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Abstract. Chernoff approximations are a flexible and powerful tool of functional analysis, which

can be used, in particular, to find numerically approximate solutions of some differential equations with

variable coefficients. For many classes of equations such approximations have already been constructed,

however, the speed of their convergence to the exact solution has not been properly studied. We

developed a program in Python 3 that allows to model a wide class of Chernoff approximations to

a wide class of evolution equations on the real line. After that we select the heat equation (with

already known exact solutions) as a simple yet informative model example for the study of the rate

of convergence of Chernoff approximations. Examples illustrating the rate of convergence of Chernoff

approximations to the solution of the Cauchy problem for the heat conduction equation are constructed

in the paper. Numerically we show that for initial conditions that are smooth enough the order of

approximation is equal to the order of Chernoff tangency of the Chernoff function used. We also

consider not smooth enough initial conditions and show how Hölder class of initial condition is related

to the rate of convergence. This method of study can be applied to general second order parabolic

equation with variable coefficients by a slight modification of our Python 3 code, the full text of it is

provided in the appendix to the paper.
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1 Introduction

Chernoff approximations are a flexible and powerful tool of functional analysis [3, 4, 5], which
can be used, in particular, to find numerically approximate solutions of some differential equa-
tions with variable coefficients, see [2, 14] for an introduction to this topic, and also Preliminaries
section of the paper. For given linear evolution equation the method of Chernoff approximation
generates a sequence of functions un(t, x) that converge to the exact solution u(t, x) of the equa-
tion studied. For arbitrary fixed moment of time t functions x 7−→ u(t, x) and x 7−→ un(t, x) are
elements of some Banach space, and Chernoff’s theorem guarantees that ‖u(t, ·)−un(t, ·)‖ → 0

as n→∞.
To our current knowledge all contributions to a very young “theory of rates of convergence

in Chernoff’s theorem” can be found in [8, 19, 20, 7, 6] and references therein. These papers
provide estimates for the rate of convergence under some conditions but if these conditions are
not satisfied then one can say nothing about the quality of Chernoff approximations. There
are also very few “practical” research papers [10, 16] that measure the speed of convergence in
particular cases obtained via numerical simulations. In our research we continue contributions
to this field of study.

We consider initial value problem for the heat equation{
u′t(t, x) = u′′xx(t, x) for t > 0, x ∈ R1

u(0, x) = u0(x) for x ∈ R1
(1)

which is a good model example because its bounded solution u(t, x) is already known and given
by the formula

u(t, x) =

∫
R

Φ(x− y, t)u0(y)dy, where Φ(x, t) = (2
√
πt)−1 exp

(
−x2

4t

)
.

Then we obtain Chernoff approximations un(t, x) to the exact solution u(t, x) for n =

1, 2, . . . , 11 and fixed time t = 1/2, and via numerical simulation and linear regression (ordinary
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least squares method) discover that

sup
x∈R
|u(t, x)− un(t, x)| ≈

(
1

n

)β
with a reasonable accuracy (R2 > 0.98). Coefficient β > 0 depends on the smoothness of initial
condition u0 and of the way of constructing the Chernoff approximations.

P.S.Prudnikov in 2020 studied [16] this question in a similar setting, but his approach does
not allow a direct generalization. Meanwhile the simulation method that we use allows to study
not only heat equation, but also equations with variable coefficients. Also we consider more
initial conditions than were studied in [16].

Now let us provide necessary background on the topic to explain the notion of Chernoff
tangency and Chernoff operator-valued function that are important to understand how we
obtain Chernoff approximations un(t, x).

2 Preliminaries

Let F be a Banach space. Let L (F) be a set of all bounded linear operators in F . Suppose we
have a mapping V : [0,+∞) → L (F), i.e. V (t) is a bounded linear operator V (t):F → F for
each t ≥ 0. The mapping V is called [5] a C0-semigroup, or a strongly continuous one-parameter
semigroup of operators iff it satisfies the following conditions:

1) V (0) is the identity operator I, i.e. ∀ϕ ∈ F : V (0)ϕ = ϕ;

2) V maps the addition of numbers in [0,+∞) into the composition of operators in L (F),
i.e. ∀t ≥ 0,∀s ≥ 0 : V (t + s) = V (t) ◦ V (s), where for each ϕ ∈ F the notation (A ◦ B)(ϕ) =

A(B(ϕ)) = ABϕ is used;
3) V is continuous with respect to the strong operator topology in L (F), i.e. ∀ϕ ∈ F

function t 7−→ V (t)ϕ is continuous as a mapping [0,+∞)→ F .
The definition of a C0-group is obtained by the substitution of [0,+∞) by R in the paragraph

above.
It is known [5] that if (V (t))t≥0 is a C0-semigroup in Banach space F , then the set{

ϕ ∈ F : ∃ lim
t→+0

V (t)ϕ− ϕ
t

}
denote

= Dom(L)

is a dense linear subspace in F . The operator L defined on the domain Dom(L) by the equality

Lϕ = lim
t→+0

V (t)ϕ− ϕ
t

is called an infinitesimal generator (or just generator to make it shorter) of the C0-semigroup
(V (t))t≥0, and notation V (t) = etL is widely used.

One of the reasons for the study of C0-semigroups is their connection with differential
equations. If Q is a set, then the function u: [0,+∞) × Q → R, u: (t, x) 7−→ u(t, x) of two
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variables (t, x) can be considered as a function u: t 7−→ [x 7−→ u(t, x)] of one variable t with
values in the space of functions of the variable x. If u(t, ·) ∈ F then one can define Lu(t, x) =

(Lu(t, ·))(x). If there exists a C0-semigroup (etL)t≥0 then the Cauchy problem for a linear
evolution equation {

u′t(t, x) = Lu(t, x) for t > 0, x ∈ Q
u(0, x) = u0(x) for x ∈ Q

(2)

has a unique (in sense of F , where u(t, ·) ∈ F for every t ≥ 0) solution

u(t, x) = (etLu0)(x)

depending on u0 continuously. Compare also different meanings of the solution [5], including
mild solution which solves the corresponding integral equation. Note that if there exists a
strongly continuous group (etL)t∈R then in the Cauchy problem the equation u′t(t, x) = Lu(t, x)

can be considered not only for t > 0, but for t ∈ R, and the solution is provided by the same
formula u(t, x) = (etLu0)(x).

Definition 1 (Introduced in [13]). Let us say that C is Chernoff-tangent to L iff the
following conditions of Chernoff tangency (CT) hold:

(CT0). Let F be a Banach space, and L (F) be a space of all linear bounded operators
in F . Suppose that we have an operator-valued function C: [0,+∞)→ L (F), or, using other
words, we have a family (C(t))t≥0 of linear bounded operators in F . Closed linear operator
L:Dom(L)→ F is defined on the linear subspace Dom(L) ⊂ F which is dense in F .

(CT1) Function t 7−→ C(t)f ∈ F is continuous for each f ∈ F .
(CT2) C(0) = I, i.e. C(0)f = f for each f ∈ F .
(CT3) There exists such a dense subspace D ⊂ F that for each f ∈ D there exists a limit

C ′(0)f = lim
t→0

C(t)f − f
t

.

(CT4) The closure of the operator (C ′(0),D) is equal to (L,Dom(L)).

Remark 1. Let us consider one-dimensional example F = L (F) = R. Then g: [0,+∞)→
R is Chernoff-tangent to l ∈ R iff g(t) = 1 + tl + o(t) as t→ +0.

Theorem 1 (P.R. Chernoff (1968), see [5, 3]). Let F and L (F) be as above. Suppose
that the operator L:F ⊃ Dom(L) → F is linear and closed, and function C takes values in
L (F). Suppose that these assumptions are fulfilled:

(E) There exists a C0-semigroup (etL)t≥0 with the infenitesimal generator (L,Dom(L)).
(CT) C is Chernoff-tangent to (L,Dom(L)).

(N) There exists such a number ω ∈ R, that ‖C(t)‖ ≤ eωt for all t ≥ 0.
Then for each f ∈ F we have (C(t/n))nf → etLf as n → ∞ with respect to norm in F

uniformly with respect to t ∈ [0, T ] for each T > 0, i.e.

lim
n→∞

sup
t∈[0,T ]

∥∥etLf − (C(t/n))nf
∥∥ = 0.
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Remark 2. In our one-dimensional example (F = L (F) = R) the Chernoff theorem says
that etl = limn→∞ g(t/n)n = limn→∞(1 + tl/n+ o(t/n))n, which is a simple fact of calculus.

Definition 2. Let F ,L (F), L be as above. If C is Chernoff-tangent to L and the equation
limn→∞ supt∈[0,T ]

∥∥etLf − (C(t/n))nf
∥∥ = 0 holds, then C is called a Chernoff function for the

operator L, and the (C(t/n))nf is called a Chernoff approximation expression to etLf .
Remark 3. If L is a linear bounded operator in F , then etL =

∑+∞
k=0(tL)k/k! where the

series converges in the usual operator norm topology in L (F). When L is not bounded (such
as Laplacian and many other differential operators), expressing (etL)t≥0 in terms of L is not
an easy problem that is equivalent to the problem of finding (for each u0 ∈ F) the F -valued
function U that solves the Cauchy problem U ′(t) = LU(t);U(0) = u0. If one finds this solution,
then etL is obtained for each u0 ∈ F and each t ≥ 0 in the form etLu0 = U(t).

Remark 4. In the definition of the Chernoff tangency the family (C(t))t≥0 usually does
not have a semigroup composition property, i.e. C(t1 + t2) 6= C(t1)C(t2), while (etL)t≥0 has it:
et1Let2L = e(t1+t2)L. However, each C0-semigroup (etL)t≥0 is Chernoff-tangent to its generator
L and appears to be it’s Chernoff function. When coefficients of the operator L are variable,
usually there is no simple formula for etL due to the remark 3. On the other hand, even in this
case one can find rather simple formula to construct Chernoff function C for the operator L,
because there is no need to worry about the composition property, and then obtain etL in the
form etL = limn→∞C(t/n)n via the Chernoff theorem.

3 Numerical simulation results

3.1 Problem setting

Definition 3. We say that operator-valued function C is Chernoff-tangent of order k to
operator L iff C is Chernoff-tangent to L in the sense of definition 1 and the following condition
(CT3-k) holds:

There exists such a dense subspace D ⊂ F that for each f ∈ D we have

C(t)f =

(
I + tL+

1

2
t2L2 + . . .+

1

k!
tkLk

)
f + o(tk) as t→ 0.

Remark 5. It is clear that for k = 1 condition (CT3-k) becomes just (CT3). For the semigroup
C(t) = etL condition (CT3-k) holds for all k = 1, 2, 3, . . . So one can expect that the bigger k
is the better rate of convergence C(t/n)nf → etLf as n→∞ will be, if f belongs to the space
D. This idea was proposed in [12], where two conjectures about the convergence speed were
formulated explicitly, and one of them were recently proved in [7, 6]. For initial conditions that
are good enough and t fixed, Chernoff function with Chernoff tangency of order k by conjecture
should provide ‖u(t, ·) − un(t, ·)‖ = O(1/nk) as n → ∞. However, if f 6∈ D then nothing is
known on the rate of convergence. In the present paper we are starting to fill this gap for
operator L given by (Lf)(x) = f ′′(x) for all x ∈ R and all bounded, infinitely smooth functions
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f :R→ R, and k = 1, 2.
Problem setting. In the initial value problem (2) consider Q = R, and Banach space

F = UCb(R) of all bounded, uniformly continuous functions f :R → R endowed with the
uniform norm ‖f‖ = supx∈R |f(x)|. Consider operator L given by (Lf)(x) = f ′′(x) for all
x ∈ R and all f ∈ D = C∞b (R) of all infinitely smooth functions R→ R that are bounded with
all the derivatives. Then (2) reads as (1). Cauchy problem (1) is a constant (one, zero, zero)
coefficients particular case of the Cauchy problem considered in [15], and the corresponding
Chernoff function was found in [15]. The particular case of this Chernoff function reads as

(G(t)f)(x) =
1

2
f(x) +

1

4
f(x+ 2

√
t) +

1

4
f(x− 2

√
t)

where we write G(t) instead of C(t) in order to show that C(t) is a general abstract Chernoff
function for some operator L, meanwhile G(t) is this particular above-given Chernoff function
for operator d2/dx2. It was proved in [15] that G(t) is first order Chernoff-tangent to d2/dx2.

A.Vedenin (see [19]) proposed another Chernoff function for operator L considered in [15],
and the constant coefficient particular case of this operator is d2/dx2. The particular case of
the Chernoff function obtained by A.Vedenin reads as

(S(t)f)(x) =
2

3
f(x) +

1

6
f(x+

√
6t) +

1

6
f(x−

√
6t),

and it was proved by A.Vedenin that S(t) is second order Chernoff-tangent to d2/dx2.
In the paper we study how supx∈R |u(t, x) − un(t, x)| depends on n while t = 1/2 is fixed

and un(t, x) is given by
un(t, x) = (C(t/n)nu0)(x)

where C ∈ {G,S}, C(t/n) is obtained by substitution of t by t/n in the formula that defines
C(t), and C(t/n)n = C(t/n)C(t/n) . . . C(t/n) is a composition of n copies of linear bounded
operator C(t/n). We consider several initial conditions u0 that are all Hölder continuous (hence
all belong to the UCb(R) space) but have different Hölder exponents. Then we remark how the
rate of tending of supx∈R |u(t, x)− un(t, x)| to zero depends on these Hölder exponents and the
order of Chernoff tangency (which is 1 for G(t), and 2 for S(t)).

Comments on computational techniques. Calculations were performed in the Python
3 environment using a program we wrote and which is available in the Appendix. All measure-
ments, for the sake of reducing computational complexity, for each value of n (varying from 1 to
11) were carried out for 1000 points uniformly dividing the segment [−π, π] or [−2π, 2π]. Initial
conditions of the form u0(x) = | sinx|α for various α ∈ {9/2, 7/2, 5/2, 3/2, 1, 3/4, 1/2, 1/4}, like
any of Chernoff approximations based on them, are periodic functions. So, the standard norm
in UCb(R), namely

d = ‖un(t, ·)− u(t, ·)‖ = sup
x∈R
|un(t, x)− u(t, x)|,

where u is the exact solution of (1) and un is the Chernoff approximation, is reached at the
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interval corresponding to the period.
The program code was written with the possibility to set any operator and any initial con-

dition, i.e. without simplifying Chernoff functions and using binomial coefficients, in contrast
to the work [16] published earlier. Moreover, the initial condition does not necessarily have
to be a smooth function. The number of iterations is not limited to 11, the value n can be
changed, both upward and downward. We have chosen the optimal value n since the program
is very time consuming: via Jupyter Notebook 6.1.4 Anaconda 3 Python 3.8.3 set on personal
computer with Windows 10, CPU Intel Core i5-1035G1, 1.0-3.6 GHz, 8 Gb RAM it takes about
20 minutes to complete the program for all initial conditions with construction of graphs for
them. At the research stage of the new method (Chernoff approximations) this is acceptable,
but in the future, of course, the code will be optimized for a better speed, since this is important
in practice. Our goal is to continue research and in the future write a library that allows to
solve partial derivative equations in this way.

3.2 Approximations for initial condition u0(x) = sin(x)

Let us first analyze the approximations for the initial condition u0(x) = sinx.

fig. 1.1, n = 1, u0(x) = sin x, t = 1
2

Figure 1.1 shows the exact solution, which coincides with the graph of the function y =

e−1/2 sinx, and approximate solutions for the functions S(t) (left) and G(t) (right) at n = 1.
The initial condition u0 = sinx is very good, since its derivatives of any order exist, have
no discontinuities and are bounded. And already at n = 1 the function S(t) gives a good
approximation.

Figure 1.2 below shows plots of the decreasing error of Chernoff approximations as a function
of n, where 1 ≤ n ≤ 11. On the left are plots of decreasing error for Chernoff functions S(t)

(in blue) and G(t) (in green) in regular scale, and on the right – the same plots in logarithmic
scale. The graph in the logarithmic scale allows us to estimate how much the convergence rate
for the function G(t) is less than the convergence rate for the function S(t). Here and through
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all the paper we use the following notation:

d = ‖un(t, ·)− u(t, ·)‖ = sup
x∈R
|un(t, x)− u(t, x)|.

fig. 1.2, 1 ≤ n ≤ 11, u0(x) = sin x, t = 1
2

You can see that the points on the right graph lie on the straight lines with good accuracy.
Using the method of least squares (in Excel) we found the equations of these lines. Rounding
off the coefficients, we see that for the blue line the equation is as follows:
ln(d) = −2.092 ln(n)− 5.0671, i.e. d = n−2.092e−5.0671 = 0.0063

n2.092 .
Similarly, for the green line, the equation ln(d) = −1.0416 ln(n)− 3.5796, i.e.

d = n−1.0416e−3.5796 = 0.0279
n1.0416 .

Using the same approach, we study the behavior of the error for other initial conditions.

3.3 Approximations for initial condition u0(x) = | sinx|

fig. 2.1, n = 10, u0(x) = | sinx|, t = 1
2

Figure 2.1 shows two graphs of the approximate solution for the functions we are studying,
at n = 10, and the exact solution under the initial condition u0(x) = |sinx|
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fig. 2.2, 1 ≤ n ≤ 11, u0(x) = | sinx|, t = 1
2

Rounding off the coefficients, we see that for the blue line (see Fig. 2.2) the equation is as
follows: ln(d) = −1.0948 ln(n)− 1.355, i.e. d = n−1.0948e−1.355 = 0.2579

n1.0948 .
Similarly, for the green line (see Figure 2.2), the equation ln(d) = −1.0508 ln(n) − 2.1782,

i.e. d = n−1.0508e−2.1782 = 0.1132
n1.0508 .

Consider the new initial condition u0(x) =
√
| sinx|.

3.4 Approximations for initial condition u0(x) =
√
| sinx|

fig. 3.1, n = 10, u0(x) =
√
| sinx|, t = 1

2
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fig. 3.2, 1 ≤ n ≤ 11, u0(x) =
√
| sinx|, t = 1

2

For the blue line (see Fig. 3.2, right) the equation is as follows:
ln(d) = −0.7723 ln(n)− 0.9013, т.е. d = n−0.7723e−0.9013 = 0.4060

n0.7723 .
Similarly, for the green line (see Fig. 3.2, right) the equation ln(d) = −0.6905 ln(n)−1.4709,

т.е. d = n−0.6905e−1.4709 = 0.2297
n0.6905 .

3.5 Approximations for initial condition u0(x) = 4
√
| sinx|

Note that all special cases α
√
| sinx|, where α < 1, are similar to the already considered cases.

In fact, consider α = 1/4.

fig. 4.1, n = 10, u0(x) = 4
√
| sinx|, t = 1

2
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fig. 4.2, 1 ≤ n ≤ 11, u0(x) = 4
√
| sinx|, t = 1

2

Rounding the coefficients, we see that for the blue line (see Figure 4.2, right) the equation is
as follows: ln(d) = −0.6653 ln(n)− 0.8789, d = n−0.6653e−0.8789 = 0.4152

n0.6653 .
Similarly, for the green line (see Fig. 4.2, right) the equation ln(d) = −0.6138 ln(n)−1.3228,

т.е. d = n−0.6138e−1.3228 = 0.2664
n0.6138 .

3.6 Approximations for initial condition u0(x) = | sin(x)|3/2

fig. 5.1, n = 4, u0(x) = | sin(x)|3/2, t = 1
2
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fig. 5.2, 1 ≤ n ≤ 11, u0(x) = | sin(x)|3/2, t = 1
2

The line (green) corresponding to the decreasing error of the function G(t) in the logarithmic
scale was constructed without taking into account n = 1.

For the green line (see Fig. 5.2, right) the equation ln(d) = −0.9785 ln(n)− 2.8973, i.e.
d = n−0.9785e−2.8973 = 0.0552

n0.9785 .
Similarly, for the blue line (see Figure 5.2), the equation is as follows: ln(d) = −1.5109 ln(n)−

1.8234, i.e. d = n−1.5109e−1.8234 = 0.1615
n1.5109 .

As can be seen from Figure 5.2, the difference between the error decay rates using Chernoff
functions S(t) and G(t) for u0(x) = | sin(x)|3/2 is larger than for u0(x) = | sinx|. This is due to
the greater smoothness of u0(x) = | sin(x)|3/2.

3.7 Approximations for initial condition u0(x) = e−|x|

Let us consider a non-smooth and non-periodic function e−|x| as an initial condition.

fig. 6.1, n = 4, u0(x) = e−|x|, t = 1
2
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fig. 6.2, 1 ≤ n ≤ 11, u0(x) = e−|x|, t = 1
2

Figures 6.1 and 6.2 show plots of the exact solution, approximations to the solution, and
rates of convergence of the error to zero. As can be seen, the result is similar: the conver-
gence rate of the function S(t) is higher than that of G(t), but the order of convergence is
approximately the same, as can be seen from the fact that the lines are almost parallel.

For the green line (see Fig. 6.2, right), the equation is as follows: ln(d) = −0.9294 ln(n)−
2.3832, i.e. d = n−0.9294e−2.3832 = 0.0923

n0.9294 .
Similarly, for the blue line (see Figure 6.2) the equation is as follows: ln(d) = −1.056 ln(n)−

1.5543, i.e. d = n−1.056e−1.5543 = 0.2113
n1.5543 .

3.8 Approximations for initial condition u0(x) = | sin(x)|5/2

fig. 7.1, n = 4, u0(x) = | sin(x)|5/2, t = 1
2
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fig. 7.2, 1 ≤ n ≤ 11, u0(x) = | sin(x)|5/2, t = 1
2

The lines (green and blue) corresponding to the decreasing error of the functions G(t) and
S(t) in the logarithmic scale was constructed without taking into account n = 1 and n = 2.

3.9 Approximations for initial condition u0(x) = | sin(x)|7/2

fig. 8.1, n = 4, u0(x) = | sin(x)|7/2, t = 1
2

fig. 8.2, 1 ≤ n ≤ 11, u0(x) = | sin(x)|7/2, t = 1
2
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The line (green) corresponding to the decreasing error of the function G(t) in the logarithmic
scale was constructed without taking into account n = 1 and n = 2.

3.10 Approximations for initial condition u0(x) = | sin(x)|9/2

fig. 9.1, n = 4, u0(x) = | sin(x)|9/2, t = 1
2

fig. 9.2, 1 ≤ n ≤ 11, u0(x) = | sin(x)|9/2, t = 1
2

The line (green) corresponding to the decreasing error of the function G(t) in the logarithmic
scale was constructed without taking into account n = 1 and n = 2.

4 Discussion

The table below shows experimentally (using simulation in Python 3) the orders of decreas-
ing of error depending on the smoothness class of the initial condition and the Chernoff function.
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The smoothness class of the initial
condition u0

Order of decreasing er-
ror on the Chernoff
function G(t), which
has the 1st order of
the Chernoff tangent
to the operator L = d2

dx2

Order of decreasing er-
ror on the Chernoff
function S(t), which
has the 2nd order of
tangency by Chernoff
to the operator L = d2

dx2

C∞, i.e. all derivatives exist and are
bounded, u0(x) = sin(x)

-1.0416 -2.092

C4 1
2 , the first, second, third, and fourth

derivatives exist and are bounded, and
the fifth is Hölder with a Hölder expo-
nent 1/2, u0(x) = | sin(x)|9/2

-1.0212, the regression was
done without n = 1, n = 2

-3.1219, but the points do
not fit well on a straight
line, so the number is un-
informative

C3 1
2 , the first, second, and third deriva-

tives exist and are bounded, and the
fourth is Hölder with Hölder exponent
1/2, u0(x) = | sin(x)|7/2

-1.4013,regression was
done without considering
n = 1, n = 2, but the
points do not lie well on
the line, so the number is
uninformative

-2.5045, but the points do
not lie well on the line, so
the number is uninforma-
tive

C2 1
2 , the first and second derivatives

exist and are bounded, and the third
is Hölder with Hölder exponent 1/2,
u0(x) = | sin(x)|5/2

-1.1433, regression was
done without considering
n = 1, n = 2

-1.7923, regression was
done without considering
n = 1, n = 2

C1 1
2 , the first derivative exists and

is bounded, and the second derivative
with a Hölder index of 1/2, u0(x) =

| sin(x)|3/2

-0.9785, the regression was
done without considering
n = 1

-1.5109

H1, the Hölder with the Hölder expo-
nent 1, u0(x) = | sin(x)|

-1.0508 -1.0948

H1,the Hölder with the Hölder expo-
nent 1, u0(x) = e−|x|

-0.9294 -1.056

H3/4, the Hölder with the Hölder expo-
nent 3/4, u0(x) = | sin(x)|3/4

-0.815 -0.9262

H1/2, the Hölder with the Hölder expo-
nent 1/2, u0(x) = | sin(x)|1/2

-0.6905 -0.7723

H1/4, the Hölder with the Hölder expo-
nent 1/4, u0(x) = | sin(x)|1/4

-0.6138 -0.6653

We see that on the initial condition with high smoothness (first line in the table), the first
order of Chernoff tangency corresponds to a decreasing error rate of about 1/n, and the second
order – a decreasing rate of about 1/n2. This is in accordance with the conjecture from [12]
and theorem from [6].

As the smoothness is lost (second line in the table and below), theory from [6] stops working,
and the experimental evidence is the following: the convergence speed gradually decreases and
the advantages of the Chernoff function with the second order of Chernoff tangency gradually
vanish. Let us present the results from the table graphically:
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fig. 10

The regression was carried out without taking into account the point (2.5; 1.7923). The
equation of the approximating line: y = −0.684x− 0.4467.This may be interpreted as follows:
when the smoothness class α of the initial condition u0 is not greater than the order of Chernoff
tangency then

d = ‖un(t, ·)− u(t, ·)‖ = sup
x∈R
|un(t, x)− u(t, x)| ≈ const ·

(
1

n

)0.68α+0.45

.

Meanwhile when the smoothness class α of the initial condition u0 is greater than the order of
Chernoff tangency then there is no such easy-to-state dependence but still Chernoff function
S(t) with the second order Chernoff tangency provides better approximations than Chernoff
function G(t) with the first order Chernoff tangency.

Conclusion. The results of the numerical simulation are generally in agreement with
and confirm the theory arising from the conjecture in [12]. However, some of the points that
do not lie on straight lines exactly. This deserve closer attention: n = 11 for some initial
conditions is not sufficient to derive conclusions about the asymptotic behavior of the calculation
error. For not smooth initial conditions that we studied numerically there are not known any
theoretical bounds on the rate of convergence. And, of course, the most interesting case of
variable coefficients should be considered, understanding them as parameters analogously with
u0. So the research in this direction is far from ending.
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Appendix: Python 3 code
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