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Blaschke—Santalé inequality for many functions and geodesic
barycenters of measures *

Alexander V. Kolesnikov' and Elisabeth M. Werner*

Abstract

Motivated by the geodesic barycenter problem from optimal transportation theory,
we prove a natural generalization of the Blaschke—Santalé inequality and the affine
isoperimetric inequalities for many sets and many functions. We derive from it an
entropy bound for the total Kantorovich cost appearing in the barycenter problem.
We also establish a “pointwise Prékopa—Leindler inequality” and show a monotonicity
property of the multimarginal Blaschke-Santaé functional.

1 Introduction

The Blaschke—Santalé inequality, see [4, [37], states that every 0-symmetric convex body
K in R" satisfies
vol, (K)vol, (K°) < (vol,(B3))?,

where K° = {y € R" : (z,y) < 1Vz € K} is the polar body of K, Bf = {z € R" : |z| < 1}
is the Euclidean unit ball and | - | denotes the Euclidean norm on R™. The left-hand side
of this inequality is called the Mahler volume. The sharp lower bound for the Mahler
volume is still open in dimensions 4 and higher. The famous Mahler conjecture suggests
that this functional is minimized by the couple (B}, Bl ). Partial results can be found in,
e.g., [23, 27, 34, [35].

Here we ask: What is a natural generalization of the bounds for the Mahler volume
for multiple sets? While this is not obvious from the geometric viewpoint, we suggest in
this paper a reasonable extension, which is naturally related to a functional counterpart
of the Blaschke-Santalé inequality.

The functional Blaschke-Santalé inequality was discovered by K. Ball [6] and later
extended and generalized in [3], [20], [30]. In its simplest form it states that for every two
measurable even functions V, W on R™ we have that

/e_V(m)dx/e_W(y)dy < (2m)",

provided that V(z) + W(y) > (z,y) and either 0 < [e™V®) < oo or 0 < [e W) < 0.
Equality is attained if and only if V(z) = |Tz|?> + ¢, W(y) = |T " y|?> — ¢, where T is a
positive definite matrix and ¢ > 0 is a constant. Interesting links to optimal transportation
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theory were noted in [3] and more recently in [I7]. There, it is shown that for probability
measures 4 = f -7, v = g -7, where v is the standard Gaussian measure, such that
[ xfdy =0, the following inequality holds,

S W3(1,v) < Bty (1) + Enty (v) (L)

and that this inequality is equivalent to the functional Blaschke—Santalé inequality. Here,
W2(u,v) is the L? Kantorovich distance (see Section [ for the definition) and

Ent,(u) = /flog fdy

is the relative entropy with respect to Gaussian measure. Inequality (1)) is a remarkable
strengthening of the Talagrand transportation inequality and the starting point of our
paper. We refer to, e.g., [5] for Talagrand’s inequality and it’s fundamental importance
in probability theory. In this context, please also note a very recent result of N. Gozlan
about a transportational approach to the lower bound for the functional Blaschke—Santalé
inequality [26].

We would like to point out an important connection of the Blaschke—Santalé inequality
to the Kdhler—Einstein equation. Inequality (I.I]) implies, in particular, that the functional
1t — $W3(u,v) — Ent (1) is bounded from above. The minimum of this functional solves
the so-called K&hler-Einstein equation. This was established by F. Santambrogio [30].
The form of the functional presented here was considered in [29]. The well-posedness of
the Kéhler—Einstein equation was proved by D. Cordero-Erausquin and B. Klartag [14].
Generalization to the sphere and relations to the logarithmic Minkowski problem were
established in [28]. Other related transportation inequalities can be found in [19].

To analyze the case of k functions with k£ > 2 we consider the cost functional
n
c(xy, -+ xp) = Z |z — x| (1.2)
ij=1,i<j

and the corresponding multimarginal Monge—Kantorovich problem, i.e., the minimization
problem

P—>/CdP7 PGP(MIv"')M/ﬁ)

among the measures P(u1,- -, ug) with fixed projections pq,-- -, ux. This problem has
been studied by Gangbo and Swiech [24]. Agueh and Carlier realized in [I] that this
problem is naturally related to the barycenter problem for pq,--- ,ug. A measure p is
called geodesic (or Wasserstein) barycenter of pq,--- , ur with coefficients %, if it gives
the minimum to the functional v — Zle +W2(ui,v). Barycenters of measures have
attracted much attention, also among applied scientists. We refer to the recent book of

Peyre and Cuturi [I5] and the references therein for more information.

Motivated by these results we conjecture that

ﬁ - fi(wi)dz; < (/Rn pr (@Iulz)duy, (1.3)
i=1

where f;: R — R4, 1 <1 < k, are even, measurable, integrable functions satisfying

k k
@) <ol D (zia)
i=1 i j=1,i<j



and p is a positive non-increasing function. We verify this conjecture in several cases.
Some of our main results are stated next.

1.1 The main results

In Section [2] we discuss some preliminary facts about Kantorovich duality theory for many
functions and prove that our integral functional is bounded for the case of quadratic cost
([L2]). We also show that for k > 2 our functional has a trivial (zero) lower bound, unlike
the case of two functions.

In Section [l we verify the above conjecture in the unconditional case (see Section Bl for
the definition) and prove the following theorem.

Theorem [B.T] Let f;: R — R, 1 < i < k, be unconditional integrable functions satisfying

k k
Hfi(xi) <p Z (ziyxj) | for every m;,z; € RY,
i=1 ij=1

i<j

where p is a positive non-increasing function on [0,00) such that [ p%(tz)dt < oo. Then

}i [ st (o (M5 D))

For k > 2, equality holds in this inequality if and only if there exist positive constants c;,
1 <i <k, such that Hle ¢; = 1, and such that for all 1 <i <k,

filz) =i p* <@W>

B

1.

almost everywhere on R™.

2. The function p satisfies the inequality

k k

1 (k(k—1)
[t ("5 2] <o 30 trom)
i=1 ,j=1,i<j

for all z;,x; in R}

Our proof uses the Prékopa—Leindler inequality for many functions and an exponential
change of variables as an intermediate step.

The above theorem and the affine isoperimetric inequality of affine surface area for log-
concave functions of [I2] lead to multi-functional affine isoperimetric inequalities for log-
concave functions, which we also prove in this section.

In Section Ml we study equality cases for unconditional functions and prove the above
stated equality characterizations. To do so, we need equality characterizations in the
Prékopa—Leindler inequality. We could not find such characterizations in the literature
and therefore give a proof of those.

In Section Bl we prove a generalization of the Blaschke—Santalé inequality which involves
more than two convex bodies. There, || - || denotes the norm with the convex body K as
unit ball.



Theorem B.1] Let K;, 1 < i < k, be unconditional convex bodies in R™ such that

k
—3llzill%, < o 1. € R?
e i <p (xi,zj) | for every x;,x; € RY,
i=1 ij=1,i<j

where p is a positive non-increasing function [0,00) such that [g p g (t?)dt < co. Then

e = (S508)" ([ 452 )

t
For k > 2, equality holds z'f and only if K; = r BY and p(t) = e *-Y7 for some r > 0.
In particular, if p(t) = e~ = 1 then, if ZZ Licj{®i zj) < k 1 E 1 ||x2||K , we have that

==

Hvol (vol, (BY))*

and for k > 2 equality holds if and only if K; = B3 for all 1 <i <k.

Proposition [5.3] of this section gives a version of the L,-affine isoperimetric inequalities for
many sets.

In Section [6l we prove several strengthenings of classical inequalities using barycenters.
Among them is the following “pointwise Prékopa—Leindler inequality”

Theorem Let p be the barycenter of measures p; = ffd -dx; with weights \;, 1 <

1 < k, where f; are nonnegative integrable functions. Then it has density p satisfying

H(/ fidﬂfi))\ip(x) < sup Hf (yi), for p—a.e.x. (1.4)
—1

_Zz 1 Aili =1

In Section [7 we study applications of our results to transportation inequalities for the
barycenter problem. We obtain the following bound which generalizes (LI]) and, in par-
ticular, a classical estimate of Talagrand.

Theorem [7.7] Assume that ; = p; -y, where v is the standard Gaussian measure and the
p;i are unconditional, then

pilog pid~,

where F(u) = ﬁ Zle W2(u, ;) and u is the barycenter of {u;} with weights %
Moreover, from our refinement of the Prékopa—Leindler inequality, we deduce some new
inequalities related to displacement convexity of the Gaussian entropy.

In Section [8 we prove a monotonicity property of the multimarginal Blaschke-Santald
functional. A simplified version of the result is stated next.

Theorem Assume that for 1 <i <k, Vi(x;) are measurable functions such that e~V
are integrable, satisfying

k k
E E mz,a:j>.
i=1

,J=1,1



Let the tuple of functions U;(x;) be the solution to the dual multz’margz’nal mazximization

problem with marginals fe;,‘/(}fl;; and the cost function k T Z b im1i< (wi, ). Then

k k
H/e_vidaji < H/e_Uid:Ei.
i=1 i=1

2 Integral bounds and facts about barycenters

We start this section with the proof that the Blaschke-Santalé functional is bounded on
the set of even functions. We will need the definition of the Legendre conjugate V*, which
for a proper (not identically equal to +o00) function V' : R — RU {400} is defined as

Vi(y) = f;lﬂg}((%@ - V(x)).

Proposition 2.1. Let V;, 1 < i <k, be a family of Borel functions on R" such that e~V
is integrable for all 1 < i < k. Then the functional

k

S(V1, .. ’Vk) — H/e—Vi(zi) dx;
i=1
1s bounded on the set
Ln,k =
k k
{<v1,--- Vi) Vie {1, k), Vs even,/e—wx)dmoo,z‘fi(xi) > > <wi,wj>}-
i=1 i,j=1,i<j
Proof. Let us fix arbitrary finite (V1,---,Vi) € L, and estimate S(Vi,---,Vj). First

we note that the functions V; can be assumed to be convex. Indeed, if V; is not convex,
replace it by the following convex function

k

‘71(951) = sup ( Z (xi, ;) ZV (x;) >
it i i< i#1
The tuple (‘71, -+, Vi) belongs to L, k. Note that all the desired properties can be easily

checked except of mtegrablhty of e=v1. We will show below that V; is integrable. Since
Vi > Vl, we get SV, Vi) > S(Vl, -+, Vi). Next we apply the same procedure to the
tuple (Vl, -, Vi) and the function V5. Repeating this procedure, we finally obtain a tuple
(Vi,---,Vj) consisting of only convex functions such that S(Vy,---, V) > S(V1,---, Vi).
Let us denote this new tuple again by (Vq,---,Vj).

Next, note that without loss of generality we can restrict ourself to the case of convex
functions satisfying V;(0) = 0. Indeed, one can replace V; by Vi(z;) = Vi(x;) — Vi(0),
1<i<k—1,and Vi by Vi(z) = Vi(2r) + Vi(0) + - -+ + V4_1(0) and this replacement
does not influence the value of the integral functional. One has V;(0) =0, 1 <i <k — 1.
Next we note that

k—1
ZV x;) > Z Ti, Tj) <Zw,,wk> Vk (zg), for all xy,

1<J



is equivalent to

k—1 ~ k—1 ~ k—1
Vilwi) 2 ) (@i z;) + (Vk)*< 517@)7
i=1 i<j i=1

which in turn is equivalent to

k—1 a2 = 2k
Z 5 ) > B Zﬂ?z + (Vk)*< ZEz>
i=1 i=1 i=1

il + F(t)= inf % Gl + Vi(y)
2 tzzf;ll z; =1 2 7 I3

Clearly (Vj)* < F, hence Vi, > F*. Thus S(Vi,---,Vi) < S(Vi,--- , F*). Moreover, it
follows immediately from the definition of F* and the above inequalities that (Vi,--- ,F*) €

nk- Since V; > 0 and V;(0) = 0, we immediately get F(0) = 0. Hence, F*(0) = 0. Thus
the tuple (V4,--- , F*) satisfies V;(0) = --- = F*(0) = 0 and gives a larger value to S.
Finally, it is suﬂi(nent to show that S is bounded for finite convex even functions V;
satisfying V;(0) = 0 and ZZ L Vilzy) > Z ii=1i<j{®i,x;) . We observe that for every
Jj#Em

Vin(zm) > sup ( Zk: (@, 4) ZV (x;) ) >

T4, Ts,8,57M

i,8=1,i<s i#m
k
SBJP([, Z (i) = 3_Vila ] i=0,i75m,i75j) B SBP(<$m’$j> B ‘/j($j)> = Vi’ (@m).
i,5=1,i<s i#m J

If e=V5 is integrable, then by the functional Blaschke-Santalé inequality

/e_v’”d:nm/e_vjda:j < /e_vj*dznj/ Vide; < (2m)™.

Hence

k 1

H/e_vkdxk H / Vida; /e‘vjdxj> < (277)%_

i=1 1,j=1,0<J
If "5 is not integrable, then again by the Blaschke-Santalé inequality i e V7 dr; =0
hence f e Vmdz,, =0, but this contradicts to finiteness of Vj,. O

A related natural question is whether there is a non-trivial lower bound for S7 For the
case of two functions this is a functional variant of the well-known open problem, known
as Mahler’s conjecture. More precisely, for k = 2 we are looking for the lower bound of

the functional
/e‘vdx/e_v*dy.

It is conjectured that the minimum is reached, in particular, when V(z) = |z|; =
Sy lzi| or V(x) = ||z|l = maxi<i<p|xi|, or their Legendre transform. See e.g.,
M. Fradelizi and M. Meyer [21], [22], where the conjecture was proved in dimension 1.

The natural generalization of this problem for the case of k& > 2 functions however has a
trivial solution.



Proposition 2.2. There exist even functions Vi, Vs, Vs such that the triple (Vi,Va,Vs)
satisfies

k
Vilow) = sup (3" (i a;) = Y Vilaw) (2.1)
TiAEM Y 1< i#m

and S(V1,Va,V3) = 0.

Remark 2.3. Assumption (21]) seems to be a natural generalization for k > 2 functions
of the condition that two convex functions are related by the Legendre transform.

Proof. The desired functions are

0 ifx=0
Vi) = {—I—oo else

2
X
%7 VY3(:E3)

The reader can easily check the claim. O

2
T
VQ(JEQ) = = —| 3| .

At the end of this section we recall basic facts on duality relations for the transportation
cost appearing in the theory of barycenters of measures. Recall that for a given family
of probability measures pq,---,ur and weights \; € [0, 1] satisfying Zle A = 1 its
barycenter p is the minimum point of the functional

k
1 2
Fv) = 3 ZZ:; XNiW5 (i, v).
Here,
W21, v) — in { / o — yPdP(x,y) : P € P(R" x R"), P(, R") = 1y, P(R", ) = 7/2}

is the L? Kantorovich distance of probability measures v1,vs. It is well-known that the
barycenter problem is closely related to the multimarginal (maximization) Kantorovich
problem with the cost function

k
(a;l,-'- ,xk) — Z )\i)\j(xi,x]}
ij=1,i#j

and marginals u;. Let m be the solution to this problem, i.e. a measure that gives a
maximum to the functional

k
P— > Aijla,a)dP (2.2)
1,j=1,i7#]
among the measures on (R")* having p, ...,y as marginals.
The following facts are collected from [I] and [24].
Theorem 2.4. [1, [2])] Assume that p; are absolutely continuous measures with finite

second moments and \; € (0,1) are numbers satisfying Zle Ai = 1. Then the following
facts hold.



1. There exists a unique absolutely continuous solution u to the barycenter problem and
a unique solution 7 to the problem (2.2).

2. The measure i is the push-forward measure of m under the mapping T (x1,- -+ ,x) =
Zle Aix; and the following relation holds:

k k
S AW i) = [ 30Nl - (o)
i=1 i=1

3. The optimal transportation mappings V®; of u onto p; satisfy
k
> AVOi(z) =a
i=1

for p-a.e. x. and 7 is supported on the set {(V®y(z), -+ ,VPi(x)) : z € R"}.

4. There exists a tuple of convex functions (v;) solving the problem dual to (2.3), which
is unique up to addition of constants and modification of sets of zero measure, i.e.
a k-tuple of functions satisfying

k k
sz(%) > Z i (@i, )
=1

1,J,47#]
with equality m-a.e. The following relation holds between v; and ®;:

EAR n v (7;)
2 i

7 (i) = N +C; (2.3)

for p;-almost all x;.

Remark 2.5. The results of item 1. are obtained in Section 3 of [1], item 2. is contained
in Proposition 4.2 [1], item 3. corresponds to Proposition 3.8 of [1]. Formula (2.3) needs
some explanations. It corresponds to formula (4.8) in [1], but in the presentation in [1|]
there is no direct link to the optimal transportation of the barycenter u onto u;. Let us
give some informal explanations.

By the Kantorovich duality m is concentrated on the zero set of the positive function

k
Uz(a:,) - Z )\i)\j<xi,xj>.
1=1 1,507

Thus, for w-a.e. (x1,- - ,2x) and all 1 < i < k one has Vv;(x;) = Zf#l Aidjxj. Equiva-
lently,

Voi(z;) b
iz + N ]2_:1 AjTj, ™—a.e. (2.4)

It remains to note that u is the image of m under T’ = Zle Ajxj and p; is the projection
of m onto the i-th factor. Thus relation (27)) immediately implies that p is the image of
i under the mapping x; — \jx; + ij\—(ml) Since the latter is the gradient of the convex

.12 s
function )\i% + %fl), we conclude by uniqueness of the optimal transportation mapping

that VOF = \i; + Y4



3 The unconditional case

In this section we verify our conjecture (inequality part) for the unconditional functions.
A function f:R™ — R is called unconditional, if

f(elxly' o 7€n33n) = f(ﬂfl,!l?g, cee 733”)7

for every (e1,--- ,e,) € {—1,1}" and every (z1, - ,xz,) € R".

Theorem 3.1. Let f;: R" — Ry, 1 < i < k, be measurable unconditional integrable
functions satisfying

k k
Hfi(xi) <p Z (wi,5) | for every z;,x; € RY,
=1 i j=1,i<j

where p is a positive non-increasing function on [0,00) such that [ p% (t?)dt < co. Then

k

I1 o fi(wi)dx; < (/Rn Pk <@ |u|2)du>k. (3.1)

i=1
In particular, if

k
k
[1fie) < e @Bt ey,

then

H fz zi)dr; < (/n e_o‘ilupdu>k.

Proof. Clearly, for unconditional functions it is sufficient to check that

H fm:zda:z_[/]lwp (@\uﬁ)dur,

provided that on R,

Eall

k k
@) <e| D (zia)
i=1 i j=1,i<j

We prove this using the Prékopa—Leindler inequality and a trick involving a change of
variables formula (see, for instance, [25] or [30], Lemma 5).
For u = (uy,--+ ,u,), we denote e* = (e“!,---  e""). We apply the change of variables
formula

xT; = et", t; € Rn,

and get

H filxy)dz; = H Em=1m gy

Rn Rn



where we write t; = ((t;)1, (ti)2,- -, (ti)n). Next we apply the Prékopa—Leindler inequality
(see, e.g., [25], formula (21) or (27)),

([ o)< [ oy TTde

k
i=1 " t:% 2izgtii=1

After the change of variables and the application of the Prékopa—Leindler inequality, we
use the assumptions of the theorem in the second inequality below. We also use the
arithmetic-geometric mean inequality and the fact that p is non-increasing in the third
inequality below. We get

k 1 koo
S/ sup ,o% ettt m | ok iy Cmey (ti)m | g4
R t:%2§:1 <,le:z<jmz:1 ) ]
:/ sup p%( Z Z (t +t )] m= 1(t)mdt
nt_lz 1,j=1,1<j m=1
M n k‘(k‘ - 1) 2 sk (bt )m " Om
= /R" _SuI: ” _Pk <mZ:1 Tek(k 1) 2uij=1,i<j (Lt )]ez 1(B)m ¢
L(kk—1) Et)m )] et (Om
/Rn Sup pE < Z ek 1 >] 1 dt

’L 1t1

m=1

Changing variables u,, = e()™ one gets

(H fZ x;) dml>% < /n p% (LI{:; DN u%)du = /n p% (LI{:; D) |u|2>du.

The above theorem and the affine isoperimetric inequalities of affine surface area for log-
concave functions of [12] lead to multi-functional affine isoperimetric inequalities for log-
concave functions.

We first recall that for A € R, the A-affine surface area of a convex function V was
introduced in [12] as

as)\(V) = /Q ePA-DV (@)=, VV (@) (det D2V(x)))‘da:, (3.2)
\4

where Qp = int ({z € R" : V(z) < 400}) is the interior of the convex domain of V' and
D?V is the Hessian of V. The gradient of V, denoted by VV, exists almost everywhere by
Rademacher’s theorem (see, e.g., [9]), and a theorem of Alexandrov [2] and Busemann and
Feller [I1] guarantees the existence of the Hessian, denoted by D2V, almost everywhere
in Qv.

In the next theorem we collect several results that were shown in [12].

10



Theorem 3.2. [12] Let V : R™ — R U {00} be conve.
(i) For any linear invertible map A on R™,  asy(V o A) = |det A|2*Lasy(V).
(i1) For all A€ R, asy(V)=as1_x(V*).

1

(113) as%(V) < ([feVdzx)> (fe_v*dx)%.

(iv) Let V in addition be such that [g, ze~V®dx =0, and let X € [0,1]. Then

(V) < 2n (|

and equality holds for A # 0, if and only if there exists a € R and a positive definite matriz
A such that V(z) = (Az, ) + a, for every x € R™. For A =0, equality holds trivially.

1-2)
e_Vd:E> , (3.3)

n

Remark. Theorem (iii) is just a special case for A = 3 of a more general statement
proved in [12].

We then get the following Proposition.

Proposition 3.3. Let V;: R" - RU{oo}, 1 < i < k, be conver unconditional functions
and let p be a positive non-increasing function on [0,00) such that [ p%(t2)dt < 00.

(i) Let \ € |0, %] and suppose the V; satisfy

k k
He_vi(mi) <p Z (xi,x5) | , for every x;,x; € RY.
i=1 i,j=1,i<j
Then
. knA L k(k—1) H=Y
[Tassv) < nf ([ ph(FEZ 2 )an) (3.4
=1 R

f[asx(vi) < <a3,\ <%>>k (3.5)

(ii) Let X € [,1] and suppose the V; are such that

k k
He_vi*(xi) <p Z (wi,25) | , for every z;,x; € R,
i=1 i,j=1,i<j
Th
" - kn(1—X 1 k(k—1) KA
[Toss) < et ([ (M2 pp)ad) . 6o
Z:1 n

ﬁaS)\(Vi) < <as>\ <¥>>k (3.7)

11



Proof. (i) We get immediately from Theorem BI] and inequality ([33) that for A € [0, 3],

(1-23) ]
.Has*(vi) < (2m)kn < e‘Vi) - < (2)km> (/np,ﬁ <@ |u|2)du>k(1 2A>.

If p(t) = e_ﬁ, then

enp ([ ot (Y |u|2)du)k(1_w — 0% = (o (%))k

which shows the second part of (i).
(ii) We use Theorem (iii) and (iv) and Theorem [B.I] and get that for A € [3, 1],

N k(2A—1)
Has,\(Vz‘) = Ha81 A(VF) < (2m)n=N) <H/ V*>
i—1

) B k(2A—1)
(2mn1= ( [ ()
o 2

The second part for p(t) = e 71 follows. O

IN

Remark 3.4. (i) Please note that for A = 0, inequalities (34) and (33) are just the
inequalities of Theorem [3 1. For \ = , we do not need that the V; are unconditional and
the inequalities are just the mequalztzes of (33),

I

See also Section [8 for more on as1.
2

< 27T)kn)\

t\.’)l»—n

(i1) For A > 1, we get an estimate from below with an absolute constant c, see [12],

HGSA A (/R ,011 <% |u|2)du> .

4 Characterization of the equality cases

In the proof of Theorem [B.I] we have used the Prékopa-Leindler inequality which is a
particular case of the more general Brascamp-Lieb inequality (see [10], [7]). To analyze
the equality case we need the equality characterizations of the Prékopa—Leindler inequality.
We could not find those in the literature, except in the case of two functions, established
by Dubuc [I6]. We therefore give a proof of the equality characterization.

Theorem 4.1 (Prékopa—Leindler). Let f;, 1 < i <k, and h be nonnegative integrable real
functions on R™ such that for all x; and for all \; > 0, 1 <1 < k, with Zle ANi=1,

($he) -

i=1

12



Then
k

H(/R fid:z:i)Ai < / hdz. (4.1)

Equality holds in the Prékopa—Leindler inequality if and only if there exist vectorsyy, -+ , Yk
in R™ such that, after modification on a set of measure zero, the functions f; satisfy

fle—y) _ fle—y) il _ e

Jen frde Jgu fodr — Jo frde ’

(4.2)

where Y is a conver function such that fRn e V@ dy = 1. In addition, after modification
on a set of zero measure, the function h can be chosen to satisfy

k k A .
h($) = sup Hfz)\l (:EZ) = H(/Rn fld;pl> e_w(x"—Zi:l )‘iyi)

=5 Niwii=1 =1

for all x.

Proof. Tt is clear that equality holds in inequality (4.1]), if the functions satisfy the condi-
tion (4.2)).

The proof of the inequality is well known and can be found in, e.g., [25] 37]. We give a
proof of the inequality by induction on the number of functions. This allows to establish
the equality characterizations, as for two functions, those were established by Dubuc [16].
We have

k
Ai A —
sip [[f@) = s e M),
m:Zf:l i i j=1 r=Xz1+(1-X1)y
where
k Mg
9(y) = sup T1H7 (@),

k .
y:ﬁ Zizg Ai Tj §=2

Applying the Prékopa—Leindler inequality for two functions gives

/=Zs%pxljlfk(x) § </ d 1‘“1)& (/ gdy>l_%.

Applying the induction step, one gets

/gdy > lez </ fi(ﬂfz')dﬂfi> e :

This completes the proof of the inequality. The equality characterization follows from the
equality characterization for two functions. O

Theorem 4.2. Let f;: R" — Ry, 1 < ¢ < k, be measurable unconditional integrable
functions satisfying

k k
Hfl(xl) <p Z (xi,z5) | for every z;,x; € R, (4.3)
i=1 i,j=1,i<j

13



where p is a positive non-increasing function on [0,00). Then for k > 2 equality holds in
inequality (31)), i.e.,

k

11/ fi@odz = (/Rn pr (w \$’2>dx>k

i=17/R"

if and only if there exist positive constants ¢;, 1 < i <k, such that Hle c¢; =1, and such
that for all 1 <i <k,

1.
1 (k(k—1
for almost all x € R™,

2. The function p satisfies the inequality

k k
1 (k(k—1
IIot (MR <o 30 Gy (45)
i=1 ij=1,i<j
for all z;,x; in R} .

Proof. Obviously, if (£.4]) and (£.5) hold, then one has equality in ([B.I]) and the assumption
([#3) is satisfied.

If equality holds in Theorem B.1] then we have equality everywhere in the proof of Theorem
Bl We have equality in the Prékopa-Leindler inequality. Note that the Prékopa-Leindler
inequality is applied to the functions

file')e2m=(tidm,

Hence by the above equality characterizations in the Prékopa—Leindler inequality one can

modify the functions f; an a set of zero measure in such a way, that there exist y1,--- , yx
such that and all 1 <7<k

filel) = < / f,da;> o= Sy () m o=t (tius) (4.6)
where 1) is a convex function such that fR" e Y@ dyr = 1. In addition, the following

equality must hold for almost all ¢

k 1 L " 1 k n n
sup fEeM)er Zmam) = sup | px eltcttiim )| eemas (O
t=%2f_1tm‘1;[1< ) t:%Zi'c—lti[ <i,j:21;i<jmzz:l )]
k(R = 1) S a0 20 0
= pk | ——= m=1 :
R

t;

In particular, changing variables z; = e one gets

s [ph fj <:ui,:cj>)]=pi(@|x|2). (4.7)

1 o=
(@)m =I5 (z:) hj=1i<j

14



Further, substituting (4.6]), one gets that for a.e. ¢

k

H(/ fzdrt)]1 sup He FW(titys) — i(@ Zn: 62(t)m)6221:1(t)m.
R?’L

i=1 t_k Z’L 1 ti i=1 m=1

Applying convexity of 1, one gets that sup,_. Sk g, Hk L€ — 5 ¥(tityi) — = ¢ V(YY) where
=% =1 ti
Y= % Zle y;. Finally,

ﬁ(/ fidx)%e—w(ﬁry) = ok <@ zn: eQ(t)m)eribzl(t)m
i=1 VR"

almost everywhere. Note that, if fact, equality holds pointwise, because e~ is a continuous
function on {1 < oo} and p is non-increasing. Substitute t = t; + y; — y into this identity.
One gets

ﬁ(/ fidl‘)%e_w(ti"l‘yi) — %( —1) Z 2tityi— m) o (i)

i=1

Hence ([4.6]) implies that for all ¢;,

(fRn fidx) : <k‘(k: —1) ¢ 62(ti+yi_y)m>eZ:¢L:1(yi—y)m‘
I, (fRn fidw> F m=1

We make a change of variables z = e' and get

fi(e") =

o (KR ey 2
fi(x) = ¢; p*k (T ‘e a:| >,
where ¥ Y2 € R" is defined by (e¥ V), = eW:~¥)m(z),, and where

(i fide)

C; = I 623:1(yi—y)m'
[T (frn fide)"

Note that Hle ¢; = 1. Then we have by assumption ([@3)) for all z;, z; € R,

k k k
p _21: (@i aj) ZU Ul < D jen- vail’).

However, inequality

k k
o[ ¥ wn) =110

i,j=1,i<j

R‘I»—-

( ‘eyi_y x,|2> (4.8)

only holds if y; = y for all i. To see that, note that (48] holds in particular for x; = e~ ¥
which leads to

R B 1 S R C
i,j=1,<j i=1



and, as p is decreasing, to

k

k(k—1

S (e < % ). (4.9)
ij=1,i<j

Note that for k& > 2 inequality ([49]) only holds if y; = y for all i. Indeed, by Jensen’s

inequality,

k n k 1 Zk (ys .
= Fim1,i<g (Yitys)
Z ey = S LY e > Z T S
k(k—1)
j=1 m=1 " 3 ij=1,i<j

n
— Z e—%Zle(yi)m _ |e—y|2.

m=1

Equality in Jensen’s inequality shows that thus y; = y for all 4.
Consequently, equality in (B1]) is equivalent to

1. fi(z) = Cip% <@ |:17|2>, almost everywhere and

k L k(k—1 k
2 Tl ot (B2 Joil?) < p (6 jm iy (oo} O

Equation (4.4)) says in particular that if equality holds, then all f; are equal modulo
normalization.

Under some natural assumptions on the function p, one can show that inequality (4.3
always holds.

Remark 4.3. Let p(t) = e~V O where W is convex and increasing. Then (Z.3) holds.

Proof. If p(t) = e~ ®  inequality [@3) is equivalent to

k _ k
%;W <w \%]2) > W(”;<J<m“x]>)

By convexity of W, %zk W <@ ]a;,]z) > W <(k D Zle \%’2) Therefore it is
enough to have that

(k=1 x~ 2 -
w 5 Z|ﬂfz| 2W< Z <517z,33j>>
i=1 1,j=1,1<J
or, as W is increasing,
k k
k—1
E-D S > 3 oy,
i=1 1,j=1,1<j
which holds, because
k k k
1 (k—1)
> lwad<s Y (lnP ) = S5 Y el
i,j=1,i<j i,j=1,<j i=1

Theorems [3.1] and and Remark (3] immediately yield the following corollary.

16



Corollary 4.4. Let p(t) = N fi: R" > R, 1 <1i<k, be measurable uncondi-
tional integrable functions satisfying

k
1 k o

Hfi(a:i) < e w1 (B @) for every x;,x; € RY.

i=1

Then

I1/ fiean < < [ e—%ﬂ@k _ (23

i—1 R

and for k > 2 equality holds if and only if there exist positive constants ¢;, 1 <1i < k, such
that Hle ¢; = 1 and such that for almost oll x € R™, for all 1 <i <k,

2
=l

filzs) =cie” 2

The next proposition addresses the equality characterizations of Proposition 3.3l

Proposition 4.5. Let V;: R" — RU {00}, 1 < i <k, be convex unconditional functions
and let p be a positive non-increasing function on [0,00) such that [ p%(t2)dt < 00.

(i) Let X € [0, 3] and suppose the V; satisfy

k k
He_vi(xi) <p Z (xi,xj) |, for every z;,x; € R"™ satisfying (x;,x;) > 0.
i=1 i,j=1,i<j
(4.10)
Then equality holds in inequality (3.7), i.e.,
k k(1-2))
k(k—1
[Tassv) = o™ ([ ot (M2 1))
i:l n
if and only if for all i, there are a; € R such that for almost all x € R™,
|
Vi(zi) =c 5 + a;, (4.11)
p(t) =e" kilt_Z?zla". (4.12)
for some ¢ > 0 and numbers a;.
(ii) Let X € [,1] and suppose the V; are such that
k k
He‘Vi*(mi) <p Z (xi,z5) | , for every m;,x; € R" satisfying (x;,x;) > 0.
i=1 i,j=1,i<j

Then the equality characterizations in inequality (3.6) respectively (3.7) are as in (i) with
V* instead of V;.

7

Proof. (i) It is clear that if (AI1]) and (AI2]) hold, then there is equality in (34]) and the
assumption (4I0) holds. On the other hand, by Theorem B2 equality holds in the first

17



inequality of the proof of Proposition B3] if and only if there exist a; € R and positive
definite matrices A; such that for every z € R”, for all 1 <17 <k,

Vi(x) = (Aiz, x) + a;. (4.13)

By Theorem [4.2], equality holds in the second inequality of the proof of Proposition [3.3] if
and only if there exist constants ¢;, 1 < ¢ < k, such that Hle ¢; = 1 and such that for all

1<i<k,
Vi@ = ¢; pk (Lk; D |x|2> : (4.14)

almost everywhere, and the function p satisfies the inequality

k k

1 (k(k—1)
[[ot (M52 ) <o 30 tmem)
i=1 4,j=1,i<j

It follows from (4.I3]) and ([AI4]) that for almost all x, for all i

€_<Ai z,x) e % = ¢ P% <k(k2— 1) |3§‘|2> .

In particular, for x = 0, we get that for all 4, p% (0) = and thus for all ¢

e a1 (k(k—1
emime) = p 1'(0)P’£< ( 2 —)|w|2>'

This clearly means that A; = §Id for some ¢ > 0 and p(t) = Ce % 1! and we easily
complete the proof.

e %
Py

>

(ii) The proof of (ii) is done in the same way. O

5 The Blaschke—Santalé inequality and the affine isoperi-
metric inequality for many sets

The classical Blaschke—Santalé inequality for symmetric sets can be stated in the following

way,

/ 1 f”daz/ 1 g"dy < n? (voln(Bg))2 = (voln_l(S"_l))z,
Snf Snf

where f, g are positive symmetric functions on S”~! satisfying

1
<3:,y>+

f(x)g(y) <

Y

and where for a € R, a1 = max{a,0}. Note that if  and y are orthogonal, then the right
hand side of the inequality is infinite. This happens only for set of measure zero. The
latter inequality is satisfied, in particular, if

18



where rx(z) = max{\ > 0 : \x € K} is the radial function of the convex body K,
hi(y) = sup{(z,y) : * € K} is the support function of K and where for a 0-symmetric
convex body K with non-empty interior,

K°={yeR":(z,y) <1Vx e K}
is the polar body of K. We can then write the above as follows,
vol,, (K1) vol, (K2) < (vol,(B3))?,

provided
(x,y) <1, Vo € K1, Yy € Ks.

We now prove a Blaschke-Santalé inequality for multiple sets. We recall that a subset K
in R™ is unconditional if its characteristic function 1 i is unconditional.

Theorem 5.1. Let K;, 1 < i <k, be unconditional convex bodies in R™ such that

k
—3llzll% n
He 2 i <p E (i, ) | for every x;,x; € RY,
' ij=1i<]

where p is a positive non-increasing function on [0,00) such that fR p% (t?)dt < oo. Then

Lt
For k > 2, equality holds if and only if K; = r By and p(t) =e *-br* for some r > 0.

In particular, if p(t) = e_ﬁ, then, if Zle’iq(xi,xﬁ < kL Sk i ||%,, we have that

k
H voly (K;) < (voly(Bg))"
i=1

and for k > 2 equality holds if and only if K; = B3 for all 1 <i <k.

Proof. As for a convex body with 0 in its interior vol, (K) = voln(B7) Jzn e_%”m”%dx, we

(2m)2
get from Theorem [B.I] that

QVOI"(K”:<VOI 2 H [t (S ([ (M )

provided that
k
2
He 2”502”}( < § .Z'Z,flf]
i=1 i,7=1 Z<]

The equality characterizations follow from Theorem and Corollary @4l Indeed, by
Theorem [4.2], equality holds for k& > 2 if and only if there exist constants ¢;, 1 < i < k,
such that [J*_, ¢; = 1, and such that

_1 2 _
1. e 2”1’”}(2 =¢ p% (k(k2 1)‘1.’2) and
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2. The function p satisfies

k k
1 (k(k—1
i=1 4,J=1,i<j
From the first identity we get for x = 0 that ¢; = 11( : for all i. As Hle ¢; = 1, this implies
pk (0
that p(0) = 1 and hence ¢; = 1 for all 4. In particular, this implies that almost everywhere

on R", for all i, j, ||z||k, = ||z[k, = ||7||x and thus K; = K for all i. From the relation
1 1

—Lyjg|2 _ _ _
e 2l = p% <W|x|2> we get that K; = K = rBY, hence e 37 = pE (%t),

equivalently e (=1 = p(s). The proof is complete. O

Remark 5.2. Note that for k = 2 the above equality characterization clearly fails: the
equality vol,, (K )vol, (K°) = (vol,(B%))? holds if and only if K is an ellipsoid. This follows
obviously from the linear invariance of the Blaschke—Santalo functional for two sets.

The Blaschke-Santal6 inequality for convex bodies is closely related to affine isoperimetric
inequalities which involve the L,-affine surface area. For a convex body K with centroid
at 0, and for —oo < p < o0, p # —n it is defined as (see, e.g., [32 3]]),

as,(K) = ’“‘K(l’)ﬁﬂ) du (), (5.1)
OK (z, Ny (z)) ™

where pg the Hausdorff measure on 0K, the boundary of K, Nk (z) is the outer unit
normal at z € 0K and ki (x) is the generalized Gauss curvature at x € K. Note that
aso(K) = nvol,(K), and if K is C%, then asioo(K) = nvol,(K°).

The L,-affine isoperimetric inequalities state that for 0 < p < oo,

o g) : (ﬁl@)) -

and for —n < p <0,

n—p

asp(K) S vol, (K) \ »Fr

asp(BY) — \vol,(BY) ’

Equality holds trivially if p = 0. In both cases equality holds for p # 0 if and only if K is
an ellipsoid. If —co < p < —n and K is C’?F, then
u

o vol, (K) \ »Fr < asp(K)
vlL(B3)) = as(BY)’

with a constant ¢ > 0 not depending on the dimension. These inequalities were proved by
Lutwak [32] for p > 1 and for all other p by Werner and Ye [40]. The case p = 1 is the
classical case.

np

(5.3)

Theorem [5.] leads to a multi-set “affine” isoperimetric inequality.
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Proposition 5.3. Let K;, 1 < i <k, be unconditional convex bodies in R™ such that

k

k

—gllzill? n
He Wil < E (z5,25) | for every x;,x; € RY,
— i=1,i<j

where p is a positive non-increasing function on [0,00) such that [, p%(t2)dt < 00. Then
we have for 0 <p<n

H as;)((gg‘)) < <(271)’21 /Rn pk<k(/€2 1) |$|2)d;1:> .

i=1

For k > 2, equality holds if and only if

1. K; =r B} for all i, where r > 0 is a constant,
ot
2. p(t)y=e G-Dr*,

In particular, if p(t) = e 1 and if Zf:LKj(:Ei,:Ej) < % Zle ||$z||%{l, then we have
that

H asp(K;) < (asp(By )k (5.4)
and equality holds if and only if KZ- = BY foralll1 <i<k.
If p =n, then

H asy(K;) < (as,(By))* (5.5)

and equality holds if and only if KZ- s an ellipsoid for all 1 < i < k.
Proof. Let 0 < p < n. By the affine isoperimetric inequality and Theorem 5.1l we get
k I np
VO P
K;) (B))*
Zljlasp( (asp(By) H <Vol (B7) )

< (asy(BY)* <(271)g /n pF (@ |$|2)d$>kz+z . (5.6)

The first inequality shows that for p = n,

Hasn i) asn(BZ)) .

If p(t) = e_ﬁ, then we have for all 0 < p < n,

k n—p
vol, ( n
Hasp(K (asp(B3)) kH <vol ) > < (asp(B2))k (5.7)
i=1

The equality characterizations follow from Theorem [5.1]and the equality characterizations
of the above affine isoperimetric inequalities.

Indeed, by the affine isoperimetric inequality, equality holds in the first inequality of (5.0))
if and only if K; = T;B%, where T; is a linear invertible map. By Theorem [5.1] equality
holds in the second inequality of (5.6)) if and only if K; = r BY for all 4, where r > 0 is a

3
+
S

_ t
constant, and p(t) =e *-Dr?, n
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Remark 5.4. (i) For p = n, the inequality is just the affine isoperimetric inequality (22).
As aso(K) = nvol, (K), the inequalities of the theorem for p = 0 are just the inequalities
of Theorem [5.1.

(11) The corresponding inequalities for —oo < p < —n also hold, using (2.3).

A further multiple set version of the Blaschke—Santalé inequality is given in the next
proposition.

Proposition 5.5. Let K;, 1 < i < k, be unconditional convex bodies in R™ with non-empty
interior and radial functions r; = rr,. Assume that for all x; = ((z;)1,- - , (%i)n) € S7L,

b 1
[[ri@) < 5 (5.8)
i=1 n %

MBS

Then

Proof. Let m € R, 1 < m < n and put z; = e’. Setw—kzll Then

k 224,5(t:) k351 (w);
m ) N 1 cw|<1V € i,j J j=1 J
[T @) dgpensjcay 00t < - Fm *m

. 1\ 2 . 2
i=1 (z;tzl e2wj> (z;tzl e2w3>

We now apply again the change of variables x; = €', 1 < i < k, the Prékopa-Leindler
inequality and (5.9]),

1
k %
(H [ d:z:i) (H [ e tgenen 50 dti)
=17 By NRY "

k
< /]R sup [H (ri' (') Lyjetij<1y et Zi,j(ti)j>] dw

k .
_% Zz 1 i Li=1

Lo 3 (w);
S/ {lew|<1} €77 _ dw:/ d:z:.

n (E 162%)? Bprry 2™
j=

1
k %
[1/ rran) <[ £
i=1" By By ]

Next we observe that every radial function r; satisfies

T; 1
e = (520)
1 1

For every 1 < m < n, m € R, we introduce the finite probability measure du,, =
ILBS(U) du

Tog e T4

_ e

Hence by symmetry

The inequality above can then be rewritten as follows,

I/

>dmn§1
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Since p,, is rotational invariant, the above inequality can be rewritten as

H/Sn (O do(0) < 05" (5.10)

where o is the (n — 1)-dimensional Hausdorff measure. Passing to the limit m — n and
applying the Fatou’s Lemma one gets that (5.10) holds for m = n. On the other hand,
for m = n one has for all ¢

n -0 n—1 VOln(KZ)
/S L r0)do(0) = ("I

From this we derive the desired estimate. O

(5.11)

6 Prékopa—Leindler and displacement convexity inequali-
ties: refinement of the transportational argument

In this section we recall the transportational arguments of F. Barthe [7] in his proof of
the reverse Brascamp—Lieb inequality. We show that the use of barycenters gives certain
refinements of the Prékopa—Leindler inequality.

In this section we do not assume that the functions f; are even.

Let f;, 1 < i < k, be nonnegative integrable functions and \; € [0,1] be numbers such
that Zle Ai = 1, and let du = p(z)dz be a probability measure. For every i, V®; is the
optimal transportation mapping that pushes forward p onto p; = f; dx.

In what follows we apply the change of variables formula for the optimal transportation
mapping. In that form it was established by R. McCann (see [39], Theorem 4.8),

~ fi(Vdy)
where DgCI)i is the absolutely continuous part of the distributional Hessian D?®; of ®;. In

particular, it is a nonnegative matrix-valued measure. This formula holds almost every-
where with respect to Lebesgue measure. We will also apply below the following results

det D2®;(z),

e The arithmetic-geometric mean inequality
k k
H (det Al))\z < det (Z )\1A1> s
i=1 i=1
where the A; are symmetric nonnegative matrices, A; > 0, Zle A= 1
e The inequality between the distributional Hessian and its absolutely continuous part

0 < D2®; < D?®,.

First, we get by the arithmetic-geometric mean inequality

ple) = ﬁ<fl(fvf?d;i)dw2 >A <H<flfvf?dxz > dt<zwz >

S fiw) \ :
sup < e > det < )\Z’ng)i(:E)> . (6.1)

IN




In the proof of Barthe, one fixes an arbitrary measure p and integrates inequality (6.1]).
By the change of variables y = Y. \;V®;(x), we get the Prékopa-Leindler inequality

Z-ljl </ fid:gi) ’ = / sup ﬁf?i(yi)dy-

{yi:32s M=y} ;=1

If instead of an arbitrary measure p, we apply this result to the barycenter of the yuls, we
obtain the following pointwise refinement of the Prékopa—Leindler inequality.

Theorem 6.1. (Pointwise Prékopa—Leindler inequality) Let p be the barycenter of
the p; with weights A;. Then it has a density p satisfying

k A k
11 </ fid$i> piz) < swp [ £w), for p—aea. (6.2)
i=1

="K Niyii=1

Proof. By the arithmetic-geometric mean inequality one has
k A k
I1 (det Dgcp,-(a;)) < det (Z )\Z-D,f@i(a:)) .
i=1 =1

Since >, \i®i(x) = @ for p(x) dz-almost all z, (see Theorem [2.4] 3), one gets

k
D ADI®i(x) < DD A\®i(z)) =1
=1 =1

p(z) dz-a.e. Using this inequality and inequality (6.I]) one gets the result. O

Remark 6.2. Following the proof, one can easily get the equality characterization for the
Prékopa—Leindler inequality. Indeed, we have equality in the arithmetic-geometric mean
inequality if and only if D>®;(x) are all equal for almost all x. Next, from the relation
S Ai®i(z) = % one can easily get that every ®; has the form ®;(z) = @—F(x, a;)+b;.
This easily implies that the f; differ by shifts. The rest of the proof is standard.

Let us rewrite (6.1 in terms of the standard Gaussian reference measure dy = 6(2 )2% dz.
™

Corollary 6.3. Let f;dx; = p; - dy be probability measures and let du = p - dvy be their
barycenter. Then pu-a.e.

k
() 03 S N V®(z)—x|? < sz)\z(v<1>l) (6.3)
i=1




Also using Theorem 2,41 3., we finally observe that

iww o) \x!2> ZA <rv<1> o m()_m)

=1
1 2
=3 Z il V®;(x) — ).
=1
O

Integrating pointwise inequality (6.2) we get the Prékopa—Leindler inequality. Taking
logarithm of (G3]) and integrating we get the displacement convexity property of the
Gaussian entropy,

k
Ent. ( Z)\ W3, i) < Z JEnt., (6.4)
i=1 i=1

This result was proved in [I].
Mimicking the arguments that were used in the proof of (6.1]) leads to the following result.

Theorem 6.4. Let f;, 1 <i <k, be integrable functions satisfying

k k
17 @) <g <Z Aw) : (6.5)
=1

i=1

where \; € [0,1], Zle Ai =1 and g is a nonegative function. Then for pdx-almost all x,

< / fzdwz> ple) < g(@), (6.6)

where p(x)dx is the barycenter of the measures fffilx-dxi with weights ;.

Proof. Applying inequality (6.I]) and the relation Zle AiV®,;(x) = x one immediately
gets

k A
[1(/ #twaz) ey <  sw Hf (v:) det ZA D*@(x)) < g(x).
=1

{yzz )\lyl_x =1

Remark 6.5. Assuming (6.0) and integrating (6.0) one gets the inequality
s
H(/fﬂx,) §/g(a:)da:, (6.7)
=1

which can be considered as a weak form of the Blaschke—Santald functional inequality,
because it is equivalent to (7.16]) (see the explanations in Remark[74)]), which is a weaker
version of the displacement convexity property (6-4)). Inequality (6.7) follows, of course,
directly from the Prékopa—Leindler inequality.

25



In particular, assuming that the functions V; satisfy

k
D> AVi(wi) > %‘Z il
i=1 i=1

2

)

one gets
i Ai )2
(H/e_vi(mi) d:ni> plr) <e 2.
i=1

Rewriting this inequality with respect to the Gaussian reference measure «y, one gets the
following equivalent formulation.

Corollary 6.6. Assume that the measurable functions F; satisfy

k 1 k k 9
=1 i=1 j=1
Then

: el . T
(E/ dv) plx) <1,

i

where p -y is the barycenter of m -

7 Talagrand-type estimates for the barycenter functional

In this section we show that a weak form of the Blaschke-Santalé inequality is related to
the displacement convexity property of the Gaussian entropy. The conjectured strong form
of the Blaschke—Santal6 inequality is equivalent to a certain strong entropy-Ws-bound, a
particular case of this bound for two functions was proved by M. Fathi in [17].

Let us briefly recall the main transportation Gaussian inequalities.

1. Every probability measure f -y (not necessary centered) satisfies the Talagrand
transportation inequality

%Wz(f-%v) < Ent, f := / flog fdy.

2. In the case when one of the measures f -+,g -~ is centered, a stronger inequality
holds (see Remark [.2] and the comments after it)

%Wf(f'%g-v) < /flogfdwr/gloggdv- (7.1)

3. Displacement convexity of the Gaussian entropy for arbitrary measures u;, 1 <14 < k,
which states that

k k
1
Ent, (1) + 5 > OANWE (1, 1) <> NEnty (), (7.2)
=1 =1

where p is the barycenter of the u; with weights A;.
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We have seen above that (2] follows from Theorem (pointwise Prékopa-Leindler
inequality). We show below that the following weaker version of ([7.2])

k

k
1
5 D AWE (i) < D AiEnts (1) (7.3)
i=1 i=1

is equivalent to some form of the Prékopa—Leindler inequality (see Remark [7.4]).

In this section we establish the equivalence (and verify it in the unconditional case in
Theorem [7.1]) between the conjectured Blaschke—Santalé inequality and the inequality

1< k-1
o ZWg(ﬂiaﬂ) < 2 ZEHM(M)’
i=1

i=1

for symmetric measures, which is stronger than (7.3]) for the choice of weights A\; = % and
generalizes (1) for k£ > 2.

In what follows, m denotes the solution to the multimarginal Kantorovich problem with
marginals p;. Note that

Hence one gets by by Theorem 2.4]

k
1 1
Fw =g [ X lei—wildn = 5 > W)
=1

ij=1,i<j

Theorem 7.1. Assume that for 1 <i <k, u; = p; -y are probability measures and the p;
are unconditional and let p be the barycenter of the u; with weights \; = % Then

k-1 k-1
Flp) < =5 Z/m log pidy = —3 > Enty (). (7.4)
i=1 =1

Proof. Using standard approximation arguments and lower semicontinuity of the func-
tional F one can reduce the general case to the case of compactly supported densities p;.
By the Kantorovich duality (see e.g., [39)]),

_ ! gkl 1 2
Fp) = w/ Z |z; — a;|°dr = 2 2(1<:—1)/,Z |z; — x| dm

i,j=1,i<j 1,j=1,i<j
k=1 [ k=1
= = > filw)dm = 12 > | filzi)dui,
=1 =1

for some measurable functions f; satisfying

k k
1 2
() < o .
Do fiw) S gr—gy D lei—al’ (75)
i=1 1,j=1,1<J



with equality m-a.e.
Note that we can assume that the functions f; are unconditional. Indeed, if not, replace
fi for all ¢ by
1
gi(xi) = 5 > filews),
&€
where ex; = (e12},692%,+ ,e,2?) and g = +1, 1 < | < n. Then the functions g; are
unconditional. They also satisfy the dual problem as the measures p; are unconditional
and as the cost function does not change under z; — ex;.
Inequality (7.5 is equivalent to

k

Z(fi(il?i) - %|33i|2) < _k—il Z (i, ).

i=1 i,j=1,i<j

We will apply Theorem B.Ilto the functions f;(x;)— % |z;]?. To this end we need to show that
efil@) =312 gre integrable functions. Moreover, let us show that fi(z;) — 3|z;|> € L (u;)
for every i.

Let R > 0 be a number such that supp(p;) C Bg. Then it follows from Theorem [6.1] that
supp(p) C Br. Hence the optimal transportation mapping V@ of p onto p; satisfies the
estimate |V®7| < R. By Theorem 2.4 O} (z;) = ﬁ|x2|2 + kv;(x;) + C;, where v; and f; are

related as follows )

02— e
F_1 |z fi(z:).

To show that 3|z|? — fi(z;) € L>(u,) it is sufficient to show that Vuv; is bounded on the
support of ;. Indeed, |Vv;| = 1|V®;(2;) — £a;] < %R.
It now follows from Theorem B.I] that

k
=1

vi(z;) =

or, equivalently,

k
1 [ ey <1. (7.6)

i=1

The claim follows from the estimates

k k k
/Zfi(:ni)dm < /Z(fi —log/efidv)mdv < Z/(m log p; — p; + el Vimloe [ elidn) gy
i=1 i=1 i=1
k
=> / pilog pidy.
i=1

Here the first inequality follows from (7.6) and in the second inequality we apply the
inequality xy < e® 4+ ylogy — y, which is valid for x € R,y > 0. O

Remark 7.2. This result is a generalization in the unconditional setting of a result of
M. Fathi [T7] for two functions:
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Let po, p1 be two Gaussian unconditional probability densities and py /o be the corresponding
barycenter. Then inequality implies

1
SW2(po 7,00 -7) = 2W5(po 72 p1/2 - %) = Wi lpo - 3, prj2 - 7) + Wi o1+ %, pij2 )

< / po log pody + / p1log pidyy. (7.7)
This is a particular case of Fathi’s inequality.

Fathi has shown that in the class of symmetric functions inequality (7.7 is equivalent to
a Blaschke-Santal6 inequality involving two exponential functions. Already earlier, in [3],
it was noted that the Blaschke-Santalé inequality can be re-written in terms of a property
7 introduced by Maurey [33] which is dual to to the transportation inequality. We follow
the approach in [I7] to show that the inequality of Theorem [71] is also equivalent to a
functional Blaschke—Santalé for multiple exponential functions.

Indeed, letting p(t) = ¢~ in Theorem[3.1] we get the following multifunctional Blaschke—
Santal6 inequality:

Let f;: R® = R4, 1 < i < k, be measurable unconditional functions with [ efi integrable
such that

E fi(z:i) < ——i E (Tiy2j) (7.8)
, k-1, 4v
Then

k
11 / efidr < (2m)*% (7.9)
=1

Proposition 7.3. Inequality (77) is equivalent to the functional Blaschke-Santalé in-
equality (7.9).

Proof. One implication is just Theorem [7.1l

For the other implication, we first rewrite inequality ((Z4]). Thus, let x be the barycenter
of the p; = p; - v with coeflicients % and unconditional p;. We recall that for a probability
measure v

Ent, (v) = Entg,(v) + —log (2m) /]az\ dv

and use this and the definition of the Kantorovich distance to get that (Z.4]) is equivalent
to

-1)
— —1nf Z / xj, xj) dP < ZEntdw (i) + (k — 1) log(2m)™. (7.10)

i,0=1,2<g

Let now the f; be unconditional and such that they satisfy (7.8). We apply (ZI0) to
eli e
pi = piv = TR We also use that for a probability measure v

Entg,(v) = sup/fdy - log/efdm (7.11)
f

and get

——1nf Z /a:,,a;]

1,J=1,1<J

< 2(’“7_1)22 ( / fidp; —log / ef"dzn> + (k — 1) log(2m)™. (7.12)
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By the Kantorovich duality, the left hand side of this inequality equals

k
2,
1,j=1,i<j

k

?:1 hl(xl)g_ﬁ Z?,j:l,i<j <-'Ei7xj> =1
k
2k — 1) /
P —— i
Z = ;:1 fidp

Putting this into (7.I12]) and removing terms that appear on both sides gives the inequality

). 0
Remark 7.4. Mimicking the proofs of Theorem [7.1] and Proposition [7.3 one can show

that the inequality
k
Ai
<H/6Fid7) <1, (7.14)
i=1

where the functions F; satisfy

k

Z NiFi(x;) <

i=1

k k 9
[Z)\Z|$Z|2 — ‘Z )\jl‘j‘ ], (7.15)
i=1 Jj=1

DO =

1s equivalent to the inequality

k n

1
> ity (ui) > 5> NiW3 (i ), (7.16)
i=1 i=1

where  is the barycenter of the s with weights X;.

12
Letting V; = —F; + ‘xé‘ and A; = %, 1 < i < k, we note that inequality (7.14) has the
following equivalent “Fuclidean” formulation:

k
H/e_vidmi < (2m)F3,
i=1

provided Zle Vi(z;) > ﬁh’l + -+ xk|2. This inequality is a direct consequence of the
Prékopa—Leindler inequality and here we do not assume that the V; are even.

Remark 7.5. See also the notes to the first version of the article which contained another
proof of (7.1) based on a symmetrization procedure.

Inequality (Z.I0) is, in fact, a weaker version of the displacement convexity property (6.4]).
It follows, for instance, from inequality (6.3]).

What happens, if in the derivation of the Talagrand type bounds instead of (Z.I4]) one

Ai
applies the stronger pointwise inequality (Hle [eF id’y) p(z) < 1, (see Corollary [6.6])?
The answer is given in the next theorem.
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Theorem 7.6. Let u; = p;-~ be probability measures and fz(a:,) be the solution to the dual

multimarginal problem with marginals ji; and the cost function 3E ZZ 1< |; —:Ej|2. Let

w=p(x)-v be the barycenter of probability measures foidv -y with weights 119 Then
p(z) < ef Ziaa(f pilogpidy=3 W (wpa), (7.17)
Proof. Let 7 be the solution to the corresponding primary problem. By the Kantorovich

duality
S Wi = g [
2k — ’ 2k72

1,j=1,1<J

k
1
— ajPdr = Z Z/fidui-
i=1

Then

1

k k
%ng(ﬂm kZ/fzdm log H/ fldv ' %Z/ log/ef’idv)pidv-
=1 —

Using Corollary one has

k
log(l_l/efl'czl’)/>l1c < —log p(x).
i=1

Then we apply Young inequality and get that [ ( — log [ efidy)pidy < [ pilog pidry.
Finally one obtains logp(z) < + Zle(f pilog pidy — W3 (1, 1)) O

Taking logarithm of both sides of (ZI7) and integrating with respect to v = p- we obtain,
in particular, the following estimate

?vll—‘

Entfy( 2kZW2 M,/Jz <
=1

k
Z Ent (1),

which is reminiscent to (7.2)), but it is not completely clear how they can be compared.

8 Monotonicity of the Blaschke-Santalé functional

In this section we prove a remarkable monotonicity property of the Blaschke—Santald
functional which appears naturally with respect to the barycenter problem.
8.1 The case of two functions

We start with the case of two functions, k = 2. We first recall for A € R, the definition
of the A-affine surface area of a convex function V introduced in [12] and already given in

@2,
asa(V) = / LAV @ AEIVE) (dot DV () de,
Qv

where D2V is the Hessian of V.

We consider now two functionals on convex functions V, the Blaschke—Santalé functional

= /e_vdx/e_v
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and the %—aﬂine surface area functional,

JV)=uas1(V)= /e 2@VV@)\/det D2V da.

(NI

To avoid technicalities, we assume that V is C? and strictly convex.

Proposition 8.1. Let V be a strictly convex C?-function such that e~V e~V are inte-
grable functions. Let VW be the optimal transportation of Te ,\fl;’ onto %. Then

BS(V) < J*(¥) < BS(D). (8.1)
Equivalently

* 2 *
/e_vdzn/e_v dx < </ e_%<x’vqj>\/detD2\Ifd:E> < /e_q’dzn/e_‘y dz.

Proof. The second inequality is just Theorem (iii). To prove the first inequality, we
apply the change of variables formula
eV o~V (V)
[eVdx  [eV'dax
Note that regularity of V, V* imply that U is sufficiently regular, hence D?V is absolutely
continuous (see, for instance, [39]). Then

[ tem ViD= [ / R
e X

The result follows from the inequality V*(V¥) + V(z) > (z, V). O

det D?.

Let us outline (without rigorous justifications) the idea of alternative proof of the Blaschke—
Santald inequality. It can be easily seen from the proof that equality in V*(VV¥) +V (z) >
(x, V¥) (and hence in (8I]) ) is attained if and only if V = ¥ + a for some constant a.
Thus, within a certain appropriate class of functions, e.g., symmetr*ic, the maximum of the

Blaschke-Santal6é functional must satisfy that the measure f:% is the push-forward

dx

:%;dw under the mapping VW. This means that ¥ solves the following
Monge—Ampere equation

measure of

oY o~V (V)
[ e Vdx N Je ¥ dx

It was shown in [I3] that this equation admits the following family of solutions, provided

det D*W. (8.2)

fsijd has logarithmic derivatives,

W:WT’@—FC,

where A is a positive definite matrix and c is a constant. These are exactly the maximizers
of the Blaschke—Santalé functional.

Thus, this observation suggests the following (so far heuristic) approach to the Blaschke—
Santal6 inequality. Let Wg = V, and consider iterations ¥;, [ € N, where ¥, is the
e Vidz e da

optimal transportation potential pushing forward =% onto =—£%. By Proposition
Je Vidz Je Y7 da

Rl one gets an increasing sequence BS(¥;), | € N. From this, one can try to extract
convergence of ¥; to a potential ¥, which gives a maximum to the Blaschke—Santald
functional. Then prove that ¥ solves (8.2]), and by uniqueness deduce that ¥ is quadratic.
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8.2 The multimarginal case

Next we generalize the previous result to the multimarginal case, k > 2.

Theorem 8.2. Assume that Vi(z;), 1 < i < k, are measurable functions such that e~V
are integrable, satisfying

k k
i=1 i,j=1,i<j
for some C' >0 and \; € (0,1) with Zle A= 1.
Let the tuple of functions \;U;(x;) be the solution to the dual multimarginal mazimization

problem with marginals fi,v\l}f;; and the cost function C 3 XiXj(zi, z;). Then

1,j=1,1<J

k

H(/ e_Vidxi))\i < Zli(/ e_Uidxi>>\i.

i=1

Proof. Let pdx be the barycenter of du; = fe;v‘l}fg; with weights \; and V®; be the

optimal transportation mapping pushing forward pdx onto du;. Recall that for pdax-
almost all y one has (see Theorem 2.4]),

k

k
Y AU(VRiY) =C D NA(Viy), VEi(y))-

i=1 i,j=1,i<j
Apply the change of variables formula

e Vi(V; (1))

= det D2®;(y).
p(y) TeVidg, Aot P ()
One has
k A . k
H(/ e_vida:,-> ply) =e” 2im AiVi(V2i(y)) H detD2
i=1 i=1

k
CZ@J 1,i<j )‘ V(I) (y vq)](y H detD2
i=1

“NU (Vs ( dethq’i(?J))Ai'

||z»

Integrating both sides and using Holder’s inequality, we get

k k

H(/ e_Vidxi))‘i - /He_AiUi(vqn)(dethq%(y))Aidy
i=1

1=1

k

< g(/ e~ UiV (det D2, ) ﬁ(/ N Uidazi)Ai
(fsan)
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Here we use the change of variables and the fact that the image of det D2®;(y)dy under V&,
is the Lebesgue measure on V®;(R™). This follows, for instance from the aforementioned
result of McCann ([39], Theorem 4.8).

O

Let us informally analyze the equality case. Clearly, in this case one has for almost all y,
D OAVi(VOi(y) = > AUV (y)).
i=1 i=1

Integrating over pdy we get that (A;V;) is a dual Kantorovich solution as well. Hence, by
uniqueness of the dual solution

k
Vi =U; + C;, ZCZ‘:O-
=1

In addition, one has for all 7 that

o~ Ui(Ve))
W det D2<PZ = pP,
(& Ay
or, equivalently,
e Yidx;
In particular, since (see Theorem [2.4])
. jzi* | Ui(zs)
O () = N i
()= A 5 + c +C,
every function U; must satisfy
—Ui VU;(x; D2UZ’
fee—Uidx- =p < ng ) + /\Zl‘2> det < C + )\ZI> . (8.3)

Thus, a maximizer of the Blaschke-Santal6 inequality, if it exists, must satisfy the system
of equations (8.3]), where every Uj; is convex.

Remark 8.3. Equation (8.3) is an equation of the Kdihler—Einstein type. We do not
know whether (8.3) admits a unique solution. The well posedness of the classical Kdhler—

FEinstein equation
-0

e

was proved under broad assumptions in [17).
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