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ABSTRACT

We study the collective dynamics of a heterogeneous population of globally coupled active rotators subject to intrinsic noise. The theory is
constructed on the basis of the circular cumulant approach, which yields a low-dimensional model reduction for the macroscopic collective
dynamics in the thermodynamic limit of an infinitely large population. With numerical simulation, we confirm a decent accuracy of the
model reduction for a moderate noise strength; in particular, it correctly predicts the location of the bistability domains in the parameter
space.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0030266

Large populations of oscillatory or excitable elements are often
observed to demonstrate surprisingly low-dimensional and rel-
atively simple collective behavior. The first important break-
through in the theoretical explanation of the abundance of
this “simplicity” was related to the Watanabe–Strogatz and
Ott–Antonsen (OA) theories, which were constructed for an
important class of popular but idealistic systems. In particu-
lar, the latter theory yields an exact self-contained equation for
the dynamics of the Kuramoto order parameter. However, the
generalization of the OA theory to nonideal phase systems has
remained a resisting problem for a decade. An advance with this
problem became possible in terms of special order parameters, so-
called “circular cumulants,” which are the analog of conventional
cumulants but for variables on the circumference. Like conven-
tional cumulants, these variables are a convenient and powerful
tool for theoretical studies on many problems, but the conver-
gence of circular cumulant expansions in the general case remains
an open question. This issue may become especially delicate when
one deals with heterogeneous populations. In such populations,
some elements may be close to the bifurcation transitions, where
the solutions of the linearized problem possess singularities,
which also results in the formal divergence of finite-cumulant
approximations. The population of coupled active rotators with

uniform distribution of natural frequencies is an example of such
a kind. We construct the theory for this problem and demonstrate
that one can handle a singular behavior within the framework of
two-cumulant reduction.

I. INTRODUCTION

Collective dynamics of populations of interacting active ele-
ments is a subject of continuous researchers’ interest in diverse
areas of physics.1,2 For a qualitative understanding and description
of the collective behavior of such populations, simplistic paradig-
matic models are frequently employed. An important class of these
models is based on the phase description of the dynamics of individ-
ual elements. The assumption of a global character of the interaction
between the elements, where all elements are identically mutu-
ally coupled to each other, is also abundant in the literature and
frequently relevant for populations with a dense network of con-
nections in the thermodynamic limit.3,4 For instance, the classic
Kuramoto model, which is characterized by the above-mentioned
assumptions, allows one to study and describe theoretically the syn-
chronization transition and collective oscillations in great detail.5–7
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A recent work8 addressed a population of globally coupled
active rotators,9–11 where some elements oscillate, while the rest
of them are in an excitable state. The diversity of the elements
of this population results in the formation of a complex struc-
ture of domains of different macroscopic regimes in the parameter
space; there are time-independent states, mean-field oscillations,
and hysteretic transitions between them. The action of intrinsic (in
other words, “individual”) noise on the elements of this population
does not change the picture qualitatively but significantly shifts the
domain boundaries of different regimes.

The influence of the intrinsic noise on the ensemble of active
rotators has been studied earlier in a number of papers. First, Shi-
nomoto et al.9,12 identified the key collective regimes of the system,
namely, the stationary and the oscillatory ones, and constructed
the bifurcation diagrams numerically. Later, Park and Kim dis-
covered the emergence of clustered states in the case of strong
multiplicative noise.13 Zaks et al obtained a simple two-dimensional
system describing the dynamics of the population in the Gaussian
approximation.14 The next step was made by Tessone et al.,15 who
introduced the heterogeneity in the form of inequality of the ele-
ments intrinsic parameters. They formulated a simple rule for the
qualitative role of the noise: it makes an impact in the same direction
as the increase of the diversity of the elements.

Although ensembles of active rotators with intrinsic noise
have been studied in a number of papers, a comprehensive quan-
titative description is still lacking. The theoretical studies carried
out in the earlier works address only limited cases, such as high-
frequency limit,16 identical elements,14 or strong synchronization.15

The present paper aims to fill the gap and develop a solid the-
ory describing quantitatively the effect of noise on the collective
dynamics of a population of coupled active rotators. Our approach
is based on the method of circular cumulants, recently developed
in a series of works17–21 and applicable to a wide class of stochas-
tic oscillatory systems. In the thermodynamic limit of an infinitely
large population, we obtain theoretical expressions for stationary
states. A bifurcation analysis of the system is also carried out, and
the obtained bifurcation curves were shown to describe quite accu-
rately the transitions between different collective modes for a large
but finite number of elements in the population.

In systems admitting Ott–Antonsen ansatz, the imperfectness
of synchrony in stable regimes is often associated with the het-
erogeneity of parameters (natural frequencies, etc.). In the case of
Lorentzian or some other fractional rational distribution of parame-
ters, one can either (i) first employ the OA ansatz for subpopulations
with the same values of parameters and then perform a contour inte-
gration over distributed parameters by means of the residue theorem
or do these operations in the opposite order; (ii) first perform the
contour integration for an infinite chain of the Kuramoto–Daido
order parameters and second employ the OA ansatz, which makes
all these equations identical to the first equation, leaving one closed
equation. If the conditions for the OA ansatz are violated, one
can still deal with the infinite chain of equations derived on route
(ii) for the order parameters; the series of these parameters decays
with the order number in the case of imperfect synchrony (e.g., see
Ref. 22). Route (i) becomes impractical as the attracting states of
some subpopulations for vanishing violation of the OA conditions
are perfect synchrony ones and one has to work in the vicinity of a

state, where the infinite equation chain does not converge. When
one deals with such parameter heterogeneity, the infinite chains
of equations for Kuramoto–Daido order parameters of subpopu-
lations often become an inapplicable framework. Meanwhile, the
alternative circular cumulant framework can not only be just pos-
sible but also convenient. The case of coupled noisy active rotators
with non-fractional–rational distribution of frequencies is an exam-
ple of such sort; part of subpopulations in this system is always
perfectly synchronized in the absence of noise.

Although a large part of our study is applicable to ensembles
with an arbitrary distribution of intrinsic parameters, the bifurca-
tion curves are plotted for a particular case of uniform distribution.
Considering the effect of noise on the collective dynamics of such
a population, one should bear in mind the remarkable degener-
acy of the Kuramoto system with a uniform distribution of natural
frequencies, as adopted in Ref. 8. Generally speaking, this degen-
eracy takes place for any distribution, which has a plateau in its
structure.23–25 For vanishing noise, at the threshold of the collec-
tive mode emergence, there is not a single attracting state, but a
one-parameter family of states. In this case, the transition to syn-
chronization is a first-order phase transition: the order parameter
has a finite value immediately above the threshold. But this is not
the ordinary case of a subcritical pitchfork bifurcation; below the
threshold, the maximal asynchrony regime is the only stable one.
Weak noise eliminates this degeneracy, and the transition to syn-
chronization becomes a transition of the second order [for example,
see the dependence of Eq. (131) in Ref. 6 vs the intensity of the
intrinsic noise D]. The system of active rotators, however, differs
from the classic Kuramoto ensemble since the nonuniform phase
rotation breaks the degeneracy even for a vanishing noise. Never-
theless, the described feature of the Kuramoto system indicates the
necessity for a thorough analysis of the effect of noise in the case of
active rotators as well.

This paper is organized as follows. In Sec. II, the model under
study is introduced. In Sec. III, the elements of the circular cumulant
approach relevant to our problem are briefly provided. In Sec. IV,
we employ the circular cumulant approach to construct the mean-
field theory for the population of noisy active rotators with uniform
distribution of frequencies. The results of the bifurcation analy-
sis on the basis of the theory constructed are provided in Sec. V.
Conclusions are drawn in Sec. VI.

II. MODEL

We consider a heterogeneous population of N coupled active
rotators governed by the Langevin equations,8

θ̇j = ωj − a sin θj −
K

N

∑

k

sin
(

θj − θk + α
)

+ σηj(t). (1)

Here, the elements are indexed with j = 1, 2, . . . , N, θj ∈ S1 are
the phases of elements, the rotation nonuniformity parameter a is
assumed to be identical for all elements, andωj is an intrinsic param-
eter, which is frequently referred to as “natural frequency.” Notice
that it is not an actual frequency, as the natural oscillation period of
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a single rotator nonlinearly depends on the parameter ω,

T =
2π

√

ω2
j − a2

.

One can see that T = 2π/|ωj| only for |ωj| � a. Moreover, for
|ωj| < a, an uncoupled element does not oscillate but rests in an
locally stable equilibrium state θ = arcsin(ωj/a). Thus, the param-
eter ωj governs the inherent dynamics of the jth element, which is
excitable for |ωj| < a and oscillating for |ωj| > a.

The interaction between elements is described by the sum in the
right-hand side of Eq. (1), where the coupling is assumed to be global
and characterized by the strength K and the phase shift α. Each
element is subject to intrinsic (individual) fluctuations, which are
represented by white Gaussian noise signals σηj(t) of intensity 2σ 2;
the fluctuations for different elements are independent: 〈ηj(t)〉 = 0,
〈ηj(t) ηk(t

′)〉 = 2δjkδ(t − t′).
Equation system (1) can be recast as

θ̇j = ωj + Im(2he−iθj)+ σηj(t), (2)

where 2h = a + KRe−iα , and

R = 〈eiθj 〉 =
1

N

∑

j

eiθj

is the complex-valued Kuramoto order parameter. In the recent
series of works,17,18,20 a systematic approach to studying the systems
of type (2) was suggested on the basis of so-called “circular cumu-
lants.” Below, we briefly recall the principal details of this approach
and derive the equations relevant for our study.

III. CIRCULAR CUMULANT APPROACH

In the thermodynamic limit N → ∞, the state of sys-
tem (1) can be comprehensively characterized by the probabil-
ity density function ρ(θ |ω, t) obeying the normalization con-

dition
∫ 2π

0
ρ(θ |ω, t)dθ = 1 and governed by the corresponding

Fokker–Planck equation [cf. Eq. (9) in Ref. 9],

∂ρ

∂t
= −

∂

∂θ

(

ρ
[

ω + Im
(

2h(t)e−iθ
)])

+ σ 2 ∂
2ρ

∂θ 2
. (3)

The probability density can be recast in the form of the Fourier series

ρ(θ |ω, t) =
1

2π

∑

n

zn(ω, t)e−inθ ,

where coefficients

zn(ω, t) =
∫ 2π

0

ρ(θ |ω, t)einθdθ (4)

are the “local” order parameters characterizing the distribution of
phases of the elements with “frequency”ω. Below, we do not indicate
the dependence of zn on ω but imply it. The order parameters obey
the equation system,

żn = niωzn + nhzn−1 − nh∗zn+1 − n2σ 2zn, (5)

where an asterisk stands for complex conjugation. Notice that for
vanishing noise (σ = 0), system (5) admits the Ott–Antonsen ansatz

zn = (z1)
n (see Refs. 26 and 27), which yields a single equation

ż = iωz + h − h∗z2.

Here, index “1” is omitted. However, even for a weak noise, the
Ott–Antonsen ansatz becomes inadmissible, and Eq. (5) forms an
infinite chain. The same infinite chain of equations was obtained
in Refs. 9 and 14. In the case of imperfect synchrony, the series of
the order parameters |zn| decays with the order number.22 However,
the decay rate might be quite slow: for example, Shinomoto and
Kuramoto had to retain the first 30–50 order parameters in order
to construct the bifurcation diagrams.9 An alternative approach is to
assume Gaussian distribution of phases, as was done by Zaks et al.14

This allows one to express the order parameters via the mean and
the variance, but the Gaussian approximation is limited to the case
of high synchrony. In the heterogeneous ensemble, the synchro-
nization degree may be different for subpopulations with different
ω, which requires a universal approach applicable for both strongly
and weakly synchronous cases. It turns out that the representation of
Eq. (5) in terms of the so-called “circular cumulants” provides such
an approach; this approach turns out to be much more handy.

There is an essential geometric difference between random
variables on the circumference and on the infinite real line. Because
of this difference, the modification of conventional cumulants,28,29

which were introduced for the variables on the line, is required in
some physical problems. For the definition of the circular cumu-
lants, let us introduce the moment-generating function

F(k, t) = 〈exp(keiθ )〉 =
∞
∑

m=0

zm

km

m!
,

where zm = ∂m

∂km F(k, t)|k=0. Taking the time derivative of this func-
tion and substituting żm from (5), one can obtain

∂F

∂t
= iωk

∂

∂k
F + hkF − h∗k

∂2

∂k2
F − σ 2k

∂

∂k

(

k
∂

∂k
F

)

. (6)

Further, we define the circular cumulants as the coefficients of the
Taylor series of the generating function

9(k, t) = k
∂

∂k
ln(F(k, t)) =

∞
∑

m=1

κm(t)k
m,

where κm = 1
m!

∂m

∂km9(k, t)|k=0. Circular cumulants are unambigu-
ously determined by the order parameters zm; for instance, the first
three cumulants are

κ1 = z1, κ2 = z2 − z2
1, κ3 = (z3 − 3z2z1 + 2z3

1)/2.

From (6), one finds that the cumulant-generating function obeys the
following partial derivative equation:

∂9

∂t
= iωk

∂9

∂k
+ hk − h∗k

∂

∂k

(

k
∂

∂k

(

9

k

)

+
92

k

)

− σ 2k
∂

∂k

(

k
∂9

∂k
+92

)

.
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This equation yields an infinite chain of equations for the circular
cumulants,

κ̇n = niωκn + hδ1n − h∗

(

n2
κn+1 + n

n
∑

m=1

κn+1−mκm

)

− σ 2

(

n2
κn + n

n−1
∑

m=1

κn−mκm

)

. (7)

At the first glance, these equations look more cumbersome
than (5). However, an important advantage of the series (7) is that
for a weak noise σ � 1, the cumulants form a smallness hierarchy
κn ∼ σ 2(n−1). The presence of this hierarchy follows from the form
of Eq. (7) and does not depend on the synchronization degree. It
will be further confirmed by the numerical simulations. This allows
one to restrict the consideration to the first M cumulants and set
the higher cumulants to zero, which yields an approximation with
an inaccuracy of the order of magnitude of σ 2M. In what follows,
we employ the two-cumulant approximation assuming κ3 = κ4

= · · · = 0. Note that other approximations for the higher cumulants
are possible (see Ref. 18 for details). However, we found out that
these approximations do not lead to the accuracy improvement for
our system; therefore, we chose to use the simplest one. Hence, for
the dynamics of the first two cumulants of the subpopulation with
natural frequency ω, we find the following equation system:

ż(ω, t) = iωz + h − h∗(z2 + κ)− σ 2z, (8)

κ̇(ω, t) = 2iωκ − 4h∗zκ − σ 2(4κ + 2z2), (9)

where z(ω, t) is the first cumulant (identical to the local Kuramoto
order parameter) and κ(ω, t) is the second one. Thus, the dynamics
of the subpopulation at given ω can be (approximately) described by
just two equations for the first two cumulants instead of an infinite
series (5) for the order parameters. Once the first two cumulants
are known (and the higher ones are assumed to be zero), the order
parameters zn can be readily calculated as zn = zn + n(n−1)

2
κzn−2.

Let us elucidate the geometric interpretation of the two-
cumulant representation. For the conventional cumulants of vari-
ables on the real line, there is a special case of the Gaussian
distribution, which possesses exactly two nonzero cumulants. The
first conventional cumulant is the mean value, giving the center-
ing of the distribution, and the second conventional cumulant is
the variance, measuring the distribution width. If any other con-
ventional cumulant is nonzero, there are infinitely many nonzero
elements.28,30 For variables of the circumference, the special case is
the Ott–Antonsen case with the wrapped Lorentzian distribution;
here, only the first circular cumulant z = κ1 is nonzero, but this
number is complex-valued. Its argument gives the distribution cen-
tering, and its absolute value characterizes the distribution width,
− ln |κ1|. If more than one circular cumulant is nonzero, there are
infinitely many nonzero elements.20 Thus, the Ott–Antonsen case is
the only case with a finite number of nonzero circular cumulants.
Comparing these two cases of distributions on the line and on the
circumference, one can speak of equity, as the minimalistic picture
comes with two nontrivial quantities in both cases.

Further, if one considers the deviation from the Gaussian
distribution, it is primarily quantified by two numbers: the third

conventional cumulant, or skewness, characterizing the distribution
asymmetry and the fourth conventional cumulant, proportional to
kurtosis, characterizing the excess of tails. For variables on the cir-
cumference, the complex-valued second circular cumulant yields
two quantifiers: the argument difference Argκ2 − 2Argκ1 measures
the distribution asymmetry and |κ2| characterizes the tails.

The theoretical analysis below is based on equation system (8)
and (9), which generally possesses the inaccuracy of the order of
magnitude of σ 4. Importantly, if the dependence of the local order
parameters z(ω) on the element parameter ω possesses singularities
or derivative discontinuities, then the order of inaccuracy of finite
cumulant truncations is not guaranteed. Below, we will see that such
a discontinuity is present in the problem we consider.

IV. ANALYSIS WITHIN THE FRAMEWORK OF THE

CIRCULAR CUMULANT DESCRIPTION

The coupling in population (1) is global; therefore, subpopula-
tions (8) and (9) with different ω are coupled via a common mean
field. In the thermodynamic limit, this mean field is given by the
integral

R(t) = 〈eiθ 〉 =
∫

dω g(ω) z(ω, t), (10)

where g(ω) is the natural frequency distribution. Let us consider
the case where the mean field is time-independent. In this case, it
is convenient to write

h =
1

2
Beiβ

and make the change of variables ξ(ω) = z(ω)e−iβ . Then, the time-
independent states of (8) and (9) are given by the solutions of

Bξ 2 − 2iωξ − B = −σ 2ξ

(

2 +
Bξ

iω − Bξ − 2σ 2

)

. (11)

For σ = 0, the solutions of (11) satisfying |ξ | ≤ 1 have the form

ξ0(ω) =



















√

1 −
ω2

B2
+ i
ω

B
, |ω| < B,

i
ω

B

(

1 −
√

1 −
B2

ω2

)

, |ω| > B.

(12)

One can see that |ξ0| = 1 for |ω| < B, and |ξ0| < 1 for |ω| > B.
This property elucidates the physical significance of B: in the noise-
free case, the elements with a small natural frequency |ω| < B are
entrained by the mean field and rest, while the element with higher
|ω| > B rotate.

For a weak noise, we seek for the solutions of (11) in a pertur-
bative form, ξ(ω) = ξ0(ω)+ ν(ω). Keeping only linear in ν and σ 2

terms, after some algebra, we arrive at

ν(ω) =
Bσ 2

2(ω2 − B2)
. (13)

Expression (13) diverges for |ω| = B, which is the result of the lin-
earization of a square-root dependence of ξ0(ω) near |ω| = B in
Eq. (12). This is the above-mentioned case of the decrease of the
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accuracy order due to derivative discontinuities; linear approxima-
tion is not appropriate here and we will consider this case separately.
Taking into account that ξ0(±B) = ±i and keeping only the leading
in ν and σ terms, from (11), we obtain

[ν(±B)]3 = −
σ 2

B
. (14)

Since z is the Kuramoto order parameter, its absolute value cannot
exceed one. The only solution satisfying |ξ0 + ν| ≤ 1 is

ν(±B) = 3

√

σ 2

B

1 ∓ i
√

3

2
. (15)

For the regularization of the noise-induced shifts (13) near the
singular points, let us construct an expression, which is close to
(15) at the points ω = ±B, and close to (13) far from these points.
The simplest way to construct such an expression is to add a small
complex number to the denominator of (13). While a real-valued
addition just shifts the singularity point along ω, a nonzero imagi-
nary part of the addition shifts the singularity away from the real line
ofω. We choose the value of this addition, which provides a required
value of ν(±B), and arrive at

ν(ω) =
Bσ 2

2(ω − B + ε)(ω + B − ε∗)
, (16)

where

ε = σ
3
√

Bσ
1 + i

√
3

8
. (17)

Equation (16) approximates the noise-induced shift of the
order parameter z of the subpopulation with frequency ω. To esti-
mate the accuracy of this approximation, we compare it with the
exact solution of (11). Note also that system (8)–(9) is an approxima-
tion itself; therefore, it is also important to perform the comparison
to the results obtained for the “exact” numeric solution of the
Fokker–Planck equation (3). In Fig. 1, the shift ν of the order param-
eter z is plotted vs the natural frequency ω for three different ways of
calculation: with Eq. (16), with the exact solution of (8) and (9), and
with the “exact” solution of the Fokker–Planck Eq. (3). The results
are provided for three different values of noise strength σ and fixed
B = 1. As expected, the noise mostly influences the elements close
to the local bifurcation points ω = ±B. However, with the growth
of the noise strength, the peak shifts toward smaller frequencies and
becomes broader. Far from the central peak there is a good corre-
spondence between the exact solution and both its approximations,
while near the peak the correspondence is only qualitative. However,
the two-cumulant approximation can be appropriate as the collec-
tive dynamics is controlled by the mean field, which is an integral
over ω and the contribution of the error in a narrow vicinity of the
bifurcation point might be negligible.

The accuracy of the two-cumulant approximation improves
as the noise strength decreases. To determine the accuracy order
of the approximation we calculate the error χ for the value of the
Kuramoto order parameter. In Fig. 2, the error of expression (16)
with respect to the exact solution of the Fokker–Planck equation is
plotted vs the noise strength σ for three different frequency values
ω. The order of the magnitude of the error strongly depends on the

FIG. 1. The noise-induced shift ν of the Kuramoto order parameter z is plotted vs
the natural frequency ω for three values of the noise strength; from bottom to top,
σ = 0.01 (green), σ = 0.05 (blue), and σ = 0.2 (red). Solid lines: formula (16),
dashed lines: exact solution of (11), and bold dotted line: “exact” numeric solution
of (3).

proximity of ω to the bifurcation points ±B. Far from the bifurca-
tion point, the error decreases as χ ∼ σ 10/3. Indeed, formula (16)
approximates the exact solution of (11) with the inaccuracy of the
order of magnitude of σ 2ε ∼ σ 10/3, while the inaccuracy of the two-
cumulant approximation itself is of the order of σ 4. However, for
ω = B, the accuracy is much worse and the error decreases only as
χ ∼ σ 2/3. This decrease in accuracy is due to the fact that formula
(16) is introduced for the regularization of the formal divergence of
the linear approximation (13): it provides only a rough approxima-
tion for ν in the neighborhood of ω = ±B. Indeed, in Fig. 1, one can
see that in this neighborhood, the error of determination of ν(ω) is
commensurable to its value, which is ∼ σ 2/3.

Let us now estimate the accuracy of the calculation of the mean
field of the whole population using approximation (16). The error of
the calculation of integral (10) with formula (16) can be decomposed
into two contributions: (i) the contribution of the neighborhood
of the singularity points ω = ±B and (ii) the contribution of the
domains far from these points. The contribution of the singularities
cannot exceed |ε||ν(B)| ∼ σ 4/3σ 2/3 = σ 2, while the contribution of
the domains beyond the singularity vicinities is of the order σ 10/3.
Thus, using formula (16), one can calculate the population mean
field with the inaccuracy not worse than σ 2. This order of precision
is confirmed by Fig. 2, which shows the mean error for the calcula-
tion of the Kuramoto order parameter for the interval ω ∈ [0; 1.5] vs
the noise strength. As expected, the error decreases as σ 2.

According to the theoretical results presented here and below,
the change in the characteristics of the macroscopic behavior of
the system under the influence of noise is ∝ σ 2, which is of the
same order of magnitude as the error. Therefore, regularization (16)
can be treated as an approximation but not as a rigorous expan-
sion with respect to a small parameter σ 2. A rigorous expansion
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FIG. 2. (a) Error χ of the Kuramoto order parameter calculated with (16) vs the
noise strength σ for three different frequencies: from bottom to top, ω = 1.5
(green),ω = 0.5 (blue), andω = 1 (red). Dashed line:χ ∝ σ 2/3 and dotted line:
χ ∝ σ 10/3. (b) The mean value of error 〈χ〉 of the calculation of the Kuramoto
order parameter on the interval ω ∈ [0; 1.5] is plotted vs the noise strength σ .
The dashed line indicates the slope χ ∝ σ 2.

accurately dealing with the singular points of the linearized prob-
lem is cumbersome and is not presented in this paper. With the
rigorous expansion, the error would also not be ∝ σ 4, as in “con-
venient” situations,17,18 but increased due to the integration over ω
of the function diverging at ω = ±B for σ = 0. Nonetheless, the
comparison of the theoretical findings to the results of numerical
simulation confirms that our approximation is fairly accurate.

Let us now consider the macroscopic dynamics of the whole
population. Obviously, the local order parameters of subpopula-
tions depend on the parameter B, which in turn depends on the

global order parameter R. Taking into account that the global order
parameter is obtained from the local ones by averaging over the
entire population, it is possible to write down the condition for the
self-consistency of a stationary state with a time-independent mean
field,

R = ρeiψ =
∫

dω g(ω) z(ω).

Substituting z = (ξ0 + ν)eiβ , one can rewrite this condition as

ρei(ψ−β) =
i

B
f1(B)+

1

B
f2(B),

where

f1(B) = �−
∫

|ω|>B

dω g(ω) ω

√

1 −
B2

ω2
+ Bφ1,

f2(B) =
∫

|ω|<B

dω g(ω)
√

B2 − ω2 + Bφ2,

(18)

φ1(B) and φ2(B) are the imaginary and real parts of the integral
∫

dω g(ω) ν(ω) = iφ1 + φ2, (19)

ν(ω) is given by (16), and � = 〈ω〉 is the mean frequency of
the population. Finally, after some algebra, this condition can be
recast as

f(B) = B2 − a2 − 2K(f1(B) sinα + f2(B) cosα)

+ K2 f1
2
(B)+ f2

2
(B)

B2
= 0. (20)

Solutions of (20) yield the values of B, satisfying the self-consistency
condition.

Following Ref. 8, we consider a uniform distribution of fre-
quencies,

g(ω) =







0, ω < ω1,
γ , ω1 < ω < ω2,
0, ω > ω2,

(21)

where γ = 1/(ω2 − ω1) according to the normalization condition.
For this distribution � = (ω1 + ω2)/2, and it is also convenient to
introduce the distribution width1 = ω2 − ω1. In this case, integral
(19) can be evaluated as

iφ1 + φ2 = I(ω2)− I(ω1), (22)

where

I(ω) = γ

∫ ω

0

ν(ω′)dω′ =
γBσ 2

4(B − Reε)
ln
ω − B + ε

ω + B − ε∗ . (23)

In Fig. 3, typical shapes of the function f(B) are presented for
various values of σ . One can see that noise can change the curve
shape significantly and, thus, shift the values of B resolving the self-
consistency condition and even change the number of roots. Below,
we consider the effect of noise on the collective modes and their
bifurcations in detail.
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FIG. 3. A typical shape of function f(B) is plotted for various values of the noise
strength: σ = 0 (black dotted line), σ = 0.3 (blue dashed line), and σ = 0.5
(red solid line). The other parameters are� = 0.82,1 = 6, K = 5, a = 1, and
α = 0.

V. RESULTS

Noise-free system (1) was reported in Ref. 8 to demonstrate
various collective modes depending on its parameter values. The
principle modes are (i) the rest state where none of the elements
oscillate, (ii) the asynchronous oscillatory mode, and (iii) the syn-
chronous oscillatory mode characterized by periodic oscillations
of the mean field R. Moreover, bistability domains were found in
the parameter space where the system can demonstrate different
behavior depending on its initial state. In the presence of noise, the
qualitative structure of the parameter space is preserved, but the
boundaries of the domains are significantly shifted.

The theory developed above makes it possible not only to
explain the observed persistence of low-dimensional collective
dynamics under conditions where the Ott–Antonsen theory ceases
to be applicable but also to quantitatively describe the effect of noise
on the population. To obtain the possible collective regimes for a
given set of parameters, one needs to solve Eq. (20) for B, which
gives the values of the mean field R of the population. Moreover, it
also allows one to describe the microscopic dynamics of the popu-
lation, i.e., the dynamics of individuals oscillators. Given the global
order parameter B, the local Kuramoto order parameter z(ω) can
be calculated from (12) and (16). In Fig. 4, the theoretical predic-
tions are compared with the results of direct numerical simulation
of an ensemble of N = 10 000 active rotators whose frequencies were
uniformly distributed from ω1 to ω2 (in other trials the frequencies
were randomly drawn from the uniform distribution which led to
the same results). For the selected parameter values, Eq. (20) has a
unique solution corresponding to a stable time-independent state.
The temporal evolution of the mean field plotted in Fig. 4(a) con-
firms that it quickly converges to the theoretically predicted value.
Small fluctuations near the stationary state correspond to the finite-
size effects. The microscopic state of the ensemble is heterogeneous

since some units fluctuate below the threshold while others rotate
more or less regularly, as can be seen from the phase dynamics pre-
sented in Fig. 4(b). The local Kuramoto order parameter |z(ω)| is
close to one for the units fluctuating below the threshold and less
than one for the rotating ones, as shown in Fig. 4(c). The theory
predicts the local order parameter fairly accurately and, therefore,
allows us to discriminate between the fluctuating and rotating units.

The cumulant-based approach allows us to predict the macro-
scopic dynamics of the population in a broad range of parameter
values. In Fig. 4(d), the mean field observed in numerics is compared
with the theoretically predicted value. Note that the correspondence
between the theoretical and numerical values is good even for a
strong noise when the mean field is well below 1, i.e., the ensemble
is weakly synchronized.

Furthermore, it is possible to predict not only quantitative
but also qualitative changes in the population behavior and deter-
mine the boundaries of the domains of different modes of collective
dynamics. These boundaries correspond to bifurcations of the sys-
tem, among which the saddle-node bifurcation plays an important
role. In particular, the saddle-node bifurcation corresponds to the
transition from the rest state to the synchronous oscillatory mode,
as well as the transitions between bistability and monostability
domains.

The saddle-node bifurcation corresponds to the tangency of the
graph of the function f(B) to the horizontal axis, which allows one to
find the bifurcation points. In Fig. 5, the bifurcation curves are plot-
ted on the plane of (1,�) for several values of the noise strength
σ . In the no-noise case (σ = 0), two lines of the saddle-node bifur-
cation form a typical “tongue” first reported by Shinomoto and
Kuramoto.9 The system possesses three equilibrium states inside the
tongue, while outside it, only one state is present. Note that the bista-
bility region occupies only a part of the tongue-shaped area near the
cusp point, namely, the bistability region is bounded by two lines
of the saddle-node bifurcations and a saddle homoclinic bifurcation
curve. The detailed description of the bifurcations in the noiseless
case is given in Ref. 8.

In the presence of noise, the structure of the bifurcation curves
is qualitatively preserved, although they are significantly shifted.
Note that for intermediate values of the noise strength, the struc-
ture of the saddle-node bifurcation curves becomes somewhat more
sophisticated, which is associated with the appearance of a small
additional extrema of the function f(B). However, the tongue-
shaped region persists on the parameter plane; inside this tongue,
the system still has three (or more) equilibrium states and a sin-
gle equilibrium state outside. With increasing noise intensity, the
tongue-shaped domains of multistability shift to lower values of 1.
Previously, this behavior was qualitatively interpreted as an effective
increase in the parameter spread due to the action of noise.8,15 With
the approach developed in this work, one can describe this effect
quantitatively. In Fig. 6, the dependence of the bifurcation thresh-
old 1SN on the noise strength is presented for several values of �.
One can see a lowering bifurcation threshold with the noise intensity
growing.

To confirm the theoretical results obtained with the two-
cumulant approach, the bifurcation diagrams were compared to the
results of direct numerical simulation of a population of N = 10 000
active rotators. The noise strength was fixed at σ = 0.3, and the
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FIG. 4. The dynamics of the ensemble of N = 104 active rotators is presented for � = 0.8, 1 = 10, K = 5, a = 1, and α = 0. (a) The temporal evolution of the mean
field (blue solid line) and the theoretically predicted time-independent state (red dashed line) for the noise intensity σ = 0.1. (b) The phase dynamics of the three units with
ω = 3.3 (blue line),ω = 4.1 (red line), andω = 4.3 (yellow line). (c) The local Kuramoto order parameter z(ω): numerical results (blue solid line) and theoretical predictions
(red dashed line). (d) The mean field R vs the noise strength σ : numerical results (blue circles) and theoretical predictions (red dashed line).

parameters� and1were varied over a wide range. For each param-
eter value, system (1) was integrated several times for the time inter-
val t = 1000 with different randomly set initial states. After the ini-
tial transient period of t = 200, the time-averaged Kuramoto order
parameter ρ = 〈|R|〉 was calculated. As a result, a set of possible col-
lective modes was determined for each set of parameters, and the
regions of monostability and bistability were identified. In addition
to that, the order parameter ζ = 〈|R − 〈R〉|〉 was calculated in order
to distinguish between the steady states and oscillatory regimes. The
diagram of macroscopic regimes is presented in Fig. 7 as a raster plot
with the theoretical saddle-node bifurcation curves superimposed.
The theoretical and the numerical results are in good agreement:
the bistability area is located inside the tongue-shaped region in
the vicinity of the cusp point, while the transition to the collective

oscillations takes place on the upper bifurcation curve. Here, the
saddle-node bifurcation occurs on a closed contour formed by the
unstable manifolds of the saddle; after the disappearance of fixed
points, the motion on the contour becomes unidirectional and the
contour turns into a limit cycle. This is the conventional “SNIPER”
bifurcation.

Note, however, that there are some differences between the the-
oretical and numerical results. In numerical simulations for a finite
population, we were unable to observe any qualitative changes in the
dynamics of the system on the “internal” lines of saddle-node bifur-
cations associated with the small additional extrema of the function
f(B) (see the solid line in Fig. 3). Possible reasons include, first,
the inaccuracy of the two-cumulant approximation, and, second,
finite-size effects, which are inevitable in the numerical study. In a
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FIG. 5. The saddle-node bifurcation curves on the (1,�)-plane are plotted for
several values of the noise strength: from right to left, σ = 0 (black), σ = 0.3
(red), σ = 0.5 (blue), and σ = 0.7 (green). The system has three (or more) equi-
librium states inside the tongue-shaped domain and a single state outside. The
black dashed line and the black dotted line show the saddle homoclinic and Hopf
bifurcations in the noiseless case, respectively. The cusp (CP), Bogdanov–Takens
(BT), and fold-homoclinic (FH) points are also shown for the noiseless case.

large ensemble of size N, the noise creates fluctuations in the mean

field ∝ σ/
√

N. For N → ∞, these fluctuations disappear and one
can observe the coexistence of locally stable regimes of macroscopic
dynamics, while for finite N, fluctuations are present and lead to
spontaneous switchings between the regimes.31,32 For regimes that
are close to each other in the phase space, the switching becomes
very frequent, which makes the observation of separate regimes
practically impossible.

FIG. 6. Bifurcation threshold 1SN is plotted vs the noise strength σ for several
values of�: from top to bottom,� = 0.88,� = 0.90, and� = 0.92.

FIG. 7. (a) The domains of bistability (black) and collective oscillations (gray)
for a finite ensemble of N = 104 elements on the (1,�)-plane are plotted for
σ = 0.3. Red lines show the theoretically obtained saddle-node bifurcation
curves (the same as in Fig. 5). (b) Zoom-in of the bistability domain from graph (a).

VI. CONCLUSION

In this paper, the method of circular cumulants has been
applied to describe the collective dynamics of a heterogeneous
ensemble of globally coupled active rotators subject to intrinsic
noise. The method has allowed us to obtain a reduced model
describing the dynamics of “local” subpopulations of elements with
a specific frequency. It was shown that with the reduced model, one
can calculate the values of the local order parameters with a decent
accuracy: for a weak noise, in most cases, the method error is of the
order of magnitude of σ 4. The accuracy drops significantly close to
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the critical frequency values, where the local dynamics of the ele-
ments experiences a SNIPER bifurcation. In this case, the method
error is of the order of magnitude of σ 2/3. However, the width of
the frequency range, where the cumulant method gives a significant
error, becomes narrower as the noise strength decreases according
to the power law σ 4/3. As a result, the error in the calculation of the
global order parameter is of the order of magnitude of σ 2. This level
of accuracy turns out to be acceptable for using the two-cumulant
model reduction as an approximation for the two following reasons.
First, in some systems,21 even a small noise can create stable regimes
far from the Ott–Antonsen manifold; in these systems, the effect of
noise is large compared to σ 2. Second, the error of solutions turns
out to be small compared to the noise-induced effects, although the
solutions do not become more relatively accurate for σ → 0.

The obtained expressions for the order parameter of “local”
subpopulations have been used to derive the self-consistency con-
dition for stationary collective modes of the population behavior,
characterized by a constant-in-time Kuramoto order parameter
(mean field). For a uniform distribution of natural frequencies in
a population, the self-consistency condition reduces to a scalar
equation for the order parameter. The solutions of this equation
allow one to determine the stationary regimes of the system and
to reconstruct its microscopic state. Depending on the parameters,
the system can have either one or several solutions. The latter case
corresponds to the bistability in the system, which can demon-
strate different locally stable modes of collective behavior for the
same parameter values. The bistability domain in the parameter
space has a characteristic tongue-like shape; the theory developed
in this paper allows one to find the boundaries of this domain fairly
accurately. It also allows us to determine the border between the sta-
tionary and oscillatory collective modes. The study explicitly reveals
that the impact of intrinsic noise is qualitatively equivalent to an
increase of the population heterogeneity quantified by the width of
the distribution of element parameters.
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31I. Franović and V. Klinshov, “Slow rate fluctuations in a network of noisy
neurons with coupling delay,” Europhys. Lett. 116, 48002 (2016).
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