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Introduction

Today, networks are used to represent socio-economic pro-
cesses, human relations, biological and physical processes, 

etc. (e.g., Newman 2010, Jackson 2008). Usually, the main, and 
probably the first, problem studied in networks analysis has been 
the detection of the most important elements in a network. This 
very problem was investigated from the first publications on social 
networks, such as relations between schoolchildren in classes in 
the 1930s (see Newman 2010). There is also interest nowadays in 
these topics in Russia (e.g., Gubanov et al. 2011, Gubanov et al. 
2019, Kireyev & Leonidov 2018). A very interesting survey was 
done by Kalinina et al. (2018).

However, in all these models, the vertices in networks are 
considered to be objects of similar type, i.e., the parameters of 
the vertices are not taken into account, although in some very 
important publications this shortage is emphasized openly (e.g., 
Newman 2010). To attract attention to this problem, let us discuss 
an example.

Consider a loan of $1 million, borrowed from a bank, and 
assume that the loan is not repaid in time. If the bank is large 
it can survive, but for a small, say regional, bank, it might be a 
cause of bankruptcy. Thus, in the analysis of the loans network, 
the parameters of the banks should be taken into account.

Let us extend this example to the case of two borrowers who 
take $500,000 each from the same small regional bank. If one of 
them repays the loan, the bank will survive, however, if neither 
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borrower returns the loan, it will be the same as the $1 million, 
and again, the bank will announce bankruptcy.

This last example shows that in the analysis of influence in net-
works we should take into account the group influence of nodes 
(players in networks) on an individual node. To the best of our 
knowledge, this very concept has been discussed in few works 
(e.g., Myerson 1977).

We can see many examples of this kind. For instance, in the 
network of international conflicts, the parameters of the countries 
might be the level of armaments in the countries involved, and the 
group influence might be evaluated by the military blocs to which 
the countries belong.

In this book we introduce a class of indices, incorporating 
these new ideas, and we illustrate the use of these indices via 
many examples.

THE STRUCTURE OF THE BOOK
In Chapter 1, we introduce the notion of networks, discuss the 
main classic centrality indices in networks, and introduce new 
indices – short-range interaction centrality (SRIC) and long-range 
interaction centrality (LRIC), which differ in the lengths of the 
path taken into account in the analysis of networks.

In this chapter we also discuss new concepts in the analysis 
of the power of nodes, based on their interdependence and the 
impact of indirect connections in network structures. Both these 
concepts use ideas we have developed before.

Chapter 2 widely illustrates applications of the new indices. 
It contains the analysis of a global financial market where the 
countries are key borrowers in the market. Next, we study the 
networks of international migration, world trade, the global food 
network, the network of global arms transfers, the network of ter-
rorist groups, and the network of international economic jour-
nals. In each case we discuss how to take the parameters of the 
vertices into account, as well as how to define the group influence 
in each case.
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C h a p t e r  1

Centrality Indices in 
Network Analysis

In this chapter, we present well-known and widely used clas-
sical centrality indices such as different forms of the in- and 

out-degree indices, centralities based on the eigenvector evalua-
tion, centralities based on the idea of the shortest path, and a cen-
trality index based on cooperative game theory. There are more 
known indices, and we mention them shortly without present-
ing their formal definitions. Then, we discuss the shortcomings of 
classical indices and provide an example showing the necessity of 
taking into account the parameters of nodes in networks and the 
possibility of the group influence of nodes to a node in the net-
work. Hence, we propose new classes of indices introduced by our 
team – short- and long-range interaction centralities (SRIC and 
LRIC). They take into account not only the features mentioned 
above but also indirect influence among nodes. Additionally, we 
have extended the LRIC index for the evaluation of influence in a 
network where a flow in the network may result in nodes becom-
ing too interdependent on each other, and consequently have 
some power against each other using the same flow. This measure 
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2   ◾   Centrality Measures in Networks 

is called the interdependence index. Finally, we propose several 
measures of the edge importance assessment.

1.1  CLASSICAL CENTRALITY MEASURES
Standard methods for the detection of the most influential ele-
ments in networks are based on the evaluation of centrality indi-
ces for each node, and ranking nodes according to these centrality 
values (Newman 2010). The higher the centrality of the node, the 
more important the node is in a network.

There have been many indices developed to measure the cen-
trality level of each node. The measures used have different natures 
and interpretation and include information about the position of 
a node and its neighbors in a network. Some of these are based on 
the number of links to other nodes. Others consider how closely 
each node is located to other nodes in a network, in terms of dis-
tance, or how many times it is on the shortest paths connecting 
any given pairs of nodes. There are also some indices based on 
ideas from cooperative game theory and voting theory. In this 
chapter, we consider the most popular centrality measures known 
in the literature.

We operate with a graph G = (V,E), where V = {1,…,n} is a set 
of nodes, and E ⊆ V × V is a set of edges (edge (i,j) ∈ E). We con-
sider undirected and directed graphs. For the latter, the existence 
of edge (i,j) does not imply the existence of edge (j,i). To describe 
a graph, we use adjacency matrix A = [aij], where aij = 1 if there 
is edge (i,j), and aij = 0 otherwise. Additionally, if connections 
between nodes are associated with some numerical values, repre-
senting the intensity of connections, the graph can be described 
by a weighted adjacency matrix W = [wij] that stores the weights 
of the edges.

1.1.1  Degree Centralities

The simplest centrality measure for undirected graphs is the 
degree centrality, which is calculated as the total number of neigh-
bors for each node i (Freeman 1979):
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 C a ai
deg

j
n

ij j
n

ji= å = å= =1 1
 (1.1)

High values of the degree centrality identify nodes with the high-
est number of connections to other nodes, i.e., nodes for which it 
is easier to gain access to and/or influence over other nodes locally.

For directed unweighted graphs, four versions of degree central-
ity measure are possible: in-degree centrality, out-degree central-
ity, degree centrality, and degree difference. These measures take 
into account the direction of connections. Additionally, a degree 
centrality can be adapted to directed or undirected weighted net-
works. A description of each measure is provided in Table 1.1.

TABLE 1.1 Degree Centrality Measures

Name Equation Description

Unweighted 
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In-degree 
centrality

C ai
in deg

j
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== å 1
 The number of 

incoming edges
Out-degree 
centrality

C ai
out deg
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ij
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 The number of 
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deg
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ij ji= å +( )=1
 The total number of 

i’s connections
Degree 
difference

C a ai
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n

ij ji= å -( )=1
 The difference 
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number of outgoing 
and incoming edges

Weighted 
graphs

Weighted 
in-degree 
centrality

C wi
w in deg

j
n
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== å 1
 The total weight of 

incoming edges

Weighted 
out-degree 
centrality

C wi
w out deg
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n

ij
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== å 1
 The total weight of 

outgoing edges
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degree 
centrality

C w wi
w deg

j
n

ij ji= å +( )=1
 The total weight of i’s 

connections

Weighted 
degree 
difference

C w wi
w diff

j
n

ij ji= å -( )=1
 The difference 

between the total 
weight of outgoing 
and incoming edges
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In-degree and out-degree centralities show how a node is 
affected by its neighbors. For instance, the higher the out-degree 
centrality of a particular node is, the more nodes are under its con-
trol. Degree centrality identifies the most active nodes in differ-
ent parts of a network, while degree difference is used to evaluate 
the relative influence of a node on its neighbors. The interpreta-
tion of weighted degree centralities is practically the same as for 
unweighted degree centralities, but weighted measures are more 
representative than unweighted ones, due to the fact that weighted 
networks consider the intensities of connections. One should note 
here that normalized versions of these measures also exist.

1.1.2  Eigenvector Centralities

Since the degree centrality measures do not consider the impor-
tance of adjacent nodes, i.e., the information about the degree cen-
trality of its neighbors, several indices have been developed which 
take this feature into account. An eigenvector centrality consid-
ers not only neighboring, but also long-distance connections. The 
eigenvector centrality (Cev) assigns relative scores to all nodes in 
a network based on the concept that connections to high-scoring 
nodes contribute more to the score of the node in question than 
connections to low-scoring nodes. The idea is that the importance 
of node i depends on the importance of its neighbors, which, in 
turn, depends on the importance (degree) of its neighbors, and so 
on, i.e.,

 C C C Ai
ev

i j E
j
ev

j

n

j
ev

ij= × å = × å ×
( )Î =

1 1
1l l,

 (1.2)

The calculation of the centrality measure for each node is related 
to an eigenvalue problem with respect to adjacency matrix A of 
a graph: a vector of relative centrality Cev is an eigenvector of the 
adjacency matrix, i.e.,

 A C Cev ev× = ×l . (1.3)
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Generally, all eigenvectors of matrix A can be considered as a 
centrality measure. However, an eigenvector that corresponds 
to a maximal eigenvalue is preferable: by the Perron–Frobenious 
theorem, this vector (and only this, except its co-directional vec-
tors) is positive and real for irreducible non-negative matrix A 
(Gantmacher 2000) which, by definition, can be presented as a 
strongly connected graph.

Another generalization of a degree centrality is the Katz cen-
trality (Katz 1953). It measures the weighted count of all paths 
coming from the node, while a contribution of path of length n is 
counted with respect to attenuation factor βn, i.e.,

 C a A Ai
Katz

j

n

ij
j

n

ij k j

n
k k

ij
= å + å ( ) + = å å ( )

= = =

¥

=
b b b

1

2

1

2

1 1
...

 (1.4)

or in a matrix form

 C I A I eKatz = -( ) -( )×-b 1 �
, (1.5)

where 
�
e  is the unit vector, I is the identity vector.

Basically, this measure is applicable to symmetric graphs since 
the computation of eigenvectors is more difficult for non-sym-
metric matrices and can produce complex or zero eigenvalues.

Other measures have been introduced to overcome this short-
age. An example of these measures is α-centrality (Bonacich 
2001). This centrality is defined as the solution of the two-param-
eter equation

 C C Ai j j ij
a aa b a a b b, ,( ) = ×å ( )× +  (1.6)

or in a matrix form

 C I Aa a b a b, .( ) = - ×( ) ×-1  (1.7)
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The introduction of parameter β, which corresponds to the initial 
value of centralities, precludes the possibility of a solution with 
zero components. In practice, parameter α is selected so that α < 
1/λmax, where λmax is the largest eigenvalue of matrix A.

Another example of centrality that can be applied to directed 
graphs is the PageRank centrality (Brin & Page 1998). According 
to the model, the importance of a particular node depends on the 
probability that it be visited by a random walker, i.e.,

 C
C
C

a
ni

PageRank
j

j
PageRank

i
out deg ij= ×å × + -

-a a1
 (1.8)

or in a matrix form

 C
n

I A I C ePageRank out deg= - × - × × ×( )é
ëê

ù
ûú

×- - -1 1 1a a
�
, (1.9)

where α is the probability of continuing the walk (in general, α = 
0.85).

Many other measures exist which are based on the idea of 
eigenvector calculation: Bonacich centrality (Bonacich 1987), hubs 
and authorities (Kleinberg 1999), subgraph centrality (Estrada & 
Rodriguez-Velazquez 2005), etc. Note that these measures can be 
easily adapted to weighted matrix W.

1.1.3  Centralities Based on the Shortest Paths

Another class of centralities is based on the shortest paths 
between nodes. Two of the most well-known measures are close-
ness (Bavelas 1950) and betweenness (Freeman 1977) centralities.

Closeness centrality considers how closely each node is located 
to other nodes of a network in terms of distance. As a result, it 
elucidates nodes that are the closest to other nodes, and it is usu-
ally calculated as

 C
di

cl

j
n

ij
=

å =

1
1

,  (1.10)
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where dij is the length of the shortest path from node i to node j.
A similar idea to closeness centrality was proposed by Rochat 

(2009), and is called harmonic centrality. This centrality is calcu-
lated as the sum of inverse distances between pairs of nodes. If 
there is no path between a pair of nodes, then the corresponding 
summand is equal to zero. Thus, this measure performs better on 
disconnected graphs.

Another way to consider the lengths of the shortest paths is 
a decay centrality (Jackson 2008). The idea of this measure is to 
summarize some coefficient δ ∈ (0,1) to the power of the lengths 
of considered paths. A generalized measure of centrality based 
on closeness was also proposed by Agneessens et al. (2017). The 
author introduced a tuning parameter δ that measures the impor-
tance of geodesic distances and showed that using the param-
eter, degree-centrality and closeness centrality are two specific 
instances of their more general measure.

Betweenness centrality detects nodes that lie on the short-
est paths between any other two nodes most of the time. It is 
defined as

 C
i

i
btw

jk
jk

jk
= å

( )s
s

,  (1.11)

where σjk is the number of the shortest paths from node j to node 
k, σjk(i) is the number of the shortest paths from node j to node 
k going through the node i. High betweenness centrality identi-
fies nodes that are crucial hubs and/or bridges between disparate 
clusters in a network.

A measure similar to betweenness centrality is stress centrality 
(Shimbel 1953). The main difference is that coefficients of stress 
centrality are not normalized to the total number of the short-
est paths between considered nodes. The concept of between-
ness centrality was extended to a group level in Everett & Bogatti 
(1999). There is also percolation centrality (Piraveenan et al. 2013) 
which is based on the idea that each considered path is weighted 



8   ◾   Centrality Measures in Networks 

to the contribution of this path to a percolation process, while the 
weights of paths depend on the percolation level of a source node 
and the total percolation state of a network. Contrary to the cen-
tralities that are described above, percolation centrality requires 
initial conditions of the level of percolation of each node.

1.1.4  Centralities from Cooperative Game Theory

An influence in networks is also evaluated in the field of game 
theory and mechanism design. There are various power indices 
that are applied to the network theory. In this case, a network is 
interpreted as a set of interacting individuals that contribute to 
a total productive value of a network, and the problem is how to 
share this generated value among them.

Myerson (1977) proposed a value that is based on the Shapley–
Shubik index (Shapley & Shubik 1954). The Myerson value shows an 
average contribution for each node, where the contribution is a func-
tion v generated by the network, with and without this individual, i.e.,

 C G v
S N S

N
v S v S ii

MV
S V,

! !

!
\ ,( ) = å

-( ) -( ) ( ) - { }( )( )Î
1

 (1.12)

The main disadvantages of this approach are its large computa-
tional complexity (since it requires consideration of all possible 
subgraphs) and uncertainty (about how the value of a subgraph 
should be assigned). Partial rankings of nodes based on the neigh-
borhood-inclusion principle were also discussed by Schoch (2018).

Many other approaches to key nodes detection exist. For 
instance, a different perspective of the central nodes’ estimation 
was proposed by Kang et al. (2012) which is called diffusion cen-
trality. This centrality takes into account the attributes of nodes 
and their properties, and measures the quality of diffusion of a 
property p starting from a node v. Despite the completeness of the 
proposed measure, some prior conditions should be known as con-
ditional probabilities of the ‘infection’ or so-called ‘diffusion rules’.

Many real networks are complex, and their elements are not 
homogenous. The nodes of a network may have various individual 
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attributes that characterize their size, importance, level of influ-
ence, etc. This possibility was mentioned by Newman (2003): ‘[…] 
and vertices or edges may have a variety of properties, numerical 
or otherwise, associated with them’. For instance, the threshold 
of influence, which indicates the level when this node becomes 
affected, may give the result that even connections with the same 
weight w can be influential for node i, and not influential for some 
other node, j, depending on the attributes of these nodes. The size 
or importance of nodes may lead to the situation that influence on 
a group of nodes may, in total, contribute less than influence on a 
single node. Finally, some nodes can influence other nodes only in 
collaboration with some other members.

All these aspects show that power distribution in networks 
should be evaluated with respect to both the individual attri-
butes of nodes and the connections between them. Unfortunately, 
centrality measures based on degree or the shortest paths do not 
take into account the nodes’ features, and consequently cannot 
be applied since initial connections of a network do not repre-
sent the actual picture of the nodes’ influence. Diffusion centrality 
considers particular attributes of nodes, but it lacks such features 
as individual thresholds of influence, nodes’ importance, and 
the possibility of group influence. Moreover, the way to define 
diffusion rules in various applications is unclear. On the other 
hand, the influence measure proposed by Myerson (1977) con-
siders group influence but does not take into consideration the 
individual characteristics of nodes, or the possibility of indirect 
influence. Therefore, we consider new centrality measures that 
consider the individual attributes of nodes, as well as their group 
and indirect influence.

1.2  SHORT- AND LONG-RANGE 
INTERACTION CENTRALITY INDICES

1.2.1  Individual and Group Influence

First, we introduce parameter qj that each node can possess in an 
explicit form. This possibility was mentioned by Newman (2003). 
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