1) which we briefly reproduce below.
In the thermodynamic limit N → ∞, the probability density
function g(η) can be introduced to describe the parameter
distribution. The population state is then characterized by the
density function ρ(V |η, t ) which evolves according to the
continuity equation

∂tρ + ∂V [(V 2 + η + Js + I )ρ] = 0. (3)

Assuming that solutions of (3) generically converge to a
Lorentzian-shaped function

ρ0(V |η) = 1

π

x(η, t )

[V − y(η, t )]2 + x(η, t )2
, (4)

it is possible to reduce PDE (3) to an ODE

∂tw(η, t ) = i[η + Js(t ) − w(η, t )2 + I (t )], (5)

where w(η, t ) ≡ x(η, t ) + iy(η, t ) is a complex variable char-
acterizing the voltage distribution of neurons with a given η.
The firing rate for each η value is given by the probability flux
through the threshold: r(η, t ) = ρ(Vp, t )V̇ (Vp, t ) = x(η, t )/π .
Then the network output s(t ) becomes its mean firing rate

r(t ) = 1

π
Re

∫ ∞

−∞
w(η, t )g(η)dη, (6)

which makes (5) a closed set of integro-differential equations.
It is valid for an arbitrary distribution g(η) but becomes espe-
cially effective for the Lorentzian distribution

gL(η) = 1

π

	

(η − η̄)2 + 	2
, (7)

where η̄ is the mean, and 	 the half-width of the distribution
[29]. For such a distribution, the integral in Eq. (6) can be
evaluated using the residue theory. Namely, function w(η, t )
is analytically continued into a complex-valued η, and the
integration contour is closed in the lower half-plane. Since
gL(η) has only one pole η1 = η̄ − i	 in this half-plane, the
integral (6) depends only on w1 = w(η̄ − i	, t ). Then r(t ) =
Re w1/π , and substituting η1 into (5) one obtains

ẇ1 = i[η1 + J Re w1/π − w2
1 + I (t )]. (8)

Dividing the real and the imaginary parts leads to a system of
two coupled ODEs

ṙ = 	/π + 2rv, (9a)

v̇ = v2 + η̄ + Jr − π2r2 + I (t ), (9b)

where v = Im w1 turns out to be the mean membrane potential
of the population (see Ref. [26] for details). Thus, system (1)
completely describes the macroscopic dynamics of popula-
tion (1) in terms of physically meaningful averaged variables
r and v.
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FIG. 1. Bistability regions of the population with Gaussian (light
gray) and Lorentzian (dark gray) distribution of bias currents. Both
distributions have the same mean and width.

The possibility to use the residue theorem and to sharply
reduce the system dimension makes the Lorentzian distribu-
tion quite popular in studies of heterogeneous populations not
only in neuroscience, but also in other fields of nonlinear dy-
namics [30–32]. However, despite the analysis simplification
it leads to, this distribution is physically implausible since
all its moments are not well defined. Therefore it is impor-
tant to understand whether the replacement of the Lorentzian
distribution by more realistic distributions leads to significant
changes in the population dynamics. In order to tackle this
issue we consider a Gaussian distribution of the quenched
components η:

gG(η) = 1

σ
√

2π
e− (η−η̄)2

2σ2 . (10)

The Gaussian distribution is typical for many physical vari-
ables, and in many cases it is a good approximation for some
other distributions, such as binomial. Further we set σ = 1.

First let us study the autonomous dynamics of the pop-
ulations with I (t ) = 0. The numerical analysis of the full
population of size N = 104 with the Gaussian parameter dis-
tribution reveals that the dynamics is qualitatively similar to
those for the Lorentzian distribution, as already was pointed
in Ref. [26] (where both cases were considered). Depend-
ing on the mean bias current η̄ and the coupling strength J ,
the system may demonstrate low-activity and high-activity
states, with a wedge-shaped bistability region bounded by two
saddle-node bifurcation curves. However, the exact positions
of the bistability regions are quite different for the Gaussian
and the Lorentzian distributions as illustrated in Fig. 1. Fur-
ther we will show how to reduce the population with the
Gaussian distribution to a low-dimensional dynamical system
similar to (9).

Although Eq. (5) remains valid for the Gaussian distribu-
tion, the residue theorem does not allow us to evaluate the
integral in Eq. (6) since gG(η) does not fade for Im η → ∞. A
possible solution is to approximate the Gaussian distribution
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FIG. 2. Bifurcation diagram of the population with Gaussian distribution of bias currents and its approximations. Shaded area in (a) and
(b) depicts the bistability region of the full population with N = 104 neurons. In (a), the borders of the same region obtained from the interval
approximation are superimposed for m = 30 (green dotted line), m = 300 (blue dashed line), and m = 3000 (red solid line). In (b), the borders
obtained from the rational approximation are shown for n = 1 (black dash-dotted line), n = 2 (green dotted line), n = 5 (blue dashed line),
and n = 10 (red solid line).

by a sum of sharp Lorentzian functions, each of them approx-
imating a small fraction of the population with η in a narrow
interval of width ε:

g(η) ≈
m∑

k=1

gG(ηk )
1

π

ε

(η − ηk )2 + ε2
. (11)

Here, m is the number of intervals, and the points ηk are
uniformly distributed so that ηk = η̄ − L + ε(k − 1/2), where
2L = mε � σ . Then the population dynamics is reduced to
a set of systems of form (9) for m subpopulations coupled
through their mean firing rate:

r = 1

π
Re

m∑
k=1

gG(ηk )wk . (12)

An important disadvantage of the interval approximation
(11) is that it adequately represents the original distribution
only when the number of intervals m is very large. Conse-
quently, system (12) becomes highly dimensional, and the
reduction loses its effectiveness. Figure 2(a) shows that the
reduced system accurately reproduces the phase diagram of
the original population for m = 3000 parameter intervals, but
fails for as many as m = 300 intervals.

In order to develop more efficient methods of the dynamics
reduction we suggest another approximation of the Gaussian
distribution. The main idea is to use the approximation allow-
ing the evaluation of the integral in Eq. (6) with the help of the
residue theory but having only a few poles. We use a series of
approximations in the form of rational functions. To obtain
them we replace the exponential function in Eq. (10) by the
Taylor series

ex2 ≈ hn(x) =
n∑

k=0

1

k!
x2k, (13)

which leads to the following approximation:

gn(η) = γn

σn

√
2π

[
hn

(
η − η̄

σn

√
2

)]−1

. (14)

Here, γn is the normalization factor, and σn is chosen such
that the half-width of the approximating distributions is equal
for all n (this was done in order to facilitate the comparison
between different distributions). The sequence of functions
gn converges to gG (although not uniformly), as illustrated
in Fig. 3. At the same time, gn(η) ∼ η−2n for large η, which
allows us to close the integration contour in Eq. (6) by an (in-
finitely large) arc in the lower half-plane of complex-valued η.
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FIG. 3. Gaussian distribution (red solid line) and its rational ap-
proximations (14) for n = 1 (black dash-dotted line), n = 2 (green
dotted line), and n = 3 (blue dashed line).
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FIG. 4. The inaccuracy of the bifurcation prediction versus the
number of intervals m for the interval approximation (red line with
boxes) and the approximation order n for the rational approximation
(blue line with circles). The parameter J = 15 was fixed, and the
bifurcation value of η̄ was determined. Note the significant difference
in the horizontal axis scale for the two approximations.

Then the integral depends only on the values wk = w(ηk, t ),
where ηk are the zeros of hn(η) with Im ηk < 0. Taking into
account that there are exactly n such points and calculating
the residues of gn at ηk we obtain

r = γn2nσ 2n+1
n n!

√
2

π
Re

(
i

n∑
k=1

wk

(ηk − η̄)2n+1

)
. (15)

Then Eq. (5) reduces to a set of n ODEs

ẇk = i
[
ηk + Jr − w2

k + I (t )
]
, k = 1, . . . , n. (16)

Along with (15), system (16) provides a complete de-
scription of the macroscopic behavior of the population. The
rational approximation becomes quite accurate already for
n > 3; therefore one should expect good agreement between
the reduced system and the full population even for small n. In
order to check this hypothesis we carried out the bifurcation
analysis of system (16) for various n. In Fig. 2(b), the obtained
bifurcation curves are superimposed on the phase diagram
of the full population. The agreement is remarkable already
for n = 10 which is several orders less than for the interval
approximation.

To better illustrate the advantage of the rational approxima-
tion approach, we compared the accuracy of the bifurcation
prediction for both approximations. For this sake we fixed
J = 15 and calculated the value of η̄ corresponding to the
saddle-node bifurcation. In Fig. 4, the prediction inaccuracy
is plotted versus the number of intervals m for the interval
approximation and the approximation order n for the rational
approximation. Note the significant difference in the horizon-
tal scale for the two approaches. For both cases, the error
vanishes as the approximation order increases, but the decay

30 40 50 60 70 80 90 100 110 120
0

1

2

30 40 50 60 70 80 90 100 110 120
time, arb.units

0

2

4

30 40 50 60 70 80 90 100 110 120
0

5

10 104

tupni
I(
t)

etar gnirfi
)t(r

#
DI noruen

(a)

(b)

(c)

FIG. 5. The dynamics of the full population and its approxi-
mations. (a) Raster plot of 100 randomly chosen neurons. (b) The
firing rate of the whole population (thick gray line) and its rational
approximation with n = 10 (thin red line) and n = 1 (Lorentzian
approximation, black dot-dashed line). (c) The input signal. The
system parameters are N = 104, J = 10, η̄ = −3; the parameters of
the input signal are t0 = 50, T = 50, and A = 2.

rate is significantly different. For example, in order to obtain
the accuracy ε < 10−2 one needs just n = 6 for the rational
approximation, but as many as n = 1000 for the interval one.
To decrease the error twice, it is enough to increase the order
of the rational approximation by 1, while the order of the
interval approximation should be increased almost twice.

We have demonstrated that the rational approximation al-
lows us to obtain low-dimensional reduced systems accurately
reproducing the phase diagram of the population. However,
the bifurcation analysis allows us to study only asymptotic
behavior, whereas neuronal populations must rapidly react on
changing external stimuli. Thus, their transient dynamics is of
high importance. In order to test the efficiency of the reduced
system for their reproduction, we consider a pulse-like input
signal

I (t ) = A[χ (t − t0) − χ (t − t0 − T )], (17)

where A is the pulse amplitude, t0 is its starting moment, and T
its duration. We fixed the signal parameters and simulated the
population 20 times starting from random initial conditions
(the initial voltage was set randomly and independently for
each neuron). For all the trials, the macroscopic dynamics
rapidly converged to the same trajectory, and the raster plots
of most of the neurons converged to the same pattern as
well [33]. This observation corroborates the stability of the
Lorentzian manifold (4).

Figure 5 compares the dynamics of the original population
and two rational approximations with n = 1 and n = 10. The
first-order approximation is in fact a Lorentzian fit of the
Gaussian distribution which poorly approximates the latter
(see Fig. 3). Figure 5(b) shows the time trace of the population
firing rate; a moving average filter with the width τ = 0.01
was used in order to smooth out individual spikes. When the
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stimulus is applied, the firing rate of the population tempo-
rally grows, and goes down to the initial low value when the
stimulation is over. Interestingly enough, the response of the
population turns out to be delayed: it takes about 10 time
units from the beginning of the pulse for the firing rate to
start increasing. Another important feature is that the response
is strongly synchronized which is reflected in pronounced
oscillations of the firing rate. The Lorentzian approximation
fails to reproduce these important effects, while the rational
approximation with n = 10 captures them quite accurately
[34].

The results presented in this Letter reveal significant dif-
ference between the dynamics of populations with different
forms of heterogeneity. Although the mean and the width are
equal for the Gaussian distribution and for its Lorentzian fit,
they induce different collective behavior of the population.
The difference is both in asymptotic and transient dynamics,
which means that the particular form of the population hetero-

geneity is crucial for its dynamical properties. Therefore it is
important to develop mean-field models for populations with
not only paradigmatic Lorentzian distribution of parameters,
but with more realistic distributions as well.

Our solution to this problem is the method of rational
approximations which allows us to obtain reduced systems for
populations with a given distribution. Note that this method
is not limited to the Gaussian distribution but applicable to
an arbitrary distribution g(·) which can be approximated by a
series of rational functions gn(·), such as Padé approximants
[35], Chebyshev-Padé approximants [36], or some others. As
soon as such an approximation is obtained, a reduced system
in the form of Eqs. (15) and (16) can be readily derived and
used to study the collective dynamics of the population.
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dation (Grant No. 19-72-10114). The authors are grateful to
Diego Pazó for reading the manuscript and useful comments.
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