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ABSTRACT

In this note, we discuss the usage of the Dirac δ function in models of phase oscillators with pulsatile inputs. Many authors use a product
of the delta function and the phase response curve in the right-hand side of an ordinary differential equation to describe the discontinuous
phase dynamics in such systems. We point out that this notation has to be treated with care as it is ambiguous. We argue that the presumably
most canonical interpretation does not lead to the intended behavior in many cases.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0040995

In many real-life systems, interactions are mediated by short
pulses resulting in abrupt changes of the system state. A popular
tool for modeling such pulses is Dirac δ functions that represent
pulses of zero length but finite energy. When such a function
appears in the right-hand side of a differential equation, the solu-
tion becomes discontinuous. This note discusses a proper way to
calculate the size of this discontinuity, i.e., the magnitude of the
system state jump.

Pulse-coupled phase oscillators are a popular framework used
for modeling of various systems, among which biological oscillators,
such as pacemaker cells, the circadian rhythm, or pulsating fire-
flies, are prototypical examples. In this framework, each oscillator
is described by its phase ϕ (t), a variable that can be introduced for
an arbitrary dynamical system with a stable limit cycle.1–3 The phase
is defined in the attraction basin of the limit cycle as a circular vari-
able ϕ ∈ S1 ' R mod 1. In the autonomous system, the phase grows
uniformly so that dϕ/dt = ω = 1/T, where T is the period of the
limit cycle. The effect of an incoming pulse is modeled as the instan-
taneous phase change leading to a discontinuous evolution of ϕ (t).
The amount of the phase shift is determined as a function of the
phase before the pulse arrival: for the pulse arriving at the moment
tp,

ϕ+
p = ϕ−

p + Z(ϕ−
p ), (1)

where ϕ±
p := ϕ(tp ± 0) = limε↘0 ϕ

(

tp ± ε
)

. The function Z is called

the phase response curve (PRC).4–6 It is a scalar, continuous function
that can be calculated numerically or even measured experimentally
for any real-life oscillator and any pulse with a finite duration τ . To
do so, one should place the system’s state on the limit cycle with a
certain phase ϕ, apply a pulse, and measure the phase ϕ∗ just after
the pulse end. Then, the PRC

Z (ϕ) := ϕ∗ − ϕ − ωτ

and the repetition of the procedure for all points of the limit cycle
would result in obtaining the complete function profile. For short
pulses, a good approximation is to ignore the dynamics during the
pulse and to assume that the phase changes instantly according
to (1). Then, the once obtained PRC allows predicting the phase
dynamics of the oscillator subject to stimulation in the form of pulse
trains if only the pulses are not too strong or frequent.

There exist generalizing approaches, which include amplitude
perturbations or higher order terms to extend the region of valid-
ity of the phase reduction.7–9 In any case, the interplay between the
timescales for the amplitude relaxation, the oscillation frequencies,
and the pulse duration can limit the suitability of a reduced repre-
sentation of a specific system.10,11 Furthermore, we do not consider
these issues and treat the phase reduction as exactly reproducing the
dynamics of the original system.
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Many authors (including the ones of this note) have defined
models for oscillators interacting via phase response curves with the
help of Dirac δ functions in the right-hand side of the equations for
the phase dynamics.12–19 In this formulation, delta functions are mul-
tiplied by the phase response curve leading to the equations of the
form

dϕ

dt
= ω + Z(ϕ)

∑

p

δ(t − tp). (2)

Here, ω is the native frequency of the oscillator, and tp are the
moments when it receives pulses. The interpretation of (2) is the
following: the phase grows uniformly with dϕ/dt = ω except for
the moments tp of the pulses’ arrival, and at these moments, the
phase instantly changes according to (1). However, as we explain
below, the presumably most canonical interpretation of the delta
function suggests a different behavior for (2). Therefore, we consider
it worthwhile to raise this subject to attention.

First, let us recall the basic properties of the Dirac δ-function.
From the physical perspective, it represents a signal having a negligi-
bly short duration but a finite integral. In this sense, it can be defined
as the limit of a sequence of suitable (e.g., continuous) functions δn

that have unit integral
∫

R
δn(t)dt = 1 and fulfill for any ε > 0 that

lim
n→∞

∫ ε

−ε

δn (t) dt = 1.

Such a sequence {δn}n∈N is called a Dirac sequence. Despite all δn

being functions, their limit

δ(t) := lim
n→∞

δn(t) (3)

is not a regular R-valued function. For instance, choosing any
sequence of even, unimodal δn, would imply

δ (t) =

{

∞ for t = 0,

0, otherwise.

To give it a mathematical definition, δ is usually introduced as
a distribution.20 As such, the distribution Dδ associated with δ is
defined by its action as a linear functional on a set of test functions
C (e.g., smooth, real-valued functions with compact support in R),
which is the mapping Dδ

(

f
)

:= f (0) ∈ R for f ∈ C . Distributions
are also called “generalized functions” because for each regular (e.g.,
integrable) functionψ : R → R, there exists a canonical association
of a distribution Dψ : C → R, defined as

Dψ

(

f
)

:=

∫ ∞

−∞

ψ (t) f (t) dt. (4)

In order to ensure that (4) defines a continuous functional on C ,
different choices for the spaces of test functions and regular func-
tions are possible. In any case, a sequence of distributions Dn is
said to converge toward a limit D0 if for all f ∈ C : limn→∞Dn

(

f
)

= D0

(

f
)

, and this gives a rigorous meaning to convergence δn → δ

by requiring

lim
n→∞

Dδn

(

f
)

= lim
n→∞

∫ ∞

−∞

δn (t) f (t) dt

= Dδ

(

f
)

= f (0) for all f ∈ C .

The main difficulty for the interpretation of (2) is that the solution
ϕ (t), and, therefore, the time course of the PRC Z (ϕ (t)) as well, is
discontinuous at the point tp, where δ

(

t − tp

)

is affecting it. In that
case, the notion of δ as a limit of a general Dirac sequence {δn} medi-
ated by a space of discontinuous test functions is ambiguous. To see
that, consider a piecewise continuous function f with discontinuity
at t = 0. Depending on the choice of the sequence, it is possible to
obtain

lim
n→∞

∫ ∞

−∞

δn (t) f (t) = cf (t − 0)+ (1 − c) f (t + 0) (5)

for any value of c ∈ [0, 1]. In general, the limit does not exist at
all. Apparently, the ambiguity might be resolved by restricting the
notion of a Dirac sequence to a specific proportion. In the case of
(2), this resolution would amount to defining ϕ+

p as a solution of

ϕ+
p + (c − 1)Z

(

ϕ+
p

)

= ϕ−
p + cZ

(

ϕ−
p

)

. (6)

For example, using δn with δn (t) = 0 for t ≥ 0 would lead to
c = 1, presumably indicating the behavior (1). Alternatively, opting
to restrict δn to even functions would give c = 1/2, as noted by Grif-
fith and Walborn.21 Obviously, the particular choice of c influences
the resulting magnitude of the discontinuous phase jump. In the fol-
lowing, we suggest to employ another possible interpretation of Eq.
(2), which is based on an unambiguous interpretation of the δ func-
tion and leads to a discontinuity different from (6) for any value of
c.

While studying the discontinuity in the next paragraphs, let
us assume that Z is a continuous function and Z(ϕ−

p ) 6= 0 [note

that the case Z
(

ϕ−
p

)

= 0 is less interesting as ϕ (t) would simply

be continuous at t = tp]. Then, Z(ϕ) does not change its sign inside
some interval I = (α,β), with ϕ−

p ∈ I. For ϕ from this interval, we

consider a transformation

ψ := F (ϕ) =

∫ ϕ

ξ

dx

Z(x)
, (7)

where F is an invertible, differentiable function on I and ξ ∈ I is arbi-
trarily chosen. Note that one can extend the interval of definition I
as long as Z (ϕ) 6= 0 inside I; cf. Figure 1. If there exists a point ϕ
with Z (ϕ) = 0, the boundaries of the maximal interval must fulfill
Z (α) = Z (β) = 0 and

lim
ϕ→α,β

F (ϕ) ∈ {±∞} . (8)

If we assume that the discontinuity does not convey ϕ out of I, i.e.,
ϕ+

p ∈ I, we can use (2) and apply the chain rule for the differentiation
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FIG. 1. Exemplary partition ˙
⋃

j Ij = [0, 1] \ {ϕ : Z(ϕ) = 0} and graphs of Z and

Fj for Z (ϕ) = sin (2πϕ) and reference points ξ1 = 0.25 ∈ I1 = (0, 0.5) and
ξ2 = 0.75 ∈ I2 = (0.5, 1).

of ψ(t) = F(ϕ(t)) to obtain

dψ

dt
=

1

Z(F−1(ψ))
+

∑

p

δ(t − tp), (9)

where F−1 is the inverse of F defined on its range F (I). Integration
of (9) over a sufficiently short time interval [tp − τ ; tp + τ ] gives

ψ(tp + τ)− ψ(tp − τ)

=

∫ tp+τ

tp−τ

(
1

Z (F−1(ψ(t)))
+ δ(t − tp)

)

dt, (10)

where the interpretation of δ is unambiguous since it is not mul-
tiplied by a discontinuous function. For the other integrand, we
have

∫ tp+τ

tp−τ

dt

Z (F−1(ψ(t)))

=

∫ tp

tp−τ

dt

Z (F−1(ψ(t)))
+

∫ tp+τ

tp

dt

Z (F−1(ψ(t)))

=
τ

Z
(

ϕ−
p

)

+ O (τ )
+

τ

Z
(

ϕ+
p

)

+ O (τ )
→ 0 for τ ↘ 0.

Thus, in the limit of τ ↘ 0, (10) yields

1 = ψ(tp + 0)− ψ(tp − 0) = F
(

ϕ+
p

)

− F
(

ϕ−
p

)

. (11)

Finally, the phase ϕ+
p after the pulse arrival can be evaluated as

ϕ+
p = F−1

(

F
(

ϕ−
p

)

+ 1
)

, (12)

where the resulting value of ϕ+
p is independent of the specific choice

for ξ in (7).
In general, the phase value given by (12) differs from that given

by (1) or any other fixed choice of c ∈ [0, 1] in (6). Interestingly,
there exists a different interpretation of Eq. (2), which leads to the

same notion for a solution.22,23 Let us calculate a sequence of solu-
tions ϕn of (2), where δ has been substituted by elements of a Dirac
series {δn},

dϕn

dt
= ω + Z(ϕn)

∑

p

δn(t − tp). (13)

Then, the solution ϕ(t) of (2) can be defined as a limit of the
solutions of (13) for n → ∞. This definition is physically moti-
vated since the delta function is an approximation for pulses with
a short but finite duration. Therefore, it is natural to expect that
the behavior of Eq. (2) with the delta pulses will be similar to the
behavior of Eq. (13) with short enough but finite pulses. The solution
ϕ∗ (t) := limn→∞ ϕn (t) coincides with the solution ϕ (t) obtained by
(12). Indeed, defining ψn := F (ϕn) gives

ψ(tp + 0)

= lim
τ↘0

lim
n→∞

ψn(tp + τ)

= lim
τ↘0

lim
n→∞

(

ψn(tp − τ)

+

∫ tp+τ

tp−τ

(
1

Z (F−1 (ψn(t)))
+ δn(t − tp)

)

dt

)

= lim
τ↘0







ψ(tp − τ)+ lim

n→∞

∫ tp+τ

tp−τ

dt

Z (F−1 (ψn(t)))
︸ ︷︷ ︸

→0, as τ→0

+ lim
n→∞

∫ tp+τ

tp−τ

δn(t − tp)dt

)

= ψ(tp − 0)+ 1, (14)

which leads to the phase jump (12). Note that the derivation
of the solution ϕ∗ does not rely on the assumption that ϕ+

p ∈ I but

implies this property.
As noted above, the maximal range of definition for (7) is

always a maximal interval I such that Z (ϕ) 6= 0 for all ϕ ∈ I. If Z
has no zeros at all, F is a bijection over R, resp. [0, 1] and its image
is F ([0, 1]). Otherwise, the bounds of the interval I = (α,β) ful-
fill Z (α) = Z (β) = 0. Effectively, this partitions the whole range of
possible phases ϕ ∈ [0, 1] into disjoint intervals Ij and points where
Z = 0; see Fig. 1. That is,

˙⋃

j
Ij = [0, 1] \ {ϕ : Z(ϕ) = 0} .

If we denote for each Ij the corresponding transformation (7) by
ψ = Fj (ϕ), we may define

Z̃ (ϕ) :=

{

0 for Z (ϕ) = 0,

F−1
j

(

Fj (ϕ)+ 1
)

− ϕ for ϕ ∈ Ij.
(15)

Then, (15) describes the discontinuous phase reset obtained in the
limit of a Dirac sequence approximation of (2).

The functions Z and Z̃ are in general different and can be equal
or close only in some particular cases, for example:
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(i) If the PRC is flat, i.e., it does not depend on the phase:

Z(ϕ) = Z0 = const, then F(ϕ) = ϕ/Z0 and Z̃(ϕ) = Z0 as well. In
this case, the interpretation issue is absent because the delta func-
tion is not multiplied by a discontinuous function. For the same
reason, the interpretation is unambiguous for the models that are
based not on phase oscillators but on integrate-and-fire neurons24,25

or quadratic integrate-and-fire neurons26,27 (note that for theta-
neurons,28–30 the ambiguity exists, although they can be transformed
to quadratic integrate-and-fire neurons).

(ii) If the PRC is small, i.e., Z(ϕ) � 1, then F(ϕ) � 1, and F−1

can be expanded into the Taylor series

F−1(F(ϕ)+ 1) = F−1 (F(ϕ))+ (F−1)
′
(F(ϕ))+ · · ·

≈ ϕ +
1

F′(ϕ)
= ϕ + Z(ϕ) (16)

from where Z̃(ϕ) ≈ Z(ϕ). Thus, the ambiguity problem vanishes for
phase oscillators with weak coupling.19

Except for these two cases, the functions Z and Z̃ are different.
To illustrate this difference, we plot these two functions for the PRC

Z(ϕ) = κ sinq (πϕ) , (17)

where κ = 0.1 is the coupling strength and q is a parameter con-
trolling the PRC steepness.16 Note that the maximal value of the

phase is set equal to 1, not 2π . The functions Z(ϕ) and Z̃(ϕ) are
plotted in Fig. 2 (top row). One sees that these functions are indeed
different, and the difference is more pronounced for larger steep-
ness q. Note also that although Eq. (1) might give non-monotone
dependence of ϕ+

p vs ϕ−
p for large q, the dependence given by (12)

FIG. 2. Top row: the phase shift 1ϕp = ϕ+
p − ϕ−

p after the pulse arrival vs the

phase ϕ− before the pulse arrival given by the original PRC Z(ϕ) as in (17) (blue

solid line) and by the modified PRC Z̃(ϕ) calculated on its base according to (15)
(red dashed line). Bottom row: the slope dϕ+

p /dϕ
−
p . The steepness parameter

equals q = 4 for the left column and q = 40 for the right column.

is always strictly monotone. In order to demonstrate that, the slope
dϕ+

p /dϕ
−
p = 1 + Z′(ϕ−

p ) is plotted in Fig. 2 (bottom row), which can

be negative for Z(ϕ) but is strictly positive for Z̃(ϕ).
The difference between the two PRCs becomes even more crit-

ical when one considers not a perturbation by a single pulse but the
dynamics of coupled pulse oscillators. Consider the simplest system
with pulse coupling, a single oscillator with pulse delayed feedback
studied in Refs. 15 and 16. The oscillator emits pulses when its phase
reaches unity (the phase is considered modulo 1). These pulses are
sent to the delay line and arrive back to the oscillator after the
delay τ . When the pulse is received, the oscillator’s phase changes
according to (1).

We simulated the system twice with the same delay and the
same initial conditions but with the different PRCs (for the details
of numerical implementation, see Refs. 31 and 32). For the first
simulation, we used the PRC (17) with q = 30, and for the sec-
ond simulation, we used the modified PRC calculated on its base.
The results of both simulations are shown in Fig. 3. As can be seen
from the phase dynamics (top panel), the two solutions diverge
even if they start from the same initial conditions. Moreover, the
magnitudes of the phase shifts (bottom panel) reveal the qualitative
difference between the solutions. For the original PRC, the phase
shifts are not equal but form a sequence of period 5, which is a man-
ifestation of the so-called jittering.15,16 In contrast, the modified PRC
shows no jittering, and the phase shifts converge to a constant value.

To conclude, we have shown that Eq. (2) in general does
not show the phase jumps corresponding to the PRC Z(ϕ) and,
therefore, should not be used for phase oscillators. In order to unam-
biguously define the system where the phase jumps correspond to

FIG. 3. Top panel: the temporal evolution of the oscillator phase for the original

PRC Z(ϕ) (blue solid line) and for the modified PRC Z̃(ϕ) (red dashed line).
Bottom panel: the magnitudes of the phase shifts1ϕp = ϕ+

p − ϕ−
p for the orig-

inal PRC Z(ϕ) (blue solid line with circles) and for the modified PRC Z̃(ϕ) (red
dashed line with diamonds). The steepness parameter equals q = 30, and the
delay τ = 4.32.
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the PRC Z(ϕ), one should rather use the notation

dϕ

dt
= ω + Z(ϕ−)

∑

p

δ(t − tp) (18)

or

dϕ(t)

dt
= ω + Z(ϕ(tp − 0))

∑

p

δ(t − tp), (19)

indicating directly that the value ϕ− ≡ ϕ(tp − 0) should be used to
calculate the magnitude of the jump at tp. Similar notations were
used, for example, in a popular model of synaptic plasticity.33 Note,
however, that (18) and (19) are not ordinary differential equations
(ODEs) but rather shortcuts for the impulsive differential equations
(IDEs),34,35

dϕ

dt
= ω, t 6= tp, (20)

ϕ(t) = ϕ(t−)+ Z(ϕ(t−)), t = tp. (21)

The benefit of using the formulation in the form of an IDE is dou-
ble. First, one can directly choose the PRC Z(ϕ) governing the

phase jumps and does not need to calculate the modified PRC Z̃(ϕ).
Second, in the IDE formulation, the phase resetting is free of any
limitations, for example, one can select it such that the new phase is
a non-monotonic function of the old phase,

ϕ2 + Z(ϕ2) < ϕ1 + Z(ϕ1) for ϕ2 > ϕ1. (22)

In particular, this possibility of the phase “reordering” is crucial
for the multi-jitter instability.15,16 Obviously, the phase reordering
is impossible for the ODEs (13) corresponding to a Dirac sequence
{δn} and likewise for (2) with the Dirac delta function if interpreted
as a limit of ODEs.

For curiosity, we remark that it is possible to define a solu-
tion to (1) as a limit of solutions to a sequence of delay differential
equations (DDEs), though. Since ϕ (t−) = limτ↘0 ϕ (t − τ), we can
define ϕn,τ (t) as a solution to

ϕ̇n,τ = ω + Z
(

ϕn,τ (t − τ)
) ∑

p

δn

(

t − tp

)

, (23)

with a Dirac sequence {δn} and obtain a solution to (1) as
ϕ (t) := limτ↘0 limn→∞ ϕn,τ (t).
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