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a b s t r a c t 

We propose an overview of the modeling approaches for the mathematical description and 

analysis of processes that combine continuous and discontinuous behavior, namely impul- 

sive differential equations, hybrid dynamical systems, and differential equations involving 

Dirac delta functions. These classes of systems are chosen due to their dominant preva- 

lence in physics, mathematics, and control engineering research communities. A compari- 

son of these frameworks is provided and their applicability depending on the character of 

the hybrid behavior is discussed. In particular, we show that special care should be taken 

when equations with Dirac delta function are interpreted as impulsive differential equa- 

tions. We also provide insights on the stability and attractivity analysis of hybrid behaviors, 

highlight their essential differences to the respective stability concepts for smooth dynam- 

ical systems, and discuss specific phenomena which are peculiar for hybrid behaviors, like 

beating or Zeno phenomenon, modeling of multiple impulses at a single time instance, 

death and splitting of solutions, etc. With this, the paper attempts at bringing attention 

of the interested researchers to the methods available in other research communities and 

fostering the exchange of ideas and analysis techniques. 

© 2021 Elsevier B.V. All rights reserved. 

 

 

 

1. Introduction 

The theory of dynamical systems knows two basic types of dynamics: continuous and discontinuous. In the first case, 

the system states changes continuously in time, like the position of celestial objects in astronomy. In the second case, the

system state changes abruptly, like the state of an atom receiving a photon. In addition to that, in many cases dynamical

systems may demonstrate mixed dynamics combining both continuous and discontinuous behavior. The state of such sys- 

tems changes continuously most of the time but sometimes undergoes abrupt changes or “jumps”. The focus of the present 

survey is on the systems with this type of dynamics. 

The combination of continuous and discrete behavior arises in a variety of control-related engineering problems. In the 

most eloquent way it is manifested for the so-called cyber-physical systems [1] , where the real physical world meets digital

control mechanisms. The interaction and interplay of continuous (physical) systems and computer-based controllers, which 

are operated in discrete time and/or space, leads to complex dynamics, whose analysis can be challenging [2, pp. v-vi] . 
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The behavior that combines continuous and discontinuous parts and the corresponding modeling approaches that are 

capable of capturing it are generally termed hybrid behavior and hybrid systems , respectively. Further examples of hybrid 

behavior stem from the networked control systems [3–5] , in which the continuously operating plants and continuous con- 

trollers are communicating over digital networks. This type of communication typically requires the packet-based informa- 

tion processing and it is additionally constrained by certain communication protocols [6,7] . It leads to a situation where a

part of signals in the system is continuous and the other one is discrete or piecewise-continuous. The same happens under

the event-triggered control schemes [8,9] , in which the control actuation does not act continuously but only in case of the

fulfillment of a certain auxiliary condition often called event-triggering mechanism [10] . Typical examples of such an ap- 

proach are the event-based fault-tolerant control of aircraft engine system [11] , the event-based model predictive control of 

a renewable hydrogen-based microgrid [13] , and the pH control in microalgae raceway reactors [14] , to name a few. 

Hybrid behavior also arises in the modeling of the processes in which the control action may change the state of the

process instantaneously and, therefore, leads to solutions with piecewise continuous trajectories. This type of control is 

commonly called impulsive control [15] and it spans a wide set of application areas ranging from secure communications 

[16,17] , which is based on the impulsive synchronization of chaotic systems [18–20] , to optimal influenza H1N1 treatment 

[21] and spacecraft rendezvous [22] . Additionally, we would like to mention the application of impulsive control to the ob-

server design and state reconstruction problem under sporadic measurements [23–25] . The discontinuities of the observers’ 

state arise at the moments of the measurements injection, which are discrete points in time. This encompasses the case of

process engineering applications, e.g., for the cell population balance models in which the off-line measurements from the 

bioreactor are typically obtained by the operation staff [26,27] . Finally, impulsive control is used for the safety verification 

of continuous-time continuous-state systems whose desired set-invariance properties can be achieved by impulsive per- 

turbations of appropriate frequency [28] . All the mentioned control tasks require proper mathematical frameworks for the 

modeling and analysis of the considered hybrid processes. These are mainly deployed within the frameworks of impulsive 

differential equations [29] and hybrid dynamical systems [30] , which will be considered in details in the following sections. 

Besides engineering problems, hybrid dynamics emerge in many physical and biological systems where the interactions 

are mediated by short pulse-like signals. For example, in biological neural networks neurons transmit information by action 

potentials, which are short voltage pulses [31,32] . Other examples of pulse interactions include fireflies communicating by 

short light pulses [33] , cardiac cells [34] , impacting mechanical oscillators [35] , electronic oscillators [36,37] , and optical

systems [38–40] . Provided that the pulse duration is small and its specific shape is negligible, it is convenient to use an ap-

proximation by infinitely short pulses. Under this approximation, the system evolves autonomously except for the moments 

when it receives pulses, and in these moments the incoming pulses cause instant changes of the system state. 

One of the topics where the assumption of infinitely short pulses allowed to obtain significant progress is mechanical 

systems with impacts. Starting from the pioneering works on impact dampers [41,42] , further research results on the impact

dynamics [43–47] have comprised a well-established mathematical foundation for the modeling and analysis of mechanical 

systems with interaction discontinuities. More recent results include studies of vibro-impact dynamics [48–50] , dynamical 

behavior of oblique impact systems [51,52] , and impact chattering in gear transmission systems [53,54] . A special attention

has been paid to the analytic study of periodic motions [55–57] and grazing bifurcations [58,59] in discontinuous dynamical 

systems. 

Another direction where the concept of pulse interactions is especially effective is the study of networks dynamics. The 

assumption of infinitely short pulses provides a simple tool to capture unit-to-unit interactions and allows the researcher to 

concentrate on the collective behavior of the network. In particular, this framework allowed to shed light on many impor- 

tant processes in neural networks, such as synchronization [60,61] , asynchronous behavior [62,63] , emergence of collective 

oscillations and complex collective dynamics [64,65] , and possible mechanisms underlying cognitive function such as object 

working memory [66] , for instance. 

The concept of pulse interactions is especially effective when combined with a simple model for the local dynamics, 

such as phase description. Pulse-coupled phase oscillators are a popular framework for modeling biological systems [67–71] , 

especially neural networks [72–77] , locomotion of human and animals [78,79] , image processing [80] , as well as addressing

general problems of the network dynamics [81–84] . The action of a pulse on a phase oscillator is captured by the so-called

phase response curve [85] , which in earlier works was also called “sensitivity function” [86] or “phase transition curve” [87] .

The phase response curve (PRC) tabulates the phase shift of the oscillator perturbed by a pulse depending on the phase

of the pulse reception. The PRC can be obtained numerically or even measured experimentally for oscillators of arbitrary 

nature. It can be useful to predict their dynamics under the action of pulse trains provided that the pulses are not too

strong or too frequent [88] . 

Although the behavior with instantaneous impulsive jumps is typical for diverse areas spanning from cyber-physical 

systems to neural networks, the researchers from various areas use very different modeling approaches and rely on different 

analysis techniques. Our paper attempts at providing a simple introduction to several modeling frameworks and bringing 

attention of researchers working in one field to the methods available in other research communities. By this, we aim at

fostering the exchange of ideas and methods between physicists, theoretical biologists, applied mathematicians, and control 

engineers who are engaged in the study of hybrid behaviors. 

The paper is organized as follows. In Section 2 , we present a systematic exposition of the mathematical foundations of

the most popular approaches for the modeling of hybrid behavior. In particular, the main concepts of impulsive differential 

equations and hybrid dynamical systems are presented in subsection 2.1 and 2.2 , respectively. In subsection 2.3 , we recall the
2 
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definition and the basic properties of the Dirac delta function and the corresponding equations which involve this formalism. 

Section 3 is mainly devoted to the comparison of the mentioned modeling frameworks and to the identification of their 

benefits with respect to different types of hybrid behaviors. Thus, we address the correspondence of the equations with 

Dirac delta functions and impulsive differential equations in subsection 3.1 . The peculiarities of the stability and attractivity 

analysis of hybrid behaviors and main differences compared to the conventional Lyapunov-based approaches for smooth 

dynamical systems are discussed in subsections 3.2 and 3.3 , respectively. Subsection 3.4 addresses the issue of multiple 

impulsive jumps at the same time. Finally, conclusions and a short outlook in Section 4 complete the paper. 

Notation. Let N , R , R ≥0 , and R > 0 stand for the sets of natural, real, real non-negative, and real positive numbers, respec-

tively, N 0 := N ∪ { 0 } , and R 

n denotes the n -dimensional Euclidean space for n ∈ N . For a given set A , let Ā and int A denote

the closure and the interior of the set A . Given a vector x ∈ R 

n and a closed set A ⊂ R 

n , the distance of x to A is denoted

by ‖ x ‖ A and is defined by ‖ x ‖ A := inf y ∈A ‖ x − y ‖ , where | ·| denotes the Euclidean norm. 

2. mathematical modeling of discontinuous behavior 

In this section, we present an overview of the most common mathematical frameworks for the modeling and analysis 

of processes that combine continuous and discontinuous behavior. This includes (a) impulsive differential equations [89,90] , 

which are the main approach for mathematicians, (b) hybrid dynamical systems [30,91] , which are popular for control en-

gineers and are especially beneficial for networked control systems, and finally (c) differential equations involving Dirac 

δ-functions [92] , which are an important tool in the physicists community. Also, we would like to point out that there ex-

ists a plethora of different frameworks stemming from the computer science community, like hybrid automata [93] , hybrid 

Petri nets [94] , etc. For the interested readers, some relations between equations with Dirac/impulsive differential equations 

and symbolic models can be found in [95] and [96] , respectively. The latter ones, however, are not in the scope of the

current paper. 

2.1. impulsive differential equations 

Origins of the theory of impulsive differential equations date back to the papers [97,98] and the monograph [99] . In these

works, a concept of a solution to the impulsive differential equation and conditions for its existence and uniqueness have 

been introduced. Additionally, the first assertions have been made therein regarding the stability properties of solutions. 

Later in 1970-th, the rigorous mathematical theory of impulsive differential equations with fixed and non-fixed moments of 

impulsive jumps has been developed by Samoilenko, Perestyuk, and their students. Most of these results are summarized 

in the monographs [29,89,100,101] and provide a classification of impulsive differential equations depending on the charac- 

ter of impulsive jumps [29,89] , stability characterizations of solutions [102–104] , extensions of Lyapunov’s second method 

[105] and averaging theory [106–108] . More recent results on impulsive differential equations concern the extensions of dis- 

sipativity [109] and contraction [110,111] theories, applications in control [15,112] , study of periodic solutions [12,129] and 

impulsive differential inclusions [101,113] , development of the theory of global attractors [114–117] . 

A system of impulsive differential equations (or, simply, an impulsive system) is defined by three essential ingredients: 

(1) a differential equation ˙ x = f (t, x ) with f : R × M → R 

n , n ∈ N , that governs the dynamics at points x of the state space

M ⊆ R 

n ; (2) a set � ⊂ R × M in the extended state space that triggers a jump when at time t a trajectory approaches a

point x = x (t −) := lim ε↘ 0 x (t − ε) , such that (t, x ) ∈ �; (3) a map g : � → R 

n that defines the instantaneous transition of

point x to a new position x + g(t, x ) ∈ M for (t, x ) ∈ �. This allows for a compact representation 

˙ x (t) = f (t, x (t)) , (t, x (t −) ) �∈ �, (1a) 

x (t) = x (t −) + g(t , x (t −)) , (t , x (t −) ) ∈ �, (1b) 

where t ≥ 0 , and x (t) ∈ M . The functions f , id + g, and the set � are called flow map, jump map , and impulsive set , respec-

tively. Here, id stands for the identity map, i.e., id (x ) = x for any x ∈ M . For a given impulsive set �, a solution to the impul-

sive system (1) corresponding to initial time t 0 ≥ 0 , and initial state x 0 ∈ M is a right-continuous function x : [ t 0 , T ) → M
that satisfies the differential equation (1a) when (t, x ) �∈ �, has discontinuities of the size g(t, x (t −)) , when (t, x (t −)) ∈ �,

and conforms to the initial condition x (0) = x 0 . When T = ∞ , the corresponding solution is called forward-complete . Some-

times, it is convenient to rewrite equation (1b) in the form �x | (t,x ) ∈ � = g(t, x ) , where �x denotes the difference between

the values of the state after and before the jump. It is worth noting that the proposed definition of the solution is mean-

ingful for the cases when the jump map transfers point x at time t to a new position x + �x so that (t, x + �x ) �∈ �, i.e.,

after every jump the motion evolves along the continuous flow. The case of several sequential jumps will be discussed later

within the framework of hybrid dynamical systems in Secs. 2.2 and 3.4 . 

Depending on the properties of the impulsive set � and the jump map g, three qualitatively different classes of impulsive

differential equations can be discriminated (see also Figure 1 ): 

(a) Impulsive differential equations with fixed moments of jumps . This case corresponds to � = T × M , where T =
{ t , t , . . . } ⊂ R is a given set of jump moments. It is a convention that after every jump at time t the motion evolves
1 2 i 
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Fig. 1. Examples of typical impulsive sets � ⊂ R × M (in red) that correspond to three different classes of impulsive differential equations with one- 

dimensional state space M = R : (a) Impulsive differential equations with fixed moments of jumps – discontinuities occur at some predefined moments 

(vertical lines); (b) Impulsive differential equations with non-fixed moments of jumps – discontinuities occur when a certain relation between the time 

and space variable is achieved; (c) Discontinuous dynamical systems – discontinuities occur when the state reaches a certain subset of the state space 

(horizontal lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

along the continuous flow. Impulsive systems with fixed moments of jumps are widely used in many application 

areas, such as logistics [96,118] , robotics [119] , population dynamics [120–122] , and medical therapeutics [123] . For ex-

ample, this modeling approach was used for the analysis and design of the tumor chemotherapy strategy when the 

therapy is applied at some prescribed time-moments, e.g., periodically in [123] : 

There, the continuous dynamics of cell populations is given as 

˙ C (t) = g C ( C ( t ) ) − m C ( C(t) , H(t) ) − d C ( C ( t ) ) Z(t) , 
˙ H (t) = a H ( H(t) , R (t − τ ) ) − m H ( C(t) , H(t) ) − d H ( H ( t ) ) Z(t) , 
˙ R (t) = g R ( R ( t ) ) − a H ( H(t) , R (t − τ ) ) − d R ( R ( t ) ) Z(t) , 
˙ Z (t) = −d Z ( C ( t ) , H ( t ) , R ( t ) ) Z(t) , 

where C(t) , H(t) , and R (t) are the number of cancerous, hunting and resting cells at time t , respectively, and Z(t) is

the concentration of the chemotherapeutic agent at time t . Further, g C and g R are the reproduction rates of R and H

cells, a H is the activation of hunting cells, d X are the losses of quantity X due to reaction of the chemotherapeutic

agent Z, and m C and m H are the decay rates of hunting and cancerous cells independent of the presence of Z. The

above continuous dynamics are in effect for times t � = nT , n ∈ N . At t = nT , an impulsive drug treatment is applied

with amplitude �, that is, 

C(t) = C(t −) , H(t) = H(t −) , R (t) = R (t −) , Z(t) = Z(t −) + �, for t = nT , n ∈ N . 

Taking the time-delay τ = 0 the system’s state space becomes finite-dimensional and we arrive to the impulsive dif- 

ferential equation model of the type (1). 

(b) Impulsive differential equations with non-fixed moments of jumps . For this case, � = { (t, x ) ∈ R × M : �(t, x ) = 0 } for

some function � : R × M → R . That is, the occurrence of impulses depends on both time t and state x . An example of

such process is, for instance, the Lotka-Volterra model of interaction of two biological species with external impulsive 

regulation that depends on species’ population and accounts for seasonal factors [124] , or Hopfield neural networks 

with state-dependent impulses [125] : 

˙ x (t) = −Cx (t) + A f (x (t)) , t ∈ (θi , θi +1 ] and t � = θi + τi (x (t −)) , 
x (t) = x (t −) + J i (x (t −)) , t = θi + τi (x (t −)) , 

where the state variable x (t) ∈ M ⊂ R 

n , A, C, and J i are given matrices of appropriate dimension and f : M → R 

n is

a nonlinear activation function. The strictly increasing sequence of jump moments { θi } ∞ 

i =0 
has no finite accumulation 

points. The impulsive set � is a union of hypersurfaces �i = { (t, x ) ∈ R + × M : t = θi + τi (x ) } defined by continuous

nonlinear functions τi : M → R + . Impulsive jumps occur when the integral curve intersects any hypersurface �i , i =
1 , . . . , ∞ . 

(c) Discontinuous dynamical systems . Here, the impulsive set and the jump map do not depend on time t , i.e., � = R × ˆ �,

with 

ˆ � ⊂ M , and the jump map has the form g(t, x ) = ˆ g (x ) with ˆ g : ˆ � → M . Typical examples of processes that can

be modeled by discontinuous dynamical systems are pulse-coupled oscillators in which impulses occur when the state 

reaches a certain threshold. For example, a network of N pulse-coupled phase oscillators can be modeled as [70] 

˙ θ̄ (t) = (ω , ω , . . . , ω ) , I( ̄θ(t −)) = ∅ , 
θ̄ (t) = 

(

k 1 (θ1 (t −)) , 
k 2 (θ2 (t −)) , . . . , 
k N (θN (t −)) 

)
mod 2 π, I( ̄θ (t −)) � = ∅ . 

Here, θ̄ = (θ1 , θ2 , . . . , θN ) are the phases of the oscillators, θ j ∈ R (mod 2 π) , and I( ̄θ (t −) ) = { j| θ j (t −) = 2 π} is the set

of oscillators whose phases reach the threshold 2 π at time t . Such oscillators are said to emit pulses, and these pulses
4 
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are received by the other oscillators at the same time. Each oscillator j receives pulses from a certain set N j of other

oscillators. When all the oscillators are below the threshold their phases grow uniformly with the speed ω. When 

some oscillators reach the threshold, they emit pulses and send them to their peers. When an oscillator receives a 

pulse, its phase changes according to the map 
(θ ) = θ + c�(θ ) , where �(θ ) is the phase response curve and c is

the scalar coupling gain. Note that the phase change is given by the k j -fold superposition of the map 
(θ ) , where

k j is the number of pulses received by the j-th oscillator simultaneously: k j = | I( ̄θ ) ∩ N j | , where | · | denotes the

cardinality of a set. 

Discontinuous dynamical systems may also arise in control regulation problems, e.g, in the ”predator-prey” model 

subjected the external influences in form of the removal or addition of certain percentage � of biomass both for the 

prey and predator [126] : 

˙ m (t) = m (t)(r 1 − q 1 M(t)) , (m, M) �∈ �, 

˙ M (t) = −M(t)(r 2 − q 2 m (t)) , (m, M) �∈ �, 

m (t) = (1 − �) m (t −) , (m, M) ∈ �, 

M(t) = (1 − �) M(t −) , (m, M) ∈ �, 

where m (t) > 0 and M(t) > 0 denote the amount of biomass constituting the prey and predator populations at time

t ≥ 0 ; constant coefficients r 1 , r 2 , q 1 , q 2 > 0 characterize the relative growth, decay, and predatory interaction between

the populations. For a given parameter k > 0 , the impulsive set ˆ � = { (m, M) ∈ R + × R + : M = km } corresponds to the

ray with slope k . The impulsive moments correspond to the instances when the ratio of the quantities of biomasses

of the predator and prey reaches the value k . 

The essential property of both impulsive differential equations with non-fixed moments of jumps (b) and discontinuous 

dynamical systems (c) is that each solution has its distinct moments of discontinuities, whereas all solutions share the same 

moments of jumps in the case (a). Also, in the cases (b) and (c), a solution may exhibit the so-called “beating” phenomenon,

which is characterized by an infinitely many impulsive jumps within a finite interval of time. This situation occurs when 

the solution meets the set � more often and often, so that the time between two consecutive intersections of the solution

and the impulsive set converges to zero. This dynamical phenomenon is also termed Zeno behavior and it will be discussed

in more details in the following Sec. 2.2 . 

As highlighted in [89] , the representation (1) allows for a variety of extensions, which can be used for the modeling of

complex processes and phenomena. For example, if the jump map is allowed to be multi-valued then the corresponding 

solution undergoes instantaneous splitting into several solutions when it meets the jump set. That is, g(t, x ) ∈ P(M ) , where

P(M ) is the powerset over the state space M . A particularly peculiar situation emerges if we assume that g(t, x ) = ∅ is the

empty set for all x ∈ R with some R ⊂ M . Such systems are called “mortal” [127] . Their solution “dies” when the trajectory

meets the “death” set R . A typical problem studied in the context of these systems, is finding the average trajectory lifetime,

or the probability of its death within a given time. Finally, a number of extensions of the framework of impulsive differential

equations have been developed that combine instantaneous impulsive jumps with other dynamical effects like, time delays 

[128,130–135] , switching of the flow dynamics [136–141] , stochastic perturbations [142–144] , and extend the framework 

to handle infinite-dimensional state spaces [145–149] , non-instantaneous jumps [150–152] , and fractional order derivatives 

[153–156] . 

2.2. hybrid dynamical systems 

Hybrid dynamical systems, which were proposed in [30,91] , constitute a convenient mathematical framework for the 

modeling and analysis of processes with state-dependent moments of jumps. Paradigmatically, they are capable of capturing 

a similar dynamic behavior as discontinuous dynamical systems, but the mathematical treatment is somewhat different. In 

particular, hybrid dynamical systems use a specific compartmentalized concept of time, which is described by a discrete and 

a continuous component in this context. Here, the continuous component describes the continuous time, which parametrizes 

the episodes of continuous evolution of the system, during which it is governed by a differential equation. The discrete 

component corresponds to the number of encountered jumps and separates the individual continuous episodes. This implies 

a distinct notion of a solution as a map from the two-dimensional time-space to the state space, that differs from the

one used in impulsive differential equations. This approach allowed to develop a wide range of analysis methods, which 

nowadays constitute a well-established branch of hybrid systems and which are actively used for control design purposes 

in many engineering applications, e.g., in networked control systems [157] and for the event-triggered control of nonlinear 

systems [158] . 

In the next paragraphs, we introduce the notion of a hybrid dynamical system following [30] . 

Definition 1 (Hybrid time domain) . A subset E = 

⋃ 

j ([ t j , t j+1 ] , j) ⊂ R ≥0 × N 0 is called a hybrid time domain if it is a union

of a finite or infinite sequence of indexed intervals [ t j , t j+1 ] × { j} , j = 0 , 1 , 2 , . . . , for some ordered sequence of time points

0 ≤ t 0 ≤ t 1 ≤ t 2 ≤ . . . in R . In case of a finite number m of intervals, the last one is allowed to be half-open of the form

[ t m −1 , T ) with T finite or T = ∞ . 

Definition 2 (Hybrid arc) . A function x : E → R 

n is called a hybrid arc if E is a hybrid time domain and if for each j =
0 , 1 , 2 , . . . , the function t → x (t, j) is locally absolutely continuous on the interval I j = { t : (t, j) ∈ E} . 
5 
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Equipped with these definitions, we are set to define the notion of a hybrid dynamical system. Given a hybrid arc x , the

notation dom x represents its domain, which is a hybrid time domain. 

Definition 3 (Solution to a hybrid system) . Let C, D be subsets of R 

n . A hybrid arc x is a solution to the hybrid dynamical

system 

˙ x = f (x ) , x ∈ C, (2a) 

x + = g(x ) , x ∈ D. (2b) 

if x (0 , 0) ∈ C̄ ∪ D and 

(S1) for all j ∈ N such that I j := { t : (t, j) ∈ dom x } has nonempty interior 

x (t, j) ∈ C for all t ∈ int I j , 

˙ x (t, j) = f (x (t, j)) for almost all t ∈ I j ;
(S2) for all (t, j) ∈ dom x such that (t, j + 1) ∈ dom x , 

x (t, j) ∈ D, x (t, j + 1) = g(x (t, j)) . 

Thus, the state of the hybrid system, represented by x , can change according to the differential equation (2a) while

x (t, j) ∈ C, and it can change according to the difference equation (2b) while x (t, j) ∈ D . The sets C and D are called the

flow set and the jump set, respectively. The functions f : C → R 

n and g : D → C ∪ D are called the flow map and jump map .

It is worth noting that the flow and jump maps are allowed to be empty or to coincide with R 

n . Moreover, these sets

may have intersection points: if x is in both sets simultaneously, it may either continue its evolution along the continuous

trajectory of (2a) , or it may be instantaneously transferred to a new position according to (2b) , i.e., this situation gives birth

to two different solutions. This peculiarity of hybrid dynamical systems enables them to model even more complex dynamic 

behaviors than discontinuous dynamical systems. 

To illustrate the above definitions, we consider a mathematical model of a bouncing ball given by hybrid dynamical 

system of the form {
˙ x 1 = x 2 
˙ x 2 = −g 

, (x 1 , x 2 ) 
� ∈ C, (3a) 

{
x + 

1 
= x 1 

x + 
2 

= −λx 2 
, (x 1 , x 2 ) 

� ∈ D, (3b) 

where x 1 (t) ∈ R and x 2 (t) ∈ R denote the position and the velocity of the ball at time t ∈ [0 , ∞ ) , respectively. The gravity

constant g and restitution coefficient λ are positive scalar parameters. The flow set C and jump set D are defined as follows: 

C = { (x 1 , x 2 ) 
� ∈ R 

2 : x 1 ≥ 0 } , 
D = { (x 1 , x 2 ) 

� ∈ R 

2 : x 1 ≤ 0 and x 2 ≤ 0 } . 
Fig. 2 shows the graph of the positional component x 1 of a solution over the hybrid time domain for the initial conditions

x 1 (0) = 10 , x 2 (0) = 0 . The ball will make an infinite number of jumps before comes to rest after a finite time due to fric-

tional losses ( λ < 1 ) each time it touches the ground at x 1 = 0 . Therefore, the number of jumps j goes to infinity within

finite time t . 

This phenomenon is called Zeno behavior (corresponds to the “beating” phenomenon in impulsive differential equations) 

and it can be formalized as a property of hybrid arcs (or, the respective hybrid time domains): A hybrid arc x : E → R 

n is

called complete if dom x is unbounded, i.e., if 

sup 

(t, j) ∈ dom x 
(t + j) = ∞ . (4) 

A hybrid arc x : E → R 

n is called Zeno arc if it is complete and sup dom x t < ∞ . This implies that, for a Zeno arc, an infinite

number of jumps occurs during a finite time. In this case, the time T Zeno = sup dom x t is called a Zeno time. Solutions for

t ≥ T Zeno are not defined, which may cause considerable problems for appropriate modeling and analysis of real systems 

with hybrid behavior and their interconnections [160] . 

More complex rules for the construction of hybrid time domains were proposed in [161–163] . In [161] , the concept of

generalized hybrid time domain has been introduced where a discrete-time axis was generalized to a countable ordinal 

that can have infinitely many accumulation points, which correspond to Zeno occurrences. In [162,163] , a notion of the

three-dimensional extended hybrid time domain has been proposed, in which the third component tracks the number of 

encountered Zeno behaviors. Both approaches allow to prolong solutions beyond the Zeno time T . 
Zeno 

6 
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Fig. 2. A plot of a hybrid time domain (solid red line) and the corresponding hybrid arc (dashed blue line) representing the evolution of the ball’s height 

starting from x 1 (0) = 10 with zero velocity. The parameter values are g = 9 . 81 and λ = 0 . 8 . The simulation was performed using Hybrid Equations (HyEQ) 

Toolbox [159] for MATLAB/Simulink . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

2.3. equations with dirac delta function 

The Dirac delta function was introduced by Paul Dirac [92] as a function modeling the density distribution of an idealized

point mass. Mathematically, the Dirac delta function is defined by the action of an associated distribution [164] . This distri-

bution, D δ acts as a linear functional on a set of appropriate test functions f : R → R (e.g., smooth functions with compact 

support) and maps every function to its value at zero: 

D δ[ f ] = f (0) . (5) 

A heuristic characterization of the delta function could be given as a function of a real variable which equals zero every-

where except the origin where it equals infinity: 

δ(x ) = 

{
0 , x � = 0 , 

∞ , x = 0 , 
(6) 

with the additional restriction ∫ ∞ 

−∞ 

δ(x ) dx = 1 . (7) 

From a physical perspective, one can also think of a delta function as a limit of a sequence of pulse-like functions δn , whose

support tends to zero while the integral remains equal to unity. Such an understanding makes delta functions ideal for 

modeling signals in the form of short pulses. For example, consider an integrate-and-fire neuron governed by the equation 

[63] 

τ ˙ V (t) = −V (t) + RI(t) , (8) 

where τ is the membrane time constant, R is the membrane resistivity, and I(t) is the synaptic current arriving at the soma.

This current is the sum of the contributions of signals arriving at different synapses. As those signals take the form of short

action potentials, i.e., brief spikes, they can be modeled as delta functions. Thus, the total current is given by 

RI(t) = τ
∑ 

j 

J j 
∑ 

k 

δ(t − t k j ) , (9) 

where J j is the amplitudes of the postsynaptic potential of the j-th synapse, and t k 
j 

are the spike arrival times at that

synapse. 

The presence of a delta function on the right-hand side of an ODE implies the discontinuity of its solutions. To show that

consider a system 

dx = f (x ) + δ(t) , (10) 

dt 

7 



P. Feketa, V. Klinshov and L. Lücken Commun Nonlinear Sci Numer Simulat 103 (2021) 105955 

 

 

 

 

 

 

 

 

 

 

 

 

 

where x ∈ R . The impact of the delta function is negligible at all times except t = 0 . At the latter point it is possible to

integrate the equation as follows: 

x (0 

+ ) = x (0 

−) + 

∫ +0 

−0 

(x (t) + δ(t)) dt = x (0 

−) + 1 . (11)

Thus, Eq. (10) is equivalent to an impulsive differential equation 

˙ x (t) = f (x ) , t � = 0 , (12a) 

x (t) = x (t −) + 1 , t = 0 . (12b) 

In general, every ODE with a delta function on the right-hand side can be reformulated as an impulsive differential

equation. However, the calculation of the jumps in ODEs with delta- functions in the right-hand side requires special care 

in many cases as we discuss in Section 3.1 . 

3. comparison between the frameworks 

3.1. state-dependent jumps in equations with dirac delta functions 

In the previous section we have shown that the dynamics of equation (10) is equivalent to that of the impulsive differen-

tial equation (12). Similarly, an ODE with a Dirac delta function on the right-hand side can be reformulated as an IDE. Both

modeling approaches are often used interchangeably to describe dynamical systems with jumps [61,73,82] , and equations 

with Dirac delta functions are frequently considered to be a more compact way of writing the corresponding impulsive dif- 

ferential equations. However, special care should be taken when the magnitude of the jump depends on the system state. 

This dependence can be expressed as a multiplication of the delta function by a function g(x ) of the state variable, such

that the equation takes form 

dx 

dt 
= f (x ) + g(x ) δ(t) . (13) 

Frequently, authors assume that the magnitude of the discontinuity in the solution of (13) is given by the value g(x (0 −))

evaluated for the system’s state just before the jump [73,76,77,81,83,84,165,166] . This means, that (13) is interpreted to be

equivalent to the impulsive differential equation 

˙ x (t) = f (x (t)) , t � = 0 , (14a) 

x (t + ) = x (t −) + g(x (t −)) , t = 0 . (14b) 

For example, Izhikevich [167] formulates a general model of a network with pulse coupling in the form 

dx i 
dt 

= f i (x i ) + ε 
n ∑ 

j=1 

g i j (x i ) δ(t − t ∗j − ηi j ) , (15) 

where f i describes the local dynamics of the i -th node (neuron) of the network, while g i j describes the effect of a pulse

generated by the j-th neuron on the i -th. The moment when the j-th neuron emits a pulse is denoted by t ∗
j 
, and ηi j is the

coupling delay between the j-th and the i -th neurons. When the i -th neuron receives a pulse, its state changes immediately.

The magnitude of this change is assumed to be the following: x i (t + 0) = x i (−0) + εg i j (x i (t − 0)) . 

The following simple example illustrates why this approach may lead to inconsistent results: 

Let T = { t 1 , t 2 , t 3 , . . . } be a strictly increasing sequence of impulse times in (0 , ∞ ) with no finite accumulation point, i.e.,

lim 

i →∞ 

t i = ∞ . Consider a linear impulsive differential equation 

˙ x = x, t �∈ T , (16a) 

�x = − x 

2 

, t ∈ T , (16b) 

where x (t) ∈ R > 0 . Let us evaluate the hypothesis that the behavior defined by the impulsive differential equation (16) is

equivalent to the following equation with a Dirac delta function: 

˙ x = x + 

∑ 

t i ∈ T 

(
− x 

2 

)
δ(t − t i ) . (17) 
8 



P. Feketa, V. Klinshov and L. Lücken Commun Nonlinear Sci Numer Simulat 103 (2021) 105955 

 

 

 

 

 

 

 

For this sake, we introduce a nonlinear strictly monotonic transformation of variable z = ln x , x > 0 . The application of this

transformation to equations (16) and (17) leads to two different systems with different solutions. Indeed, 

z = ln x ⇒ 

˙ z = 

1 

x 
˙ x ⇒ 

˙ x = x ̇ z = e z ˙ z . (18) 

That is, equation (17) can be represented as 

˙ z = 1 + 

∑ 

t i ∈ T 

(
−1 

2 

)
δ(t − t i ) . (19) 

The representation (19) corresponds to the impulsive differential equation (cf. (11) ) 

˙ z = 1 , t �∈ T , (20a) 

�z = −1 

2 

, t ∈ T . (20b) 

Let us now perform the change of variable in (16). Following (18) , the differential equation (16a) reads as ˙ z = 1 . Evaluating

the value of the state variable x after a jump at t ∈ T , we obtain: 

x + �x = x − x 

2 

= e z+�z . 

Thus, e z = 2 e z+�z , which yields �z = − ln 2 . Finally, the impulsive differential equation in z-coordinates derived from (16)

has the following form 

˙ z = 1 , t �∈ T , (21a) 

�z = − ln 2 , t ∈ T . (21b) 

Clearly, if (16) and (17) were equivalent, the impulsive equations (20) and (21) for z would coincide. Thus, (16) and 

(17) are not equivalent for the assumed interpretation of the delta function. While the continuous dynamics are the same, 

the magnitudes of the jumps are different. For a more detailed discussion of this issue, see [168] . 

The described difference in the magnitude of the jumps becomes even more dramatic for nonlinear systems, e.g, for 

oscillation systems with impulses [29, Section 7.1] . Summarizing, one should take special care about the calculation of the 

jump map when using an ODE with delta functions, for example by employing canonical graph completion techniques 

[169] or by approximating the delta-function by a sequence of continuous functions [170] . The explicit notation (1) for

impulsive differential equations avoids this issue. For a more detailed exposition, see [168] . 

The nonlinear transformation of variables is a key element in stability analysis via the Lyapunov function method. As, 

for scalar equations, the Lyapunov function actually defines some (usually nonlinear) transformation of the system’s state. 

Following the arguments used in the above calculations, the application of the Lyapunov method to impulsive differential 

equations and to their counterparts with Dirac delta functions may lead to qualitatively different outcomes in the case that 

the jump map is not carefully calculated. Further peculiarities of the stability analysis of hybrid processes are discussed in 

subsections 3.2 and 3.3 . 

3.2. stability analysis for systems with jumps 

One of the peculiarities of dynamical systems with jumps emerges when their stability is addressed. For continuous 

dynamical systems, the Lyapunov stability of a solution x (t) is characterized by the property that every perturbed solution 

y (t) starting at y 0 = y (t 0 ) close enough to x 0 = x (t 0 ) remains close to x (t) as time progresses. Formally, 

∀ ε > 0 : ∃ δ = δ(ε) > 0 : ∀ y 0 ∈ O δ(x 0 ) : ∀ t > t 0 : ‖ 

x (t) − y (t) ‖ 

< ε, (22) 

where O δ (x 0 ) denotes the open δ-neighborhood of x 0 . 

Directly applied, this definition turns out to be too restrictive for many systems with jumps. For example, consider a 

population of oscillators described by their phases φ j which grow uniformly with d φ j / d t = ω j . Further, assume that the

phase passing through zero corresponds to an observable event, for example, an action potential. When one oscillator “fires”

(i.e., reaches φ j = 0 ), the others receive an impulse, so that their phases jump according to the map 

φk �→ φk + Z(φk ) , k � = j, (23) 

where Z(·) is the phase resetting curve. It was shown [171,172] that in the case of two oscillators such a system may display 

mutual synchronization, where both oscillators fire periodically with the same period. If the oscillators are not identical 

( ω 1 � = ω 2 ), the firing occurs with a time lag. For Z(φ) = −κ · sin (2 πφ) , this regime is stable for a range of values for κ in the

sense that the system returns back to firing with the same period and the same time lag after a small perturbation. However,

even for an arbitrarily small perturbation, the firing events of the periodic and the perturbed solution occur at slightly 
9 
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Fig. 3. Top panel: the periodic (solid lines) and the perturbed (dashed lines) solutions of the two oscillators with pulse coupling. Blue (red) lines correspond 

to the phase of the first (second) oscillator. Bottom panel: the distance between the two solutions. The frequencies ω 1 = 1 ,m ω 2 = 1 . 4 , the phase resetting 

curve Z(φ) = −0 . 15 sin 2 πφ. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

different time moments, see Fig. 3 . Between these moments, the difference between the two solutions is of constant order

corresponding to the jump magnitude. Applying the definition (22) of stability to this situation, would therefore characterize 

the solution as unstable. 

This example motivates the introduction of a modified definition of stability, more adequate for systems with jumps. 

One suitable notion is given by Samoilenko and Perestyuk [89] , which introduces intervals of temporal forbearance around 

the moments of discontinuity. During those intervals a significant difference between the original and perturbed solution is 

allowed. This means that one solution is considered to be close to another if the difference between both is small outside

of small neighborhoods around its discontinuities. In particular, the time lag between two corresponding jumps of the per- 

turbed and unperturbed system has to be small, as well. More formally, we have the following definition for the stability of

solutions to impulsive differential equations: 

Definition 4. Let x (t) denote a solution to the impulsive system (1) defined for all t ≥ t 0 for some initial time t 0 ∈ R . The

solution x (t) is called stable if for any ε > 0 and η > 0 there exists δ = δ(ε, η) > 0 such that for any other solution y (t) to

(1) with ‖ x (t 0 ) − y (t 0 ) ‖ < δ it holds that ‖ x (t) − y (t) ‖ < ε for all t ≥ t 0 such that | t − t i | > η, where t i , i ∈ N are the moments

of impulsive jumps of x (t) , which can be also state-dependent. 

The introduction of η in Def. 4 in comparison to (22) resolves the issue of momentary, large state deviations due to small

jump time perturbations by allowing arbitrary deviations at times close to the solution’s discontinuities. Consequently, the 

neighborhood O δ (ε, η) of the admissible initial values for y depends also on the value of η, which defines the size of the

time-interval around jumps that is disregarded during the evaluation of ε-closeness. Hence, a smaller η requires a smaller 

δ, if the latter is assumed to be chosen as a maximal size of the neighborhood. 

The asymptotic stability property of solutions to impulsive differential equations can be defined as follows [89] : 

Definition 5. A solution x (t) is called asymptotically stable if it is stable in the sense of Def. 4 and there exists a number

δ0 > 0 such that for any other solution y (t) with ‖ x (t 0 ) − y (t 0 ) ‖ < δ0 , the following holds: 

lim 

t→∞ 

‖ 

x (t) − y (t) ‖ 

= 0 . 

Note that the solutions depicted in Fig. 3 are not asymptotically stable in the sense of Def. 5 , since the corresponding

distances between the original and the perturbed solutions do not converge to zero. This is a consequence of the persistent

phase shift induced by the perturbation. However, the trajectory of the perturbed solution converges towards the periodic 

orbit described by the original solution, when it is considered as a set. To capture this behavior, the notions of asymptotically

attractive sets is important for the long-term characterization of hybrid behaviors. This will be discussed in Section 3.3 . 
10 
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3.3. stability with respect to a set and attractivity concepts 

In many cases, stability analysis of a given solution to the system with jumps can be reduced to the stability analysis

of the trivial solution (zero equilibrium point) of the auxiliary system, which can be derived from the original one by the

appropriate change of variables 1 However, the asymptotic stability of a closed set, rather than of an equilibrium point, is of

interest for many application areas. We illustrate this by the example of a sample-and-hold control system from [30] : 

Consider a continuous-time control system ˙ z = 

˜ f (z, u ) with the state z(t) ∈ R 

n , n ∈ N , control input u (t) ∈ R 

m , m ∈ N , and
˜ f : R 

n × R 

m → R 

n , and a state-feedback controller u = κ(z) . A sample-and-hold implementation of the feedback comprises in

iterative repetition of two steps: 

• sample : measure the state of the system, and use the feedback controller to obtain the control value based on the mea-

surements; 
• hold : apply the computed constant control value for certain amount of time T . 

Such the implementation can be modeled using an additional timer variable τ that tracks the elapsed time since the last 

sampling. Jumps occur when the timer variable reaches T , i.e., 

˙ z = 

˜ f (z, u ) 
˙ u = 0 , when x := (z, u, τ ) � ∈ R 

n × R 

m × [0 , T ) 
˙ τ = 1 

and 

z + = z 
u 

+ = κ(z) , when x := (z, u, τ ) � ∈ R 

n × R 

m × { T } . 
τ+ = 0 

The goal of the asymptotically stabilizing feedback control is then the uniform global asymptotic stability of the set A =
{ 0 } × R 

m × [0 , T ] . This property does not impose any restrictions of the components u and τ , but ensures the convergence

of component z to zero. As highlighted in [30, Example 3.1] , if the control design enforces boundedness of u , which is a

property guaranteeing that the implementation of the controller is feasible, then the set A can be chosen to be bounded.

For example, if u is picked from a compact set of controls U , then it is possible to consider A = { 0 } × U × [0 , T ] . Asymptotic

stability of an equilibrium point is a special case of asymptotic stability of a closed set, since an equilibrium point is a closed

set containing a single point. 

In sequel, we recall the existing definitions for the uniform global asymptotic stability of closed sets for impulsive dif- 

ferential equations and hybrid dynamical systems. For this purpose, we employ the so-called comparison functions, which 

are widely in use for the global analysis of solutions. A special attention will be paid to the peculiarities of the attractivity

concepts in different modeling frameworks. 

A function α : R ≥0 → R ≥0 is of class- K ∞ 

function, also written α ∈ K ∞ 

, if α is zero at zero, continuous, strictly increasing,

and unbounded. Function β : R ≥0 × R ≥0 → R ≥0 is of class- KL function ( β ∈ KL ) if β(·, t) ∈ K ∞ 

for all t ≥ 0 , and β(r, ·) is

strictly decreasing with lim t→∞ 

β(r, t) = 0 for all r ≥ 0 . 

Definition 6. Let x (t) denote a solution to the impulsive system (1) defined for all t ≥ t 0 for some initial time t 0 ∈ R , and

A ⊂ R 

n be closed. The set A is said to be globally asymptotically stable (GAS) if there exists β ∈ KL such that for all x 0 ∈ R 

n ,

it holds that 

‖ 

x (t) ‖ A ≤ β( ‖ 

x 0 ‖ A , t − t 0 ) for all t ≥ t 0 . (24) 

Properties of KL -functions immediately suggest that 

lim 

t→∞ 

‖ 

x (t) ‖ A = 0 for any x 0 ∈ R 

n , (25) 

i.e., every solution eventually converge towards the set A as time t goes to infinity. 

One of the most powerful tools to verify stability in sense of Def. 6 is based on the extension of Lyapunov’s second

method firstly proposed in [105] and summarized in [29] . These results provide sufficient conditions for the asymptotic 

stability of the equilibrium in terms of properties of the auxiliary Lyapunov-like scalar-valued function V : R × R 

n → R . The

derivative of V along the trajectories of impulsive system between jump moments characterizes the flow dynamics, the size 

of jumps of V at trajectories’ discontinuities characterizes the jump dynamics of the system. 

Based on this characterization, the corresponding flow dynamics and jumps dynamics can contribute or play against the 

desired stability property, e.g., if the derivative of V is negative-definite, then the flows are stabilizing; if the jump dynamics

are expanding, i.e., the value of V evaluated after the jump is larger than before the jump, then the discrete dynamics is

destabilizing. Additional constraints (called dwell-time conditions ), which restrict the number/frequency of impulsive jumps 

and balance continuous dynamics and discontinuous dynamics of the system, are required to guarantee the desired stability 
1 The derivation of this transformation can be sometimes more complicated compared to a similar procedure for ODEs, e.g., in the case of state-dependent 

moments of jumps. We refer the interested reader to [89, §17] for a detailed exposition of this issue. 

11 
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property. The described approach is applicable to impulsive systems with fixed moments of jumps (see, e.g., [173] ) or to

systems with variable jump moments if apriori estimates of the inter-impulse intervals can be made (see e.g., [89,174,175] ).

Clearly, if both, continuous flows and discrete jumps contribute towards stability, no such restrictions are needed (see, e.g., 

[176,177] ). 

Different types of dwell-time conditions have been employed for the stability analysis of equilibria and closed sets 

of impulsive systems, e.g., fixed dwell-time [89] , (reverse) average dwell-time [177,178] , non-fixed impulse-time moments 

within predefined time-windows [179–181] , eventually uniformly convergent impulse frequency [182–184] , and eventually 

uniformly bounded impulse frequency [185] . The mentioned dwell-times provide different levels of robustness of the GAS 

with respect to the perturbations of the moments of jumps and different conservatism of the resulting sufficient stability 

conditions. We refer the reader to [185] for a detailed comparison of the corresponding dwell-time conditions. 

In general, the attractivity concept in the sense of (25) cannot be applied in case of solutions that have a bounded, i.e.,

not complete, domain of existence since (25) requires the existence of a limit at infinity. Typical examples of such systems

are discontinuous dynamical systems or impulsive differential equation with non-fixed moments of jumps involving beating 

phenomenon, e.g., [101, Example 1] , 

˙ x (t) = 0 , (t, x (t −)) �∈ �, 

x (t) = x 2 (t −) sign (x (t −)) , (t, x (t −)) ∈ �

with � = { (t, x ) ∈ R 

2 : x = arctan ( tan (t)) } . The motions with initial condition x (0) ∈ (−1 , 0) are subjected to countably many

impulses on the time-interval 
(

3 π
4 , π

)
. The sequence of times at which the motion is subjected to impulsive jumps has the

limit point t = π . Hence, the solution that corresponds to this motion cannot be extended to the interval t ≥ π . 

On the contrary, for hybrid dynamical systems, a solution with Zeno behavior has a complete domain of definition in 

the sense of (4) . In the theory of hybrid dynamical systems, the corresponding concepts of pre-asymptotic stability and pre-

attractivity is used instead of asymptotic stability and attractivity according to (24), (25) for the long-term characterization 

of solutions: 

Definition 7. Consider a hybrid system (2) on R 

n , n ∈ N . Let A ⊂ R 

n be closed. The set A is said to be 

(a) uniformly globally stable if there exists α ∈ K ∞ 

such that any solution x to (2) satisfies ‖ x (t, j) ‖ A ≤ α( ‖ x (0 , 0) ‖ A ) for

all (t, j) ∈ dom x ; 

(b) uniformly globally pre-attractive if for each ε > 0 and r > 0 there exists T > 0 such that, for any solution x to (2) with

‖ x (0 , 0) ‖ A ≤ r, (t, j) ∈ dom x and t + j ≥ T imply ‖ x (0 , 0) ‖ A ≤ ε; 

(c) uniformly globally pre-asymptotically stable (UGpAS) if it is both uniformly globally stable and uniformly globally pre- 

attractive. 

In the framework of hybrid dynamical systems, a time point (t, j) is ’large’ if the sum of the continuous time t and

the number j of jumps occurred is ’large’. Such an approach together with the introduction of the hybrid time domain 

(Definition 1 ) and double parametrization of solutions (Definition 3 ) allowed to develop a variety of novel Lyapunov-based

stability analysis results, including the converse Lyapunov theorem, which are summarized in [30] . In particular, the pre- 

attractiveness of the origin for the bouncing ball model (3) can be concluded [91] , whilst the origin is not attractive in the

sense of (25) for the corresponding model in the form of impulsive differential equations. 

Finally, it has been shown recently in [186] that the standard notion of asymptotic stability (Def. 6 ) for impulsive systems,

whereby the state is ensured to approach A only as continuous time elapses, is too weak to allow for any meaningful type

of robustness with respect to external inputs in a time-varying impulsive system setting. By strengthening the inequality 

(24) to 

‖ 

x (t) ‖ A ≤ β( ‖ 

x 0 ‖ A , t − t 0 + n (t 0 ,t] ) for all t ≥ t 0 , (26) 

where n (t 0 ,t] denotes the number of impulse-time instants contained in (t 0 , t] , some well-established robustness results for 

time-invariant non-impulsive systems have been transferred to impulsive systems in [187] . Inequality (26) requires that the 

convergence to the set A occurs not only as time elapses but also as the number of jumps increases, and, therefore, the set

A is sometimes termed strongly GAS in this case. 

3.4. treatment of several jumps at the same time 

An important situation that may happen in all different classes of hybrid systems, and requires careful consideration of 

the effect it entails, is the simultaneous occurrence of several jumps. For example, in a network with pulse coupling, several

pulses can arrive to one unit at the same time. If the system is defined with Dirac delta functions on the right-hand side,

this may result in the emergence of a delta function with a larger amplitude. For instance, if in Eq. (9) some impact times

t 
j 

k 
coincide, this results in the instantaneous change of the voltage by the total amount 

∑ 

J i j , where the sum runs over all j

corresponding to the coinciding t 
j 

k 
. If the system is defined in terms of an impulsive differential equation, the case of several

jumps at the same time must be separately defined. For example, if two pulses arrive simultaneously at a phase oscillator at

the same time, the map (23) has to be applied twice to ensure a continuous dependence of trajectories on initial conditions

[70,82] . 
12 
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Fig. 4. An “avalanche” in a population of two integrate-and-fire oscillators. (a): The continuous dynamics is plotted by red solid lines, jumps are plotted by 

red dashed lines. The jumps set is depicted by blue lines. (b): A plot of the hybrid time domain (in solid red) for the corresponding hybrid trajectory. It is 

possible to access the state of the system before the first jump, after the first jumps, and after the second jump at times (0 . 75 , 0) , (0 . 75 , 1) , and (0 . 75 , 2) , 

respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

More complex situations might arise when one jump immediately induces one or several subsequent jumps. Such a 

mechanism causes for instance so-called avalanches in neural networks [188] . If the coupling between the neurons is mod- 

eled as instantaneous interaction, the firing of some neurons can lead to the excitation of their projection targets if these are

close enough to their threshold at that time. The induced firing may again cause other neurons to fire, and so on, releasing

an avalanche of firing events over several neuronal layers. 

The most convenient way to formally define such the dynamics is to use hybrid dynamical systems. For example, con- 

sider a population of N integrate-and-fire oscillators [60] , each described by the voltage-like state variable x i subject to the

continuous dynamics 

˙ x i = S 0 − γ x i . (27) 

When x i = 1 , the oscillator ”fires” and x i resets to zero. At this moment the oscillator emits a pulse which is immediately

received by all the other oscillators and causes an instant change of their states. Each oscillator is pulled up by an amount

of ε, but not above unity, so that 

x + 
i 

= min { 1 , x i + ε} . (28) 

The dynamics of such the system can be defined in terms of the hybrid system (2a) - (2b) with the state x = { x 1 , x 2 , . . . , x N } ,
the flow set C = 

⋂ N 
i =1 { x | x i < 1 } and the jump set D = 

⋃ N 
i =1 { x | x i = 1 } . The continuous dynamics is given by f = ( f 1 , . . . , f N )

with f j (x ) = S 0 − γ x i , i = 1 , . . . , N, while the jump map is given by g = (g 1 , . . . , g N ) with 

g i (x ) = 

{
0 , if x i ∈ { 0 , 1 } , 
min { 1 , x i + Mε} , if x i < 1 , 

(29) 

where M ≥ 1 is the number of components x i equal to 1. Then, as M units approach the threshold x i = 1 simultaneously,

the system reaches the jump set C. That is, a jump occurs and the units which fire reset to zero. All other units receive

an input of strength Mε. If this input drives some other units to the threshold, the system remains in the jump set, and a

second jump occurs, which may again entail further jumps, etc. An illustration of such an “avalanche” in a an ensemble of

two neurons is given in Fig. 4 (a). 

It is clear that this type of behavior cannot be completely described neither by equations with Dirac delta functions, nor

by impulsive differential equations. Both these frameworks cannot represent a sequence of jumps occurring simultaneously, 

since they rely on solutions, which are piecewise continuous functions of time t . In particular, this means that at most two

different states can be associated with a time moment t ∗, namely lim 

ε↘ 0 
x (t ∗ − ε) and lim 

ε↘ 0 
x (t ∗ + ε) . If x is discontinuous at t ∗,

these correspond to the system’s states before and after a jump. In contrast, the hybrid dynamical systems approach allows 
13 
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to capture an arbitrary number of different states at a given time moment t ∗ as follows: x (t ∗, j) , x (t ∗, j + 1) , x (t ∗, j + 2) , . . . .

The hybrid time domain that corresponds to the “avalanche” in the preceding example is given in Fig. 4 ((b)). 

4. conclusions and outlook 

The present paper provides an overview of the most common modeling approaches for the mathematical description 

and analysis of processes that combine continuous and discontinuous behavior. In particular, we give a comparison be- 

tween impulsive differential equations, hybrid dynamical systems, and differential equation with Dirac delta function from 

the viewpoint of their modeling capabilities and the respective analysis techniques. We discuss a comprehensive list of ap- 

plication areas from various research domains and typical dynamical processes, whose modeling requires accounting for 

instantaneous impulsive jumps. With this, we attempt to raise the attention of the interested researchers to the methods 

available in other research communities and to foster the exchange of ideas and analysis techniques. An exploration of the 

connections of the frameworks considered in the paper and symbolic models and methods stemming from the computer 

science community are of a great interest for the future study. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have 

appeared to influence the work reported in this paper. 

Acknowledgements 

P.F. was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 434434223 

– SFB 1461. The work of V.K. on Sec. 1, 2.3, 3.1, 3.2, and 3.4 was supported by the Russian Science Foundation within the

project No. 19-72-10114. L.L. was funded by the DFG in the framework of the Transregional Collaborative research centre 

(TRR 51). 

References 

[1] Derler P , Lee EA , Vincentelli AS . Modeling cyber–physical systems. Proc IEEE 2011;100(1):13–28 . 

[2] Van Der Schaft AJ , Schumacher JM . An introduction to hybrid dynamical systems, 251. Springer London; 20 0 0 . 
[3] Bemporad A , Heemels M , Johansson M , Others . Networked control systems, 406. Springer; 2010 . 

[4] Hespanha JP , Naghshtabrizi P , Xu Y . A survey of recent results in networked control systems. Proc IEEE 2007;95(1):138–62 . 
[5] Zhang W , Branicky MS , Phillips SM . Stability of networked control systems. IEEE Control Syst Mag 2001;21(1):84–99 . 

[6] Walsh GC , Ye H . Scheduling of networked control systems. IEEE Control Syst Mag 2001;21(1):57–65 . 
[7] Hu J-W , Zhan X-S , Wu J , Yan H-C . Analysis of optimal performance of MIMO networked control systems with encoding and packet dropout con-

straints. IET Control Theory & Applications 2020;14(13):1762–8 . 

[8] Heemels W , Johansson KH , Tabuada P . An introduction to event-triggered and self-triggered control. In: 2012 IEEE 51st IEEE Conference on Decision
and Control (CDC). IEEE; 2012. p. 3270–85 . 

[9] Dimarogonas DV , Frazzoli E , Johansson KH . Distributed event-triggered control for multi-agent systems. IEEE Trans Automat Contr 2011;57(5):1291–7 .
[10] Girard A . Dynamic triggering mechanisms for event-triggered control. IEEE Trans Automat Contr 2014;60(7):1992–7 . 

[11] Li T , Tang X , Ge J , Fei S . Event-based fault-tolerant control for networked control systems applied to aircraft engine system. Inf Sci (Ny)
2020;512:1063–77 . 

[12] Li X , Bohner M , Wang C-K . Impulsive differential equations: periodic solutions and applications. Automatica 2015;52:173–8 . 

[13] Castilla M , Bordons C , Visioli A . Event-based state-space model predictive control of a renewable hydrogen-based microgrid for office power demand
profiles. J Power Sources 2020;450:227670 . 

[14] Rodríguez-Miranda E , Guzmán JL , Berenguel M , Acién FG , Visioli A . Diurnal and nocturnal ph control in microalgae raceway reactors by combining
classical and event-based control approaches. Water Sci Technol 2020 . 

[15] Yang T . Impulsive control theory, 272. Springer Science & Business Media; 2001 . 
[16] Yang T , Chua LO . Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE

Transactions on Circuits and Systems I: Fundamental Theory and Applications 1997;44(10):976–88 . 

[17] Yang T , Chua LO . Impulsive control and synchronization of nonlinear dynamical systems and application to secure communication. Int J Bifurcation
Chaos 1997;7(03):645–64 . 

[18] Chen S , Yang Q , Wang C . Impulsive control and synchronization of unified chaotic system. Chaos, solitons & fractals 2004;20(4):751–8 . 
[19] Yang T , Yang L-B , Yang C-M . Impulsive control of lorenz system. Physica D 1997;110(1–2):18–24 . 

[20] Liu B , Sun Z , Luo Y , Zhong Y . Uniform synchronization for chaotic dynamical systems via event-triggered impulsive control. Physica A
2019;531:121725 . 

[21] Hernandez-Mejia G , Alanis AY , Hernandez-Gonzalez M , Findeisen R , Hernandez-Vargas EA . Passivity-based inverse optimal impulsive control for

influenza treatment in the host. IEEE Trans Control Syst Technol 2019;28(1):94–105 . 
[22] Heydari A . Optimal impulsive control using adaptive dynamic programming and its application in spacecraft rendezvous. IEEE Trans Neural Netw

Learn Syst 2020 . 
[23] Ferrante F , Gouaisbaut F , Sanfelice RG , Tarbouriech S . L2-State Estimation with guaranteed convergence speed in the presence of sporadic measure-

ments. IEEE Trans Automat Contr 2018;64(8):3362–9 . 
[24] Schaum A , Feketa P , Meurer T , Moreno JA . Robust nonlinear observer design based on impulsive dissipativity. arXiv preprint arXiv:200603932 2020 . 

[25] Kader Z , Zheng G , Barbot J-P . Impulsive observer design for linear systems with delayed outputs. IFAC-PapersOnLine 2017;50(1):1263–8 . 

[26] Feketa P , Schaum A , Jerono P , Meurer T . Impulsive observer design for a class of continuous biological reactors. In: 2019 IEEE 58th Conference on
Decision and Control (CDC). IEEE; 2019. p. 5076–81 . 

[27] Bouraoui I , Farza M , Ménard T , Abdennour RB , M’Saad M , Mosrati H . Observer design for a class of uncertain nonlinear systems with sampled
outputs-Application to the estimation of kinetic rates in bioreactors. Automatica 2015;55:78–87 . 

[28] Feketa P , Bogomolov S , Meurer T . Safety verification for impulsive systems. IFAC-PapersOnLine 2020;53(2):1949–54 . 
[29] Samoilenko AM , Perestyuk NA . Impulsive differential equations, 14. World Scientific; 1995 . 
14 

http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0001
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0001
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0001
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0001
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0002
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0002
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0002
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0003
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0003
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0003
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0003
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0003
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0004
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0004
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0004
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0004
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0005
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0005
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0005
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0005
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0006
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0006
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0006
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0007
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0007
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0007
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0007
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0007
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0008
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0008
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0008
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0008
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0009
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0009
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0009
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0009
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0010
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0010
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0011
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0011
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0011
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0011
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0011
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0012
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0012
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0012
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0012
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0013
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0013
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0013
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0013
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0014
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0014
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0014
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0014
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0014
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0014
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0015
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0015
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0016
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0016
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0016
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0017
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0017
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0017
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0018
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0018
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0018
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0018
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0019
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0019
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0019
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0019
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0020
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0020
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0020
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0020
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0020
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0021
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0021
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0021
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0021
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0021
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0021
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0022
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0022
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0023
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0023
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0023
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0023
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0023
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0024
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0024
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0024
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0024
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0024
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0025
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0025
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0025
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0025
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0026
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0026
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0026
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0026
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0026
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0027
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0027
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0027
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0027
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0027
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0027
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0027
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0028
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0028
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0028
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0028
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0029
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0029
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0029


P. Feketa, V. Klinshov and L. Lücken Commun Nonlinear Sci Numer Simulat 103 (2021) 105955 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[30] Goebel R , Sanfelice RG , Teel AR . Hybrid dynamical systems: modeling, stability, and robustness. Princeton University Press; 2012 . 
[31] Dayan P , Abbott LF . Theoretical neuroscience: computational and mathematical modeling of neural systems. Computational Neuroscience Series; 

2001 . 
[32] Squire L , Berg D , Bloom FE , Du Lac S , Ghosh A , Spitzer NC . Fundamental neuroscience. Academic Press; 2012 . 

[33] Buck J. Synchronous rhythmic flashing of fireflies. II.. Q Rev Biol 1988;63:265–89. doi: 10.1086/415929 . 
[34] Peskin CS . Mathematical aspects of heart physiology. New York: Courant Institute of Mathematical Sciences, New York University; 1975 . 

[35] Brzeski P , Kapitaniak T , Perlikowski P . Experimental verification of a hybrid dynamical model of the church bell. Int J Impact Eng 2015;80:177–84 . 

[36] Lopera A , Buldú JM , Torrent MC , Chialvo DR , García-Ojalvo J . Ghost stochastic resonance with distributed inputs in pulse-coupled electronic neurons.
Physical Review E 2006;73(2):21101 . 

[37] Rosin DP, Rontani D, Gauthier DJ, Schöll E. Control of synchronization patterns in neural-like boolean networks. Phys Rev Lett 2013;110(10):104102. 
doi: 10.1103/PhysRevLett.110.104102 . 

[38] Colet P, Roy R. Digital communication with synchronized chaotic lasers. Opt Lett 1994;19(24):2056–8 . http://ol.osa.org/abstract.cfm?URI= 
ol- 19- 24- 2056 

[39] Boyd RW, Gauthier DJ. Controlling the velocity of light pulses. Science 2009;326(5956):1074–7. doi: 10.1126/science.1170885 . 
[40] Otto C , Lüdge K , Vladimirov AG , Wolfrum M , Schöll E . Delay-induced dynamics and jitter reduction of passively mode-locked semiconductor lasers

subject to optical feedback. New J Phys 2012;14(11):113033 . 

[41] Masri S., Caughey T.. On the stability of the impact damper1966;. 
[42] Masri S . General motion of impact dampers. J Acoust Soc Am 1970;47(1B):229–37 . 

[43] Aizerman M , Pyatnitskii E . Foundations of a theory of discontinuous systems. 1.. Autom Remote Control 1974;35(7):1066–79 . 
[44] Aizerman M , Pyatnitskii E . Foundations of a theory of discontinuous systems. 1.. Autom Remote Control 1974;35(7):1241–62 . 

[45] Luo ACJ. Regularity and complexity in dynamical systems. Springer, New York; 2012. ISBN 978-1-4614-1523-7. doi: 101007/978- 1- 4614- 1524- 4 . 
[46] Luo ACJ . Discontinuous dynamical systems. Berlin: Springer; Beijing: Higher Education Press; 2012 . ISBN 978-3-642-22460-7; 978-7-04-031957-6/hbk 

[47] Luo ACJ , O’Connor DM . System dynamics with interaction discontinuity, 13. Cham: Springer; 2015 . ISBN 978-3-319-17421-1/hbk; 

978-3-319-17422-8/ebook 
[48] Luo ACJ , Guo Y . Vibro-impact dynamics. Hoboken, NJ: John Wiley & Sons; 2013 . ISBN 978-1-118-35945-7/hbk; 978-1-118-40292-4/ebook 

[49] Bazhenov V , Lizunov P , Pogorelova O , Postnikova T , Otrashevskaia V . Stability and bifurcations analysis for 2-dof vibroimpact system by parameter
continuation method. part i: loading curve. Journal of Applied Nonlinear Dynamics 2015;4(4):357–70 . 

[50] Bazhenov V , Pogorelova O , Postnikova T . Breakup of closed curve-quasiperiodic route to chaos in vibroimpact system. Discontinuity, Nonlinearity, and
Complexity 2019;8(3):299–311 . 

[51] Tang X , Fu X , Sun X . Periodic motion for an oblique impact system with single degree of freedom. Journal of Vibration Testing and Systems Dynamics

2019;3(3):71–89 . 
[52] Tang X , Fu X , Sun X . The dynamical behavior of a two degrees of freedom oblique impact system, discontinuity. Nonlinearity, and Complexity

2020;9(1):117–39 . 
[53] Luo AC , O’Connor D . Mechanism of impacting chatter with stick in a gear transmission system. Int J Bifurcation Chaos 2009;19(06):2093–105 . 

[54] Luo AC , O’Connor D . Periodic motions and chaos with impacting chatter and stick in a gear transmission system. Int J Bifurcation Chaos
2009;19(06):1975–94 . 

[55] Guo S , Luo A . An analytical prediction of periodic motions in a discontinuous dynamical system. Journal of Vibration Testing and System Dynamics

2020;4(4):377–88 . 
[56] Guo S , Luo A . Constructed limit cycles in a discontinuous dynamical system with multiple vector fields. Journal of Vibration Testing and System

Dynamics 2021;5:33–51 . 
[57] Guo S , Luo A . A parameter study on periodic motions in a discontinuous dynamical system with two circular boundaries. Discontinuity, Nonlinearity,

and Complexity 2021;10(2):289–309 . 
[58] Akhmet M , Kıvılcım A . Van der pol oscillators generated from grazing dynamics. Discontinuity, Nonlinearity, and Complexity 2018;7(3):259–74 . 

[59] Huang J , Luo AC . Complex dynamics of bouncing motions at boundaries and corners in a discontinuous dynamical system. J Comput Nonlinear Dyn

2017;12(6) . 
[60] Mirollo RE, Strogatz SH. Synchronization of pulse-coupled biological oscillators. SIAM J Appl Math 1990;50(6):1645–62. doi: 10.1137/0150098 . http: 

//epubs.siam.org/siap/resource/1/smjmap/v50/i6/p1645 _ s1?isAuthorized=no 
[61] Ernst U, Pawelzik K, Geisel T. Synchronization induced by temporal delays in pulse-coupled oscillators. Phys Rev Lett 1995;74(9):1570–3. doi: 10.1103/

PhysRevLett.74.1570 . http://www.ncbi.nlm.nih.gov/pubmed/10059062 http://prl.aps.org/abstract/PRL/v74/i9/p1570 _ 1 
[62] Gerstner W . Population dynamics of spiking neurons: fast transients, asynchronous states, and locking. Neural Comput 20 0 0;12:43–89 . 

[63] Brunel N . Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 20 0 0;8(3):183–208 . 

[64] Jahnke S, Memmesheimer RM, Timme M. Stable irregular dynamics in complex neural networks. Phys Rev Lett 20 08;10 0(4):48102. doi: 10.1103/
PhysRevLett.100.048102 . 

[65] Politi A, Ullner E, Torcini A. Collective irregular dynamics in balanced networks of leaky integrate-and-fire neurons. European Physical Journal: Special
Topics 2018;227(10–11):1185–204. doi: 10.1140/epjst/e2018-0 0 079-7 . 

[66] Brunel N , Wang X-J . Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput
Neurosci 2001;11(1):63–85 . 

[67] Guevara M.R., Glass L., Shrier A.. Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. 1981.. 
http://www.medicine.mcgill.ca/physio/guevaralab/Guevara- Glass- Shrier- 1981.pdf . 10.1126/science.7313693 

[68] LaMar MD, Smith GD. Effect of node-degree correlation on synchronization of identical pulse-coupled oscillators. Phys Rev E 2010;81(4):46206. 

doi: 10.1103/PhysRevE.81.046206 . 
[69] Nunez F , Wang Y , Teel AR , Doyle III FJ . Synchronization of pulse-coupled oscillators to a global pacemaker. Systems & Control Letters 2016;88:75–80 .

[70] Proskurnikov AV , Cao M . Synchronization of pulse-coupled oscillators and clocks under minimal connectivity assumptions. IEEE Trans Automat Contr
2016;62(11):5873–9 . 

[71] Viriyopase A , Memmesheimer R-M , Gielen S . Analyzing the competition of gamma rhythms with delayed pulse-coupled oscillators in phase repre-
sentation. Physical Review E 2018;98(2):22217 . 

[72] Ermentrout B , Saunders D . Phase resetting and coupling of noisy neural oscillators. J Comput Neurosci 2006;20(2):179 . 

[73] Marella S , Ermentrout GB . Class-II neurons display a higher degree of stochastic synchronization than class-I neurons. Physical review E
2008;77(4):41918 . 

[74] Ermentrout G, Beverlin Bryce II, Troyer T, Netoff T. The variance of phase-resetting curves. J Comput Neurosci 2011;31(2):185–97. doi: 10.1007/ 
s10827-010-0305-9 . 

[75] Miura K , Nakada K . Synchronization analysis of resonate-and-fire neuron models with delayed resets. In: The 6th International Conference on Soft
Computing and Intelligent Systems, and The 13th International Symposium on Advanced Intelligence Systems. IEEE; 2012. p. 1076–9 . 

[76] Ullner E, Politi A. Self-sustained irregular activity in an ensemble of neural oscillators. Phys Rev X 2016;6(1):011015. doi: 10.1103/PhysRevX.6.011015 . 

[77] Canavier CC, Tikidji-Hamburyan RA. Globally attracting synchrony in a network of oscillators with all-to-all inhibitory pulse coupling. Physical Review
E 2017;95(3):032215. doi: 10.1103/PhysRevE.95.032215 . 

[78] Funato T , Yamamoto Y , Aoi S , Imai T , Aoyagi T , Tomita N , et al. Evaluation of the phase-dependent rhythm control of human walking using phase
response curves. PLoS Comput Biol 2016;12(5):e1004950 . 
15 

http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0030
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0030
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0030
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0030
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0031
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0031
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0031
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0032
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0032
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0032
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0032
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0032
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0032
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0032
https://doi.org/10.1086/415929
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0034
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0034
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0035
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0035
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0035
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0035
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0036
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0036
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0036
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0036
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0036
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0036
https://doi.org/10.1103/PhysRevLett.110.104102
http://ol.osa.org/abstract.cfm?URI=ol-19-24-2056
https://doi.org/10.1126/science.1170885
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0040
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0040
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0040
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0040
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0040
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0040
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0042
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0042
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0043
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0043
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0043
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0044
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0044
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0044
https://doi.org/101007/978-1-4614-1524-4
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0046
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0046
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0046
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0047
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0047
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0047
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0047
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0048
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0048
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0048
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0048
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0049
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0049
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0049
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0049
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0049
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0049
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0050
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0050
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0050
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0050
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0051
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0051
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0051
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0051
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0052
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0052
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0052
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0052
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0053
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0053
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0053
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0054
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0054
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0054
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0055
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0055
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0055
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0056
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0056
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0056
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0057
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0057
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0057
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0058
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0058
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0058
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0059
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0059
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0059
https://doi.org/10.1137/0150098
http://epubs.siam.org/siap/resource/1/smjmap/v50/i6/p1645_s1?isAuthorized=no
https://doi.org/10.1103/PhysRevLett.74.1570
http://www.ncbi.nlm.nih.gov/pubmed/10059062
http://prl.aps.org/abstract/PRL/v74/i9/p1570_1
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0062
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0062
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0063
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0063
https://doi.org/10.1103/PhysRevLett.100.048102
https://doi.org/10.1140/epjst/e2018-00079-7
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0066
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0066
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0066
http://www.medicine.mcgill.ca/physio/guevaralab/Guevara-Glass-Shrier-1981.pdf
https://doi.org/10.1103/PhysRevE.81.046206
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0069
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0069
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0069
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0069
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0069
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0070
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0070
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0070
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0071
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0071
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0071
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0071
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0072
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0072
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0072
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0073
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0073
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0073
https://doi.org/10.1007/s10827-010-0305-9
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0075
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0075
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0075
https://doi.org/10.1103/PhysRevX.6.011015
https://doi.org/10.1103/PhysRevE.95.032215
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0078
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0078
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0078
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0078
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0078
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0078
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0078
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0078


P. Feketa, V. Klinshov and L. Lücken Commun Nonlinear Sci Numer Simulat 103 (2021) 105955 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[79] Fujiki S , Aoi S , Funato T , Sato Y , Tsuchiya K , Yanagihara D . Adaptive hindlimb split-belt treadmill walking in rats by controlling basic muscle activation
patterns via phase resetting. Sci Rep 2018;8(1):1–13 . 

[80] Matsuzaka K , Tanaka H , Ohkubo S , Morie T . VLSI Implementation of coupled MRF model using pulse-coupled phase oscillators. Electron Lett
2014;51(1):46–8 . 

[81] Guardiola X, Díaz-Guilera A, Llas M, Pérez CJ. Synchronization, diversity, and topology of networks of integrate and fire oscillators. Phys Rev E
20 0 0;62(4):5565–70. doi: 10.1103/PhysRevE.62.5565 . 

[82] Lücken L, Yanchuk S. Two-cluster bifurcations in systems of globally pulse-coupled oscillators. Physica D 2012;241:350–9. doi: 10.1016/j.physd.2011.10. 

017 . http://www.sciencedirect.com/science/article/pii/S0167278911003083 
[83] Klinshov V , Lücken L , Shchapin D , Nekorkin V , Yanchuk S . Multistable jittering in oscillators with pulsatile delayed feedback. Phys Rev Lett

2015;114(17):178103 . 
[84] Klinshov V, Lücken L, Yanchuk S. Desynchronization by phase slip patterns in networks of pulse-coupled oscillators with delays: desynchronization 

by phase slip patterns. European Physical Journal: Special Topics 2018;227(10–11):1117–28. doi: 10.1140/epjst/e2018-80 0 073-7 . 
[85] Canavier CC . Phase response curve. Scholarpedia 2006;1(12):1332 . 

[86] Winfree AT . Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol 1967;16:15–42 . 
[87] Pavlidis T . Biological oscillators: their mathematical analysis. Elsevier; 2012 . 

[88] Klinshov V , Yanchuk S , Stephan A , Nekorkin V . Phase response function for oscillators with strong forcing or coupling. EPL (Europhysics Letters)

2017;118:50 0 06 . 
[89] Samoilenko AM , Perestyuk NA . Differential equations with impulse effect. Visca Skola, Kiev 1987:286 . 

[90] Lakshmikantham V , Simeonov PS , Others . Theory of impulsive differential equations, 6. World scientific; 1989 . 
[91] Goebel R , Sanfelice RG , Teel AR . Hybrid dynamical systems. IEEE Control Syst Mag 2009;29(2):28–93 . 

[92] Dirac PAM . The principles of quantum mechanics. Oxford university press; 1981 . 
[93] Henzinger TA . The theory of hybrid automata. In: Verification of digital and hybrid systems. Springer; 20 0 0. p. 265–92 . 

[94] Alla H , David R . Continuous and hybrid petri nets. Journal of Circuits, Systems, and Computers 1998;8(01):159–88 . 

[95] Gomes C , Van Tendeloo Y , Denil J , De Meulenaere P , Vangheluwe H . Hybrid system modelling and simulation with dirac deltas. arXiv preprint
arXiv:170204274 2017 . 

[96] Swikir A, Girard A, Zamani M. Symbolic models for a class of impulsive systems. IEEE Control Systems Letters 2021;5(1):247–52. doi: 10.1109/LCSYS.
2020.3001501 . 

[97] Milman VD , Myshkis AD . On the stability of motion in the presence of impulses. Sib Math J 1960;1(2):233–7 . 
[98] Myshkis AD , Samoilenko AM . Systems with impulses in prescribed moments of the time. Mat Sb 1967;74(2):202–8 . 

[99] Halanay A , Wexler D . Qualitative theory of impulsive systems. Acad RPR, Bucuresti 1968 . 

[100] Akhmet M . Principles of discontinuous dynamical systems. Springer Science & Business Media; 2010 . 
[101] Perestyuk NA , Plotnikov VA , Samoilenko AM , Skripnik NV . Differential equations with impulse effects: multivalued right-hand sides with discontinu-

ities, 40. Walter de Gruyter; 2011 . 
[102] Perestyuk NA . Stability of solutions of the linear systems with impulsive action. Vestn Kiev Univ, Ser-Mat Mekh 1977(19):71–6 . 

[103] Samoilenko AM , Perestyuk NA . Stability of solutions to differential equations with impulsive influence. Differential Equations 1977;13:1981–92 . 
[104] Samoilenko AM , Perestyuk N . Stability of solutions of systems with impulses. Differential Equations 1982;17(11):1260–4 . 

[105] Gurgula SI , Perestyuk NA . On the second Lyapunov method in impulsive systems. In: Dokl. Akad. Nauk Ukr. SSR, Ser. A; 1982. p. 11–14 . 

[106] Samoilenko AM . Application of the averaging method for studying oscillations induced by instantaneous impulses in self-oscillation systems of second
order with a small parameter. Ukrainian Mathematical Journal 1961;13:103–8 . 

[107] Samoilenko AM . Averaging method for investigating systems subjected to an impulsive action. Ukrainian Mathematical Journal 1967;19(5):586–93 . 
[108] Mitropol’skii YA , Samoilenko AM , Perestyuk NA . The averaging method in systems with impulse action. Ukrainian Mathematical Journal

1985;37:56–64 . 
[109] Haddad WM , Chellaboina V , Nersesov SG . Impulsive and hybrid dynamical systems: stability, dissipativity, and control, 49. Princeton University Press;

2006 . 

[110] Liu B , Sun Z , Xu B , Liu D-N . Input-to-state contraction for impulsive systems. Int J Control 2020:1–11 . 
[111] Liu X , Ramirez C . Stability analysis by contraction principle for impulsive systems with infinite delays. Commun Nonlinear Sci Numer Simul

2020;82:105021 . 
[112] Wang Y , Lu J . Some recent results of analysis and control for impulsive systems. Commun Nonlinear Sci Numer Simul 2020;80:104862 . 

[113] Benchohra M , Henderson J , Ntouyas S . Impulsive differential equations and inclusions, 2. Hindawi Publishing Corporation New York; 2006 . 
[114] Bonotto E , Bortolan M , Carvalho A , Czaja R . Global attractors for impulsive dynamical systems–a precompact approach. J Differ Equ

2015;259(7):2602–25 . 

[115] Kapustyan O , Perestyuk M . Global attractors in impulsive infinite-dimensional systems. Ukr Math J 2016;68(4):517–28 . 
[116] Dashkovskiy S , Feketa P , Kapustyan O , Romaniuk I . Invariance and stability of global attractors for multi-valued impulsive dynamical systems. J Math

Anal Appl 2018;458(1):193–218 . 
[117] de Mello Bonotto E , Kalita P . On attractors of generalized semiflows with impulses. The Journal of Geometric Analysis 2019:1–38 . 

[118] Dashkovskiy S , Feketa P . Input-to-state stability of impulsive systems with different jump maps. IFAC-PapersOnLine 2016;49(18):1073–8 . 
[119] Tang Y , Xing X , Karimi HR , Kocarev L , Kurths J . Tracking control of networked multi-agent systems under new characterizations of impulses and its

applications in robotic systems. IEEE Trans Ind Electron 2015;63(2):1299–307 . 
[120] Liu X . Stability results for impulsive differential systems with applications to population growth models. Dynamics and stability of systems

1994;9(2):163–74 . 

[121] Rogovchenko YV . Nonlinear impulse evolution systems and applications to population models. J Math Anal Appl 1997;207(2):300–15 . 
[122] Yang X , Peng D , Lv X , Li X . Recent progress in impulsive control systems. Math Comput Simul 2019;155:244–68 . 

[123] Ren H-P , Yang Y , Baptista MS , Grebogi C . Tumour chemotherapy strategy based on impulse control theory. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 2017;375(2088):20160221 . 

[124] Dvornyk AV , Tkachenko VI . Almost periodic solutions of the lotka–Volterra systems with diffusion and nonfixed times of pulsed action. Journal of
Mathematical Sciences 2019;243(3):358–80 . 

[125] Zhang X , Li C , Huang T . Hybrid impulsive and switching hopfield neural networks with state-dependent impulses. Neural Networks 2017;93:176–84 . 

[126] Dishliev A , Dishlieva K , Nenov S . Specific asymptotic properties of the solutions of impulsive differential equations. methods and applications. Aca-
demic Publication; 2012 . 

[127] Urmanchev VI . Methods for the investigation of dynamical systems with impulse action and mortal dynamical systems. Ukrainian Mathematical 
Journal 1992;44(11):1479–86 . 

[128] Anokhin A , Berezansky L , Braverman E . Exponential stability of linear delay impulsive differential equations. J Math Anal Appl 1995;193(3):923–41 . 
[129] Bainov D. Simeonov P.. Impulsive differential equations: periodic solutions and applications. Routledge, 2017. 

[130] Liu X , Ballinger G . Uniform asymptotic stability of impulsive delay differential equations. Computers & Mathematics with Applications

2001;41(7–8):903–15 . 
[131] Liu X . Stability of impulsive control systems with time delay. Math Comput Model 2004;39(4–5):511–19 . 

[132] Naghshtabrizi P , Hespanha JP , Teel AR . Stability of delay impulsive systems with application to networked control systems. Trans Inst Meas Control
2010;32(5):511–28 . 

[133] Li X , Cao J . An impulsive delay inequality involving unbounded time-varying delay and applications. IEEE Trans Automat Contr 2017;62(7):3618–25 . 
16 

http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0079
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0079
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0079
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0079
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0079
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0079
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0079
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0080
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0080
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0080
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0080
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0080
https://doi.org/10.1103/PhysRevE.62.5565
https://doi.org/10.1016/j.physd.2011.10.017
http://www.sciencedirect.com/science/article/pii/S0167278911003083
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0083
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0083
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0083
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0083
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0083
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0083
https://doi.org/10.1140/epjst/e2018-800073-7
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0085
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0085
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0086
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0086
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0087
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0087
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0088
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0088
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0088
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0088
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0088
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0089
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0089
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0089
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0090
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0090
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0090
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0090
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0091
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0091
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0091
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0091
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0092
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0092
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0093
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0093
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0094
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0094
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0094
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0095
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0095
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0095
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0095
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0095
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0095
https://doi.org/10.1109/LCSYS.2020.3001501
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0097
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0097
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0097
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0098
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0098
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0098
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0099
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0099
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0099
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0100
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0100
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0101
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0101
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0101
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0101
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0101
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0102
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0102
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0103
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0103
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0103
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0104
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0104
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0104
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0105
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0105
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0105
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0106
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0106
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0107
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0107
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0108
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0108
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0108
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0108
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0109
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0109
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0109
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0109
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0110
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0110
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0110
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0110
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0110
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0111
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0111
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0111
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0112
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0112
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0112
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0113
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0113
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0113
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0113
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0114
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0114
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0114
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0114
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0114
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0115
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0115
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0115
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0116
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0116
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0116
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0116
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0116
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0117
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0117
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0117
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0118
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0118
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0118
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0119
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0119
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0119
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0119
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0119
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0119
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0120
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0120
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0121
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0121
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0122
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0122
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0122
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0122
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0122
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0123
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0123
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0123
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0123
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0123
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0124
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0124
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0124
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0125
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0125
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0125
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0125
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0126
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0126
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0126
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0126
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0127
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0127
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0128
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0128
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0128
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0128
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0130
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0130
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0130
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0131
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0131
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0132
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0132
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0132
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0132
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0133
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0133
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0133


P. Feketa, V. Klinshov and L. Lücken Commun Nonlinear Sci Numer Simulat 103 (2021) 105955 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[134] Church KE , Liu X . Smooth centre manifolds for impulsive delay differential equations. J Differ Equ 2018;265(4):1696–759 . 
[135] Muthulakshmi V , Manjuram R . Interval criteria for oscillation of damped second-order nonlinear impulsive differential equation with variable delay.

Discontinuity, Nonlinearity, and Complexity 2019;8(4):403–18 . 
[136] Xie G , Wang L . Necessary and sufficient conditions for controllability and observability of switched impulsive control systems. IEEE Trans Automat

Contr 2004;49(6):960–6 . 
[137] Li X , Li P , Wang Q-g . Input/output-to-state stability of impulsive switched systems. Systems & Control Letters 2018;116:1–7 . 

[138] Slynko V , Tunç C . Stability of abstract linear switched impulsive differential equations. Automatica 2019;107:433–41 . 

[139] Mancilla-Aguilar JL , Haimovich H . Uniform input-to-state stability for switched and time-varying impulsive systems. IEEE Trans Automat Contr 2020 .
[140] Luo AC , Wang Y . Periodic flows and stability of a switching system with multiple subsystems. Dynamics of Continuous Discrete and Impulsive Systems

2009;16:825–48 . 
[141] Luo AC , Wang Y . Switching dynamics of multiple linear oscillators. Commun Nonlinear Sci Numer Simul 2009;14(8):3472–85 . 

[142] Yang Z , Xu D , Xiang L . Exponential p-stability of impulsive stochastic differential equations with delays. Phys Lett A 2006;359(2):129–37 . 
[143] Liu B . Stability of solutions for stochastic impulsive systems via comparison approach. IEEE Trans Automat Contr 2008;53(9):2128–33 . 

[144] Li C , Shi J , Sun J . Stability of impulsive stochastic differential delay systems and its application to impulsive stochastic neural networks. Nonlinear
Analysis: Theory, Methods & Applications 2011;74(10):3099–111 . 

[145] Kapustyan O , Perestyuk M , Romanyuk I . Stability of global attractors of impulsive infinite-dimensional systems. Ukrainian Mathematical Journal

2018;70(1):30–41 . 
[146] Bonotto EM , Souto GM , et al. On the lyapunov stability theory for impulsive dynamical systems. Topol Methods Nonlinear Anal 2019;53(1):127–50 . 

[147] Dashkovskiy S , Feketa P , Kapustyan OV , Romaniuk IV . Existence and invariance of global attractors for impulsive parabolic system without uniqueness.
In: Modern Mathematics and Mechanics. Understanding Complex Systems. Springer; 2019. p. 57–78 . 

[148] de Mello Bonotto E , Demuner DP . Stability and forward attractors for non-autonomous impulsive semidynamical systems. Communications on Pure
& Applied Analysis 2020;19(4):1979 . 

[149] Dashkovskiy S , Kapustyan O , Perestyuk Y . Stability of uniform attractors of impulsive multi-valued semiflows. Nonlinear Anal Hybrid Syst

2021;40:101025 . 
[150] Agarwal R , Hristova S , ORegan D . Non-instantaneous impulses in differential equations. In: Non-Instantaneous Impulses in Differential Equations.

Springer; 2017. p. 1–72 . 
[151] Wang J , Fe ̌ckan M , Tian Y . Stability analysis for a general class of non-instantaneous impulsive differential equations. Mediterranean Journal of

Mathematics 2017;14(2):46 . 
[152] Wang J , Fe ̌ckan M . Non-instantaneous impulsive differential equations. IOP Publishing; 2018 . 

[153] Fe ̌ckan M, Zhou Y, Wang J. On the concept and existence of solution for impulsive fractional differential equations. Commun Nonlinear Sci Numer

Simul 2012;17(7):3050–60. doi: 10.1016/j.cnsns.2011.11.017 . http://www.sciencedirect.com/science/article/pii/S1007570411006356 
[154] Wang J , Fe ̌ckan M , Zhou Y . A survey on impulsive fractional differential equations. Fractional Calculus and Applied Analysis 2016;19(4):806 . 

[155] Stamova I , Stamov G . Functional and impulsive differential equations of fractional order: qualitative analysis and applications. CRC Press; 2017 . 
[156] Kumar K , Kumar R . Boundary controllability of fractional order nonlocal semi-linear neutral evolution systems with impulsive condition. Discontinu-

ity, Nonlinearity, and Complexity 2019;8(4):419–28 . 
[157] Heemels WPMH , Teel AR , de Wouw N , Neši ́c D . Networked control systems with communication constraints: tradeoffs between transmission inter-

vals, delays and performance. IEEE Trans Automat Contr 2010;55(8):1781–96 . 

[158] Postoyan R , Tabuada P , Neši ́c D , Anta A . A framework for the event-triggered stabilization of nonlinear systems. IEEE Trans Automat Contr
2014;60(4):982–96 . 

[159] Sanfelice R.. Hybrid Equations Toolbox. 2020. https://www.mathworks.com/matlabcentral/fileexchange/41372- hybrid- equations- toolbox- v2- 04 . 
[160] Sanfelice RG . Interconnections of hybrid systems: some challenges and recent results. Journal of Nonlinear Systems and Applications 

2011;2(1–2):111–21 . 
[161] Collins P . Generalised hybrid trajectory spaces. In: Proc. 17th Int. Symp. Mathematical Theory of Networks and Systems; 2006. p. 2101–9 . 

[162] Dashkovskiy S , Feketa P . Prolongation and stability of zeno solutions to hybrid dynamical systems. IFAC-PapersOnLine 2017;50(1):3429–34 . 

[163] Dashkovskiy S , Feketa P . Asymptotic properties of zeno solutions. Nonlinear Anal Hybrid Syst 2018;30:256–65 . 
[164] Rudin W . Functional analysis, mcgrawhill. Inc, New York 1991 . 

[165] Goel P, Ermentrout B. Synchrony, stability, and firing patterns in pulse-coupled oscillators. Physica D 2002;163(3–4):191–216. doi: 10.1016/ 
S0167-2789(01)00374-8 . http://www.sciencedirect.com/science/article/pii/S0167278901003748 http://www.sciencedirect.com/science/article/ 

B6TVK- 44T52GC- 1/2/c16c132c2571304f7c61c8e1949228f2 
[166] Klinshov V, Lücken L, Shchapin D, Nekorkin V, Yanchuk S. Emergence and combinatorial accumulation of jittering regimes in spiking oscillators with

delayed feedback. Physical Review E 2015;92(4):042914. doi: 10.1103/PhysRevE.92.042914 . 

[167] Izhikevich EM. Weakly pulse-coupled oscillators, FM interactions, synchronization, and oscillatory associative memory. IEEE Trans Neural Networks 
1999;10(3):508–26. doi: 10.1109/72.761708 . http://www.ncbi.nlm.nih.gov/pubmed/18252549 

[168] Klinshov V , Lücken L , Feketa P . On the interpretation of dirac δ pulses in differential equations for phase oscillators. Chaos: An Interdisciplinary
Journal of Nonlinear Science 2021;31(3):031102 . 

[169] Blanton J.. Reformulations for control systems and optimization problems with impulses2014;. 
[170] Catllá AJ, Schaeffer DG, Witelski TP, Monson EE, Lin AL. On spiking models for synaptic activity and impulsive differential equations. SIAM Rev

2008;50(3):553–69. doi: 10.1137/060667980 . 
[171] Maran SK , Canavier CC . Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved. J

Comput Neurosci 2008;24(1):37–55 . 

[172] Klinshov VV, Nekorkin VI. Synchronization of time-delay coupled pulse oscillators. Chaos, Solitons and Fractals 2011;44:98–107. doi: 10.1016/j.chaos. 
2010.12.007 . 

[173] Dashkovskiy S , Mironchenko A . Input-to-state stability of nonlinear impulsive systems. SIAM J Control Optim 2013;51(3):1962–87 . 
[174] Martynyuk A , Slyn’ko V . Stability of a nonlinear impulsive system. Int Appl Mech 2004;40(2):231–9 . 

[175] Feketa P , Bajcinca N . Stability of nonlinear impulsive differential equations with non-fixed moments of jumps. In: 2018 European Control Conference
(ECC). IEEE; 2018. p. 900–5 . 

[176] Ignatyev AO . On the stability of invariant sets of systems with impulse effect. Nonlinear Analysis: Theory, Methods & Applications 2008;69(1):53–72 .

[177] Hespanha JP , Liberzon D , Teel AR . Lyapunov conditions for input-to-state stability of impulsive systems. Automatica 2008;44(11):2735–44 . 
[178] Hespanha JP , Liberzon D , Teel AR . On input-to-state stability of impulsive systems. In: Proceedings of the 44th IEEE Conference on Decision and

Control. IEEE; 2005. p. 3992–7 . 
[179] Tan J , Li C , Huang T . Stability of impulsive systems with time window via comparison method. Int J Control Autom Syst 2015;13(6):1346–50 . 

[180] Feng Y , Yu J , Li C , Huang T , Che H . Linear impulsive control system with impulse time windows. J Vib Control 2017;23(1):111–18 . 
[181] Feketa P , Bajcinca N . On robustness of impulsive stabilization. Automatica 2019;104:48–56 . 

[182] Dashkovskiy S , Feketa P . Input-to-state stability of impulsive systems and their networks. Nonlinear Anal Hybrid Syst 2017;26:190–200 . 

[183] Feketa P , Bajcinca N . Average dwell-time for impulsive control systems possessing ISS-Lyapunov function with nonlinear rates. In: 2019 18th European
Control Conference (ECC). IEEE; 2019. p. 3686–91 . 

[184] Feketa P , Schaum A , Meurer T . On a lyapunov characterization of input-to-state stability for impulsive systems with unstable continuous dynamics. 
In: Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics. Springer; 2021. p. 369–80 . 
17 

http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0134
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0134
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0134
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0135
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0135
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0135
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0136
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0136
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0136
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0137
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0137
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0137
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0137
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0138
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0138
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0138
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0139
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0139
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0139
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0140
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0140
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0140
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0141
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0141
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0141
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0142
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0142
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0142
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0142
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0143
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0143
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0144
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0144
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0144
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0144
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0145
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0145
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0145
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0145
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0146
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0146
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0146
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0146
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0147
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0147
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0147
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0147
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0147
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0148
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0148
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0148
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0149
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0149
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0149
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0149
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0150
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0150
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0150
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0150
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0151
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0151
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0151
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0151
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0152
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0152
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0152
https://doi.org/10.1016/j.cnsns.2011.11.017
http://www.sciencedirect.com/science/article/pii/S1007570411006356
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0154
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0154
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0154
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0154
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0155
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0155
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0155
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0156
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0156
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0156
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0157
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0157
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0157
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0157
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0157
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0158
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0158
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0158
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0158
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0158
https://www.mathworks.com/matlabcentral/fileexchange/41372-hybrid-equations-toolbox-v2-04
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0160
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0160
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0161
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0161
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0162
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0162
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0162
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0163
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0163
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0163
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0164
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0164
https://doi.org/10.1016/S0167-2789(01)00374-8
http://www.sciencedirect.com/science/article/pii/S0167278901003748
http://www.sciencedirect.com/science/article/B6TVK-44T52GC-1/2/c16c132c2571304f7c61c8e1949228f2
https://doi.org/10.1103/PhysRevE.92.042914
https://doi.org/10.1109/72.761708
http://www.ncbi.nlm.nih.gov/pubmed/18252549
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0168
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0168
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0168
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0168
https://doi.org/10.1137/060667980
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0171
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0171
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0171
https://doi.org/10.1016/j.chaos.2010.12.007
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0173
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0173
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0173
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0174
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0174
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0174
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0175
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0175
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0175
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0176
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0176
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0177
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0177
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0177
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0177
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0178
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0178
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0178
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0178
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0179
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0179
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0179
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0179
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0180
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0180
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0180
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0180
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0180
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0180
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0181
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0181
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0181
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0182
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0182
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0182
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0183
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0183
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0183
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0184
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0184
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0184
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0184


P. Feketa, V. Klinshov and L. Lücken Commun Nonlinear Sci Numer Simulat 103 (2021) 105955 

 
[185] Mancilla-Aguilar JL , Haimovich H , Feketa P . Uniform stability of nonlinear time-varying impulsive systems with eventually uniformly bounded impulse
frequency. Nonlinear Anal Hybrid Syst 2020;38:100933 . 

[186] Haimovich H , Mancilla-Aguilar JL . Nonrobustness of asymptotic stability of impulsive systems with inputs. Automatica 2020;122:109238 . 
[187] Mancilla-Aguilar JL , Haimovich H . Converging-input convergent-state and related properties of time-varying impulsive systems. IEEE Control Systems 

Letters 2020;4(3):680–5 . 
[188] Beggs JM , Plenz D . Neuronal avalanches in neocortical circuits. J Neurosci 2003;23(35):11167–77 . 
18 

http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0185
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0185
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0185
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0185
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0186
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0186
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0186
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0187
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0187
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0187
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0188
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0188
http://refhub.elsevier.com/S1007-5704(21)00267-7/sbref0188

	A survey on the modeling of hybrid behaviors: How to account for impulsive jumps properly
	1 Introduction
	2 mathematical modeling of discontinuous behavior
	2.1 impulsive differential equations
	2.2 hybrid dynamical systems
	2.3 equations with dirac delta function

	3 comparison between the frameworks
	3.1 state-dependent jumps in equations with dirac delta functions
	3.2 stability analysis for systems with jumps
	3.3 stability with respect to a set and attractivity concepts
	3.4 treatment of several jumps at the same time

	4 conclusions and outlook
	Declaration of Competing Interest
	Acknowledgements
	References


