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Optical spectra of two-dimensional transition-metal dichalcogenides (TMDC) are influenced by complex
multiparticle excitonic states. Their theoretical analysis requires solving the many-body problem, which in most
cases, is prohibitively complicated. In this work, we calculate the optical spectra by exact diagonalization of the
three-particle Hamiltonian within the Tamm-Dancoff approximation where the doping effects are accounted for
via the Pauli blocking mechanism, modelled by a discretized mesh in the momentum space. The single-particle
basis is extracted from the ab initio calculations. Obtained three-particle eigenstates and the corresponding
transition dipole matrix elements are used to calculate the linear absorption spectra as a function of the doping
level. Results for negatively doped MoS, monolayer (ML) are in excellent quantitative agreement with the
available experimental data, validating our approach. The results predict additional spectral features due to the
intervalley exciton that is optically dark in an undoped ML but is brightened by the doping. Our approach can
be applied to a plethora of other atomically thin semiconductors, where the doping induced brightening of the

many-particle states is also anticipated.
DOI: 10.1103/PhysRevB.101.245433

I. INTRODUCTION

MoS; ML’s are noncentrosymmetric 2D semiconductors
with two degenerate direct gaps in the single-particle spectrum
at the =K points of the Brillouin zone [1-4]. Such structures
have many properties that are of interest to both fundamental
research and practical applications. In particular, they are
strongly coupled to light, yielding strong photoluminescence
[1,5], and have a large spin-orbit interaction, which allows one
for efficient manipulation of their spin and valley degrees of
freedom [6-9]. A unique combination of optical and electrical
characteristics of those materials makes them very attractive
for a variety of optoelectronic applications [10,11] including
logic circuits [12,13], phototransistors [14], and light sen-
sors [15] as well as light-producing and harvesting devices
[16-20].

The 2D geometry of such materials enhances the Coulomb
interaction, giving rise, in particular, to a much larger exciton
binding energy [1,5,16,21-23] in comparison with that in bulk
semiconductors [24]. This enhancement also facilitates other
many-body states including three-particle charged excitons
or trions [20,25-33]. Signatures of negatively charged trions,
consisting of two electrons and one hole, were previously
observed in the photoluminescence spectrum of a field-effect
transistor made of a MoS, ML [25]. It must be noted that
the existence of two degenerate valleys in the band structure
results in many different types of exciton and trion states, such
that a reliable interpretation of experiments is possible only
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alongside comprehensive theoretical analysis of three particle
states [11].

A direct solution of a three-body problem requires enor-
mous computation efforts even for a 2D system and, espe-
cially, in the presence of other particles due to the doping.
These difficulties forced researchers to look for approxi-
mate methods, such as the variational [34,35] and stochastic
approaches [36-38], perturbation expansions [39-42], path
integral [43,44] and diffusion Monte Carlo methods [45]. Re-
cently, a direct solution of the three-body problem within the
Tamm-Dancoff approach become possible [46-53]. However,
solving the three-body problem itself is of limited use, if one
wants to describe real experiments, where trions are excited in
a doped structure where they interact with the excess carriers
[25,29,54,55].

In this work, we overcome this shortcoming by calculating
the trion states from the exact solution of the three-particle
Hamiltonian, obtained within the Tamm-Dancoff approxima-
tion, where the discretized mesh in the momentum space
is introduced to account for the Pauli blocking due to the
doping. The set of single particle basis states is obtained from
the ab initio calculations of the electronic band structure.
The solution to the three-particle problem gives the energy
spectrum and wave functions of the trion states used to
calculate transition dipole matrix elements and then the linear
absorption spectra as a function of doping level. Results for
the negatively charged trion states in an electrically doped
MoS; ML are in excellent quantitative agreement with the
available experimental data. Our calculations predict that the
intervalley exciton state, which is dark in undoped ML’s, be-
comes optically active (brightens) when the ML is sufficiently
doped.
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The paper is organized as follows. The main steps of the
calculations are explained in Sec. II, which describes the
solution of the three-body problem in the Tamm-Dancoff
approximation and optical spectra calculations in the presence
of doping. Results for the optical spectra as a function of dop-
ing and dielectric environment are presented in Sec. III. The
relation of the low energy trion states with the corresponding
two-particle exciton states in undoped ML’s is also discussed
in Sec. III. We summarize our findings in Sec. IV and outline
future directions.

II. MODEL AND METHODS

A. Three-particle Hamiltonian

The calculations of the three-particle states and the related
optical spectra are done as follows. First, we obtain single-
particle states or the band structure of a MoS, monolayer
using a standard ab initio approach that combines the density
functional theory (DFT) and the GW method where the spin-
orbit interaction is taken into account within the first-order
perturbation theory [56].

Obtained single-particle states are used as a basis set for
the many-body Hamiltonian, where we take into account the
Coulomb interaction between electrons in the conduction and
holes in the valence bands. Three-particle states are con-
structed as linear combinations
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where the index c;,/v denote electron/hole states in the
conduction/valence bands and the double counting is avoided
by imposing the restriction ¢; < ¢,. The corresponding three-
particle wave function is obtained from the single-particle
ones ¢, ,(x) as
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Coefficients A’Cl o of the expansions (1) and (2) are found by
solving the matrix eigenvalue problem
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where the matrix Hamiltonian in the Tamm-Dancoff ap-
proximation has three contributions H = Ho + H, + Ho,
defined as
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where ¢, and ¢, are energies of the single-particle electron and
hole states. Matrix elements for the bare Coulomb interaction
V are given by
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FIG. 1. (a) Schematic discretization of the Brillouin zone with
the basis vectors 51,2 and the 6x6 k-point mesh. A magenta filled
polygon shows an elementary area Ak*+/3/2 per k point. Points I",
K, K’, and M are shown for reference. (b) Relation between the Fermi
momentum (x axis), the Fermi energy of the doping electrons (left y
axis) and the number of k points of the mesh (right y axis).

where V(q) = 2me?/q and (u.|u,) is the overlap of the single-
particle Bloch states ¢ and a and ¢ is the effective dielectric
constant that depends on the environment. The screened po-
tential is given also by Eq. (5), however, instead of the bare
Coulomb potential V (q) we use the standard Rytova-Keldysh
expression [57-59]
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where ry is the screening length [60].

Finally, we also calculate two-particle neutral exciton
states in the undoped ML using the standard approach based
on the Bethe-Salpeter equation (BSE) for comparison [61].
This yields the benchmark for the results obtained for the
doped ML’s in the limit of small doping.

B. Doping influence

Calculating three particle states cannot be used to describe
optical properties of doped MoS, ML’s, where excess elec-
trons interact with the carriers composing trions. The analysis
of trion states in a doped ML with excess electrons requires
very nontrivial many-body calculations. However, it can be
solved with an acceptable accuracy by using a numerical
scheme which is no more complex than the original three-
body problem. The main idea is to relate the doping with
the discrete momentum space. The discretization is done in
all numerical calculations, however, additional effects intro-
duced by it are commonly regarded as an artifact that must
be eliminated by choosing a sufficiently small discretization
interval Ak. At the same time, the discretization is directly
related to the doping density which can be intuitively un-
derstood by recalling that the discretization in the k space
is equivalent to considering a system in a finite box of size
L. The discretization can thus be loosely interpreted as each
L-sized box in the periodic system has a trion and, hence,
a single excess electron. For the N xN k-point mesh of the
Brillouin zone, shown in Fig. 1(a), this yields an estimate for
the doping density n = g,g,/(AN 2), where g, = g, = 2 are
spin and valley degeneracies, respectively, A = v/3a?/2 is the
unit cell area, and « is the lattice constant.

One can also see the relation between the discretization
and the doping from a different perspective. The excess
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FIG. 2. Band structure of a MoS, ML near points K and —K of the Brillouin zone. The single particle density of states (DOS) for trion
wave functions is illustrated by circles: Their centers point to the contributing states and the radii give the contribution weights. Panels (a), (b),
and (c) correspond to different three-particle states X ~, iX%e, and X%, schematically illustrated, where longer orbitals depict weakly bound
electrons. Three-particle states Xe and iX%e are related, respectively, to the intervalley X° and intravalley iX° two-particle excitons in the
undoped ML. The calculations are shown for the Fermi level Er = 3.04 meV.

electrons are Fermi particles, which, following the Pauli’s
exclusion principle, occupy all the single-particle states below
the Fermi level Er (if we assume that the system temperature
kgT < Er). The interaction-induced scattering to the occu-
pied states is thus blocked and such states must be excluded
from the solution of the problem. The discretization in the k
space effectively introduces the Pauli blocking by restricting
the available phase space to states with energy E > Ep =
N /2m¥, where Ak = 4m/ (+/3aN) is related to the area
of the Brillouin zone (NAk)?*v/3/2 = 4x2/A, see Fig. 1(b).
In this estimate we use effective mass of the conduction
band m, = 0.52m,, which is consistent with the earlier works
[3,34]. Note that the usual relationship Er = hzrm/ZmC be-
tween the Fermi energy and the carrier density does not hold
in our case, because an effective Fermi area on a discretized
mesh is Ak%+/3/2 and not 7 Ak2.

C. Absorption spectrum

The linear absorption spectrum is calculated as a sum of the
transition rates between all possible free electron and three-
particle states, which yields the expression:

L(g) o< Y [(t[Ple)8(e — & + &), (7)
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where the summation runs over single-electron ¢ and three-
particle ¢ states with the same momenta k. The transition
matrix element in this expression is calculated as

(tPle) = > AL, (Pev8? — Penvdd). (8)
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and p., denotes the dipole matrix element calculated for
conduction ¢ and valence v states. In order to account for
the finite lifetime of three-particle states the delta function in
Eq. (7) is replaced by the Gaussian function of the finite width;
here we assume this width is 1 meV.

III. RESULTS

A. Band structure and effective tight-banding Hamiltonian

The band structure of a single-layered MoS; is calculated
using the DFT approach as implemented in the GPAW [62,63]
code with the PBE exchange-correlation functional [64]. The
spin-orbit interaction is taken into account within the first-
order perturbation contribution [56]. The calculations are
done using the plane-wave basis with the 12x12x 1 grid in the
k space with the energy cutoff 600 eV. The lattice constant of
MoS, is assumed a = 3.14 10%; the vacuum distance between
MoS; layers is 20 A. We also assume that the MoS, ML is
placed on the SiO, substrate; the effective dielectric constant
of the ML on this substrate is ¢ = 2.45 [34,59,60].

Obtained band structure is similar to the one calculated in
earlier works [3,22,47], it has two degenerate direct gaps £, =
2.184 eV at two valley points K and —K of the Brillouin zone.
Figure 2 shows the band structure of the single particle in the
vicinity of these two points that contribute most to the lowest
energy three-particle states.

As in Ref. [65] we use the obtained band structure to con-
struct an effective tight-binding Hamiltonian of the system.
This is done by employing a standard algorithm, implemented
in the WANNIER90 code [66] with the 24x24x1 mesh of
the Brillouin zone. The resulting Hamiltonian has 22 bands,
of which 10 conduction bands correspond to Mo atoms and
6 valence bands correspond to each of the S atoms in the
elementary cell. We also apply a scissor procedure with
Agcissor = 0.497 eV to get the correct energy of the ground
exciton state. Eigenstates of the tight-binding Hamiltonian are
then used as a basis set of single-particle states in the analysis
of trions.

B. Three-particle states

In the calculations of the three-particle states we assume
the screening length of the Keldysh-Rytova potential to be
ro = 33.875 A/e [60]. The computational load of solving
the three-body problem is reduced considerably when the
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single-particle basis is restricted by constraints
{lke, £ K|, [k, £k, [k, £ k[} < g, )

where Kk is the momentum of a three-particle state and the
cutoff g. = 0.4 A~" is chosen to ensure the optimal accuracy
and convergence of the calculations.

The calculations reveal three qualitatively different low-
est energy three-particle states. Their structure is illustrated
in Fig. 2, which demonstrates a contribution of the single-
particle state to the three-particle wave function, i.e., sin-
gle particle density of states (DOS), by a circle with the
center pointing to the contributing single-particle state and the
radius proportional to the contribution weight.

An example of the structure of the lowest energy trion state
X~ is shown in Fig. 2(a). There are several (four) such trion
states which differ by the spin and valley of the contributing
electronic states. When the doping level is small, these states
can be classified as intervalley and intravalley trions [67-69].
Three of them are optically active (bright) and can contribute
to the optical spectra [70]. In MoS, ML their energies are very
close (the energy separation is of the order of 1 meV) and,
consequently, they cannot be distinguished in the spectrum
unless the magnetic field is applied. In this work we do not
discuss differences in their structure in detail.

One feature is, however, shared by all these lower energy
X~ trion states. Figure 2(a) shows that they comprise many
electronic states of similar weights pointing to a strong local-
ization of both electrons. In contrast, the DOS of the higher
energy three-particle states, iX%¢ and X% in Figs. 2(b) and
2(c), is nonsymmetric and singular: The contribution of one
of the valleys is restricted to essentially one single-particle
state, which means that one of the electrons is only weakly
localized.

Three-particle states iX 0¢ and XV are, in fact, very close to
the two-particle excitons, “polarized” by the weak coupling to
the doping electrons. In principle, effects of such polarization
can be described within the perturbation theory [39]. The BSE
calculations show that two types of the corresponding bound
excitonic states exist in undoped MoS, ML’s: the intravalley
XY exciton, where the electron and hole are both in the same
valley, and the intervalley iX 0 exciton, where the electron and
hole are in different valleys. Our solution of the three particle
problem demonstrates that in the limit of vanishing doping the
wave functions of the X e and iX e states are represented as
a product of the wave function of the exciton state, X° or iX°,
respectively, and the wave function of a delocalized electron
from the other valley, with the energy being the sum of the
energies of the exciton and the free electron. This relation
explains the choice of notations X% and iX%¢ which mean
a neutral exciton, X° or iX°, augmented by an extra weakly
bound electron. The structures of these states are illustrated
schematically in Fig. 2.

C. Absorption spectrum

The low frequency part of the linear absorption spectrum of
a MoS, ML on a SiO, substrate, calculated at several values
of the doping level, is plotted in Fig. 3(a). The spectrum
generally has three well defined peaks corresponding to the
X, iX%, and X% states (below also referred to as the

X, iX%, and X°e peaks for brevity). As noted above all
lowest trion states X ~ yield a single peak in the spectrum.

The intensity of the peaks changes with the doping level
considerably. In the limit of vanishing doping the X% peak
dominates while the peaks X ~ and iX e disappear. This is also
illustrated in Fig. 3(b) that plots the spectrum of a doped ML
with Er = 3.04 meV alongside the spectrum of the undoped
ML, obtained by solving the BSE for the exciton states. One
sees that at small doping the X%e peak approaches the X°
exciton peak in the undoped ML.

A detailed doping dependence of the peak intensities, mea-
sured by their oscillator strength (OS), is shown in Fig. 3(c).
The results clearly demonstrate that the intensity of both X~
and iX% peaks is a monotonically increasing function of
n, vanishing in the undoped ML limit, » — 0. In contrast,
the intensity of the X%e peak is maximal at zero doping,
decreasing monotonically when 7 rises.

Absence of the iXe peak at n — 0 does not imply that
the state iX%¢ does not exist in this limit. However, the
corresponding optical transitions are suppressed, which can
also be seen from the BSE calculations for the two-particle
iX" excitonic state in the undoped ML, which confirms the
intervalley iX° exciton being optically dark. However, when
the system is doped the exciton iX° acquires an extra (weakly
bound) electron and becomes an optically active three-particle
state iX"e, giving an extra peak in the absorption spectra.
Notice that the doping leads to the appearance of the peak
X~ as well. However, trion states X ~ with two tightly bound
electrons do not have the counterpart exciton states in the
undoped ML.

The intensity of the iX%e peak increases very slowly with
EFr, slower than that of the X ~ peak [Fig. 3(c)]. Itis practically
not visible at Er < 7 meV. It should also be noted that the
peak visibility declines when other relaxation mechanisms
further widen the trion spectral lines. Nevertheless, our cal-
culations demonstrate that doping tends to enhance both X~
and iX%e peaks, making them dominant at sufficiently large
doping levels. We also note that, remarkably, the sum of the
OS’s of all three peaks is practically constant being equal to
that of the two-particle exciton state X 0 obtained from the
BSE calculations and shown in Fig. 3(d) for comparison.

The spectra in Fig. 3(a) reveal notable doping dependencies
of the energy position of the spectral peaks. Details of these
dependencies are given by Fig. 3(d). Remarkably, the doping
affects the states X —, iX’e, and X% in a qualitatively different
way. When the doping increases, the X~ peak shifts to the
lower energies, whereas the energy of the X e and iX%e peaks
increases. For comparison, Fig. 3(d) shows the transition
energies of the X and iX° exciton states calculated for the
undoped ML using the BSE. One sees that transition energies
of X% and iX three-particle states converge to the BSE
results in the limit of vanishing doping, which is another
evidence of the relation between XY and X%, as well as
between iX° and iXY states, in this limit. Results for the
X~ and X e peak positions demonstrate a perfect quantitative
agreement with the available experimental data [25], also
shown in Fig. 3(d) for comparison. The data for the iX e peak
are missing, which is probably explained by its lower OS,
especially at small doping densities and large inhomogeneous
broadening.
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FIG. 3. (a) Absorption spectrum calculated for different values of the doping density n (right) corresponding to the Fermi levels Er (left);
the lines are offset vertically for clarity. The three peaks correspond to three-particle states X ~, iX°e, and X°e shown in Fig. 2. (b) Absorption
spectra of the undoped (red) and doped (blue) ML’s at the Fermi level Er = 3.04 meV. (c) The oscillator strength (OS) of the spectral peaks
and the total OS (the sum for the three peaks) as a function of the Fermi level. Dashed line gives the OS of the X exciton peak of the undoped
ML. (d) The energy position of the peaks as a function of the Fermi level, experimental data [25] for the two peaks energies X ~ and X e are
shown for comparison. Dashed lines show the intervalley iX® and intravalley X° exciton energies from the BSE solution in the undoped ML.

To further understand the dependence of the three-particle
energy on the doping, in Fig. 4(a) we plot the energy differ-
ence AE between pairs of states X% — X~ and X% — iX%
as a function of the Fermi level Er. The experimentally mea-
sured energy difference for states X’e and X~ is also plotted
for comparison, showing a very good quantitative agreement
with the calculations. In all cases AE is a monotonically
increasing function of Er.

The dashed lines in Fig. 4(a) illustrate a known simple es-
timate [71], which yields the linear dependence AE = Ay +
aEr, with « = 1. This estimate can be rationalized by using
the following intuitive arguments. As the doping increases,
single particle electronic states below Er cannot contribute to
the X% three-particle state due to the Pauli principle, thereby
increasing the kinetic energy contribution to its total energy by
Ep. On the other hand, in the iX e state doped electrons fill the
opposite K valley, as shown in Fig. 2(b). Therefore, the Pauli
blocking does not modify the kinetic energy of the bound
electron in the —K valley. At the same time, for the trion state
X ~, where both electrons are tightly bound, changes in the
Fermi level do not contribute to the kinetic energy in the first
order.

Deviations from the linear estimates, seen in Fig. 4(a),
are due to the potential energy contribution to the energy. In
order to illustrate this, in Fig. 4(b) we plot the corresponding

differences between the potential energy of the same states.
For the states X e and iX e this difference has a weaker Fermi
energy dependence than that for the X% and X~ pair. That
explains why for the states X°e and iX% one has a better
agreement with the linear dependence of the energy splitting,
seen in Fig. 4(a).

D. Influence of the substrate

Modifications of the substrate material give rise to chang-
ing the effective dielectric constant & which, following
Egs. (5) and (6), modifies the effective Coulomb interaction
and thus, the energy of three-particle states and the absorption
spectrum. Together with the varying doping this can also be
used to manipulate (engineer) optical properties of the MoS;
ML structures.

Figure 5(a) shows binding energies of the three-particle
states (relative to the X exciton peak position in the undoped
system) as a function of the substrate dielectric constant
g, calculated for two values of Er. For Er = 4.87 meV the
binding energy is a monotonically decreasing function of ¢.
However, at larger doping, Er = 10.89 meV, the energy tends
to saturate at ¢ 2 10. This is explained by the fact that free
carriers dominate the screening of the Coulomb interaction
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FIG. 4. (a) Energy differences AE (splitting) for pairs of states:
X% — X~ and X% — iXP, are plotted as a function of the Fermi
energy Ep. Dashed lines illustrate the linear dependence AE =
Ao + aEr with o = 1. Available experimental data [25] for the
energy difference of states X%e — X ~ are also shown for comparison.
(b) The doping dependence of the potential energy contribution to
the splitting that yields the deviations from the linear dependence in
panel (a) (see text). The horizontal dashed lines in (b) are a guide to
the eye.

at large ¢, so that the role of the environmental screening
diminishes.

In this context it is worth noting that the popular variational
approach [34] does not yield the saturation of the binding
energy at large ¢, because it does not take into account the
screening induced by the free carriers. This explains why the
deviation between the exact and the variational approach in
Fig. 5 is relatively small for the undoped system but grows at
larger doping thereby limiting applicability of this approach
for heavily doped TMDC MLs.

The dependence of the peak intensity on the dielectric con-
stant, shown in Figs. 5(b) and 5(c), demonstrates qualitatively
different behavior for different three-particle states. While
the intensity of the X% peak is a monotonically decreasing
function of ¢, the intensities of the iX% and X ~ peaks increase
at small but saturate at large values of ¢.

The decreasing intensity of the X e peak is attributed to
the increasing radius of the three-particle state which results
in a smaller spatial overlap between the localized electron and
the localized hole. In the case of the iX’e state, the optical
transition is determined by the overlap between the wave
functions of the delocalized electron and the localized hole.
As the localization length of the hole increases its overlap with
the delocalized electron increases as well, leading to the larger
OS. We note in passing that the total OS from all three peaks
coincides with that of the X° exciton state in the undoped
system obtained by solving the BSE (not shown here).

IV. CONCLUSIONS

This work presented results of the theoretical investiga-
tion of the linear absorption spectrum of a doped MoS;
ML. The calculations are done using a combination of the
ab initio approach for the band structure and the solution of the
three-particle problem, where the doping is accounted for by
discretizing the phase space. This method allowed us to study
the doping dependence of the lowest spectral peaks associated
with three qualitatively different three-particle states X —, X %e,
and iX%. The approach in general can be extended to other
TMDC MLs.

20 (a) 0.25 (b) EF=10.89 meV 0.25 (c) EF=4.87 meV
b o X E=l0somey | ' ° Xx- - o X
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3 30f e v iX? Er=10.89 meV s 020 s X0 s 0-20¢ stm
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£ 83 3 u 3 Ny
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o S 0.05 2290900¢¢ S 0.05 ec0000000000
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Dielectric constant
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FIG. 5. (a) Binding energy of the trion state relative to the energy of the X° exciton in the undoped ML as a function of the substrate
dielectric constant ¢, calculated at Er = 10.89 meV and Er = 4.87 meV. Results for the variational calculations (magenta circles) for the
lowest X~ states are given for comparison. (b) and (c) OS for the spectral peaks, calculated at Er = 10.89 meV and Er = 4.87 meV (in the

last case the iX°e peak is not visible).
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The calculations reproduce available experimental data for
two spectral peaks X~ and X% with an excellent accuracy.
We also predict that at sufficiently large doping the spectrum
acquires one more peak due to the intervalley exciton state
iX%, which is dark in the undoped ML but is brightened
when the doping is large. Observations of the predicted here
iX e state are related to the sample quality, in which the peak
widths should be smaller than the energy difference between
the X% and iX°e peaks shown in Fig. 4(a). However, indirect
evidence such as OS doping dependencies of the spectrally
resolved peaks may serve as an experimental signatures of
the iX%e states. It should be noted that transitions between
other multiparticle states can, in principle, contribute to the
spectral interval between the X’e and X ~ peaks, for example,
transitions between exciton X and biexciton X°X° states
[37,72,73]. However, in the light absorption processes such

transitions yield only nonlinear contributions and are missing
in the linear absorption spectrum calculated here.

We also demonstrate how contributions by different exci-
tonic states to the spectrum can be manipulated by changing
the dielectric environment. Our qualitative conclusions are
general and should hold for other TMDC layered structures
with the valley degeneracy in the single-particle spectrum.
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