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Abstract. We give a short overview of the results related to the refined forms of the central
limit theorem, with a focus on independent integer-valued random variables (r.v.’s). In the inde-
pendent and non-identically distributed (non-i.i.d.) case, an approximation is then developed for the
distribution of the sum by means of the Chebyshev–Edgeworth correction containing the moments
of the third order.
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1. Introduction. Let X1, . . . , Xn be independent random variables (r.v.’s) with
finite absolute moments of the third order. Consider the sum Sn = X1 + · · · + Xn.
It is known that Sn has a nearly normal distribution with mean µ = ESn and variance
σ2 = DSn (σ > 0), as long as the third-order Lyapunov ratio (or fraction)

L3 =
1

σ3

n∑
k=1

E|Xk −EXk|3

is small. A quantitative result is given by the Berry–Esseen inequality

(1.1) sup
x

∣∣∣∣P{Sn ⩽ x} − Φ

(
x− µ

σ

)∣∣∣∣ ⩽ cL3,

holding with some positive absolute constant c (cf., e.g., [19]). Here and in what
follows, Φ denotes the standard normal distribution function (d.f.) with probability
density function

φ(x) =
1√
2π

e−x2/2, x ∈ R.

We necessarily have L3 ⩾ 1/
√
n. In the i.i.d. case Xk = ξk/

√
n, this inequality

can be reversed up to a factor depending on ξ1. Hence in (1.1) we have

(1.2) P{Sn ⩽ x} = Φ

(
x− µ

σ

)
+O

(
1√
n

)
, n→ ∞,

with a standard rate of normal approximation.
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538 S. G. BOBKOV AND V. V. ULYANOV

In order to make a more precise statement with a smaller error of approximation
than (1.1), (1.2), the normal distribution function should be slightly corrected in
a smooth way. Namely, we introduce

(1.3) Φ3(x) = Φ(x)− l3
6
(x2 − 1)φ(x), x ∈ R,

where

l3 =
1

σ3
E(Sn −ESn)

3 =
1

σ3

n∑
k=1

E(Xk −EXk)
3.

Here the index 3 reflects the fact that in (1.3) the moments of Xk up to the third order
are used. In view of the Fourier–Stieltjes transform of a signed Borel measure on the
real line, the function Φ3 is designated below as the third-order Chebyshev–Edgeworth
correction of the d.f. Fn = P{Zn ⩽ x} of the normalized sum Zn = (Sn − µ)/σ.
In the i.i.d. case with Xk = ξk/

√
n, the correction Φ3(x) − Φ(x) appears as the first

term in the expansion for Fn(x) in powers of 1/
√
n in the form

Fn(x)− Φ(x) ∼ Q1(x)φ(x)
1

n1/2
+Q2(x)φ(x)

1

n
+ · · · .

Here, each Qj(x) represents a polynomial whose coefficients depend on the first j +2
moments of ξ1. Based on the idea of expansion of arbitrary functions in series of
Chebyshev–Hermite polynomials, the study of such expansions was started in 1887
by Chebyshev [7] and then continued by Edgeworth, Charlier, Cramér, and Esseen,
among others. For references and discussion of the subject, we refer the reader to
Gnedenko and Kolmogorov [15].

Even if we restrict ourselves to the first term in this expansion, a general problem
is to explore whether or not it is possible to improve inequality (1.1) by replacing Φ
with Φ3. Such a replacement would not deteriorate this bound in view of the relation
|l3| ⩽ L3. On the other hand, a comparison of smooth linear functionals (for example,
characteristic functions (ch.f.’s)) of Fn and Φ3 suggests that an improvement is indeed
possible in various natural scenarios.

2. Nonlattice distributions. In particular, in the i.i.d. situation, assuming
that X1 has a nonlattice distribution, Esseen [12] derived the representation

(2.1) P{Sn ⩽ x} = Φ3

(
x− µ

σ

)
+ o

(
1√
n

)
, n→ ∞,

which holds uniformly over all x ∈ R, where as before, µ = nEX1 and σ2 = nD(X1).
Although somewhat implicitly, this theorem improves the standard rate of normal
approximation as in (1.2). The remainder term in (2.1) can be improved to O(1/n),
provided that EX4

1 <∞ and assuming that the Cramér continuity condition

(2.2) lim sup
t→∞

|EeitX1 | < 1,

is fulfilled; this is a particular case of Cramér’s theorem (see [9] and [10]).
In general, however, the order of magnitude of the remainder term depends on

arithmetical properties of the point spectrum of the d.f. of X1. If condition (2.2) is
not met, the Kolmogorov distance

∆n = sup
x

∣∣∣∣P{Sn ⩽ x} − Φ3

(
x− µ

σ

)∣∣∣∣
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THE CHEBYSHEV–EDGEWORTH CORRECTION IN CLT 539

may actually be of the order of n−α up to logarithmic factors, for any prescribed
value α, 1

2 < α < 1. Let us mention the following characterization for the i.i.d. case
Xk = ξk/

√
n with Eξ41 < ∞ in terms of the (common) ch.f. f(t) = E eitξ1 . Namely,

given p ⩾ 2, the property

(2.3) ∆n = Õ(n1/2−1/p), n→ ∞,

is equivalent to saying that

(2.4)
1

1− |f(t)|
= Õ(tp), t→ ∞.

Here, we use the notation Õ(tp) for the growth rate O(tp (ln t)q) with some q ∈ R and

similarly Õ(np) for O(np(lnn)q).
Simple discrete examples, where ξ1 takes 4 values ±1, ±a, each with probability 1

4
for irrational numbers a, are described in [6] (note that Φ3 = Φ for symmetric distri-
butions).

Let

η(a) = sup
{
η > 0: lim inf

n→∞
nη∥na∥ = 0

}
= inf

{
η > 0: inf

n⩾1
nη∥na∥ > 0

}
,

where ∥x∥ denotes the distance from a real number x to the closest integer. The
value η = η(a), called a type of an irrational number a, is optimal in the sense that,
for any ε > 0, the Diophantine inequality |a − p/q| < q−(1+η−ε) has infinitely many
rational solutions p/q. By Dirichlet’s theorem, η ⩾ 1. The possible values of η fills
the whole half-axis [1,∞] including the case η = ∞ (which describes the Liouville
numbers); cf. [1]. Applying the equivalence of (2.3) and (2.4) with p = 2η, we have,
for any ε > 0,

∆n = O(n−1/2−1/(2η)+ε), n→ ∞,

if and only if the number a is of type η.
Note that the multidimensional case differs markedly from the one-dimensional

case. For instance, the distribution of the normalized sum of i.i.d. random vectors is
approximated only by a Gaussian distribution without any corrections on the class
of all centered ellipsoids with an accuracy of the order from o(1/

√
n) up to O(1/n).

It holds under the appropriate dimension of space and when the summands satisfy
some moment conditions, for example, finiteness of the fourth absolute moment (see,
e.g., [12], [20], and [14]). For the non-i.i.d. random vectors case, see [23].

3. Lattice distributions. Bernoulli and Poisson schemes. It was also
shown by Esseen that a representation similar to (2.1) holds also for lattice distribu-
tions if one adds to Φ3 a certain discontinuous periodic function with a factor of the
order of 1/

√
n. To make the statement more transparent, we suppose without loss of

generality that X1 takes integer values, with h = 1 being the maximal step (span),
so that the distribution of X1 is not supported on hZ for h > 1. Now Theorem 3
in [12, p. 56] can be equivalently stated as

(3.1) P{Sn ⩽ x} = Φ3

(
x− µ

σ

)
+

1

σ
ψ(x)φ

(
x− µ

σ

)
+ o

(
1√
n

)
,

with ψ(x) = x − [x] + 1
2 (the convergence is uniform in x; cf. also [15, Chap. 8, sec-

tion 43]. This result was refined by Bikjalis [4] with a nonuniform remainder term
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540 S. G. BOBKOV AND V. V. ULYANOV

and then by Osipov [17] to higher order Chebyshev–Edgeworth expansions (thereby
refining Theorem 4 in [12]). However, the additional Esseen terms in such represen-
tations have a rather complicated structure and are expressed in the form of infinite
Fourier series.

To avoid unnecessary technicalities, we consider the probabilities P{Sn ⩽ k} for
integers k only, since the sum Sn in (3.1) is integer-valued. Now the additional term
vanishes if (3.1) is applied with x = k + 1

2 , which gives us the simpler representation

(3.2) P{Sn ⩽ k} = Φ3

(
k + 1/2− µ

σ

)
+ o

(
1√
n

)
,

which holds uniformly over all k ∈ Z. As we see, the points where Φ3 is evaluated in
the two scenarios in (2.1) and (3.2) are slightly different. This well-known phenom-
enon should not be confusing; it was a focus of many investigations in the scheme
of Bernoulli trials including the works by Bernstein [2], [3], Feller [13], and Uspen-
sky [24]. If Xk takes only two values 1 and 0 with probabilities p and q = 1 − p, we
have µ = np, σ2 = npq, and now inequality (1.1) becomes

sup
0⩽k⩽n

∣∣∣∣P{Sn ⩽ k} − Φ

(
k − np
√
npq

)∣∣∣∣ ⩽ c
√
npq

.

In his book [24, pp. 129–131], Uspensky established a two-term approximation imply-
ing the much stronger inequality

(3.3) sup
0⩽k⩽n

∣∣∣∣P{Sn ⩽ k} − Φ3

(
k + 1/2− np

√
npq

)∣∣∣∣ ⩽ c

npq
,

which also quantifies the remainder term in (3.2). Here, according to (1.3), the
Chebyshev–Edgeworth correction may be simplified to read

Φ3(x) = Φ(x)− p− q

6
√
npq

(x2 − 1)φ(x).

Uspenksy’s approach was adapted by Cheng [8] to get a Poissonian analogue of
bound (3.3). It was shown that, if an r.v. ξ has a Poisson distribution with parameter
λ > 0, that is,

P{ξ = k} =
λk

k!
e−λ, k = 0, 1, . . . ,

then

(3.4) sup
k

∣∣∣∣P{ξ ⩽ k} − Φ3

(
k + 1/2− λ√

λ

)∣∣∣∣ ⩽ c

λ
.

Here, the Chebyshev–Edgeworth correction for ξ is given by

(3.5) Φ3(x) = Φ(x)− 1

6
√
λ
(x2 − 1)φ(x), x ∈ R,

(which does not depend on n). This representation is consistent with (1.3): it suffices
to represent ξ as the sum of n independent Poisson r.v.’s with parameter λ/n.

The next natural step was made by Deheuvels, Puri, and Ralescu [11] who
extended inequality (3.3) to independent Bernoulli r.v.’s Xk taking the values 0 and 1
with not necessarily equal probabilities pk = P{Xk = 1}. Namely, we similarly have

(3.6) sup
0⩽k⩽n

∣∣∣∣P{Sn ⩽ k} − Φ3

(
k + 1/2− µ

σ

)∣∣∣∣ ⩽ c

σ2
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for some absolute constant c > 0, where

µ = p1 + · · ·+ pn, σ2 = p1q1 + · · ·+ pnqn (qk = 1− pk),

and where Φ3 is defined according to (1.3) with

l3 =
1

σ3

n∑
k=1

pkqk(pk − qk).

For statistical reasons, this estimate was polished by Mikhailov [16], who showed
that the right-hand side in (3.6) can be replaced by (σ + 3)/(4σ3) provided that
σ ⩾ 10. See also [25] for a further improvement.

4. Further developments. The aim of the remaining part of this note is to
extend estimate (3.6) to general independent integer-valued r.v.’s under the fourth
moment condition (which would also contain the Poissonian case (3.4)). To this aim,
we involve the Lyapunov ratio of order 4 defined by

(4.1) L4 =
1

σ4

n∑
k=1

E(Xk −EXk)
4, σ2 = DSn =

n∑
k=1

DXk.

This functional often appears naturally in various asymptotic expansions related to
the central limit theorem. However, for our purposes this functional is insufficient,
and so we introduce another quantity not related to the moments.

Definition 4.1. Given an integer-valued r.v. ξ with ch.f. v(t) = E eitξ, t ∈ R,
we put

(4.2) V(ξ) = − sup
0<t<2π

ln |v(t)|
1− cos t

.

One important feature of this functional is described in the following.

Proposition 4.1. If ξ is an integer-valued r.v., then 0 ⩽ V(ξ) < ∞. Moreover,
V(ξ) > 0 if and only if the distribution of ξ is nondegenerate and has the maximal
step h = 1.

In some sense, V(ξ) quantifies the “strength” of the property that the maximal
step of the lattice distribution of ξ is exactly h = 1. To illustrate this, suppose that
P{ξ = ±1} = 1− ε/2 and P{ξ = 0} = ε for some ε ∈ (0, 1). Then h = 1, while
V(ξ) → 0 as ε → 0. It is therefore not surprising that the limit distribution has
a larger maximal step h = 2.

If the r.v. ξ has a finite second moment, then by applying the Taylor formula to
the function |v(t)|2 near zero, we have by (4.2)

(4.3) V(ξ) ⩽ Dξ.

However, in general, it is unnecessary for these functionals to be of the same order, as
the previous example shows, where D(ξ) → 1 as ε→ 0. On the other hand, we have

V(ξ) = Dξ = pq,

when ξ has a Bernoulli distribution with parameters p = P{ξ = 1} and q = P{ξ = 0}.
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Let us also point out a superadditivity property of the functional V along con-
volutions. From Definition 4.1, for the sum Sn = X1 + · · · + Xn of independent
integer-valued r.v.’s, we have

(4.4) V(Sn) ⩾
n∑

k=1

V(Xk).

Moreover, here in the i.i.d. case we have an equality. In particular, V(Sn) =
D(Sn) = npq for the binomial distribution with parameters (n, p). More generally, the
equality in (4.4) also holds for sums of non-i.i.d. Bernoulli r.v.’s, since the supremum
in (4.2) with ξ = Sn is attained asymptotically at t = 0.

We can now formulate the main result. Recall that the Chebyshev–Edgeworth
correction Φ3(x) is defined in (1.3) and V(ξ) is defined in (4.2).

Theorem 4.1. Let integer-valued r.v.’s X1, . . . , Xn be independent and have finite
fourth moments. For the sum Sn = X1 + · · · + Xn, we put µ = ESn, σ

2 = D(Sn),
and V =

∑n
k=1 V(Xk). Then

(4.5) sup
k∈Z

∣∣∣∣P{Sn ⩽ k} − Φ3

(
k + 1/2− µ

σ

)∣∣∣∣ ⩽ cσ2

V
L4

with an absolute constant c > 0.

In the i.i.d. case, the right-hand side of (4.5) is simplified, and we arrive at (3.2)
with an improved remainder term.

Corollary 4.1. Suppose that integer-valued r.v.’s Xk are independent and have
a common nondegenerate distribution with maximal step h = 1 and EX4

1 < ∞.
Let µ = nEX1 and σ2 = nD(X1). Then

(4.6) P{Sn ⩽ k} = Φ3

(
k + 1/2− µ

σ

)
+O

(
1

n

)
as n→ ∞ uniformly over all k ∈ Z.

Moreover, the involved constant in the remainder term does not exceed, up to
a numerical factor, the quantity

E(X1 −EX1)
4

nV(X1)DX1
.

If Xk are independent Bernoulli r.v.’s with parameters pk = P{Xk = 1} and
qk = P{Xk = 0}, then

E(Xk −EXk)
4 = pkqk(p

3
k + q3k) ⩽ pkqk, E(Xk −EXk)

4 ⩾
1

4
pkqk.

Therefore, according to (4.1),

(4.7)
1

4σ2
⩽ L4 ⩽

1

σ2
.

In addition,
∑n

k=1 V(Xk) = σ2, which is mentioned above. As a result, inequality (4.5)
contains (3.6) as a particular case (the Deheuvels–Puri–Ralescu theorem).
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Another important particular case worth mentioning is related to the normal
approximation for the Poisson distribution. If an r.v. ξ has Poisson distribution with
parameter λ > 0, then, for all t ∈ R, its ch.f. v(t) satisfies

ln |v(t)|
1− cos t

= −λ.

Hence V(ξ)=Dξ=λ. We also have Eξ=λ, so it is easy to check that

(4.8) E(ξ −Eξ)3 = λ, E(ξ −Eξ)4 = λ(3λ+ 1).

Representing ξ = X1 + · · · + Xn with independent Poisson r.v.’s Xk with parame-
ter λ/n, we get l3 = 1/

√
λ, so, the Chebyshev–Edgeworth correction for ξ is given

by (3.5). In addition, L4 = 3/n + 1/λ, according to (4.1) and (4.8). Hence, making
n→ ∞, we get Cheng’s bound (3.4) from Theorem 4.1.

Let us now return to Proposition 4.1 and describe a simple argument in the
proof, which is required only in one part of the proof. If the distribution of an r.v. ξ
is nondegenerate, then |v(t)| ⩽ e−ct2 for some c > 0 in a sufficiently small interval
|t| ⩽ t0 (t0 > 0). In particular,

ln(1/|v(t)|)
1− cos t

⩾
ct2

1− cos t
⩾ c

in some neighborhood of zero. If, in addition, one knows that ξ is integer-valued, then
v(t) is (2π)-periodic, implying that |v(t)| ⩽ e−c(t−2π)2 for |t− 2π| ⩽ t0. Hence

ln(1/|v(t)|)
1− cos t

⩾ c
(t− 2π)2

1− cos t
⩾ c

in some neighborhood of 2π. Finally, recall that the property that the maximal step
is equal to h = 1 is equivalent to saying that |v(2π)| = 1 with |v(t)| < 1 for all
0 < t < 2π (cf. [19, Chap. 1, Lemma 1.2]). By the continuity of v(t), the ratio in (4.2)
is therefore bounded away from zero on the whole interval (0, 2π).

5. Preparation to the proof. Here we collect some technical results required
for the proof of Theorem 4.1.

Given independent r.v.’s X1, . . . , Xn with finite fourth moments, we put
µk = EXk, µ = µ1 + · · ·+ µn, σ

2 = D(Sn) (σ > 0), and define

ξk =
Xk − µk

σ
, Zn = ξ1 + · · ·+ ξn =

Sn − µ

σ
.

Clearly, Eξk = EZn = 0 and DZn = 1.

Note that the Lyapunov fractions

Lp =
1

σp

n∑
k=1

E|Xk −EXk|p, p ⩾ 2,

are affine invariant functionals, and hence L3 and L4 for the collection ξ1, . . . , ξn
are the same as for X1, . . . , Xn. A similar result also holds for l3, and hence the
Chebyshev–Edgeworth correction Φ3(x) for Zn is again given by (1.3).

D
ow

nl
oa

de
d 

02
/2

2/
22

 to
 4

6.
13

8.
22

2.
81

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

544 S. G. BOBKOV AND V. V. ULYANOV

The proximity of the d.f.

Fn(x) = P{Zn ⩽ x}, x ∈ R,

to Φ3(x) in a weak sense can be studied in terms of the proximity of the ch.f.

fn(t) = EeitZn =

∫ ∞

−∞
eitx dFn(x)

to the Fourier–Stieltjes transform of Φ3, that is, to the corrected normal ch.f.

(5.1) g(t) =

∫ ∞

−∞
eitx dΦ3(x) = e−t2/2

(
1 +

l3
6
(it)3

)
, t ∈ R.

In particular, we have

Lemma 5.1. On the interval |t| ⩽ 1/L3,

(5.2) |fn(t)− g(t)| ⩽ cL4 min(1, t4) e−t2/8

with some absolute constant c > 0.

This result, including Chebyshev–Edgeworth expansions for products of ch.f.’s
of higher order (especially in the i.i.d. case, cf., e.g., [15, Chap. 8, section 40] or [18,
Chap. 6, section 3]), is well known. The formulation of inequalities such as (5.2) in the
non-i.i.d. case is often different in different places with respect to the interval where
the bound holds and to the constants in the exponent (cf. [10, Chap. 7], [21], [22]).
Our formulation follows that of [5, Theorem 18.1]. It is important that (5.2) implies
the integral estimate

(5.3)

∫
|t|<1/L3

∣∣∣∣fn(t)− g(t)

t

∣∣∣∣ dt ⩽ cL4.

Let us briefly comment on the relationship between different Lyapunov fractions.

Since L2 = 1, the function p → L
1/p−2
p is nondecreasing with respect to p > 2.

In particular,

(5.4) L3 ⩽
√
L4.

For integer-valued r.v.’s Xk, there are other relations involving the variance σ2.
According to the well-known von Mises inequality,

E|ξ −Eξ|p ⩽ 2E|ξ −Eξ|p+1, p ⩾ 1,

provided that an r.v. ξ takes only integer values.
For the reader’s convenience, we give a short proof of this inequality. Let η be an

integer-valued r.v. with zero mean and with all finite moments. By Hölder’s inequality,
for arbitrary positive p and q, and θ, 0 ⩽ θ ⩽ 1, we have

E|η|θp+(1−θ)q ⩽ (E|η|p)θ(E|η|q)(1−θ).

Hence, the function R(p) = lnE|η|p is convex for p > 0, and therefore R(p+1)−R(p)
is a nondecreasing function for p > 0. So, for p ⩾ 1, we have

E|η|p+1

E|η|p
⩾

Eη2

E|η|
⩾

1

2
,
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since, if ζ is an independent copy of η, we have

Eη2 =
1

2
E(η − ζ)2 ⩾

1

2
E|η − ζ| ⩾ 1

2
E|η|,

because ζ and η are integer-valued. Hence, by the von Mises inequality,

(5.5) L3 ⩾
1

2σ
, L4 ⩾

1

2σ
L3 ⩾

1

4σ2
.

The inequalities in (5.5) can be reversed, up to constants, for Bernoulli distributions
(see, e.g., (4.7)).

For the function in (5.1), the following integral estimate complements (5.3).

Lemma 5.2. The following inequality holds:

(5.6)

∫
|t|>1/L3

∣∣∣∣g(t)t
∣∣∣∣ dt ⩽ 3L4.

Proof. Given T > 0, we have∫ ∞

T

1

t
e−t2/2 dt <

1

T 2
e−T 2/2 <

1

T 2
,∫ ∞

T

t2e−t2/2 dt < Te−T 2/2 <
1

T
.

Applying these inequalities with T = 1/L3 and using (5.1) and (5.4), we see that the
integral in (5.6) is majorized by

2L2
3 +

1

3
|l3|L3 < 3L2

3 ⩽ 3L4,

the result required.

Following [11] and especially [16], where many arguments in the proof were clari-
fied, let us now describe a smoothing operation that allows one to properly modify the
Fourier analysis of the distribution of Sn = X1+ · · ·+Xn. Let η denote an r.v. which
is independent of all Xk and has a uniform distribution U on the interval (−1/2, 1/2).

If all Xk are integer-valued, then the r.v. S̃n = Sn + η has an absolutely continuous
distribution satisfying

(5.7) P

{
S̃n ⩽ k +

1

2

}
= P{Sn ⩽ k}, k ∈ Z.

The d.f. F̃n of S̃n has a simple structure: one may just restrict the d.f. of Sn to the
lattice Z and then extend it to the whole real line as a continuous function which is
linear on every interval [k, k + 1].

In view of (5.7), one may now focus on the asymptotic approximation for F̃n.
This can be done by employing the Chebyshev–Edgeworth correction for the extended
sequence X1, . . . , Xn, η. In other words, using the Chebyshev–Edgeworth correction
Φ3 for Zn as in (1.3), it makes sense to approximate the d.f. of the smoothed r.v.

Z̃n = Zn +
η

σ
=
Sn − µ+ η

σ
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by the convolution

(5.8) Φ̃3(x) = Φ3(x) ∗ U(σx) =

∫ −1/2

−1/2

Φ3

(
x− y

σ

)
dy.

Similarly to (5.2) and (5.3), the difference between Φ3 and Φ̃3 is small, as long as L4

is small.

Lemma 5.3. The following inequality holds:

(5.9) sup
x

∣∣Φ̃3(x)− Φ3(x)
∣∣ ⩽ 1

96σ2
(1 + L3).

Proof. By Taylor’s integral formula applied to the integrand in (5.8),

Φ̃3(x)− Φ3(x) =
1

σ2

∫
|y|<1/2

∫
0<t<1

(1− t)y2Φ′′
3

(
x− ty

σ

)
dy dt,

which implies

sup
x

∣∣Φ̃3(x)− Φ3(x)
∣∣ ⩽ 1

24σ2
sup
x

|Φ′′
3(x)|.

According to (1.3),

Φ′′
3(x) = −xφ(x)− l3

6
H4(x)φ(x),

where H4(x) = x4−6x2+3 is the fourth-order Chebyshev–Hermite polynomial. It can
be easily checked that

|x|φ(x) ⩽ 1√
2πe

<
1

4
, |H4(x)|φ(x) ⩽

3√
2π

< 1.2.

Using |l3| ⩽ L3, we get

|Φ′′
3(x)| <

1

4
+

1

5
L3

and therefore (5.9). The lemma is proved.

6. Proof of Theorem 4.1. Under the notation of the previous section, recall
that fn(t) denotes the ch.f. of the normalized sum Zn. Hence, the ch.f. of the sum
Sn = X1 + · · ·+Xn = µ+ σZn is given by

un(t) = eiµtfn(σt), t ∈ R.

Similarly, we introduce

u(t) =

∫ ∞

−∞
eitx dΦ3

(
x− µ

σ

)
= eiµtg(σt),

where g represents the Fourier–Stieltjes transform of Φ3; cf. (5.1). Since the ch.f. of
the r.v. η ∼ U is given by

ω(t) = Eeitη =
sin(t/2)

t/2
,

the ch.f. and the Fourier–Stieltjes transform of S̃n = Sn + η and Φ̃3(x− µ/σ) are
given, respectively, by

ũn(t) = un(t)ω(t), ũ(t) = u(t)ω(t).
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Recall that F̃n(x) = P{S̃n ⩽ x}. By the Fourier inversion formula,

F̃n(x)− Φ̃3

(
x− µ

σ

)
=

1

2π

∫ ∞

−∞
e−itx ũn(t)− ũ(t)

−it
dt

=
1

2π

∫ ∞

−∞
e−itxun(t)− u(t)

−it
ω(t) dt,

where the integrals are absolutely convergent. Hence

(6.1) ∆̃n ≡ sup
x

∣∣∣∣F̃n(x)− Φ̃3

(
x− µ

σ

)∣∣∣∣ ⩽ 1

2π
I,

where

I =

∫ ∞

−∞

∣∣∣∣un(t)− u(t)

t

∣∣∣∣|ω(t)| dt.
Our purpose here is to properly estimate the last integral.

Near zero it can be estimated by virtue of Lemma 5.1 via (5.3). Indeed, changing
the variable and using |ω(t)| ⩽ 1, we have

(6.2) I0 ≡
∫
|t|⩽1/(σL3)

∣∣∣∣un(t)− u(t)

t

∣∣∣∣|ω(t)| dt ⩽ ∫
|t|⩽1/L3

∣∣∣∣fn(t)− g(t)

t

∣∣∣∣ dt ⩽ cL4.

For a similar integral I1 over the complementary region, we have I1 ⩽ 2J + I ′1 with

J =

∫ ∞

1/(σL3)

∣∣∣∣un(t)t
∣∣∣∣|ω(t)| dt, I ′1 =

∫
|t|>1/L3

∣∣∣∣g(t)t
∣∣∣∣ dt.

The last integral was estimated in Lemma 5.2. Using (6.2) and (5.6), we obtain

(6.3) ∆̃n ⩽ cL4 +
1

π
J

with some absolute constant c > 0.
Let us now estimate J by involving the functional V. Putting b2 = V(Sn), b > 0,

we recall that b2 ⩽ σ2 and a ≡ 1/(σL3) ⩽ 2 as indicated in (4.3) and (5.5). We also
note that

(6.4) ab =
b

σL3
⩾

b

σ
√
L4

.

Since the function un(t) is (2π)-periodic, it makes sense to split the integration
in the definition of J into the intervals

A0 = (a, π), Ak =
(
(2k − 1)π, (2k + 1)π

)
, k = 1, 2, . . . .

From (4.2) we have

(6.5) |un(t)| ⩽ exp

{
−2b2 sin2

(
t

2

)}
, t ∈ R.

Next, sin(t/2) ⩾ t
π in 0 ⩽ t ⩽ π, and so

|un(t)| ⩽ e−2b2t2/π2

, t ∈ A0.
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Hence, putting T = 2ab/π, we find that

J0 ≡
∫
A0

∣∣∣∣un(t)t
∣∣∣∣|ω(t)| dt ⩽ ∫ ∞

a

e−2b2t2/π2 dt

t

=

∫ ∞

T

e−s2/2 ds

s
<

1

T 2
⩽

3

(ab)2
⩽

3σ2

b2
L4,(6.6)

where we have used (6.4).

The remaining integrals should be estimated in a different way by using the
property that ω(t) is small when t is close to any integer multiple of 2π. Namely,
by (6.5),

Jk ≡
∫
Ak

∣∣∣∣un(t)t
∣∣∣∣|ω(t)| dt ⩽ 2

((2k − 1)π)2
K,

where

K =

∫ π

−π

exp

{
−2b2 sin2

(
t

2

)}∣∣∣∣sin t2
∣∣∣∣ dt

= 4

∫ π/2

0

exp{−2b2 sin2 s} sin s ds ⩽ 4

∫ π/2

0

exp

{
−8b2s2

π2

}
s ds <

π2

4b2
.

It follows that
∑∞

k=1 Jk <
1
b2 , and, together with (6.6), we have

J <
3σ2

b2
L4 +

1

b2
⩽

7σ2

b2
L4,

where we use σ2L4 ⩾ 1
4 ; cf. (5.5). Combining this with (6.3), we have

(6.7) ∆̃n ⩽
cσ2

b2
L4.

It remains to apply Lemma 5.3, together with (5.4), (5.5), and (6.7), and use
definition (6.1). Hence

∆n ≡ sup
x

∣∣∣∣F̃n(x)− Φ3

(
x− µ

σ

)∣∣∣∣ ⩽ cσ2

b2
L4 + cL4(1 + L

1/2
4 )

with some absolute constant c > 0. If L4 ⩽ 1, we get (4.5) in view of (5.7) and since
σ2/b2 ⩾ 1. Otherwise, the required inequality

∆n ⩽
cσ2

b2
L4

also holds with a sufficiently large c. Indeed, if L4 ⩾ 1, then by (1.3),

|Φ3(x)| ⩽ 1 + |l3| ⩽ 1 + L3 ⩽ 1 +
√
L4 ⩽ 2L4.

Thus, ∆n ⩽ 3L4.

D
ow

nl
oa

de
d 

02
/2

2/
22

 to
 4

6.
13

8.
22

2.
81

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE CHEBYSHEV–EDGEWORTH CORRECTION IN CLT 549

REFERENCES

[1] V. Becher, Y. Bugeaud, and T. A. Slaman, The irrationality exponents of computable num-
bers, Proc. Amer. Math. Soc., 144 (2016), pp. 1509–1521, https://doi.org/10.1090/proc/12841.

[2] S. N. Bernstein, On a modification of Chebyshev’s inequality and of the error formula of
Laplace formula, Uch. zap. n.-i., kafedr Ukraini, Otd. matem, no. 1, 1 (1924), pp. 38–49 (in Rus-
sian); in Collected Works: Vol. IV: Probability Theory: Mathematical Statistics (1911–1946),
Nauka, Moscow, 1964, pp. 71–79 (in Russian).

[3] S. N. Bernstein, Reconsideration of the question of the accuracy of the limit formula of Laplace,
Izv. Akad. Nauk SSSR Ser. Mat., 7 (1943), pp. 3–16; in Collected Works: Vol. IV: Probability
Theory: Mathematical Statistics (1911–1946), Nauka, Moscow, 1964, pp. 396–408 (in Russian).

[4] A. Bikjalis, Estimates of the remainder term in the central limit theorem, Litovsk. Mat. Sb.,
6 (1966), pp. 323–346 (in Russian).

[5] S. G. Bobkov, Asymptotic expansions for products of characteristic functions under moment
assumptions of non-integer orders, in Convexity and Concentration, IMA Vol. Math. Appl. 161,
Springer, New York, 2017, pp. 297–357, https://doi.org/10.1007/978-1-4939-7005-6 11.

[6] S. G. Bobkov, Central limit theorem and Diophantine approximations, J. Theoret. Probab.,
31 (2018), pp. 2390–2411, https://doi.org/10.1007/s10959-017-0770-4.
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