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Abstract. In the paper, second-order Chebyshev-Edgeworth expansions are proved for the sample
median when the sample size has negative binomial or discrete Pareto-like distributions. The limit-
ing distributions of the scaled sample median depend not only on the sample size distribution but
also on the chosen scaling factor. The limiting distributions are the generalized Laplace, the nor-
mal and the scaled Student distributions, depending on the random, non-random or mixed scaling
factor. Second order Cornish-Fisher expansions are also derived and the negative moments of the
random sample sizes are calculated.

1. Introduction

In classical statistical inference, the number of observations is normally a known parameter. If
the data are collected in a fixed period, then the number of observations is typically random. For
example, patients with flu within a week, the number of call options not exercised on the expiration
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date, or the number of the α particles detected by a radiation source with a Geiger-Müller counter
during an hour, such experiments lead to models with random numbers of observations.

A survey of statistical inference with a random number of observations can be found, for example,
in Esquível et al. (2016) and the references there. In the aforementioned paper, the inference for
the mean and variance in the normal model is investigated. ANOVA models based on samples with
Poisson or binomial distributed number of observations were investigated in Nunes et al. (2019a,b,c)
for the analysis of one-way fixed effects to avoid false rejection.

Denote the real axis, the positive numbers and the indicator function as follows

R = (−∞ , ∞), N = {1, 2, ...} and IA = IA(x) =

{
1, x ∈ A ⊂ R
0, x /∈ A ⊂ R

,

respectively. Moreover, if x is a real value, then [x] denotes the greatest integer less than or equal
to x.

It is assumed that all random variables considered in the following are defined on one probability
space (Ω,A,P). Let X,X1, X2, . . . ∈ R be independent identically distributed random variables. In
statistics the random variables X1, X2, . . . are observations.

Consider the statistics Tm := Tm (X1, . . . , Xm) of a sample with sample size m. We write Tm has
asymptotic normality AN (µm, σ

2
m) where µm and σ2m > 0 are sequences of constants if

sup
x

∣∣∣∣P(Tm − µmσm
≤ x

)
− Φ(x)

∣∣∣∣→ 0 as m→∞ .

Here Φ(x) is the distribution function with density ϕ(x) of the standard normal Y :

P(Y ≤ x) = Φ(x) and ϕ(x) =
1√
2π

e−x
2/2, x ∈ R. (1.1)

The notation N (µ, σ2) will be used to denote either the normal distribution with mean µ and
variance σ2 or a random variable having this distribution. Hence, Y is N (0, 1) in (1.1).

Along with X1, X2, . . ., consider now a sequence of integer-valued positive random sample sizes
Nn ∈ N such that for each n ∈ N the random variables Nn are independent of the sample X1, X2, . . .
and that Nn →∞ in probability as n→∞. Furthermore, let the existence of a distribution function
H(y) with H(0) = 0 and a sequence 0 < gn ↑ ∞ be assumed such that

supy≥0 |P(Nn/gn ≤ y)−H(y)| → 0 as n→∞. (1.2)

Let Tm := Tm (X1, . . . , Xm) be some statistic of a sample with non-random sample size m ∈ N.
Define the random variable TNn for every n ∈ N:

TNn(ω) := TNn(ω)
(
X1(ω), . . . , XNn(ω)

)
, ω ∈ Ω,

i.e. TNn is some statistic obtained from a random sample X1, X2, . . . , XNn .
Many models lead to random sums SNn and random means T ∗Nn :

SNn =
∑Nn

k=1
Xk and T ∗Nn =

1

Nn

∑Nn

k=1
Xk =

1

Nn
SNn . (1.3)

Wald’s identity for random sums E(SNn) = E(Nn)E(X1), when Nn and X1 have finite expectations,
is a powerful tool in statistical inference, particularly in sequential analysis, see e.g. Wald (1945)
and Kolmogorov and Prokhorov (1949). Robbins (1948) proved that the asymptotic normality of
both the sum Sm and the sample size Nn lead to asymptotic normality of the random sum SNn .

In Döbler (2015), a basic overview to asymptotic distributions of random sums was given. Using
Stein’s method, quantitative Berry-Esseen bounds of random sums were proved in Chen et al. (2011,
Theorem 10.6), Döbler (2015, Theorems 2.5 and 2.7) and Pike and Ren (2014, Theorem 1.3) in case
of approximation by normal and Laplace distributions. Kalashnikov (1997) studied applications of
geometric random sums when Nn is geometrically distributed.
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The randomness of the sample size may crucially change asymptotic properties of random sums,
see e.g. Gnedenko (1989) or Gnedenko and Korolev (1996). Appropriate scaling factors by random
sums SNn or random means T ∗Nn affect the type of limit distributions.

If the statistic Tm is asymptotically normal, then the limiting laws of appropriate scaled statistics
TNn are scale mixtures

∫∞
0 Φ(x yγ)dH(y) of normal distribution Φ(x yγ) with a real constant γ and

the mixture distribution H(y), determined by Nn and given in (1.2). Scale mixtures of normal
distributions are often employed as an important class for statistical treatments for symmetric
data, see e.g. Andrews and Mallows (1974) and Fujikoshi et al. (2010, Chapter 13).

Example 1.1. Let X1, X2, ... be independent N (0, 1) then T ∗m = (X1 + ... + Xm)/m is N
(
0, 1/m

)
.

Let T ∗Nn(1) be random mean given in (1.3) where Nn(1) ∈ N be geometrically distributed as special
case of negative binomially distributed Nn(r) (see (5.1) below) for r = 1:

P(Nn(1) = j) =

(
1

n

)(
1− 1

n

)j−1
, j, n = 1, 2, ... with E(Nn(1)) = n.

Assume that for each n ∈ N the random variable Nn(1) is independent of the sequence X1, X2, ....
Then statement (1.2) holds with gn = n and limit exponential distribution H(y) = (1−e−y) I{y≥0}.
The following conclusions can be drawn:

P
(√

Nn(1)T ∗Nn(1) ≤ x
)

=
∞∫
0

Φ(x)dH(y) = Φ(x) for all n ∈ N,

lim
n→∞

P
(√

E(Nn(1))T ∗Nn(1) ≤ x
)

=
∞∫
0

Φ(x y1/2)dH(y) =
x∫
−∞

(
2 + u2

)−3/2
du,

lim
n→∞

P
(

Nn(1)√
E(Nn(1))

T ∗Nn(1) ≤ x
)

=
∞∫
0

Φ(x y−1/2)dH(y) =
x∫
−∞

1√
2
e−
√
2 |u|du.

Three different limit distributions occur. The scaled random mean T ∗Nn(1) is standard normally
distributed or tends to the Student distribution with 2 degrees of freedom depending on whether the
random scaling factor

√
Nn(1) or the non-random scaling factor

√
E(Nn(1)) were chosen. Moreover,

the Laplace distribution with variance 1 is the limiting distribution when scaling with the mixing
factor Nn(1)/

√
E(Nn(1)).

The first statement above follows from conditioning and stability of the normal law. Student
distribution as a limit for statistics from samples with a random sample size are proved e.g. in
Gnedenko (1989), Bening and Korolev (2004) and Schluter and Trede (2016). The Laplace limit
law follows e.g. from Bening and Korolev (2008) or Schluter and Trede (2016).

Bening et al. (2013) presented a general transfer theorem for asymptotic expansions of the distri-
bution of statistics Tm from samples with non-random sample size m to statistics TNn from samples
with random sample size Nn. The authors applied corresponding expansions for both the normal-
ized statistic Tm and the appropriate scaled random sample size Nn. In the aforementioned paper,
first order expansions of the random mean T ∗Nn are proved if the sample size Nn is negative binomial
distributed with success probability 1/n or Nn is the maximum of n independent identically dis-
tributed discrete Pareto random variables with tail index 1. For the mean T ∗m = (X1 + ...+Xm)/m,
first order Chebyshev-Edgeworth expansions were applied. For random sample size Nn, the rate of
convergence in (1.2) with Cn−b for 0 < b ≤ 1 are used. Therefore, the convergence rates for the
random mean T ∗Nn cannot be better than C/n. To improve the convergence rates, in Christoph
et al. (2020, Theorems 1 and 4) second-order asymptotic expansions were proved for suitably nor-
malized sample sizes Nn in cases mentioned above. Moreover, second order Chebyshev-Edgeworth
expansions for T ∗Nn were constructed for the first time, with which the relevant results in Bening
et al. (2013) were improved. See also Fujikoshi and Ulyanov (2020, Chapter 9).

Analogous results were obtained in Christoph and Ulyanov (2020, 2021b) for the three most
important geometric statistics of Gaussian vectors with random dimensionNn, the length of a vector,
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the distance between two independent vectors and the angle between these vectors associated with
their sample correlation coefficient. Moreover, Chebyshev-Edgeworth expansions for TNn based on
random sample size Nn are presented in Christoph and Ulyanov (2021a) when the statistic Tm is
asymptotically chi-squared distributed.

Burnashev (1997) proved second-order Chebyshev-Edgeworth expansions for the median of a
sample {X1, ...., Xm} of independent identically distributed random variables with common contin-
uous distribution function FX(x) and symmetric probability density pX(x), where m ∈ N is the
non-random sample size.

Using these results, in present paper we construct second-order Chebyshev-Edgeworth expansions
for the median of a sample with the random sample sizes Nn mentioned above.

The structure of the paper is the following. Order statistics are considered in Section 2 with
special attention to the median. In Section 3 we clarify the result of Burnashev (1997) in the sense
that the closeness between the sample medianMm and the corresponding second order expansion is
estimated by inequalities for any integer m ≥ 1 instead of some O-order as m→∞. In Section 4 we
give a transition proposition from non-random to random sample sizes. Sections 5 and 6 consider the
cases of negative binomial and discrete Pareto-like sample sizes Nn. In Section 7 the Cornish-Fisher
expansions for the quantiles of sample medians MNn and Mm are derived from the corresponding
Chebyshev-Edgeworth-type expansions. Finally, the proofs are collected in Section 8.

2. Elements of Order Statistics

Let {X1, X2, ..., Xm} be a sample of independent observations with common distribution function
FX(x) and the density function pX(x). The ordered sample

Xm:1 ≤ Xm:2 ≤ ... ≤ Xm:m

define the order statistics of the sample. Special cases are sample maximum Xm:m, sample minimum
Xm:1 and median Mm, defined by

Mm =

{
Xm:(m+1)/2, for odd m,

(Xm:m/2 +Xm:(m+2)/2)/2, for even m,
m ∈ N . (2.1)

The distribution function of the kth order statistics Xm,k is simple to find, but tedious to calculate:

P (Xm,k ≤ x) =
∑m

i=k

(
m

i

)
(F (x))i (1− F (x))m−i , x ∈ R, 1 ≤ k ≤ m.

It is easily seen that for the maximum and minimum values Xm:m and Xm:1 one has

P (Xm,m ≤ x) = Fm(x) and P (Xm,1 ≤ x) = 1− (1− F (x))m .

Extreme value analysis as an important branch of statistics deals with largest and smallest values of
samples. It has its own special asymptotic theory with the three non-degenerate limit distribution
families: Weibull, Gumbel and Fréchet laws, see e.g. Embrechts et al. (1997), Nevzorov (2001,
Lectures 10–12), de Haan and Ferreira (2006) and Ahsanullah et al. (2013, Chapter 11).

Many important monographs deal with asymptotic theory for order statistics, see e.g. Serfling
(1980, Chapters 2 and 3), Balakrishnan and Rao (1998b,a), Reiss (1989, Section 4.1), van der Vaart
(1998, Chapter 21), Nevzorov (2001, Lectures 8 and 9), David and Nagaraja (2003, Chapters 10
and 11) and Ahsanullah et al. (2013, Chapter 10).

There are different definitions of single sample quantiles in statistical literature, based on rounding
or on linear interpolation. Let 0 < p < 1. The single sample pth-quantile is defined as Xm:[mp]+1,
except the median Mm if p = 1/2, see (2.1). Define

X∗m;p =

{
Mm, if p = 1/2,

Xm:[mp]+1, if p 6= 1/2,
m ∈ N, 0 < p < 1 .
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The asymptotic normality of the normalized sample quantiles X∗m;p is well known, see e.g. Cramér
(1946, Chapter 28.5): Let xp be the pth population quantile, p ∈ (0, 1), of the continuous distribution
function FX(x), i.e. FX(xp) = p. If the density pX(x) is continuous in some neighborhood of x = xp
and pX(xp) > 0 then

Rm = sup
x∈R

∣∣∣∣∣P
(
pX(xp)

√
m√

p (1− p)
(M∗m;p − xp) ≤ x

)
− Φ(x)

∣∣∣∣∣→ 0 as m→∞. (2.2)

In Cramér (1946, Chapter 28.5) it is additionally assumed that the density px(x) has a continuous
derivative p′X(x) in some neighborhood of x = xp. This condition can be omitted as shown e.g.
in Serfling (1980, Section 2.3.3), Reiss (1989, Theorem 4.1.4) and van der Vaart (1998, Section
5.3). Furthermore, an example is presented in Serfling (1980, Section 2.3.3) that the median is not
asymptotically normally distributed if the continuity of pX(x) in x = x1/2 is violated. Based on
Serfling’s example, we study the following

Example 2.1. Consider the distribution F ∗X(x) with symmetric density p∗X(x) which is discontinuous
at x1/4 and x3/4:

F ∗X(x) =


x+ 3/4, x ∈ [−3/4,−1/2),

(x+ 1)/2, x ∈ [−1/2, 1/2),

x+ 1/4, x ∈ [1/2, 3/4],

and p∗X(x) =


1, x ∈ [−3/4,−1/2),

1/2, x ∈ [−1/2, 1/2),

1, x ∈ [1/2, 3/4].

(2.3)

At the population quantiles xp , 0 < p < 1, except at the first quartile x1/4 = −1/2 and third quartile

x3/4 = 1/2, the density p∗X(x) is continuous and the sample medianM∗m;p is AN
(
xp,

p (1− p)
(p∗X(xp))

2m

)
,

e.g. the sample median M∗m is AN (0, 1/m). At the discontinuous points x = ±1/2 of p∗X(x) both
for p = 1/4 and p = 3/4 the sample quartiles Xm,[mp]+1 are not asymptotically normally distributed.
We can nevertheless use Theorem A in Serfling (1980, Section 2.3.3) to approximate the probability
P(m1/2(Xm,[mp]+1−xp) ≤ t) by the normal distributions N (0, 3/16) if t < 0 and N (0, 3/64) if t > 0
for p = 1/4 and N (0, 3/64) if t < 0 and N (0, 3/16) if t > 0 for p = 3/4.

Theorem C in Serfling (1980, Section 2.3.3) gives a convergence rate Rm = O(m−1/2) for (2.2)
if in the neighborhood of xp, FX(x) possesses a positive continuous density pX(x) and a bounded
second derivative F ′′X(x).

More general expansions of distributions for central order statistics Xm,k were established in Reiss
(1989, Section 4.2) which differ from the classical Chebyshev-Edgeworth expansions since the higher
order terms are given by integrals of polynomials with respect to the normal distribution depending
in a non-trivial way on sample size m and on the index k of the order statistic Xm,k. As special
cases expansions of the distributions for the order statistics from uniform and exponential random
variables are given.

The remainder supxR
∗
m(x) in approximations of normalized order statistics by asymptotic ex-

pansions usually meets order condition supxR
∗
m(x) = O(m−k/2) as m → ∞ for some k > 1. In

the equivalent condition supxR
∗
m(x) ≤ Cm−k/2 for all m ≥ M the values C > 0 and M > 0 are

unknown.
However, for the transfer proposition from the non-random to the random sample size in Section 4,

estimates of supxR
∗
m(x) are required in the form of inequalities for each m ∈ N.

For sample median Mm and symmetric densities pX(x) qualitative difference between rates of
convergence in (2.2) was shown in Burnashev (1997, Section 5). For smooth densities with p′X(0) = 0

the convergence rate has order m−1. However, when p′X(+0) 6= 0, the order is m−1/2.

Huang (1999) discussed the even-odd phenomenon for the median in statistical literature and
gave a counterexample which contradicts the statistical folklore: “It never pays to base the median
on an odd number of observations”.
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To perform statistical analysis of large data sets Minsker (2019) presents new results for the
median-of-means estimator using new algorithms for distributed statistical estimations that exploit
divide-and-conquer approach.

In Peña et al. (2019) confidence regions for median of X in the nonparametric measurement error
model are constructed and several applications are given when a confidence interval about the center
of a distribution is desired.

To estimate the location parameter of a distribution function FX(x) one could use also the
random mean T ∗m = (X1 + ...+Xm)/m. If X is normally distributed with mean µ and variance σ2
then T ∗m is normally distributed with mean µ and variance σ2/m, whereas sample median Mm is
AN (µ, π σ2/(2m)) and π σ2/(2m) ≈ 1.57σ2/m.

Although the method of the median is less effective compared to the method of the arithmetic
mean, Kolmogorov (2019) advises “when the distribution law is unknown and can deviate markedly
from the normal law, it is safer to use the method of the median.” For example, the median provides
better confidence intervals for the Laplace distribution, while the mean works better for normally
distributed observations. For heavy tailed distributions, sample median is often preferable to sample
mean. For illustration, to estimate the location parameter µ of a Cauchy distribution FX(x), with
density pX(x) = (π + π(x − µ)2)−1, x ∈ R, the sample mean T ∗m is not a consistent estimator of
the location parameter µ due to the stability property of the Cauchy law: T ∗m also has Cauchy
distribution function FX(x). However, sample median Mm is AN (µ, π2/(4m)), see Serfling (1980,
Section 2.3.5).

3. Non-Asymptotic Expansions for Sample Median

The regularity conditions for density pX(x) in Burnashev (1997) are as follows:
Assumption A: The density pX(x) is continuous and symmetric around zero, i.e., pX(−x) =
pX(x), x ∈ R and pX(0) > 0. Moreover, the density pX(x) has three continuous bounded derivatives
in some interval (0, x0), x0 > 0.
Define p0 = pX(0) > 0, p1 = p′X(0+) and p2 = p′′X(0+).

The regularity conditions in Assumption A are fulfilled, for example, for
• normal density (1.1),
• heavy tailed Student’s t-distribution Sν(x) with density function

sν(x) =
Γ((ν + 1)/2)√
νπ Γ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2
, ν > 0, x ∈ R, (3.1)

including Cauchy distribution in case ν = 1, where the degree of freedom parameter ν > 0 deter-
mines the heaviness of the distribution tail,
• the triangular distribution with density

ta(x) =
a− |x|
a2

I(−a , a)(x), a > 0 , (3.2)

• the continuous uniform distribution or rectangular distribution with density

ua(x) =
1

2 a
I(−a , a)(x), a > 0 (3.3)

• symmetric Laplace distribution Lµ(x) having density

lµ(x) =
1√
2µ

e−
√
2 |x|/µ , x ∈ R, µ > 0, x ∈ R. (3.4)

• and the distribution F ∗X(x) with density p∗X(x) defined by (2.3) in Example 2.1.
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The corresponding coefficients p0, p1, and p2 in these examples are:

• ϕ(x) : p0 = 1/
√

2π, p1 = 0, p2 = −1/
√

2π,

• sν(x) : p0 =
Γ((ν + 1)/2)√
vπ Γ(v/2)

, p1 = 0, p2 = − Γ((ν + 3)/2)√
vπ Γ((v + 2)/2)

,

• ta(x) : p0 = a−1, p1 = −a−2, p2 = 0,
• ua(x) : p0 = (2 a)−1, p1 = 0, p2 = 0,

• lµ(x) : p0 = 1/(
√

2µ), p1 = −µ−2, p2 =
√

2µ−3

• p∗X(x) : p0 = 1/2, p1 = 0, p2 = 0.

Under Assumption A Burnashev (1997, Theorem 1) proved in relation (2.2) an asymptotic ex-
pansion in terms of orders m−1/2 and m−1 with remainder O(m−3/2) as m → ∞. Only a direct
combinatorial approach and no limit theorems were used in the proof. Therefore, the remainder
can be estimated by an inequality. Define

m∗ = 2 [m/2] =

{
m for even m,
m− 1 for odd m. (3.5)

Proposition 3.1. Let Assumption A be satisfied, then for all m ≥ 2:

R∗m = sup
x∈R

∣∣∣∣P(2p0
√
m∗Mm ≤ x)− Φ(x)− f1(x)√

m∗
− f2(x)

m∗

∣∣∣∣ ≤ C1

m3/2
, (3.6)

where C1 does not depend on m,

f1(x) =
p1x|x|

4p20
ϕ(x) and f2(x) =

x

4

(
3 + x2 +

p2x
2

6p30
− p21x

4

8p40

)
ϕ(x). (3.7)

Since 0 < (m−1)−α−m−α ≤ 2m−3/2 form ≥ 2 and α = 1/2 or α = 1 an immediate consequence
of inequality (3.6) is

supx∈R

∣∣∣∣P(2p0
√
m∗Mm ≤ x

)
− Φ(x)− f1(x)√

m
− f2(x)

m

∣∣∣∣ ≤ C2

m3/2
, (3.8)

where (3.8) for m = 1 is trivial and C2 does not dependent on m.

Remark 3.2. If the parent distributions of the sample {X1, ..., Xm} have normal density (1.1),
Student’s t-density (3.1), uniform density (3.3) or the density p∗X(x) in (2.3) then the convergence
rate for the median Mm in (2.2) is of order m−1. The triangular density (3.2) and the Laplace
density (3.4) have discontinuous derivatives at x = 0, nevertheless p1 > 0 and the convergence rate
in (2.2) has the order m−1/2.

Remark 3.3. As in Burnashev (1997) the natural normalizing factor in (3.6) is m∗, i.e.,
√
m− 1 for

odd m ≥ 3 and
√
m for even m. He proved also for all m ≥ 2∣∣∣P(2p0

√
m∗Mm∗ ≤ x)− P(2p0

√
m∗Mm∗+1 ≤ x)

∣∣∣ ≤ Cm−3/2.
Hence, for sample median Mm each odd observation adds an amount of information of order m−3/2
and not m−1 as usual with normalizing factor

√
m by Mm.

Remark 3.4. The advantage of second-order approximations is proven by numerical calculations in
Burnashev (1997, Section 4). For Laplace density the remaining term Rm in (2.2) contributes less
than 10 % of the actual value only for sample sizes m > 250. On the other hand, the remaining
term R∗m from the approximation (3.6) contributes less than 10 % of the actual value starting with
the sample size m = 8 for the Laplace density and m = 11 for smooth heavy tailed Cauchy density.
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Remark 3.5. The restriction to symmetrical densities can certainly be removed by requirements
on derivatives of pX(x) in some open intervals (x1/2, x1/2 + ε) and (x1/2 − ε, x1/2). However, the
asymptotic expansions with remainder term estimations become technically much more complicated.
For example, in Kotz et al. (2001, Chapter 3) for asymmetric Laplace distributions the population
quantiles and the median are given, which depends on an additional parameter asymmetry. The
population median is located at the discontinuity point only for the symmetric Laplace density.

4. Transfer Proposition from Non-Random to Random Sample Sizes

Let the Assumption A be satisfied, then (3.8) holds for all integer m ≥ 1. Suppose that distribu-
tion functions of the random sample size Nn satisfy the following condition.
Assumption B: There exist a distribution function H(y) with H(0+) = 0, a function of bounded
variation h2(y) with h2(0) = h2(∞) = 0, a sequence 0 < gn ↑ ∞ and real numbers b > 0 and C3 > 0
such that for all n ∈ N

supy≥0
∣∣P(g−1n Nn ≤ y

)
−H(y)

∣∣ ≤ C3n
−b, 0 < b ≤ 1

supy≥0
∣∣P(g−1n Nn ≤ y

)
−H(y)− n−1h2(y)

∣∣ ≤ C3n
−b, b > 1

 (4.1)

Remark 4.1. The negative binomial and discrete Pareto-like sample sizes fulfill Assumption B, see
Propositions 5.1 and 6.1 below. For example, in the articles Döbler (2015); Esquível et al. (2016);
Nunes et al. (2019a,b,c) mentioned in the introduction, the binomial or Poisson distributions as
random sample sizes N of observations are considered. If N = Nn is binomial (with parameters
n and 0 < p < 1) or Poisson (with rate λn, λ > 0) distributed, then P(Nn ≤ ENnx) tends to
the degenerated in 1 distribution as n → ∞. Second-order expansion in the case of a degenerate
limiting distribution could not be found. On the other hand Nn is AN (ENn,Var(Nn)). Berry-
Esseen inequalities for Poisson and binomial random sums are proved in Döbler (2015); Korolev
and Shevtsova (2012); Sunklodas (2014), but Chebyshev–Edgeworth expansions for these lattice
distributed random variables exist so far only with bounds of small-o or large-O orders, see e.g.
Kolassa and McCullagh (1990). For (4.1) in Assumption B, non-asymptotic error bounds C3 are
required because in the Theorem 4.2 one term in (4.2) depends on C3. Therefore, we cannot apply
Theorem 4.2 and 4.5 to samples with binomial or Poisson sample sizes. About non-asymptotic
bounds and large-O order conditions, see Fujikoshi and Ulyanov (2020, Chapter 1).

Theorem 4.2. Let γ ∈ {−1/2, 0, 1/2} and both Assumptions A and B be satisfied. Then the
following inequality holds for all n ∈ N :

supx∈R

∣∣∣P(2p0(gn/Nn)γ
√
N∗n MNn ≤ x

)
−Gn(x, 1/gn)

∣∣∣
≤ C2 E

(
N−3/2n

)
+ (C3Dn(γ) + C4)n

−b, (4.2)

Gn(x, 1/gn) =

∫ ∞
1/gn

(
Φ(xyγ) +

f1(xy
γ)

√
gny

+
f2(xy

γ)

gny

)
d
(
H(y) +

h2(y)

n

)
, (4.3)

Dn(γ) = supxDn(x; γ) ≤ D(γ) <∞ (4.4)

Dn(x; γ) =

∫ ∞
1/gn

∣∣∣∣ ∂∂y
(

Φ(xyγ) +
f1(xy

γ)
√
ygn

+
f2(xy

γ)

ygn

)∣∣∣∣ dy,
where f1(z), f2(z), h2(y) are given in (3.7) and (4.1) and

N∗n = 2 [Nn/2] =

{
Nn for even realizations of Nn,
Nn − 1 for odd realizations of Nn.

(4.5)

The positive constants C2, C3, C4, D do not depend on n.
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Remark 4.3. The scaling factor (gn/Nn)γ
√
N∗n seems to be the natural one in case of the median

of a sample with a random sample size Nn since the distribution of Nn/gn has a known limit
distribution and N∗n the same structure as m∗ in Burnashev (1997), see (3.5).

Remark 4.4. The lower bound of the integral in (4.3) depends on gn which can affect the coefficients
at 1/

√
gn and 1/gn in the approximation. For example the proof of Theorem 5.6 in Section 8 shows

that some integrals tend to infinity as gn →∞ , see (8.18):

g−1n

∫ ∞
1/gn

∣∣∣∣f2(x√y)

y

∣∣∣∣ dH(y) ≤ cg−bn if b < 1 and γ = 1/2.

Theorem 4.5. Under the conditions of Theorem 4.2 and the additional conditions to functions
H(.) and h2(.), depending on the convergence rate b > 0 in (4.1):

i : H(1/gn) ≤ c1(b) g−bn for b > 0,

ii :
∫ 1/gn
0 y− 1/2dH(y) ≤ c2(b) g−b+1/2

n for b > 1/2,

iii :
∫ 1/gn
0 y− 1dH(y) ≤ c3(b) g−b+1

n for b > 1,

 (4.6)

i : h2(0) = 0, and |h2(1/gn)| ≤ c4(b)n g−bn for b > 1,

ii :
∫ 1/gn
0 y− 1|h2(y)|dy ≤ c5(b)n g−bn for b > 1,

}
(4.7)

we obtain for the function Gn(x, 1/gn) defined in (4.3):

supx
∣∣Gn(x, 1/gn)−Gn,2(x)− I1(x, n)− I2(x, n)

∣∣ ≤ C g−bn (4.8)

with

Gn,2(x) =



∞∫
0

Φ(xyγ)dH(y), 0 < b ≤ 1/2,

∞∫
0

(
Φ(xyγ) +

f1(xy
γ)√

gny

)
dH(y) =: Gn,1(x), 1/2 < b ≤ 1,

Gn,1(x) +
∞∫
0

f2(xy
γ)

gny dH(y) +
∞∫
0

Φ(xyγ)
n dh2(y), b > 1,

(4.9)

I1(x, n) =

∫ ∞
1/gn

(f1(xyγ) I(0,1/2](b)√
gny

+
f2(xy

γ)

gn y

)
dH(y) for b ≤ 1 (4.10)

and

I2(x, n) =

∫ ∞
1/gn

(f1(xyγ)

n
√
gny

+
f2(xy

γ)

n gny

)
dh2(y) for b > 1. (4.11)

Remark 4.6. If b > 1/2 then (4.6ii) implies (4.6i). If b > 1 then (4.6iii) implies (4.6ii) and (4.6i).
Conditions (4.6) and (4.7) guarantee to extend the integration range of the integrals in (4.9) from
[1/gn,∞) to (0,∞) which ensures (4.8). The length of the asymptotic expansion is defined by (4.9).

Remark 4.7. The limit distributions
∫∞
0 Φ(xyγ)dH(y) in (4.9) are scale mixtures of normal distri-

bution Φ(x yγ) with a real constant γ and mixture distribution H(y).

In the next two sections we use both Theorems 4.2 and 4.5 when the scale mixture G(x) =∫∞
0 Φ(x yγ)dH(y) as limiting distribution of MNn can be expressed in terms of the well-known
distributions. We obtain non-asymptotic results like in Proposition 3.1 for the sample medianMNn ,
using second order approximations for both the statistic Mm and for the random sample size Nn.
In both cases the jumps of the distribution function of the random sample size Nn only affect the
function h2(y) in formula (4.1).
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5. Sample Size has Negative Binomial Distribution

Let the sample size Nn(r) the negative binomially distributed (shifted by 1) with parameters 1/n
and r > 0, having probability mass function

P(Nn(r) = j) =
Γ(j + r − 1)

Γ(j) Γ(r)

(
1

n

)r (
1− 1

n

)j−1
, j = 1, 2, ... (5.1)

with gn = E(Nn(r)) = r (n − 1) + 1. Schluter and Trede (2016, Section 2.1) pointed out that the
negative binomial distribution is one of the two leading cases for count models, it accommodates
the over-dispersion typically observed in count data (which the Poisson model cannot) and they
showed in a general unifying framework

limn→∞ supx |P(Nn(r)/gn ≤ x)−Gr,r(x)| = 0, (5.2)

where Gr,r(x) is the Gamma distribution function with the shape parameter which coincides with
the scale parameter and equals r > 0, having density

gr,r(x) =
rr

Γ(r)
xr−1e−rx I(0 ,∞)(x), x ∈ R. (5.3)

The statement (5.2) was proved earlier in Bening and Korolev (2004, Lemma 2.2).
The convergence rate in (5.2) for r > 0 is given in Bening et al. (2013, Formula (21)) or Gavrilenko

et al. (2017, Formula (17)):

supx |P(Nn(r)/gn ≤ x)−Gr,r(x)| ≤ Crn−min{r,1}. (5.4)

In Schluter and Trede (2016) and Gavrilenko et al. (2017) the negative binomial random variable
Ñn(r) is not shifted: Ñn(r) = Nn(r) − 1 ∈ {0, 1, 2, ...} with EÑn(r) = r(n − 1). Then we have
P(Ñn(r) ≤ 0)−Gr,r(0) = n−r → 0 as n→∞ instead of P(Nn(r) ≤ 0)−Gr,r(0) = 0. Moreover

P

(
Ñn(r))

r(n− 1)
≤ x

)
= P

(
Nn(r)

gn
≤ x+

1− x
gn

)
.

The statements (5.2) and (5.4) still hold when Ñn(r) is shifted by a fixed integer. From Taylor
expansion with Lagrange remainder term it follows that for r > 1∣∣∣∣Gr,r (x+

1− x
gn

)
−Gr,r(x)− gr,r(x)

1− x
gn

∣∣∣∣ ≤ C g−min{r,2}
n .

Hence, for r > 1 shifting Ñn(r) has influence of a term by g−1n . Second order asymptotic expansions
for Nn(r) where proved in Christoph et al. (2020, Theorem 1):

Proposition 5.1. Let r > 0, discrete random variable Nn(r) have probability mass function (5.1)
and gn := ENn(r) = r(n − 1) + 1. For x > 0 and all n ∈ N there exists a real number C3(r) > 0
such that

supx≥0

∣∣∣∣P(Nn(r)

gn
≤ x

)
−Gr,r(x)− h2;r(x)

n

∣∣∣∣ ≤ C3(r)n
−min{r,2}, (5.5)

where

h2;r(x) =

0 for r ≤ 1,

gr,r(x)
(
(x− 1)(2− r) + 2Q1

(
gn x

))
2 r for r > 1,

Q1(y) = 1/2− (y − [y]) and [.] denotes the integer part of a number.

Remark 5.2. The jumps of the sample size Nn(r) have an effect only on the function Q1(.) in the
term h2;r(x). The function Q1(y) is periodic with period 1, it is right-continuous with jump height
1 at each integer point y.
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In Theorem 4.2 an estimate for the negative moment E(Nn)−3/2 of the random sample size
Nn is required. Proposition 5.1 is used in Bening (2020, Corollary 2) to obtain an asymptotic
expansion of negative moments E(Nn(r))−p for 1 < p + 1 ≤ r ≤ 2. Such expansions are applied
in the mentioned paper to analyze asymptotic deficiencies and risk functions of estimates based on
random-size samples. An improved result with leading term and remainder estimation is given here:

Theorem 5.3. Let r > 0 and p > 0. Then the following expansions for negative moments hold for
all n ≥ 2:

E(Nn(r))−p =



R∗1;n, 0 < r < p ≤ 2,

rr ln(gn)
Γ(r) grn

+R∗2;n, r = p ≤ 2,

rp Γ(r − p)
Γ(r) gpn

+ R∗3;n, max{0, r − 1} < p < r ≤ 2,

rp Γ(r − p)
Γ(r) gpn

− (2− r) p rp(p+ 1) Γ(r − p)
2 Γ(r) (r − p− 1) r n gpn

+R∗4;n, p+ 1 < r ≤ 2,

rp Γ(r − p)
Γ(r) gpn

− (2− r) p rp ln(gn)
2 Γ(r) r n gpn

+ R∗5;n, p+ 1 = r ≤ 2,

R∗6;n, min{p, r} > 2,

(5.6)

where |R∗k;n| ≤ c∗k(p, r) g
−min{r,2}
n for some constants c∗k(p, r) <∞, k = 1, 2, ..., 6.

Corollary 5.4. The leading terms in (5.6) and the bound (5.5) lead to the estimate

E
(
Nn(r)

)−p ≤ C(r, p)

{
n−min{r,p,2}, p 6= min{r, 2}
ln(n)n−min{r,p,2}, p = min{r, 2}

(5.7)

Assume the statistic Tm is asymptotically normal and H(y) = Gr,r(y) is the limit distribution
for Nn(r)/E(Nn(r)). As in Example 1.1 the limit distributions of the scaled statistics TNn(r) with
random size Nn(r) and scaling factors (gn/Nn(r))γ

√
N∗n(r)) are again the scale mixtures

Vγ(x) =

∫ ∞
0

Φ(xyγ)dGr,r(y) with γ ∈ {−1/2, 0, 1/2}.

For the densities vγ(x) of Vγ(x) then the following apply:

vγ(x) =
rr√

2π Γ(r)

∫ ∞
0

yγ+r−1e−(x
2 y2 γ/2+r y)dy with γ ∈ {−1/2, 0, 1/2}.

The gamma function (8.1) with α = r + 1/2 and p = (r + x2/2) for γ = 1/2 and (8.2) with m = 1,
p = r and q = x2/2 for γ = −1/2 and r = 2 lead to

vγ(x) =


s2 r(x) =

Γ(r + 1/2)√
2 rπ Γ(r)

(
1 + x2

2 r

)−(r+1/2)
, γ = 1/2,

ϕ(x) = 1√
2π

e−x
2/2, γ = 0,

l2(x) =
(1

2 + |x|
)
e−2 |x|, for r = 2, γ = −1/2,

(5.8)

Hence, the scale mixtures Vγ(x) are the Student’s t-distrib̃ution with 2 r degrees of freedom S2r(x)
if γ = 1/2, the normal law Φ(x) if γ = 0 and for γ = −1/2 the second order generalized Laplace
distribution:

L2(x) =
1

2
+

1

2
sign(x)

(
1− (1 + |x|) e−2 |x|

)
, x ∈ R. (5.9)

For arbitrary r > 0 Macdonald functions Kr−1/2(x) occur in the densities lr(x) of L2(x). Both
L2(x) and l2(x) can be calculated in closed forms for integer values of r. The standard Laplace
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density with variance 1 is l1(x) = 1√
2

e−
√
2 |x|. These functions are discussed in more detail with

references in Christoph and Ulyanov (2020, Section 5.1.3).

Remark 5.5. In Gnedenko et al. (1984) it was shown that under the conditions of Example 1.1
the median of a sample with geometrically distributed sample size Nn(1) tends to the Student
t-distribution S2(x) for n→∞.

Theorem 5.6. Let r > 0. Consider the sample median MNn(r) when random sample size Nn(r) has
probability mass function (5.1) and gn = ENn(r) = r(n− 1) + 1. If inequalities (3.8) and (5.5) hold
for the median Mm(X1, ..., Xm) and the random sample size Nn(r), respectively, then the following
expansions apply for all n ∈ N uniformly in x ∈ R:
i: Scaling factor

√
gnN∗n(r)/Nn(r) for the sample medianMNn(r) leads to Student’s t-approximation:∣∣∣P(2p0

√
gnN∗n(r)

Nn(r)
MNn(r) ≤ x

)
− S2r;2(x;n))

∣∣∣≤{Crn−min{r,3/2}, r 6= 3/2,

Cr ln(n) n−3/2, r = 3/2,
(5.10)

where N∗n(r) is defined in (4.5),

S2r;2(x;n)=S2r(x)+s2r(x)

(
A1;r(x)
√
gn

+
A2;r(x)

gn
+

(2− r)(x3 + x)

4 r n(2r − 1)
I{r>1}

)
, (5.11)

A1;r(x) =
p1 x |x|

4 p20
I{r>1/2} and

A2;r(x) =
x

4

(
3(2r + x2)

2r − 1
+ x2

(
1 +

p2
6p30

)
− x4p21(2r + 1)

8p40(2r + x2)

)
I{r>1}.

ii: Normal approximation is obtained with random scaling factor
√
N∗n(r) for the sample median

MNn(r): ∣∣∣P(
√
N∗n(r)MNn(r) ≤ x)− Φn,2(x)

∣∣∣ ≤ Cr { n−min{r,3/2}, r 6= 3/2,

ln(n)n−3/2, r = 3/2,

where with f1(x) and f2(x) given in (3.7)

Φn,2(x) = Φ(x) +
f1(x)
√
gn

(
ln(gn) I{r=1/2} +

r1/2 Γ(r − 1/2)

Γ(r)
I{r>1/2}

)

+
f2(x)

gn

(
ln(n) I{r=1} +

r

r − 1
I{r>1}

)
, (5.12)

iii: If r = 2, mixed scaling factor
√
N∗n(2)Nn(2)/gn for the statistic MNn(2) leads to generalized

Laplace approximation:∣∣∣P(√N∗n(2)Nn(2)/gnMNn(2) ≤ x
)
− L2(x)− ln;2(x)

∣∣∣ ≤ C2 n
−3/2 (5.13)

where L2(x) is generalized distribution Laplace, defined in (5.9) and

ln;2(x) = e−2|x|
{
p1 x |x|
2 p20
√
gn

+
x

gn

(
3

2
+ |x|

(
1 +

p2
6p30

)
+

p21
8 p40

(
2x2 + |x|

))}
.

Remark 5.7. Under (5.4) with r > 1/2 first order expansions of P
(
2p0g

γ
nMNn ≤ x

)
for γ ∈ {0, 1/2}

were announced in the conference paper Bening et al. (2016). The convergence rates in Theorems
3.1 and 3.2 as well as in Corollaries 3.1 and 3.2 in case 1/2 < r < 1 have to be O(n−r) instead
of O(n−1) as announced in Bening et al. (2016). Moreover, in case r = 1 the bound c/n in (5.10)
improves the corresponding estimate O

(
ln(n)n−1

)
which was stated in the aforementioned paper .
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6. Sample Size Nn is Pareto-Like Distributed

Let Y (s) ∈ N be discrete Pareto II distributed with parameter s > 0, having probability mass
and distribution functions

P(Y (s) = k) =
s

s+ k − 1
− s

s+ k
and P

(
Y (s) ≤ k

)
=

k

s+ k
, k ∈ N, (6.1)

which is a particular class of a general model of discrete Pareto distributions, obtained by discretiza-
tion continuous Pareto II (Lomax) distributions on positive integers, see Buddana and Kozubowski
(2014).

Now, let Y1(s), Y2(s), ..., be independent random variables with the same distribution (6.1). Define
for n ∈ N and s > 0 the random variable

Nn(s) = max
1≤j≤n

Yj(s) with P(Nn(s) ≤ k) =

(
k

s+ k

)n
, n ∈ N. (6.2)

The distribution of Nn(s) is extremely spread out on the positive integers.
Christoph et al. (2020) proved the following Chebyshev-Edgeworth expansion:

Proposition 6.1. Let the discrete random variable Nn(s) have distribution function (6.2). For
y > 0, fixed s > 0 and all n ∈ N then there exists a real number C2(s) > 0 such that

sup
y>0

∣∣∣∣P(Nn(s)

n
≤ y
)
−Hs(y)− h2;s(y)

n

∣∣∣∣ ≤ C2(s)

n2
, (6.3)

Hs(y) = e−s/y and h2;s(y) = s e−s/y
(
s− 1 + 2Q1(n y)

)
/
(
2 y2

)
, y > 0 , (6.4)

where Q1(y) is defined in (5.1).

Remark 6.2. Lyamin (2010) proved a first order bound in (6.3) for integer s ≥ 1:∣∣∣∣P(Nn(s)

n
≤ x

)
− e−s/x

∣∣∣∣ ≤ Cs
n
, Cs =

{
8e−2/3 = 0.36..., s = 1, n ≥ 2

2e−2 = 0.27..., s ≥ 2, n ≥ 1
. (6.5)

In case n = 1 and s = 1 we have P (N1(1) ≤ x) = 0 for 0 < x < 1 and

sup0<x<1

∣∣∣P (N1(1) ≤ x)− e−1/x
∣∣∣ = sup0<x<1 e

−1/x = e−1 = 0.367... .

Remark 6.3. The continuous function Hs(y) = e−s/yI{y>0} with parameter s > 0 is the distribution
function of the inverse exponential random variable W (s) = 1/V (s), where V (s) is exponentially
distributed with rate parameter s > 0. Both Hs(y) and P(Nn(s) ≤ y) are heavy tailed with shape
parameter 1.

Therefore E
(
Nn(s)

)
=∞ for all n ∈ N and E

(
W (s)

)
=∞. Moreover:

• First absolute pseudo moment ν1 =
∫∞
0 x

∣∣d(P(Nn(s) ≤ nx
)
− e−s/x

)∣∣ =∞,
• Absolute difference moment χu =

∫∞
0 xu−1

∣∣P(Nn(s) ≤ nx
)
− e−s/x

∣∣dx <∞ for 1 ≤ u < 2.
These statements are proved in Christoph et al. (2020, Lemma 2). On pseudo moments and some
of their generalizations see e.g. Christoph and Wolf (1992, Chapter 2).

Next we estimate the negative moment E(Nn(s))−p, p > 0, for the random sample size Nn(s):

Theorem 6.4. Let s > 0 and p > 0. Then for all n ≥ 2 the following statements hold for negative
moments:

E(Nn(s))−p =


Γ(p+ 1)

sp np
+

(s− 1) pΓ(p+ 2)

2 sp+1np+1
+R∗1;n, 0 < p < 1,

Γ(p+ 1)

sp np
+ R∗2;n, 1 ≤ p < 2,

R∗3;n, p ≥ 2,

(6.6)
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where |R∗k;n| ≤ c∗k(p)n−2 for some constants c∗k(p) <∞, k = 1, 2, 3.

Corollary 6.5. The leading terms in (6.6) and the bound (6.3) lead to the estimate

E
(
Nn(s)

)−p ≤ C(p)n−min{p,2}, (6.7)

where for 0 < p ≤ 2 the order of the bound is optimal.

Remark 6.6. In Bening (2020, Corollary 3) the expansion (6.6) for 0 < p < 1 is given with an
additional term at n−p−1, which however has order n−2, see (8.23).

Assume the statistic Tm is asymptotically normal and H(y) = Hs(y) = e−s/y, y > 0, is the limit
distribution for Nn(s)/n. The limit distributions of the scaled statistics TNn(s) with random size
Nn(s) and scaling factors (n/Nn(s))γ

√
N∗n(s)) are the scale mixtures

Vγ(x) =

∫ ∞
0

Φ(xyγ)dHs(y) with γ ∈ {−1/2, 0, 1/2},

see also Christoph and Ulyanov (2020). The densities vγ(x) of Vγ(x) are then given by

vγ(x) =
s√
2π

∫ ∞
0

yγ−2e−
(
x2 y2 γ/2+ s/y

)
dy with γ ∈ {−1/2, 0, 1/2}.

The use of (8.3) with m = 1, p = x2/2 and q = s for γ = 1/2 and the substitution z = 1/y and
(8.1) with α = 3/2 and p = (s+ x2/2) for γ = −1/2 then lead to

vγ(x) =


l1/
√
s(x) =

√
2 s
2 e−

√
2 s|x|, γ = 1/2,

ϕ(x) = 1√
2π

e−x
2/2, γ = 0,

s∗2(x;
√
s) = 1

2
√

2 s

(
1 + x2

2 s

)−3/2
, γ = −1/2.

(6.8)

Hence, the scale mixtures Vγ(x) are the Laplace distrib̃ution L1/
√
s(x) with scale parameter 1/

√
s

if γ = 1/2, the normal law Φ(x) if γ = 0 and for γ = −1/2 the scaled Student’s t-distribution
S∗2(x;

√
s) with 2 degrees of freedom and density s∗2(x;

√
s). If Z has density s∗2(x;

√
s) then Z/

√
s

has a classic Student’s t-density with 2 degrees of freedom (3.1) with ν = 2.

Theorem 6.7. Let s > 0. Consider the sample median MNn with random sample size Nn = Nn(s)
having distribution function (6.2). If inequalities (3.8) and (6.3) hold for the medianMm(X1, ..., Xm)
and the random sample size Nn(s), respectively, then the following expansions apply for all n ∈ N:
i: Let γ = 1/2. The scaling factor

√
nN∗n(s)/Nn(s) by the sample median MNn(s) leads to Laplace

approximation:

supx

∣∣∣P(2p0
√
nN∗n(s)/Nn(s)MNn(s) ≤ x

)
− L1/

√
s(x;n)

∣∣∣ ≤ Cs n−3/2 , (6.9)

where N∗n is defined in (4.5)

L1/
√
s(x;n) = L1/

√
s(x) + l1/

√
s(x)

{
A1;s(x)n−1/2 +A2;s(x)n−1

}
, (6.10)

A1;s(x) =
p1 x |x|

4 p20
and

A2;s(x) =
(4− s)x(1 +

√
2s|x|)

8 s
+
x3

4

(
1 +

p2
6p30

)
− p21x

3|x|
√

2s

32 p40
.



Expansions for Sample Median with Random Sample Size 353

ii: If γ = 0, the normal approximation is obtained with random scaling factor
√
N∗n(s) at the sample

median MNn(s) with f1(x) and f2(x) given in (3.7):

supx

∣∣∣∣P(
√
N∗n(s)MNn(s) ≤ x)− Φ(x)−

√
π f1(x)

2
√
s
√
gn
− f2(x)

s gn

∣∣∣∣ ≤ Csn−3/2.
iii: If γ = −1/2, the mixed scaling factor

√
N∗n(s)Nn(s)/n by statistic MNn(s) leads to scaled

Student’s t-approximation:

supx

∣∣∣P(√N∗n(s)Nn(s)/nMNn(s) ≤ x
)
− S∗2(x;

√
s)− s∗n;2(x;

√
s)
∣∣∣ ≤ C2 n

−3/2

where S∗2(x;
√
s) is scaled Student’s distribution with density s∗2(x;

√
s) defined in (6.8) and

s∗n;2(x;
√
s) = s∗2(x;

√
s)

{
3 p1 x |x|

4 p20
√
n (x2 + 2s)

+
x

4n

(
9 + 3 (s− 1)

x2 + 2s
+
(

1 +
p2
6p30

) 15x2

(x2 + 2s)2
− p21 105x4

8 p40 (x2 + 2s)3

)}
.

Remark 6.8. Under the condition (6.5) a first order expansions for γ ∈ {0, 1/2} was announced
in the conference paper Bening et al. (2016), where in Theorem 4.1 and Corollary 4.1 the limit
distribution has to be L1/

√
s(x).

7. Cornish-Fisher Expansions for Quantiles of Mm and MNn

In statistical inference it is of fundamental importance to obtain the quantiles of the distribution
of statistics under consideration. Statistical applications and modeling with quantile functions
are discussed extensively by Gilchrist (2000). There are very few quantile functions which can be
expressed in closed form. The Cornish-Fisher expansions provide tools to approximate the quantiles
of probability laws.

Let Fn(x) be a distribution function admitting a Chebyshev-Edgeworth expansion in powers of
g
−1/2
n with 0 < gn ↑ ∞ as n→∞:

Fn(x) = G(x) + g(x)
(
a1(x)g−1/2n + a2(x)g−1n

)
+R(gn), R(gn) = O(g−3/2n ), (7.1)

where g(x) is the density of a three times differentiable limit distribution G(x).

Proposition 7.1. Let Fn(x) be given by (7.1) and let x(u) and u be quantiles of distributions Fn
and G with the same order α, i.e. Fn(x(u)) = G(u) = α. Then the following relation holds for
n→∞:

x(u) = u+ b1(u)g−1/2n + b2(u)g−1n +R∗(gn), R∗(gn) = O(g−3/2n ),

with

b1(u) = −a1(u) and b2(u) =
g′(u)

2 g(u)
a21(u) + a′1(u)a1(u)− a2(u) .

Proposition 7.1 is a direct consequence of more general statements, see e.g. Ulyanov (2011,
p. 311–315), Fujikoshi et al. (2010, Chapter 5.6.1) or Ulyanov et al. (2016) and the references
therein.

First we consider random medianMNn if sample size Nn = Nn(r) is negative binomial distributed
with probability mass function (5.1) and Student’s t-distribution S2r(x) is the limit law. The second
order expansion (5.10) in Theorem 5.6 admits a relation like (7.1) with gn = r(n − 1) + 1 and
ak(x) = Ak;r(x), k = 1, 2. The transfer Proposition 7.1 implies the following statement:
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Corollary 7.2. Suppose r > 0. Let x = xα and u = uα be α-quantiles of standardized statistic
P
(

2p0
√
gnN∗n(r)/Nn(r)MNn(r) ≤ x

)
and of the limit Student’s t-distribution S2r(u), respectively.

Then with previous definitions the following Cornish-Fischer expansion holds as n→∞:

x = u− p1u|u|
4p20
√
gn

I{r>1/2} +
B2(u)

gn
Ir>1} +

{
O(n−min{r,3/2}), r 6= 3/2

O(ln(n)n−3/2), r = 3/2
,

where B2(u) =
p21 u

3

8 p40
− (5− r)u3 + (5r + 2)u)

4(2 r − 1)
− u3

4

(
1 +

p2
6 p30

)
.

Next we study the approximation of quantiles for the random mean MNn if sample size Nn =
Nn(s) is based on discrete Pareto distributions with probability mass function (6.2) and Laplace
distribution L1/

√
s(x) is the limit law. Relation (6.9) in Theorem 6.7 admits a expansion like (7.1)

with gn = n and ak(x) = Ak;s(x), k = 1, 2. The transfer Proposition 7.1 leads now to:

Corollary 7.3. Suppose s > 0. Let x = xα and u = uα be α-quantiles of standardized statistic
P
(

2p0
√
nN∗n(s)/Nn(s)MNn(s) ≤ x

)
and of the limit Laplace distribution L1/

√
s(u), respectively.

Then with previous definitions the following Cornish-Fisher expansion holds

x = u− p1u|u|
4p20
√
n

+
B2(u)

n
+O(n−3/2), as n→∞,

where B2(u) =
p21 u

3

8 p40
+

(4− s)u (1 +
√

2s|u|)
8 s − u3

4

(
1 +

p2
6p30

)
.

For the sake of completeness let us consider the Cornish-Fischer expansion for the median Mm,
too. With (3.8) where ak(x) = fk(x), k = 1, 2 are defined in (3.7), then holds

Corollary 7.4. Let x = xα and u = uα be α-quantiles of standardized statistic P
(

2p0
√
m∗Mm ≤ x

)
and of the limit normal distribution Φ(u), respectively. Then with previous definitions the classical
Cornish-Fischer expansion holds as m→∞:

x = u− p1u|u|
4p20
√
m

+
1

m

(
p21 u

3

8 p40
− u

4
− u3

4

(
1 +

p2

6 p30

))
+O(m−3/2).

8. Proofs

In order to be able to present the occurring integrals in closed forms, we use the following formulas
in Prudnikov et al. (1986) 2.3.3.1, 2.3.16.2, 2.3.16.3 and 2.5.31.4:∫∞

0 zα−1 e−p zdz
z=1/y

=
∫∞
0 y−α−1 e−p/ydy = Γ(α) p−α, α > 0, p > 0, (8.1)∫∞

0 ym−1/2 e−py−q/ydy = (−1)m
√
π ∂m

∂pm
(
p−1/2 e−2

√
p q
)
, m = 0, 1, 2, . . . , (8.2)∫∞

0 y−m−1/2 e−py−q/ydy = (−1)m
√
π√
p
∂m

∂qm
(
e−2

√
p q
)
, m = 0, 1, 2, . . . , (8.3)∫∞

0 yα−1 e−py sin(b y)dy =
Γ(α) sin(α) arctan(b/p)

(b2 + p2)α/2
, α > −1 (8.4)

and the Fourier series expansion of Q1(y) at all non-integer points y, see formula 5.4.2.9 with a = 0:

Q1(y) = 1/2− (y − [y]) =
∑∞

k=1

sin(2π k y)

k π
, y 6= [y]. (8.5)

Proof of Proposition 3.1: Following the proof of Burnashev (1997, Theorem 1) one has to change
Stirling’s formula of the Gamma functions Γ(z) and 1/Γ(z) as z → ∞ by inequalities, proved in
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Nemes (2015, Theorem 1.3):

Γ(z) =
√

2π zz−1/2 e−z (1 + 1
12z + 1

288z2
+R3(z)),

1
Γ(z)

= 1√
2π

z−z+1/2 ez (1− 1
12z + 1

288z2
+ R̃3(z)),

 z > 0,

with {|R3(z)|, |R̃3(z)| ≤ cz−3 and c =
(1 + ζ(3))Γ(3)(2

√
3 + 1)

2 (2π)4
≤ 0.006.

Here ζ(z) is the Riemann zeta function with ζ(3) ≈ 1.202...
Finally, when ever Taylor’s formula is used with remainder in big O notation, then the remainder

has to be estimated in Lagrange form by an inequality. The constants C1, C2 > 0 in (3.6) and (3.8)
depend only on p0, p1, p2 and the upper bound of p′′′X(x) in some interval (0, x0), x0 > 0. �

Proof of Theorem 4.2: The proof follows along the similar arguments of the more general transfer
theorem in Bening et al. (2013, Theorem 3.1) for γ ≥ 0 under conditions of our Theorem 4.2. Then
conditioning on Nn, we have

P
(

2p0 (gn/Nn)γ
√
N∗n MNn ≤ x

)
= P

(
2p0
√
N∗nMNn ≤ x (Nn/gn)γ

)
=
∑∞

m=1
P
(

2p0
√
m∗Mm ≤ x (m/gn)γ

)
P(Nn = m).

Using now (3.8) with Φm(z) := Φ(z) +m−1/2f1(z) +m−1f2(z):

supx
∑∞

m=1

∣∣∣P(2p0
√
m∗Mm ≤ x (m/gn)γ

)
− Φm(x (m/gn)γ)

∣∣∣ P(Nn = m)

(3.8)

≤ C2

∑∞

m=1
m−3/2 P(Nn = m) = C2 E(N−3/2n ). (8.6)

Taking into account P
(
Nn/gn < 1/gn

)
= P

(
Nn < 1

)
= 0 we obtain∑∞

m=1
Φm(x (m/gn)γ)P(Nn = m) = E (ΦNn(x (Nn/gn)γ))

=

∫ ∞
1/gn

∆n(x, y; γ)dP(Nn/gn ≤ y) = Gn(x, 1/gn) + I(γ),

where ∆n(x, y; γ) := Φ(x yγ) + f1(x y
γ)/
√
gny+ f2(x y

γ)/(gny), Gn(x, 1/gn) is defined in (4.3) and

I(γ) =

∫ ∞
1/gn

∆n(x, y; γ)d
(
P(Nn/gn ≤ y)−H(y)− h2(y)

n

)
.

Estimating integral I(γ) we use integration by parts for Lebesgue-Stieltjes integrals:

|I(γ)| ≤ supx lim
L→∞

|∆n(x, y; γ)|
∣∣P(Nn/gn ≤ y

)
−H(y)− n−1h2(y)

∣∣∣∣∣∣y=L
y=1/gn

+ supx

∫ ∞
1/gn

∣∣∣ ∂
∂ y

∆n(x, y; γ)
∣∣∣ ∣∣P(Nn/gn ≤ y

)
−H(y)− n−1h2(y)

∣∣ dy.
First we calculate (∂/∂ y)∆n(x, y; γ) for γ ∈ {0,±1/2}. We get

∂

∂ y

(f1(x yγ)
√
y

)
=

sign(x) q1(x y
γ)

4 y3/2
and

∂

∂ y

(f2(x yγ)

y

)
=
q2(x y

γ)

4 y2
(8.7)

with q1(z) = a0(2γ − 1/2− γ z2)z2 ϕ(z) and
q2(z) =

(
γ a2z

6 − (γa1 + (5γ − 1)a2)z
4 + ((3γ − 1)a1 − 3γ)z2 + 3(γ − 1)

)
zϕ(z),

where a0 = p1/p
2
0, a1 = 1 + p2/(6p

3
0) and a2 = p21/(8p

4
0), see (3.7).
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The functions fk(z) and qk(z), k = 1, 2, are bounded, we suppose

supz |fk(z)| ≤ c∗k <∞ and supz |qk(z)| ≤ c∗∗k <∞, k = 1, 2. (8.8)

To estimate Dn(γ) defined in (4.4) we look at Dn(x; γ) for x 6= 0 since Dn(0; γ) = 0. Using (8.7)
together with

∫∞
1/gn

(∂/∂ y)Φ(xyγ)dy = 1−Φ(x/gγn) ≤ 1/2 for x > 0 and
∫∞
1/gn
|(∂/∂ y)Φ(xyγ)|dy =

Φ(x/gγn) ≤ 1/2 for x < 0 in case of γ = ±1/2 and ∂
∂ yΦ(x yγ) = 0 for γ = 0, then we find

Dn(x; γ) ≤ 1/2 + c∗∗1 /2 + c∗∗2 /4 = D(γ) < ∞ and (4.4) holds. It follows from (4.1) and (8.8)
that |I(γ)| ≤ (C4 + D(γ)C3)n

−b with C4 = (1 + c∗1 + c∗2)C3. Together with (8.6), Theorem 4.2 is
proved. �

Proof of Theorem 4.5: Using condition (4.6i) we find∫ 1/gn

0
Φ(xyγ)dH(y) ≤

∫ 1/gn

0
dH(y) = H(1/gn)−H(0) ≤ c1g−bn .

It follows from (8.8), (4.6ii) and (4.6iii) that for k = 1, 2∫ 1/gn

0
|fk(xyγ)|y−k/2dH(y) ≤ c∗k

∫ 1/gn

0
y−k/2dH(y) ≤ c∗k ck+1(r)g

−b+k/2
n .

Integration by parts, |z|ϕ(z)/2 ≤ c∗ = (8π e)−1/2, (4.7i) and (4.7ii) lead to∣∣∣∣∣
∫ 1/gn

0
Φ(xyγ)dh2(y)

∣∣∣∣∣ ≤ |h2(1/gn)|+ c∗
∫ 1/gn

0
y−1|h2(y)|dy ≤ (c4 + c∗c5)n g

−b
n .

Taking into account (4.3), (4.9), (4.10) and (4.11) we obtain (4.8). �

Proof of Theorem 5.3: Integrating by parts and substituting y/gn = x , we obtain

E(Nn(r))−p =

∫ ∞
1

1

yp
dP
(
Nn(r) < y

)
=

p

gpn

∫ ∞
1/gn

1

xp+1
P
(
Nn(r)

gn
< x

)
dx

=
p

gpn

∫ ∞
1/gn

1

xp+1

(
Gr,r(x) +

h2;r(x)

n

)
dx+R1(n) = I1 + I2 +R1(n), (8.9)

where (5.5) of the Proposition 5.1 gives

|R1(n)| ≤ p

gpn

∫ ∞
1/gn

1

xp+1

∣∣∣∣P(Nn(r)

gn
< x

)
−Gr,r(x)− h2;r(x)

n

∣∣∣∣ dx ≤ C3(r)

nmin{r,2} .

The integral I1 in (8.9) we calculate with integration by parts:

I1 =
p

gpn

∫ ∞
1/gn

Gr,r(x)

xp+1
dx = I1;p(n) +R2(n)

with R2(n) = Gr,r(1/gn) ≤ rrg−rn /Γ(r + 1)

I1;p(n) =
rr

Γ(r) gpn

∫ ∞
1/gn

e−r x

xp+1−r dx =


rp Γ(r − p)

Γ(r) gpn
+R3(n), p < r,

rr ln(gn)
Γ(r) grn

+R4(n), p = r,

R5(n), p > r,

(8.10)

where for p < r

|R3(n)| = rr

Γ(r) gpn

∫ 1/gn

0
xr−p−1e−r xdx ≤ rr

Γ(r) (r − p) grn
.
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In case p = r we split the integral in I1;p(n) into three parts, the first one leads to the leading term
in (8.10): ∫ ∞

1/gn

e−r x

x
dx =

∫ 1/r

1/gn

x−1dx−
∫ 1/r

1/gn

1− e−r x

x
dx+

∫ ∞
1/r

e−r x

x
dx. (8.11)

Then we obtain

|R4(n)| =
∣∣∣∣I1;p(n)− rr ln(gn)

Γ(r) grn

∣∣∣∣ ≤ rr (1 + r + e−1)

Γ(r) grn
.

For p > r we have

R5(n) =
rr

Γ(r) gpn

∫ ∞
1/gn

e−r x

xp+1−r dx ≤
rr

Γ(r) (p− r) grn
.

Now we calculate the integral I2 in (8.9) in case of r > 1:

I2 =
p

gpn n

∫ ∞
1/gn

h2;r(x)

xp+1
dx =

p rr (2− r)
2 r Γ(r) gpn n

∫ ∞
1/gn

e−r x

xp+2−r (x− 1)dx+ I2,p(n). (8.12)

Define I3,p(n) = I2 − I2,p(n). Since the integrals in I1 and I3,p(n) have the same structure, one get
with the above method for r > 1

I3,p(n) =


p rp (2− r)
2 r Γ(r)gpn n

(
Γ(r − p)− r Γ(r − p− 1)

)
+R6(n), p < r − 1,

p rr (2− r)
2 r Γ(r)gr−1n n

(−r ln(gn)) +R7(n), p = r − 1,

R8(n), p > r − 1,

(8.13)

where |Rk(n)| ≤ ck(r, p)g−rn , with some constants ck(r, p), k = 6, 7, 8.
It remains to show that integral I2,p(n) in (8.12) has the order of the remainder:

|I2,p(n)| = p rr−1

Γ(r) gpn n

∣∣∣∣∣
∫ ∞
1/gn

e−r x

xp+2−rQ1

(
gn x

)
dx

∣∣∣∣∣ ≤ c(p, r)g−rn for r > 1. (8.14)

Let 0 < p < r − 1. Then

I2,p(n) =
p rr−1

Γ(r) gpn n

∫ ∞
0

e−r x

xp+2−rQ1

(
gn x

)
dx+R9(n) =

p rr−1

Γ(r) gpn n
J∗2;p(n) +R9(n)

where, since gn ≤ r n for r > 1 and |Q1(gnx)| ≤ 1/2, applies

|R9(n)| = p rr−1

Γ(r) gpn n

∣∣∣∣∣
∫ 1/gn

0

e−r x

xp+2−rQ1(gn x)dx

∣∣∣∣∣ ≤ p rr

2Γ(r)gp+1
n

∫ 1/gn

0

dx

xp+2−r =
cp,r
grn

.

Considering (8.5) and interchange integral and sum we find

J∗2;p(n) =

∫ ∞
0

e−r x

xp+2−rQ1

(
gn x

)
dx =

∑∞

k=1

1

k π

∫ ∞
0

e−r x

xp+2−r sin(2π k gn x)dx.

Applying (8.4) with α = r − p− 1, p = r and b = 2πkgn then

J∗2;p(n) =
∑∞

k=1

1

k π

∫ ∞
0

xr−p−2e−r x sin(2π k gn x)dx

=
Γ(r − p− 1)

π

∑∞

k=1

sin
(
(r − p− 1) arctan (2πkgn/r)

)
k
((

2πkgn
)2

+ r2
)(r−p−1)/2 .

Hence, for 0 < p < r − 1 we have

|J∗2;p(n)| ≤ Γ(r − p− 1)

π

∑∞

k=1

1

k (2π k gn)r−p−1
≤ Γ(r − p− 1)

π(2π)r−p−1
ζ(r − p) g−r+p+1

n
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with Riemann zeta function ζ(r − p) <∞ since r − p > 1 and (8.14) holds.
In case 0 < p = r− 1 the Fourier series expansion (8.5) of Q1(y) and integration by parts lead to

I2,p(n) =
p rr−1

Γ(r) gpn n

∞∑
k=1

1

k2 2π2 gn

(
gn

er/gn
−
∫ ∞
1/gn

( 1

x2
+

1

x

)
e−r x cos(2π k gn x)dx

)
and

|I2,p(n)| ≤ p rr−1

Γ(r) gpn n

∑∞

k=1

2 gn + gn/r

k2 2π2 gn
≤ p rr−1(2 r + 1)

2Γ(r)π2
ζ(2) g−rn , p = r − 1.

If p > r − 1 using |Q1(y) ≤ 1/2 we find

|I2,p(n)| ≤ p rr−1

Γ(r) gpn n

∫ ∞
1/gn

x−r+p+2dx ≤ p rr

2 Γ(r)(p+ 1− r)
g−rn , p > r − 1,

and (8.14) is proved. Estimates (8.9), (8.10), (8.13) and (8.14) lead to (5.6) and Theorem 5.3 is
proved. �

Proof of Theorem 5.6: We use Theorems 4.2 and 4.5 with H(y) = Gr,r(y), h2(y) = h2;r(y), gn =
r(n− 1) + 1 and b = min{r , 2} defined in Proposition 5.1 .

It follows from (5.7) with p = 3/2 that

E
(
Nn(r)

)−3/2 ≤ C(r)

{
n−min{r,3/2}, r 6= 3/2

ln(n)n−3/2, r = 3/2.
(8.15)

Next we check conditions (4.6) and (4.7). Using (5.3) we find for k = 0, 1, 2∫ 1/gn

0
y−k/2dGr,r(y) =

rr

Γ(r)

∫ 1/gn

0
yr−k/2−1 e−rydy ≤ rr

Γ(r) (r − k/2)
g−r+k/2n .

Hence we obtain ck+1(r) = rr (Γ(r) (r − k/2)−1 if r > k/2 for k = 0, 1, 2 in (4.6).
Let r > 1 and define

c∗3 =
rr−1

2 Γ(r)
sup
y
{e−r y (|y − 1||2− r|+ 1)} <∞. (8.16)

In this case we find gr,r(0) = 0, h2;r(0) = 0 and gn ≤ r n. Hence (4.7i) and (4.7ii) hold with
c4(r) = c∗3 and c5(r) = c∗3/(r − 1).

Now we estimate the integrals (4.10) and (4.11). Using (8.8) for f1(z) and f2(z) defined in (3.7)
we find for 0 < r < 1/2 and γ ∈ {0, 1/2}:

J1;r;n(x; γ) =

∫ ∞
1/gn

|f1(x yγ)|
√
y

dGr,r(y) ≤ c∗1 r
r

Γ(r)

∫ ∞
1/gn

yr−3/2dy =
c∗1 r

r g
r−1/2
n

Γ(r) (1/2− r)

If r = 1/2 and γ = 1/2 then with x2/(1 + x2) ≤ 1 we have

J1;1/2;n(x; 1/2) =
x2|p1|
8πp20

∫ ∞
1/gn

e−((1+x
2)/2) ydy ≤ x2|p1|

8πp20 (1 + x2)/2
≤ 2|p1|

8πp20
.

In the case of r = 1/2 and γ = 0 using (8.11) we find for first integral in (4.10)∣∣∣∣∣ f1(x)√
2π
√
gn

∫ ∞
1/gn

e−y/2

y
dy − f1(x) ln(gn)√

2π
√
gn

∣∣∣∣∣ ≤ c∗1 (3/2 + e−1)√
2π
√
gn

. (8.17)

Consider the second term in (4.10). Let r < 1 and γ ∈ {0, 1/2}, then

J∗1;r;n(x; γ) =

∫ ∞
1/gn

|f2(x yγ)|
y

dGr,r(y) ≤ c∗2 r
r

(1− r) Γ(r)
g1−rn . (8.18)
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If r = 1 and γ = 1/2 we define the polynomial P4(z) by f2(z) = P4(z)z ϕ(z) with z = x
√
y and

put c∗4 = supz{|P4(z)|ϕ(z/
√

2)} <∞. Then |f2(z)| ≤ c∗4|z| e− z
2/4, gn = n and

J∗1;1;n(x; 1/2) ≤ c∗4 |x|
∫ ∞
1/n

y−1/2e− (x2/4+1) y dy ≤ c∗4 |x|
√
π

(x2/4 + 1)1/2
≤ c∗4 2

√
π.

If r = 1 and γ = 0 using (8.11) we obtain in the same way as in (8.17)∣∣∣∣∣f2(x)

n

∫ ∞
1/n

e−y/2

y
dy − f2(x) ln(n)

n

∣∣∣∣∣ ≤ c∗2 (2 + e−1)

n
. (8.19)

Hence, for 0 < r ≤ 1 and γ ∈ {0, 1/2} we have∣∣∣∣∣I1(x, n)− f1(x) ln(gn)√
2π
√
gn

I{r=1/2, γ=0} −
f2(x) ln(n)

n
I{r=1, γ=0}

∣∣∣∣∣ ≤ Crg−rn .

In the case of γ = −1/2, the integral I1(x, n) does not occur because we only consider only the case
r = 2.

Now we estimate I2(x, n) in (4.11) for r > 1 and γ ∈ {0,±1/2}. Integration by parts for
Lebesgue-Stieltjes integrals, (8.7) and (4.7i) lead to

|I2(x, n)| ≤ 1

n
(f1(x/g

γ
n) + f2(x/g

γ
n) |h2;r(1/gn)|+ I∗2 (x, n)

≤ (c∗1 + c∗2)c4(r) g
−r
n + I∗2 (x, n) (8.20)

with

I∗2 (x, n) =

∫ ∞
1/gn

( |q1(x ygγn)|
4n
√
gny3/2

+
|q2(x yγ)|
4n gny2

)
|h2;r(y)|dy, (8.21)

where for k = 1, 2 functions fk(z) and qk(z) are bounded, see (8.8).
Moreover gny2 ≥

√
gny

3 /2 for y ≥ 1/gn and gn ≤ n r for r > 1.
If 1 < r < 3/2 with c∗3 defined in (8.16) we find

|I∗2 (x, n)| ≤ (c∗∗1 + c∗∗2 )c∗3
4n
√
gn

∫ ∞
1/gn

yr− 5/2dy =
(c∗∗1 + c∗∗2 ) r c∗3

4 (3/2− r)
g−rn .

If r > 3/2 with c∗4 = rr−1

2 Γ(r)
supy{(e−r y/2 (|y − 1| |2− r|+ 1)} <∞ we obtain

|I∗2 (x, n)| ≤ (c∗∗1 + c∗∗2 )c∗4
4n
√
gn

∫ ∞
1/gn

yr−5/2e−r y/2dy ≤ (c∗∗1 + c∗∗2 ) r c∗4Γ(r − 3/2)

4(r/2)r−3/2g
3/2
n

.

For r = 3/2 the above estimates of |I∗2 (x, n)| lead to an exponential integral:

|I∗2 (x, n)| ≤ (c∗∗1 + c∗∗2 )c∗4
4n
√
gn

(∫ 1

1/gn

y−1dy +

∫ ∞
1

e−3 y/2dy

)

≤ (c∗∗1 + c∗∗2 ) r c∗4
4

(
ln(gn) +

2

3
e−3/2

)
g−3/2n .

In the latter case r = 3/2 the bound |I∗2 (x, n)| ≤ C g
−3/2
n may be obtained for γ = 1/2 with an

analogous procedure as for estimating the above integral |I1(x, n)| for r = 1 in (8.18). This proof is
omitted because the rate of convergence in Theorem 5.6, see (5.10), is determined by the negative
moment (8.15), where the term ln(n) cannot be omitted.

To obtain (5.11) we calculate the integrals in (4.9), which are similar to that in the proof of
Theorem 2 in Christoph et al. (2020). The densities of the limit laws are given in (5.8) for γ ∈
{0,±1/2}.
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The calculation of the further integrals in (4.9) depends on γ.
For γ = 1/2 and r > 1/2 we find with f1(x) defined in (3.7) and α = 1/2 in (8.1)∫ ∞

0

f1(x
√
y)

√
y

dGr,r(y) =
p1 x|x| rr

4 p20 Γ(r)
√

2π

∫ ∞
0

yr−1/2

e(r+x2/2)y
dy =

p1 x|x|
4 p20

s2r(x).

Analogously, if r > 1 we obtain for f2(x) with α = −1/2, 1/2, 3/2 in (8.1)∫ ∞
0

f2(x
√
y)

y
dGr,r(y) =

x

4

{
3 (2r + x2)

2r − 1
+
(

1 +
p2
6p30

)
x2 − p21x

4(2r + 1)

8p40 (2r + x2)

}
s2r(x).

The integral
∫∞
0 Φ(x

√
y)dh2;r(y) in (4.9) is the same as the integral J4(x) in the proof of Theorem

2 in Christoph et al. (2020) where is shown:

1

n
sup
x

∣∣∣∣∫ ∞
0

Φ(x
√
y)dh2;r(y)− (2− r)x(x2 + 1)

4r(2r − 1)
s2r(x)

∣∣∣∣ ≤ c(r)n−r
which proves the the Theorem 5.6 for γ = 1/2.

If γ = 0 then fk(xyγ) = fk(x), together with (8.17), (8.19), (8.1) with α = r− k/2 and p = r for
k = 1, 2, we proved (5.12).

If γ = −1/2 and r = 2 then with (8.3) with m = 0, 1, 2, p = x2/2 and q = 2 we find (5.13). Since
for r = 2 we have h2;2(y) = g2;2(y)Q1(gny)/2. Integration by parts leads to∣∣∣∣∫ ∞

0
Φ(x/

√
y)dh2;2(y)

∣∣∣∣ =
|x|√
2π

∣∣∣∣∫ ∞
0

y−1/2 e−x
2/(2y)−2y Q1(gny)dy

∣∣∣∣ ≤ π

12 e gn
,

where the last inequality was shown in Christoph and Ulyanov (2020) for J∗3;2,2 in formula (A12).
Theorem 5.6 is proved. �

Proof of Theorem 6.4: As in the beginning of the proof of Theorem 5.3 we obtain

E(Nn(s))−p =
p

np

∫ ∞
1/n

1

xp+1

(
Hs(x) +

h2;s(x)

n

)
dx+R1(n) = I1 + I2 + I3 +R1(n),

where, with substitution x = 1/y we find

I1 =
p

np

∫ ∞
0

e−s/x

xp+1
dx+R2(n) =

p

np

∫ ∞
0

yp−1 e−s ydy +R2(n) =
Γ(p+ 1)

sp np
+R2(n),

I2 =
p s (s− 1)

2np+1

∫ ∞
0

e−s/x

xp+3
dx+R3(n) =

(s− 1) pΓ(p+ 2)

2 sp+1np+1
+R3(n),

considering (8.5)

I3 =
p s

np+1

∫ ∞
1/n

e−s/xQ1(nx)

xp+3
dx =

p s

np+1

∑∞

k=1

1

k π

∫ ∞
1/n

e−s/x sin(2π k nx)

xp+3
dx

and with (6.3) of Theorem 6.1

|R1(n)| ≤ p

np

∫ ∞
1/n

1

xp+1

∣∣∣∣P(Nn(s)

n
< x

)
−Hs(x)− h2sr(x)

n

∣∣∣∣ dx ≤ C3(s)

n2
.

Since for α > 0 and 0 < β ≤ 2

α

∫ 1/n

0

e−s/x

xα+1
dx ≤ e−s nnα ≤ C(α, β, s)n−β, C(α, β, s) =

(α+ β

s e

)α+β
(8.22)

we find with c2 = pC(0, 2, s) and c3 = sp|s− 1|C(2, 2, s)/2

R2(n) =
p

np

∫ 1/n

0

e−s/x

xp+1
dx ≤ c2

n2
and |R3(n)| = p s |s− 1|

2np+1

∫ 1/n

0

e−s/x

xp+3
dx ≤ c3

n2
.
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It remains to estimate I3. Partial integration leads to∫ ∞
1/n

sin(2π k nx)

es/x xp+3
dx =

np+3

es n2π k n
−
∫ ∞
1/n

(
p+ 3

xp+4
− s

xp+5

)
cos(2π k nx)

es/x2π k n
dx.

Considering the second inequality of (8.22) and
∑∞

k=1 k
−2 = π2/6 we obtain

|I3| ≤ p s
(
n e−s n +

2Γ(p+ 4)

sp+3 np+2

)
≤ c(s, p)n−2. (8.23)

Theorem 6.4 is proved. �

Proof of Theorem 6.7: We use Theorems 4.2 and 4.5 with H(y) = Hs(y) and h2(y) = h2;s(y) defined
in (6.4), b = 2 and gn = n.

It follows from (6.7) with p = 3/2 that E
(
Nn(s)

)−3/2 ≤ C(r)n−3/2.
The three conditions in (4.6) for k = 0, 1, 2 and s > 0 follow from∫ 1/n

0
y−k/2dHs(y) =

∫ 1/n

0
y−k/2

s

y2
e−s/ydy =

∫ ∞
n

zk/2e−s zdz ≤ ck+1(s)n
−2+k/2

with ck+1(s) = 2s−2. Moreover, (4.7) is valid, since h2;s(0) = limy↓0 h2;s(y) = 0,

|h2;s(1/n)| ≤ 1

2
s(|s− 1|+ 1)n2e−s n ≤ 27 (|s− 1|+ 1)

2 s2e3 n
= c4(s)n

−1, (8.24)

and ∫ 1/n

0

|h2;s(y)|
y

dy ≤ s(|s− 1|+ 1)

2

∫ 1/n

0

e−s/y

y3
dy ≤ s|s− 1|+ 1

4
n2e−sn = c5(s)n

−1.

It is worth to mention that in conditions (4.6) and (4.7) the functions Hs(1/n) and h2;s(1/n) and
the corresponding integrals decrease even exponentially with order n e−s n or n2 e−s n, s > 0.

It remains to estimate I2(x, n) given in (4.11). Changing only h2;r(y) by h2;s(y) in the estimations
(8.20) and (8.21) of the corresponding I2(x, n) in the proof of Theorem 5.6, using partial integration,
the estimates (8.24), (8.8) and ny2 ≥

√
ny3/2 for y ≥ 1/n, then we obtain

|I2(x;n)| ≤ (c∗1 + c∗2) c4(s)n
−2 +

(4 c∗∗1 + c∗∗2 ) (|s− 1|+ 1) Γ(5/2)

16 s3/2n3/2
= c(s)n

−3/2.

To obtain (6.10) we calculate integrals in (4.9) for b = 3/2 and γ ∈ {0,±1/2}.
Let γ = 1/2. With (8.3) for p = x2/2 > 0, s > 0, m = 0, 1, 2:∫ ∞

0

ϕ(x
√
y)

ym−3/2
dHs(y) =

∫ ∞
0

s e−x
2y/2−s/y

√
2π ym+1/2

dy = (−1)m
s

|x|
∂m

∂sm
e−
√
2 s|x|, (8.25)

where

(−1)
s

|x|
∂

∂s
e−
√
2 s|x| = l1/

√
s(x) and

s

|x|
∂2

∂s2
e−
√
2 s|x| =

( |x|√
2 s

+
1

2 s

)
l1/
√
s(x).

Using (8.25) for m = 1,
∞∫
0

f1(x
√
y)

√
y

dHs(y) =
p1x|x|s
4p20
√

2π

∞∫
0

e−(x
2/2)y−s/y

y3/2
dy =

p1x|x|
4p20

l1/
√
s(x)

and with (8.25) for m = 0, 1, 2, we calculate∫ ∞
0

f2(x
√
y)

y
dHs(y) =

x

4

{
3

1 +
√

2 s

2 s
+
(

1 +
p2

6 p30

)
x2 − p21 x

2 |x|
√

2 s

8 p40

}
l1/
√
s(x).
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Finally, in the proof of Theorem 5 in Christoph et al. (2020), see J4 and J∗4 , it was shown that

sup
x

∣∣∣∣∣
∫ ∞
0

Φ(x
√
y)dh2;s(y)− (1− s)x(1 +

√
2s|x|)

8 s
l1/
√
s(x)

∣∣∣∣∣ ≤ c(s)n−1/2.
Let now γ = 0. Since fk(.) for k = 1, 2 do not depend on y we get (5.12) with

s

∫ ∞
0

fk(x) y−k/2−2e−s/ydy = fk(x) s

∫ ∞
0

zk/2 e−s zdz = fk(x) s−k/2 Γ(k/2 + 1).

If γ = −1/2, we calculate the integrals with f1(.) and f2(.) in (4.9) with the second equation in
(8.1) for α = 5/2, 7/2, 9/2. The last integral in (4.9) is identical to J∗3;s(x) = J∗4;s(x) + J∗5;s(x) in
the proof of Theorem 8 in Christoph and Ulyanov (2020) and the integrals were calculated there.
Hence

n−1 sup
x

∣∣∣∣∫ ∞
0

Φ(x/
√
y)dh2;s(y)− 3 (s− 1)x

4 (x2 + 2s)
s∗2(x;

√
s)

∣∣∣∣ ≤ C(s)n−2

and Theorem 6.7 is proved. �
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