
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

A semi-implicit unstructured operator-difference
scheme for three-dimensional self-gravitating flows
To cite this article: Ilya A Kondratyev and Sergey G Moiseenko 2021 J. Phys.: Conf. Ser. 2028
012007

 

View the article online for updates and enhancements.

You may also like
Numerical study of MPS method with large
eddy simulation for fluid solid coupling
problem
Chao YANG, Huaixin ZHANG and Huilan
YAO

-

Analysis of linear differential equations by
methods of the spectral theory of
difference operators and linear relations
A. G. Baskakov

-

Balancing efficiency and accuracy for
sediment transport simulations
Wenjie Wei, Stuart R Clark, Huayou Su et
al.

-

This content was downloaded from IP address 46.242.12.210 on 03/02/2022 at 10:07

https://doi.org/10.1088/1742-6596/2028/1/012007
https://iopscience.iop.org/article/10.1088/1742-6596/814/1/012004
https://iopscience.iop.org/article/10.1088/1742-6596/814/1/012004
https://iopscience.iop.org/article/10.1088/1742-6596/814/1/012004
https://iopscience.iop.org/article/10.1070/RM2013v068n01ABEH004822
https://iopscience.iop.org/article/10.1070/RM2013v068n01ABEH004822
https://iopscience.iop.org/article/10.1070/RM2013v068n01ABEH004822
https://iopscience.iop.org/article/10.1088/1749-4699/6/1/015011
https://iopscience.iop.org/article/10.1088/1749-4699/6/1/015011
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvSLmrMgyvw0Bbefxad5e9-QPQvUQ4fcuVy6E0ufzkqN74bb2GGPHhlHUZxIsHeFt63I43XuHqNex-xibFl8_3woxMBcCBJHGii1Su6n488Je-Mc7QplIQf_0O4SpsKXyidDLK9ZiiR-TRUNoDDnSxdhPPQGP_4HRz0VbThyhclA0oLm2c_pYLtomiCfGYpLMBLgpSZNMxOcGsSHb2e3uDQV2aQZQs-LHhlhremk6PsdGuaBZSYPGMGtNhkpTeV1gbhQFbBYd3KhMf7b8FbJ1ZmmzvWuzqU2Oc&sig=Cg0ArKJSzCkOHnWl_3ZL&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/242/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3DBanner%26utm_campaign%3D242Abstract%26utm_id%3D242Abstract


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

MHD-PP 2021
Journal of Physics: Conference Series 2028 (2021) 012007

IOP Publishing
doi:10.1088/1742-6596/2028/1/012007

1

A semi-implicit unstructured operator-difference

scheme for three-dimensional self-gravitating flows

Ilya A Kondratyev1,2, Sergey G Moiseenko1,2

1 Space Research Institute RAS, Profsoyuznaya st., 84-32, Moscow, Russia, 117485
2 National Research University ”Higher School of Economics”, Staraya Basmannaya st., 21/4
s. 5, Moscow, Russia, 105066

E-mail: mrkondratyev95@gmail.com, moiseenko@iki.rssi.ru

Abstract. A support operators (operator-difference) method has proven itself well for implicit
simulations of different astrophysical fluid flows. Following the operator-difference approach, we
construct nodal difference analogues of differential operators in Cartesian coordinates, where
the conjugacy properties are the same as for original ones. Using the difference operators, we
develop an Eulerian semi-implicit gas-dynamical solver with self-gravity on a three-dimensional
collocated unstructured tetrahedral mesh. In the solver, only acoustic waves are treated
implicitly, resulting to the only elliptic equation for a pressure on each time-step. The conjugacy
properties of derived difference operators allow us to construct symmetric sign-definite matrices
for this elliptic equation as well as for Poisson equation for a gravitational potential. The
stability condition of the proposed scheme is milder, than the usual Courant-Friedrichs-Lewy
condition for explicit solvers, and depends only on the gas velocity. Results of test problems’
simulations of low and high Mach number flows are presented.

1. Introduction
Numerical simulations of astrophysical fluid flows is one of the key instruments, which allow
us to understand better a wide range of astronomical phenomena as well as to compare the
theoretical predictions to observational data. An astrophysics is rich for different types of the
fluid and plasma flows in the case, when one can use compressible fluid approximation without
dissipation, so that the explicit schemes for hyperbolic systems, such as Godunov-type finite
volume or SPH solvers, can be successfully applied for such kind of problems [1, 2]. But there
are the astrophysical problems, such as, for example, star formation from protostellar clouds,
collapses of stars’ iron cores and supernovae explosions, where the implicit or semi-implicit
schemes may possibly outperform the explicit solvers. It is a common situation in astrophysical
modelling, when the compact high-density regions of a collapsed matter with high speed of sound
(such as protostars, protoneutron stars) appear in a computational domain, where the velocity
of the flow is very low compared to the acoustic speed. At the same time, everywhere else in
the domain, the flow can be considered as compressible, and strong shocks and other different
flow discontinuities may form. The mesh size during such astrophysical simulations is usually
refined in the regions of collapsed objects up to several orders of magnitude, compared to the
cell size on the outer boundary. It is well known, that the explicit solvers are only conditionally
stable, and the Courant-Friedrichs-Lewy (CFL) condition limits the time-step in simulations.
In the mentioned types of astrophysical flows, the global CFL condition comes mostly from the
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acoustic oscillations of these resolved collapsed objects and may be very restrictive, which makes
such kind of simulations computationally expensive and challenging. Thus, there is a hope, that
the implicit treatment of acoustic waves in hydrodynamical schemes may allow to reduce the
computational cost of such astrophysical simulations.

Implicit evaluation of the pressure field is a standard approach in incompressible flow
simulations. The idea to extend the classical semi-implicit incompressible numerical scheme by
Harlow and Welsh [3] to compressible flows was proposed in mid-80’s by Casulli and Greenspan
[4], but only quite recently this approach was used to construct the so-called All-Mach number
solvers for gas dynamics (see e.g. works [5, 6, 7, 8] on structured and [9, 10] on unstructured grids,
and references therein) and for MHD equations [11, 12], written in conservative form. They are
the pressure-based solvers by its nature, but they can work as high resolution shock-capturing
methods as well in presence of discontinuities. The usage of semi-implicit solvers results to the
solution of an elliptic equation with a Laplace-type operator for the pressure on each time-step,
and it is very important to construct a consistent difference analogue of the solving differential
problem, which provides the linearized systems to be cheaply solvable. To obtain a symmetric
sign-definite matrices for the linear elliptic problems, we use a Support (basic) Operators Method
(operator-difference approach) [14] to construct the difference analogues of differential operators
in three dimensions. The support operators method has also many common features with
mimetic finite difference [13] approach.

The idea of the support operators method is that the difference operators should be derived
in the way to fulfil the same properties as the continuous operators. Thus, the constructed
operators should satisfy the difference analogues of integral relations such as Green formula. This
approach allows to obtain the so-called completely conservative fully implicit finite-difference
schemes for gas dynamics and MHD equations [14] on unstructured grids. For 2D simulations
of magnetorotational supernova explosion this method was used e.g. in [15] with a cell-nodal
approximation [16, 17].

The paper is organized as follows. In the next subsection we derive the nodal difference
operators of gradient and divergence in three dimensions. In the 3-rd subsection we provide
the description of the solving gravitational gas-dynamics system and derive a semi-implicit
numerical scheme for these equations, and in the last subsections we present and discuss the
results of numerical simulations of several benchmark problems in low and high Mach number
regimes.

2. Difference analogues of differential operators
In Support operators method the difference analogues of differential operators are built in pairs.
Further we are going to consider only the nodal gradient and divergence operators, while the
other difference analogues can be obtained in a similar way. To introduce difference GRAD and
DIV operators one should define finite dimensional linear grid spaces and scalar products of grid
functions in them. The first operator can be obtained using any numerical differencing technique,
while the second one has to satisfy the grid analogue of the Green formula in corresponding grid
space. Thus, the resulting operators are conjugated to each other. The GRAD operator can
be derived in two different ways: either using the finite element approach with linear basis
functions inside the tetrahedra (for 2D case see e.g. [18]) or with a finite volume approach using
piecewise-constant basis functions on the nodal edge-based (median-dual) cells, as in Godunov-
type methods on unstructured grids (see e.g. [19]). The grid gradient operator reads:

(∇×p)j = − 1

12Wj

∑
i∈Gj

4∑
k=1

(
Sknkpk

)
i
, (1)
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where p is a nodal scalar function, Gj is a set of tetrahedral cells adjoined to sought j-th node,
i is a cell index, k is a node index inside the i-th cell, nk and Sk are unit normal and area
to the tetrahedron’s triangular face, which does not contain the node k in its vertexes, and
Wj = 1

4

∑
i∈Gj

Vi is a ”node” volume (the volume of a median-dual cell), Vi is a volume of i-th

tetrahedron.
To obtain the consistent approximation of the divergence operator, the Green formula and

its difference analogue should be used:∫
V
p∇ · vdV +

∫
V

(∇p) · vdV =

∮
∂V
pv · dS,

Nn∑
l=1

(∇×p)l · vlWl +

Nn∑
k=1

pk(∇× · v)kWk = (Φ · v, p),
(2)

where ∇ and ∇· are the gradient and the divergence operators correspondingly, v is a vector
function, Nn is a total number of the nodes, and V is a volume of the computational domain. The
surface integral in the right hand side of the formulae (2) correspond to the so-called Boundary
operator Φ in a formalism of the support operators method. Its evaluation can be found in
[16, 17, 20]. The boundary operator is used to formulate the boundary-value problems in the
operator-difference form. We do not consider it here, because in the solver we use ordinary finite
volume boundary conditions via ghost cells approach.

To derive the DIV operator in the interior nodes of the computational domain, the Green
formula in (2) is written without the integral in the right hand side. By substituting the grid
gradient operator (1) in the analogue of the Green formula (2) and rearranging the terms, the
following approximation for the divergence operator can be obtained

(∇× · v)j = − 1

12Wj

∑
i∈Gj

4∑
k=1

(
Sknk · vk

)
i
. (3)

We note, that the latter operator has the same form, as the initially derived gradient one (1)
due to the usage of purely nodal approximation, while its form and stencil is different from the
cell-nodal DIV operator. The divergence operator (3) is conjugated to (1), and thus, the grid
Laplacian transforms into the symmetric and sign-definite matrix. The usage of the support
operators technique allows to derive the full set of vector calculus operators, which satisfy the
conjugacy properties.

Finally, the difference analogues of differential operators can be written in a finite-volume
form [21]

(∇fw× p)j =
1

Wj

∑
n∈Hj

(
Snjnnj(pn + pj)

2

)
, (4)

where Hj is a set of neighbouring nodes to the sought node with index j, Snj and nnj are the
area and the unit normal to the n-th face of the node-centred median-dual control volume. This
approximation is exactly the same as (1) [21].

3. Semi-implicit numerical scheme for the equations of gas dynamics with
gravitation
3.1. Euler equations with self-gravity
Gas dynamical equations with self-gravity can be written in the following conservative
formulation:
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∂ρ

∂t
+∇ · (ρv) = 0,

∂ρv

∂t
+∇ · (ρv ⊗ v) +∇P = −ρ∇Ψ,

∂ρE

∂t
+∇ ·

(
ρv
(
E +

P

ρ

))
= −ρv · ∇Ψ,

∇ · ∇Ψ = 4πGρ.

(5)

In the system above, the first three equations without source terms in right hand sides correspond
to ideal Euler equations, while the last one is the Poisson equation for a gravitational potential
Ψ, and the source term corresponds to presence of an acceleration by gravity, G is a gravitational
constant. In ideal Euler equations (5) ρ is a mass density, v is a flow velocity; P is a pressure,

E = v2

2 + Eth is a total energy density, Eth is an internal energy density. A thermodynamic
equation of state is needed to close the system of equations (5). In this paper we consider only
a perfect gas equation of state with an adiabatic index γ:

P = (γ − 1)ρEth. (6)

Extension of a semi-implicit solver (see next subsection) to an arbitrary equation of state is
straightforward and can be found in e.g. [6, 7]

3.2. Poisson solver
The Poisson equation should be solved on each time-step to calculate the value of the
gravitational potential, and hence, a gravitational force. The support operators method allows
to construct a discrete Laplace operator in the form of a symmetric and sign-definite matrix.
Purely nodal approximation requires the stencil, which consists of the second-order neighbours
for each node. The boundary conditions are projected to the boundary nodes and included in
the operator-difference form of the solving problem. For example, the Dirichlet boundary-value
problem reads [16, 17]

(I − δ)∇× · ∇×(I − δ)Ψ + (I − δ)∇× · ∇×δΨγ = 4πG(I − δ)ρ, (7)

where Ψγ is a boundary value of the gravitational potential, I is a unit operator, δ is an operator,
which is equal to unity in the boundary nodes, and zero - in the interior ones [17]. For other
types of boundary conditions (e.g. an absence of the force on the boundary) we solve the Poisson
using the ghost cells approach. The resulting linear system can be solved with a matrix-free
conjugate gradient method. The gravitational acceleration then can be calculated as a nodal
gradient of the potential.

In Fig.1 the solution of the Poisson equation is shown for the spherically-symmetric Gaussian-

law solution Ψ = exp
(
− x2+y2+z2

2

)
given by the function f = exp

(
− x2+y2+z2

2

)
(x2 +y2 +z2−3)

in the right-hand side of the equation.
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Figure 1. The solution of the Poisson equation (blue lines, 1D plots are given for the X-axis)
for the potential (left) and its gradient (right) together with an analytical solution (black lines).
The computational domain is cube (0 < x, y, z < 5) with no force conditions on the symmetry
boundaries and Dirichlet conditions on outer ones.

3.3. Hydro-solver
The difference gas dynamical system of equations can be written in the following form on a
collocated mesh

ρn+1 − ρn

τ
+ ∇̃× · (ρnvn) = 0,

ρn+1vn+1 − ρnvn

τ
+ ∇̃× · (ρnvn ⊗ vn) +∇×Pn+1 = Sv,

ρn+1(Eth + v2

2 )n+1 − ρnEn

τ
+ ∇̃× ·

(
ρnvn

(v2)n

2

)
+∇× ·

(
(En+1

th +
Pn+1

ρn+1
)ρn+1vn+1

)
= Se.

(8)
This system describes the flow evolution from time t = tn to t = tn+1 = tn+τ . The last terms in
the left parts of the second and third equations in (8) should be evaluated implicitly according
to [4, 6], which allows to treat implicitly only the acoustic waves in the gas dynamical system
(5). The source terms are given by the formulae Sv = −ρn+1∇×Ψ, Se = −ρn+1vn · ∇×Ψ. The
gravitational potential is solved for the density distribution on the (n+ 1)-th time-step.

The difference operator with tilde ∇̃×· in explicitly evaluated advective fluxes corresponds
to an upwind monotonic scheme for advection. It is written together with a Rusanov-type
numerical dissipation:

(∇̃× · F)j = (∇× · F)j −
1

2Wj

∑
i∈Hj

(∣∣∣∣∂F

∂u

∣∣∣∣|nij |Sij(ui − uj)), (9)

where dissipation is written in a finite-volume form (4), in which u and F are the vector of
conservative variables and the flux vector correspondingly:

u = (ρ, ρv, ρE)

F = (ρv, ρv ⊗ v, ρvE).
(10)

We use |∂F∂u |= max(|v|i, |v|j), thus, dissipation coefficient is independent on the speed of sound
[6]. The explicit advective scheme is implemented in the same manner, as the edge-based
Godunov-type finite volume solvers on median-dual grids [22], so that the advective fluxes F in
(9) are calculated at the centres of the edges between the nodes.
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The numerical scheme is conditionally stable with a milder CFL condition, which depend
only on the flow velocity and not on the speed of sound:

τ < τadv = min
∆X

2 | v |
, (11)

where ∆X is a characteristic local mesh size.
By substituting the momentum from the momentum equation in (8) to the energy equation,

we can obtain the following nonlinear equation:

Pn+1

γ − 1
− τ2∇× ·

(
hn+1∇×Pn+1

)
=

= ρnEn − ρn+1 (v2)

2

n+1

− τ∇̃× ·
(
ρnvn

(v2)

2

n)
+ τSe−

−τ∇× ·
(
hn+1(ρnvn − τ∇̃× · (ρnvn ⊗ vn) + τSv)

)
,

(12)

where h = Eth + P
ρ = γP

(γ−1)ρ is a thermodynamic enthalpy. The latter system is nonlinear, and

the usual approach to solve it is a usage of nested Newton-type iterations (r-iterations, Picard
iterations) [6, 7], which converge rapidly (usually 2-3 iterations are enough). The resulting
linearised system reads:

Pn+1,r+1

γ − 1
− τ2∇× ·

(
hn+1,r∇×Pn+1,r+1

)
=

= ρnEn − ρn+1 (v2)

2

n+1,r

− τ∇̃× ·
(
ρnvn

(v2)

2

n)
+ τSe−

−τ∇× ·
(
hn+1,r(ρnvn − τ∇̃× · (ρnvn ⊗ vn) + τSv)

)
,

hn+1,r =
γPn+1,r

(γ − 1)ρn+1
.

(13)

To obtain the solution from n-th time level to n+1-th, the following procedures should be done:

(1) solving the mass conservation equation in (8) with the explicit scheme and obtaining ρn+1

(2) solving the Poisson equation (7) with the density ρn+1 for the gravitational potential and
calculating the forces in the source terms of gas-dynamical system (8)

(3) defining Pn+1,1 = Pn, hn+1,1 = hn and vn+1,1 = vn

(4) r-iterations, r = 1, rp

(a) Solving (13) and obtaining Pn+1,r+1

(b) recalculating hn+1,r+1 and calculating vn+1,r+1 from the momentum equation (8) using
Pn+1,r+1

(5) defining Pn+1 = Pn+1,rp , hn+1 = hn+1,rp and vn+1 = vn+1,rp

(6) calculating the energy using a semi-implicit equation from the system (8).

This procedures allow to obtain a numerical solution of the gas-dynamical system (5) with a
first order in space and time. In this study we use rp = 3 Picard iterations.

To extend this scheme to higher order in space, we use the same approach as in explicit
finite volume Godunov-type schemes on unstructured meshes, as it is done in e.g. [22] (see
also [23] for a different approach). We apply a piecewise-linear reconstruction of conservative
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gas-dynamical variables in advection upwind fluxes (9) with Barth-Jespersen slope limiters [19],
thus, the explicit advective part of the solver is calculated with the second order in space. For
this reason, the resulting order of spatial approximation of the scheme is higher, than one. Note,
that the difference operators like (4) provide the second order in space on the mesh, consisting
on equilateral tetrahedra (or equilateral triangles in 2D), because these operators are analogous
to the usual central differences on the uniform grid, so that on such kind of meshes the solver
has the second approximation order in space.

The linearised problem (13) has a matrix of a Laplace-type second order difference operator
and, in addition, a diagonal, filled with the positive elements. The conjugated difference
operators allow to obtain an easily reversible symmetric and positive definite matrix. We use a
matrix-free conjugate gradient method to solve the system (13), which is very efficient.

4. Test computations
The code was developed in two variants: 2D and 3D Cartesian versions. We have tested our code
in several benchmark problems in high and low Mach number regimes as well as simulated a
test problem of a dust collapse to check the code’s ability to simulate the flows with self-gravity.
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Figure 2. Velocity, pressure and density fields (the first three figures, blue lines) of the gas in
the Sod shock tube at time T = 0.45, compared to the reference solution given by a second-order
explicit 2D local Lax-Friedrichs solver (black lines) on a finer mesh with Nx = 500 nodes. On
the last picture the density plot is shown for 2D explicit (red line) and 2D semi-implicit (blue
line) solvers with the same mesh resolution.

In Fig.2 the usual Sod shock tube calculation is shown for the 3D (the first three pictures)
and 2D versions of our code at the time T = 0.45 for the mesh with Nx = 200 nodes in
X-direction and Ny = Nz = 10 ones in Y- and Z-directions. The initial conditions are as
usual: ρ(x < 1) = 0.125, P (x < 1) = 0.1 and ρ(x ≥ 1) = 1, P (x ≥ 1) = 1. The velocity is
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zero everywhere. The shock profile is about 4-5 cells thick. The solution is obtained by the
conservative scheme, thus, the discontinuities have physically correct amplitudes and velocities.
On the shock tube tests the semi-implicit code works about 3-4 times slower, than the explicit
Godunov-type solver.
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Figure 3. Velocity, pressure and density fields of the gas in a slowly moving contact discontinuity
problem at time T = 50. The blue lines correspond to our numerical solution, while the red
dash-dotted line and dashed purple line are initial and final location of the contact discontinuity
correspondingly.

In Fig.3 the density profile of a slowly moving contact discontinuity is presented. The
initial conditions are the following: v = (0.01, 0, 0), P = 3 everywhere, while the density
ρ(x < 0.25) = 50, ρ(x ≥ 0.25) = 1. The problem is solved until the final time T = 50,
which corresponds to the contact discontinuity located at x = 0.75. The profile is smeared over
∼ 10 grid points. On this problem, the semi-implicit scheme greatly outperforms the explicit
solver by a factor of ∼ 40. The time step τadv (11) is equal to ∼ 200τCFL.

The next test is the Sedov-Taylor planar blast wave solution, which was performed in a 2D
cylindrical geometry. The shock front location is R ≈

√
T . Fig.4 shows the density and pressure

profiles at T = 0.2. The 2D mesh, used in the simulations, is refined at the centre of explosion
by a factor of 10. It has 8756 nodes. The numerical solution shows a good agreement with
analytics. In the refined central part (r =

√
x2 + y2 � 1) of the computational domain we

have a region with a high sound speed and low velocity, while at r . 1 the strong shock wave is
pronounced. At the end of the simulation, the advective time-step was about 50 times higher,
than the CFL time-step τCFL. In real astrophysical conditions this ratio of time-steps could be
even higher.
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Figure 4. Density (left) and pressure (right, together with the 2D mesh) of the gas in a planar
Sedov-Taylor blast wave problem at time T = 0.2.
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Figure 5. Density of the gas in the dust collapse problem at time T = 1.791. Left panel
correspond to 3D solution, while the right panel corresponds to 1D spherical plot (blue line -
numerical solution, black dashed line - analytics) together with the solution at the time T = 1.618
(red line - numerical solution, black dotted line - analytics).

We have tested our code including the self-gravity module and simulated a well-known
problem on the spherical collapse of a pressureless star (dust collapse), which was originally
considered by Colgate and White [24, 25]. The octant-symmetric 3D results for the density
at dimensionless time T = 1.791 are presented in Fig.5.We use the system of units, which
removes the multiplier 4πG in the Poisson equation (7). In these units the free-fall time

tff = π
√
3

2
√
2
≈ 1.9238, the initial cloud radius and density are equal to unity. We use the mesh,

which is refined to the centre of the computational domain. The snapshot of our simulation
shows a physically correct evolution of collapsing matter, although at the developed stage of
the collapse the density field has a discrepancy from the analytical solution (blue line in Fig.5,
right) due to the high spatial and temporal steps.
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5. Conclusion
In this paper we have constructed the semi-implicit nodal (edge-based) pressure-based solver for
gravitational gas dynamics on unstructured tetrahedral meshes. The usage of the Support
operators technique results to linear systems with symmetric and sign-definite matrices for
the pressure system in semi-implicit gas-dynamical solver and for the Poisson equation for the
gravitational potential. The code works efficiently both in low and high Mach number regimes,
and the spatial accuracy is close to the second order.
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