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To react or not to react? Intrinsic
stochasticity of human control in
virtual stick balancing

Arkady Zgonnikov, Ihor Lubashevsky, Shigeru Kanemoto, Toru Miyazawa
and Takashi Suzuki

University of Aizu, Tsuruga, Ikki-machi, Aizuwakamatsu, Fukushima 965-8580, Japan

Understanding how humans control unstable systems is central to many

research problems, with applications ranging from quiet standing to aircraft

landing. Increasingly, much evidence appears in favour of event-driven control

hypothesis: human operators only start actively controlling the system when the

discrepancy between the current and desired system states becomes large

enough. The event-driven models based on the concept of threshold can explain

many features of the experimentally observed dynamics. However, much still

remains unclear about the dynamics of human-controlled systems, which

likely indicates that humans use more intricate control mechanisms. This

paper argues that control activation in humans may be not threshold-driven,

but instead intrinsically stochastic, noise-driven. Specifically, we suggest that

control activation stems from stochastic interplay between the operator’s need

to keep the controlled system near the goal state, on the one hand, and the ten-

dency to postpone interrupting the system dynamics, on the other hand. We

propose a model capturing this interplay and show that it matches the

experimental data on human balancing of virtual overdamped stick. Our

results illuminate that the noise-driven activation mechanism plays a crucial

role at least in the considered task, and, hypothetically, in a broad range of

human-controlled processes.
1. Introduction
Control of unstable systems underlies many critical procedures performed by

human operators (e.g. manipulation of industrial machinery, aircraft landing

[1]) as well as numerous routines all of us face in daily life (e.g. standing upright

[2], riding a bicycle [3], carrying a cup of coffee [4]). Eliciting and modelling the

basic mechanisms of human control can help us to understand the nature of

such processes, and in the end, hopefully, to reduce the risks associated with

human error [5,6].

Continuous control models describe human actions well in many situations

[7–9]. On the other hand, increasingly, much evidence appears in favour of a

more general concept, intermittent control [9–13]. As far as human behaviour

is concerned, intermittency implies discontinuous control, which repeatedly

switches off and on instead of being always active throughout the process.

Intermittency has long been attributed to a general class of human-controlled

processes [14]. Nonetheless, despite being recognized for decades, human

control intermittency is still far from being completely understood.

One of the most promising approaches to human control is event-driven inter-

mittency, which claims that the control is activated when the discrepancy between

the goal and the actual system state exceeds a certain threshold. Models based on

the notion of threshold can explain many features of the experimentally observed

dynamics [9,12]. However, much still remains unclear even in the case of relatively

simple control tasks, such as real [11,15,16] or virtual [10,17–19] stick balancing.

For instance, the generating mechanism behind extreme fluctuations of the systems

under human control (resulting, e.g. in stick falls) still has to be explained [20].

Supposedly, more advanced mathematical concepts capturing core mechanisms
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Figure 1. One-degree-of-freedom overdamped inverted pendulum.
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of human control can contribute to deeper understanding of

anomalous properties of human-controlled systems.

In this paper, we develop a notion of noise-driven control
activation as a more advanced alternative to the conventional

threshold-driven activation. We argue that the proposed mech-

anism plays a key role in the fluctuations of unstable systems

under human control. In our investigations, we address a

novel experimental paradigm: balancing an overdamped

inverted pendulum. The overdamping eliminates the effects

of inertia, and therefore reduces the dimensionality of the

system. Arguably, the fundamental properties and mechan-

isms of human control are more likely to clearly manifest

themselves in such simplified set-ups rather than in more com-

plicated conventional experimental paradigms. Based on the

insights provided by the experimental results, we elaborate a

model implementing noise-driven control activation. The

model captures the stochastic interplay between the operator’s

need to keep the stick upright and the inclination to halt the

control (e.g. owing to energy considerations). We then demon-

strate that the model reproduces well the experimentally

observed behaviour. Our results suggest that the noise-driven

control activation mechanism may be one of the key factors

behind complex dynamics of human-controlled processes.
Table 1. Fast and slow stick conditions.

condition parameter t parameter l

slow 0.7 1.0

fast 0.3 0.4
2. Methods
Ten right-handed healthy volunteers (six male, four female,

median age 26) participated in the experiments. Three subjects

(labelled 1–3 in what follows) had previously participated in

the preliminary experiments involving the same task [21,22].

Seven other participants had no prior experience in either virtual

or real stick balancing. All subjects gave written informed con-

sent to participate in the experiments. Experimental procedures

were approved by the University of Aizu Ethics Committee.

The participants performed the task sitting at the office desk,

using the common desktop computer. On the computer screen, a

subject sees a vertically oriented stick and a moving cart rigidly

connected to the base of the stick (figure 1). The task was to

maintain the upright position of the stick by moving the platform

horizontally via the computer mouse. The data were collected in

two experimental conditions corresponding to slow and fast

motion of the stick (the slow stick task was offered first). For

each condition, the experiment consisted of a 1 min practice

period and three 5 min recorded trials separated by two 3 min

rest periods. In the case of stick fall, the initial system position

was restored (platform put in the middle of the screen and the

angle of the stick set to a small random value), and the subject

was asked to click the button on the screen to continue the

task. The distance between the monitor and the subject’s eyes

was about 70 cm, the stick length on the screen was about

10 cm. The screen update frequency was 60 Hz. The horizontal

position of the mouse cursor on the screen was sampled with a

frequency of 50 Hz. A commercially available high-precision

gaming mouse (Logitech G500) was used in the experiments.

The stick’s dynamics were simulated by numerically solving

the ordinary differential equation (see appendix A for derivation)

t _u ¼ sin u� t

l
y cos u , (2:1)

where u is the angular deviation of the stick from the vertical pos-

ition and y is the cart’s velocity. The parameter t defines the

timescale of the stick’s motion: the higher the t, the faster the

stick falls in the absence of human control. The stick’s length l
de facto determines the characteristic magnitude of the cart’s dis-

placements required for keeping the stick upright. The higher the

l, the larger the cart velocity needed to compensate for certain
stick deviation, and, consequently, the larger the typical ampli-

tude of the cart’s motion. In the course of experiments, the

parameter l modulated the relative impact of the mouse’s vel-

ocity on the stick’s dynamics, whereas the visible stick length

on the screen was fixed.

The cart’s position was controlled by the operator via a com-

puter mouse. Prior to each screen update, the approximate

horizontal mouse cursor velocity was calculated based on five

most recent values of cursor position using the second-order

low-noise differentiator [23]. The resulting cursor velocity y

(measured in pixels per millisecond) was then substituted into

equation (2.1) which in turn was integrated using the first-

order explicit Euler method [24] to obtain the updated stick

angle u.

Two combinations of stick parameters (table 1) were used in

the experiments, representing the slow and fast stick dynamics.

The fast stick parameters were tuned in such a way that the sub-

jects had to remain steadily concentrated on the task in order to

balance the stick successfully. On the other hand, the slow stick

balancing was intended to be an easy, even boring task requiring

few efforts from the operator.

To characterize the subjects in terms of their performance

and balancing traits, three measures were used: (i) the average

number of stick falls per minute nfall; (ii) the standard deviation

of the angle of the stick std(u) and (iii) the proportion of total

experimental time %drift the mouse velocity y was equal to

zero. The first two measures, nfall and std(u), reflect the subjects’

balancing skill, whereas %drift supposedly quantifies the

intermittency of the subjects’ control.

The model proposed in this study is represented by a set of

stochastic differential equations. The numerical simulation of

the model’s dynamics was performed using the explicit order

1.5 stochastic Runge–Kutta method [25]. The simulation step



Table 2. Balancing characteristics of the subjects. nfall is the average number of stick falls per minute, std(u) is the standard deviation of the stick angle and
%drift is the proportion of total balancing time the mouse velocity y was equal to zero. In the slow stick condition, no stick falls were registered in all subjects.

subject sex age

fast stick slow stick

std(u) nfall %drift (%) std(u) %drift (%)

1 M 22 0.07 0.00 42 0.03 62

2 M 21 0.21 1.87 22 0.04 48

3 M 25 0.19 0.93 25 0.07 45

4 F 61 0.36 6.40 31 0.04 59

5 M 20 0.32 3.67 10 0.12 16

6 M 58 0.38 5.73 31 0.08 46

7 F 27 0.25 2.73 35 0.03 59

8 M 29 0.18 0.93 36 0.03 56

9 F 58 0.32 4.93 31 0.04 43

10 F 21 0.28 4.27 25 0.06 37

1.6 subject 3, %drift = 25%
u)
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Dt ¼ 0.01 was chosen in such a way that varying it 10-fold could

not affect the results of the simulation.
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Figure 2. Cart velocity dynamics of three representative subjects. Each tra-
jectory represents the randomly selected 10 s period of fast stick balancing
without stick falls. The values of %drift (calculated based on the presented
10 s time series) are shown for reference. (Online version in colour.)
3. Results
The subjects’ performances varied greatly across the two

conditions (table 2). In the slow stick condition, no stick

falls were registered in all subjects, and std(u) remained

consistently small (median 0.04). The fast stick condition

revealed the diversity of the subjects with respect to their bal-

ancing skill: the least skilled of them (subjects 4 and 6) could

not balance the stick longer than 10 s on average, whereas the

expert one (subject 1) handled the task remarkably well.

In the fast stick condition, two skill indicators, std(u) and

nfall, correlated significantly with each other (r ¼ 0.948, p ¼
0.00003) and with the age of the subjects (r ¼ 0.68, p ¼ 0.03

for std(u), r ¼ 0.755, p ¼ 0.012 for nfall). One of the specific

questions for further analysis is whether or not the basic

properties of the ‘relaxed’ and ‘effortful’ regimes of human

control (corresponding to the slow and fast stick condition,

respectively) are different. In what follows, we focus on the

fast stick condition, mentioning the complementary results

for the slow stick task where appropriate.

Pronounced intermittent control patterns were found

in all but one subject, regardless of their skill. The average

value of %drift in the fast stick condition fell in the range of

22–42% for all participants except subject 5. In the slow

stick task, %drift was consistently greater compared with the

fast stick, and correlated negatively with std(u) (r ¼ 20.885,

p ¼ 0.0006). Interestingly, we did not find any relationship

between %drift in the fast stick condition and subjects’

std(u), nfall, age or previous experience.

The observed intermittency is illustrated by the typical cart

velocity dynamics (figure 2). Subjects 3 and 7 control the stick

intermittently: they spend a substantial portion of time in the

passive control phase. The active control fragments are often

short, unimodal and isolated, which indicates that the subjects

used open-loop rather used than feedback control. The control

strategy exhibited by subject 5 is seemingly of a different, con-

tinuous nature. Although the multimodal active control
fragments comprising several consecutive corrections are

also present in the other subjects, there is practically no passive

period in the velocity profile produced by subject 5. Whether

such a difference in the subjects’ control strategies contributes

considerably to the task’s dynamics is to be investigated below.

The phase space of the standard, underdamped inverted

pendulum includes two independent variables, u and _u. By

contrast, the dynamics of the overdamped stick in the absence

of external forces can be completely described solely by the

stick angle u. This allows us to graphically represent the
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Figure 3. Phase trajectories of the overdamped stick balancing. Coloured tra-
jectories correspond to the fast stick condition and represent the randomly
selected 15 s time fragments. Same subjects’ trajectories obtained in the
slow stick condition are shown in black. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140636

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 N

ov
em

be
r 

20
21

 

dynamics of the task at hand by considering a hypothetical

dynamical system comprising two independent yet coupled

components: the overdamped stick and the human operator.

The phase space of this system should then include, first, the

angle of the stick u, and, second, the cart’s velocity y as a sep-

arate phase variable characterizing the operator’s actions. The

trajectories of the stick balancing in the uy phase plane provide

important insights into the system dynamics (figure 3, see also

video 1 in the electronic supplementary material for the

dynamic version of the phase trajectory).

Based on the phase trajectories, it is easy to reconstruct

the typical pattern of the observed operator behaviour.

Given that the initial deviation of the stick from the vertical

position is small, the operator halts the control so the stick

falls on its own. Then, the operator takes control over the

system, moving the cart to compensate for the deviation.

The corrective movements are generally imprecise, however,

occasionally the operator returns the stick close to the vicinity

of the upright position. Substantial errors are often corrected

straight away, without waiting for the current movement to

finish, which results in the multimodal fragments of the velocity

profile (figure 2). On the contrary, in the case of moderate error,

the operator usually halts the control for some time after

the initiated cart movement is completed, even if the resulting

deviation from the upright position is evident.

Assuming the operator’s response is event-driven, we ana-

lysed the angle values corresponding to the moments when the

operator starts actively controlling the system. Concurring with

studies on car following [26,27], we call such values the action
points. The distribution of action points is unimodal for the

five least skilled subjects, and bimodal for the five most skilled

balancers (figure 4). This prompts that the unskilled
participants attempted to react to all the detected deviations,

regardless of their magnitude, whereas the more competent

subjects often neglected perceptible, yet still small, stick devi-

ations. This in turn prompts that the action points are

determined not by the operator’s limited perception abilities,

but rather by the particular control strategy adopted by the

operator. Notably, the distribution of action points decays

exponentially, regardless the subject’s skill (figure 4c), indicat-

ing a relatively high probability of the action points

corresponding to large deviations. This provides evidence

against the noise-affected threshold-driven activation mechan-

ism, which would presumably lead to the normal action point

distribution centred at the hypothetical threshold value.

To check whether the diversity of the subjects in terms of

performance leads to the fundamentally different properties

of the task dynamics, we analysed the statistical distribu-

tions of the angle of the stick u and the cart’s velocity y . In

both conditions, both distributions are similar for all 10 sub-

jects, regardless of their balancing skill (figure 5). In the fast

stick condition, the angle of the stick has approximately

Laplacian distribution. However, the distribution of angles

is bimodal with a narrow gap (width of order 0.1 std(u))

for all the participants except subjects 1 and 5 (figure 5c).

The cart velocity distribution has a sharp peak at the origin,

which corresponds to high values of %drift and may serve

as a shortcut for detecting intermittency of human control.

In the slow stick condition, the distribution of angles is

unimodal for all the participants and its tails are less heavy

than in the fast stick condition. Otherwise, both the angle

and cart velocity distributions are alike (up to scale) in the

slow and fast stick conditions. The remarkable similarity of

the distributions may indicate that all of the subjects use the

same nonlinear mechanisms in controlling the stick in both

effortful (fast condition) and relaxed (slow condition) regimes.
4. Model
For the sake of simplicity, prior to elaborating the model

of human control in balancing the overdamped stick, we

linearize equation (2.1) near the vertical position u ¼ 0,

t _u ¼ u� t

l
y (4:1)

4.1. Model construction
Hypothetically, the stick dynamics can be described by the

first-order dynamical system (4.1) if only the cart velocity y

is specified as a function of time t or stick angle u. However,

y is actually controlled by the human operator, so it possesses

its own, complex dynamics. To be able to capture this

dynamics, we extend the physical phase space of the over-

damped stick by a separate phase variable characterizing

the actions of the operator [28]. We thus have to specify the

governing equation for the cart’s velocity y .

The experimental results reveal two distinct phases of

human control, passive and active. Similar to Bottaro et al.
[29], we hypothesize that different control mechanisms are

used in each of these phases. On the one hand, during the pas-

sive control phase, the operator monitors the deviation of the

stick from the goal and eventually decides when to switch to

the active phase. The transition from the passive to the active

phase is governed by the ‘when-to-react’ mechanism (control acti-

vation). On the other hand, during the active control phase, the

stick is returned to the vicinity of the vertical position by
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the corrective action of the operator, which is implemented by

the ‘how-to-react’ mechanism (control execution). Within this

two-mechanism framework, we hypothesize that the ‘how-

to-react’ mechanism generates corrective movements of the
open-loop type, and the ‘when-to-react’ mechanism

implements noise-driven control activation.

Human control is often characterized by open-loop, pre-

programmed corrective actions, rather than by closed-loop
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feedback strategies [9,30–32]. In the current context, it implies

that once the operator launches a hand movement to compen-

sate for the detected stick deviation, this movement is not

interrupted until fully executed. Unfortunately, despite the cur-

rently gained understanding of the open-loop properties of

human control, the corresponding mathematical formalism

still has to be developed. For this reason, the present model

mimics the experimentally observed dynamics by using a

zeroth-order, continuous feedback approximation to the pre-

sumably open-loop trajectories of the system in the active phase.

The continuous approximation to open-loop control is

built around the assumption that the operator’s behaviour

in driving the stick towards the vertical angle is optimal in

some sense. Particularly, when compensating for a stick devi-

ation, the operator supposedly chooses the response y in a

way to minimize the loss function based on the measure

F(y, _y, u) ¼ t2

2l2
(y2 þ t2

m _y2 )þ u2

2u2
m

, (4:2)

where um and tm are non-negative constant parameters.

The actions of the operator are then described by the linear

feedback (see appendix B for details)

_y ¼ alu� by and a ¼ b2

2
, b . 0: (4:3)

We use equation (4.3) to mimic the dynamics of the operator-

controlled cart during the active phase.

The pivot point of the present model is that control activa-

tion is not threshold-driven (as assumed by virtually all

available studies on human control), but noise-driven. We

suggest that the operator’s decision when to react is deter-

mined by the noise-mediated interplay between two stimuli.

On the one hand, the operator is averse to actively con-

trolling the stick; the zero value of the cart velocity, y ¼ 0,

is thus attractive to the operator. Indeed, a number of possible

factors (e.g. considerations of energy efficiency, or inability to

precisely control the cart in compensating for small stick

deviations) may cause the operator to be biased towards

not moving the cart even in the presence of detectable

deviation.

On the other hand, the ultimate goal, to maintain the stick

upwards, inclines the operator to engage in active control over

the stick. Moreover, in the absence of the operator’s res-

ponse, the angular deviation of the stick grows exponentially,

presumably increasing the strength of the stimulus to act.

The two stimuli, one inclining the operator to act, and the

other one resulting in resistance to change the status quo y ¼ 0,

are assumed to compete stochastically. The dynamics of their

interplay can be captured by modifying equation (4.3) in the

following way

_y ¼ V(y)[alu� by]þ f(t), (4:4)

where f(t) is the random force of small amplitude and the

cofactor V is a function of y such that V(y) � 0 if y � 0 and

V(y)� 1 otherwise. Generally, any function matching these

conditions can be used; for the sake of simplicity, we choose

the ansatz

V(y) ¼ y2

y2 þ h2
, (4:5)

where h . 0 is a constant parameter.

In equation (4.4), the cofactor V reflects the attractive

properties of the status quo manifold y ¼ 0, whereas the
cofactor [alu 2 by ] represents the stimulus to act. The sto-

chastic term f (t) is introduced to allow for the possibility of

the system’s escape from the unstable manifold y ¼ 0, so

that the active control term, [alu 2 by ], can eventually

come into play. It is assumed to have the form

f(t) ¼ ej, (4:6)

where j is white Gaussian noise and e� 1 is the noise ampli-

tude. We wish to underline that the random force f(t) does not

represent the sensorimotor noise, but instead serves to mimic

the stochasticity of the operator’s decision when to react.

Both components of the proposed two-mechanism frame-

work reflect complex cognitive operations which take time in

the real control process. However, in the case of overdamped

stick balancing, introducing delay in the model (2), (5)–(7)

would not change its basic dynamics. Indeed, during the

time required for the two mechanisms to process the detected

deviation u(t0), this deviation increases by a factor depending

on the response delay D and the timescale of the uncontrolled

stick motion t. Given y ¼ 0, the solution of the initial value

problem for equation (4.1) yields

u(t0 þ D) ¼ u(t0)eD=t:

Consequently, as long as D/t remains small enough,

the delay in the operator’s response has minor impact

on the stick’s dynamics, affecting only the amplitude of the

stick’s oscillations.
4.2. Model dynamics
Prior to analysing the dynamics of the model, we rescale the

variables

t! tt, u! uht

l
and y! yh,

so that in new, dimensionless variables t,u,y the model

(2),(5)–(7) takes the form

_u ¼ u� y,

_y ¼ V (y)[gu� sy]þ 1j

and V(y) ¼ y2

y2 þ 1
,

9>>>=
>>>;

(4:7)

where g ¼ at2, s ¼ bt and 1 ¼ e
ffiffiffi
t
p
=h. Parameter h thus has

no impact on the core dynamics of the original model, just

defining the scale of the system motion. The necessary con-

dition for the feedback (4.3) to be optimal, a ¼ b2/2, takes

the form g ¼ s2/2. For reasons of flexibility, however, we

consider the parameters g and s to be independent in the

general case.

Typical phase trajectories exhibited by model (4.7) are

represented in figure 6a–c. The initially perturbed system

moves along the u-axis with cart velocity y close to zero, so

that _u � u. This motion regime represents the passive control

phase. As the angle u increases, the system may escape from

the vicinity of the manifold y ¼ 0 owing to the random force

1j. Small fluctuations of the system moving along the axis

y ¼ 0 result, sooner or later, in the situation when the trap-

ping effect of V is suppressed by the growing magnitude of

the cofactor [gu 2 sy]. This triggers the sharp transition

from _y � 0 to _y � gu� sy, i.e. the transition from the passive

to the active control phase. However, in the case the random

force is absent, 1 ¼ 0, the system steadily moves away from

the equilibrium along the u-axis. The switching from the
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passive to the active phase is thus driven solely by noise. In

what follows, we first explore the system properties assuming

1 ¼ 0.2. After that, we examine how the noise intensity affects

the system’s behaviour.

The dynamics of the system (4.7) in the active control

phase are defined by the linear system

_u ¼ u� y

and _y ¼ gu� s y,

)
(4:8)

except the vicinity of the u-axis, where the effect of the cofac-

tor V becomes essential. Namely when y approaches zero,

the trajectory of the system (4.7) smoothly adjoins the

u-axis, i.e. the system switches back to the passive phase

instead of being driven precisely to the equilibrium.

In the passive control phase, y � 0, the system (4.7)

is unstable, _u � u. Thus, in order for the motion of the

system to be bounded overall, the absolute value of the

stick angle should decrease as an outcome of the single

active correction: (u ¼ ustart, y ¼ 0)! (u ¼ uend, y ¼ 0),

juendj, justartj. During the active phase, first, the effect of

the random force is minor, and, second, the system dynamics

is essentially linear. Therefore, the stability of the system (4.8)

is the necessary condition for the dynamics of the system (4.7)
to be bounded. This requires

s . 1, g . s: (4:9)

Within assumption (4.9), the particular values of par-

ameters g and s define, first, the form of the trajectory of

the system, and, second, the timescale of motion in the

active phase of the system.

As long as g , (s þ 1)2/4, the linear system (4.8) has stable

equilibrium of the node type at the origin. In this case, the

trajectory of the system (4.7) practically reaches the origin as

a result of each active phase (figure 6a). In contrast, in the

case of focus-type active phase dynamics, g . (s þ 1)2/4,

the system switches to the passive phase at the non-zero

angles (figure 6b,c), which more closely resembles the exper-

imentally observed behaviour. In what follows, we consider

only the latter case, discarding the case of node-type dynamics

as less physically plausible.

Importantly, for convenience, we also stick to the case of

optimal feedback,

g ¼ s2

2
: (4:10)

Owing to the linearity of the behaviour of the system in

the active phase, departures from the optimality condition
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(4.10) do not considerably affect the results of the further

analysis, which has also been verified numerically.

In the case of focus-type dynamics, the duration T of the

active phase fragments practically does not depend on the

initial deviation u0. Indeed, solving the boundary value pro-

blem for the linear system (4.8) and (4.10), and the boundary

conditions u(0) ¼ u0, y (0) ¼ 0, u(T ) ¼ uT, y (T ) ¼ 0 with

respect to unknown time T, we obtain

T ¼ 2p((s� 1)2 � 2)�1=2: (4:11)

Experimentally obtained values of T are of order unity.

Hence, the results of the further analysis are verified for s cor-

responding to T � 1, and are illustrated for s ¼ 3.5, s ¼ 7.5

and s ¼ 13.6 (matching T¼ 3.0, T ¼ 1.0 and T ¼ 0.5,

correspondingly).

The distribution of action points produced by the model

decays exponentially, following the experimentally obtained

distributions (figure 7a). This indicates that the suggested

model captures the essence of the ‘when-to-react’ mechanism

used by human subjects. The mismatch between the

distributions around u ¼ 0 is apparently an artefact of con-

tinuous approximation to the ‘how-to-react’ mechanism.

Specifically, owing to the lack of highly precise corrections,

the system rarely reaches the close vicinity of the origin; the

trajectory of the system thus leaves a notable gap around

the origin (figure 6b,c).

Although the adopted optimal feedback approximation

allows the model to capture well the peak velocity statistics

observed in the experiments (figure 7b), the analysis of the

phase duration distributions confirms the need for a more

advanced description of open-loop control (figure 7c).

According to equation (4.11), the duration of the active con-

trol phase of the model (4.7) is roughly constant for given

s, which is obviously unrealistic. In addition, owing to the

lack of imprecise corrections, the model demonstrates very

few passive phases shorter than t, which also leads to an

increased number of passive phases longer than t. A more

adequate mathematical description of open-loop control can

presumably eliminate this discrepancy.

However, even the rough approximation of the

‘how-to-react’ mechanism allows the model to reproduce

the experimental distributions of stick angle and cart velo-

city, regardless of the particular values of the parameter s

(figure 8). The tails of both the u and y distributions gener-

ated by the model almost do not change for different s. For

high enough s, the model reflects the bimodality of the

stick angle distribution observed in the fast stick condition.

The high peak of the velocity distribution at y ¼ 0 is also

captured for all tested s.

Finally, we touch on how the parameter 1 affects the system

dynamics. The noise intensity 1 can be interpreted as the relative

impact of the operator’s aspiration to act compared with the

resistance to change. Indeed, when the noise is absent, 1 ¼ 0,

the system cannot escape the vicinity of the u-axis. However, a

non-zero noise intensity allows the system to eventually

switch from the passive to the active phase. With increasing 1,

the system spends less and less time in the passive phase. This

point is illustrated in figure 9. Given the noise intensity is

small, the amplitude of the system fluctuations is extremely

large (figure 9a). Growing 1 leads to decreasing amplitude

(figure 9b), whereas the basic motion pattern remains

unchanged. As long as 1� 1, the system trajectory remains
smooth; 1� 1 (figure 9c) marks the transition from the regular

dynamics to mostly random behaviour (figure 9d).

The match between the experimental and model distri-

butions of u and y is stable with respect to variations of the

noise intensity within a range of physically plausible values

(figure 9e,f ). Moreover, the height of the velocity distribution

peak decreasing with 1 may suggest that the subjects with

low %drift (e.g. subject 5) are characterized by relatively high

values of 1. The effect of the noise intensity on the velocity dis-

tribution is further highlighted in figure 9g. The dependence of

the velocity kurtosis excess on 1 is characterized by the double-

power law decay, which persists for all tested values of s. The

power law exponent changes around 1 ¼ 1, suggesting two
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different modes of system dynamics. First, for 1 � 1 the vel-

ocity kurtosis decays quickly with e, approaching the zero

value (which indicates the Gaussian distribution). This mode

corresponds to the essentially random motion, which prompts

us to treat it as having little physical meaning. Second, for 1 �
1, the velocity kurtosis remains high, which reflects the distri-

bution peak at y ¼ 0. This mode corresponds to intermittent

control; noise here manifests itself primarily in the passive

control phase, inducing the transition to the active phase.

The results of theoretical and numerical analyses of the

system (4.7) allow us to conclude that for a whole range of

physically plausible parameter values the proposed model

captures the control patterns exhibited by human subjects.
5. Discussion
This paper illuminates that noise-driven control activation

may be a core component of intermittent human control.

We found that in overdamped stick balancing the subjects

demonstrated clear intermittent control patterns. We hypoth-

esize that human control behaviour in the considered task is

governed by two independent yet interacting mechanisms.

The first, ‘how-to-react’ mechanism is assumed to generate

ballistic, open-loop corrections. The second, ‘when-to-react’

mechanism operates during the passive control phase and

intermittently activates the first one. The key idea of the

paper is that control activation is not threshold-driven, but

intrinsically stochastic, noise-driven. Specifically, we assume

control triggering to result from the stochastic interplay
between the operator’s aspiration to keep the stick upwards

and the resistance to interrupting the stick’s dynamics.

The model implementing the hypothesized mechanisms

matches the key characteristics of human subjects’ behaviour.

The phase trajectory exhibited by the model imitates the basic

motion pattern of the overdamped stick under human control.

Most importantly, the model closely reproduces the experimen-

tal distributions of the stick angle, cart velocity and action

points. This indicates that human subjects actually use a

noise-driven, not threshold-driven control activation mechan-

ism. More subtle analysis suggests that a more advanced

mathematical description of the open-loop system dynamics

in the active phase should be developed in order to fully capture

the intricate properties of the task dynamics. Overall, our results

imply that noise-driven control activation plays a decisive role

in human control at least in the considered task, and possibly

in a wide class of human-controlled processes.

5.1. Overdamped stick balancing as a novel
experimental paradigm

This study is the first to experimentally investigate human

control behaviour in balancing a first-order unstable system.

Previously, the overdamped inverted pendulum and similar

models have been used in studying the physics of human

postural balance [12]. Nevertheless, human control of the

overdamped stick has never been investigated. Loram et al.
[19] examined human control of the virtual first-order load

representing the massless inverted pendulum. However,

such a load is inherently stable, which does not admit any

direct implications for human control of unstable objects.

The advantage of the experimental approach proposed

here is that the intrinsic dynamics of the system under

human control is ultimately simple, yet still unstable. The over-

damped inverted pendulum has no dynamical properties that

can be exploited in stabilizing the system, in contrast to the

standard inverted pendulum [13,29,33,34]. More importantly,

the human response delay supposedly does not contribute

essentially to the dynamics of the control process.

The processes traditionally studied in human motor control,

such as underdamped stick balancing, have considerably more

complex dynamics than the task at hand. On the one hand,

this may somehow limit the direct applicability of the findings

reported here to such processes. On the other hand, the utmost

simplicity of the present task enables one to identify and scruti-

nize potentially important control mechanisms whose presence

may be obscured in the conventional experimental paradigms

(e.g. owing to sensorimotor noise, response delays, and

complex intrinsic dynamics of a controlled system). As we

demonstrate here, noise-driven control activation may be one

of such previously overlooked mechanisms.

5.2. Noise-driven control activation: is there a
threshold?

The traditional threshold mechanism approximates a simple

control algorithm: wait whenever the deviation is small, and

act whenever the deviation is large. Threshold as a precise,

fixed number is thus a somewhat artificial notion, so the

modern literature on human control emphasizes that stochasti-

city of the threshold-based mechanism is necessary to capture

human behaviour. Hence, most available models of intermit-

tent human control underline the crucial role of noise, either
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additive [9,29,35] or multiplicative [12,16]. Still, even though

noise can ‘blur’ the threshold, resulting in some scatteredness

of the action points, in such models control is de facto trigge-

red by the (noisy) controlled variable crossing the fixed

threshold value.

The results of this paper illuminate that control activation in

humans may be not threshold-driven, but intrinsically stochas-

tic, noise-driven. First, the experimentally found action point

distribution reveals no distinct threshold value triggering

human response (figure 4). Exponential, not Gaussian decay

of the action points suggests a highly stochastic, nonlinear con-

trol activation mechanism. Second, the distribution of action

points observed in human subjects is reproduced by the

model based on the assumption that control activation is a

by-product of noise-mediated interaction between tendency

to act and resistance to change (figure 7a). Third, the stick

angle, cart velocity and peak cart velocity distributions are

also well captured by the model, despite the approximate

nature of the used ‘how-to-react’ mechanism. Furthermore,

the match between the model and the experiments is obser-

ved for a range of the physically plausible parameter values,

which confirms the robustness of the model. Overall, the evi-

dence found for noise-driven activation in overdamped stick

balancing raises a question whether a similar mechanism is

used by humans in controlling more complex entities.

Previously, it was found that human subjects may exploit

the stabilizing properties of multiplicative noise in order to

handle the control of an inverted pendulum impeded by

response delay [6,15]. However, the specific role of noise

studied in reference [15] and related works is to disturb the

feedback gain so that the closed-loop system intermittently

switches between the stable and unstable dynamics. If the

system is initially tuned to the unstable side of the stability

boundary [35], then noise plays a constructive role, i.e. the

system cannot be stabilized in the absence of noise. In

regard to the latter point, the concept of noise-driven control

activation proposed in this paper is similar to noise-induced

stabilization studied by Milton, Cabrera et al. Still, whereas

conventionally the noise component is introduced to mimic

sensorimotor disturbances of small amplitude (e.g. owing

to limb tremor), we use noise solely to mimic the stochasticity
of the operator’s decision process in the passive control

phase. The similar interpretation of noise can be found, for

example, in the models of random switching between locally

stable perceptions of ambiguous stimuli [36,37].
5.3. Open directions and implications
We hypothesize that human control in overdamped stick balan-

cing can be represented as repeated noise-driven triggering of

the open-loop controller. However, the scope of this paper is

limited mainly to the ‘when-to-react’ mechanism, whereas the

modelling framework for the ‘how-to-react’ mechanism is still

to be developed. The adopted optimal feedback approximation

to open-loop control allows the model to capture the basic prop-

erties of the subjects’ behaviour. Still, a more adequate

mathematical description of the active phase dynamics would

presumably enable it to provide a deeper explanation of the

experimentally observed dynamics. Particularly, we believe

the noise-driven control activation, if coupled with stochastic

open-loop mechanism, have the potential to explain anomalous

dynamics of the systems controlled by humans, in particular,

stick falls.

In regards to open-loop control, first, the experimental data

should be studied in more detail to uncover the properties of

the corrective movements generated by human subjects.

Besides the already mentioned issue of highly imprecise and

highly precise movements, the phase trajectories of the stick

motion reveal that the subjects often interrupt the already

launched correction, which results in multimodal fragments

of the cart velocity profile. The properties of such fragments are

to be analysed using the variety of available methods [38].

Second, there is need for proper mathematical formalism cap-

turing the stochasticity of the open-loop control mechanism.

Even though the latter problem is indeed difficult to tackle,

we feel that the overdamped stick balancing approach makes

it simpler for one to address it compared with the standard

experimental paradigms.

Another important aspect of human control left outside the

scope of this work is learning. The experiments reported here

were designed in such a way that the subjects’ performance

does not change considerably throughout the experiment



rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140636

11

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 N

ov
em

be
r 

20
21

 

trials. Nevertheless, in view of learning, it appears noteworthy

that the action point distributions exhibited by the most

skilled and the least skilled participants are markedly different

(figure 4). This difference prompts that in learning to control

the overdamped stick the subjects may adjust the parameter

1 in a search for some optimal value allowing for the accurate

and at the same time energy-efficient control. The latter

hypothesis requires separate consideration, which is also left

for future studies.

The present results may have broader implications for the

fields related to human control, for example, the theory of car

following. One may associate the process of keeping the stick

upright with maintaining comfortable headway to the car

ahead by a car driver. Indeed, car following is a more complex

process than stick balancing, yet some analogies can be drawn.

The car-following task is similar to stick balancing in that

the process under human control is inherently unstable in the

absence of operator actions. Similar to stick balancing,

human control in car following is also intermittent [27]. In

car following, the action points in the headway—relative vel-

ocity phase plane are widely scattered [27], which can be

linked to the action point variability in the present task

(figure 4). Finally, the Laplace distributions of the relative vel-

ocity obtained in car following [27,39] are similar to the cart

velocity distributions reported here. All these facts provide a

preliminary basis for posing a hypothesis that noise-driven

mechanisms of recognizing the deviations from the ‘optimal’

headway by the driver may be an essential factor underlying

the fluctuations observed in car following.

According to our hypothesis, in balancing the overdamped

stick the operator continuously observes the external process

(i.e. the stick motion), and decides when and how exactly to

interrupt it given the current circumstances. Similar processes

(although in much more complex environments) are studied

within the field of dynamic decision making, which focuses

on the processes ‘which require a series of decisions, where

the decisions are not independent, where the state of the

world changes, both autonomously and as a consequence of

the decision maker’s actions, and where the decisions have to

be made in real time’ [40]. Similar to overdamped stick balan-

cing, in arguably any dynamic process involving a human as a

decision maker the procedure of detecting the deviations from

the desired situation is stochastic in its nature. A system

state either may be classified as acceptable with some prob-

ability, or may trigger the active behaviour of a human

observing the system. We thus believe that the concepts and

models elaborated in the investigations of event-driven

human control may potentially span across a general class of

human-controlled processes.
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Appendix A. Motion equation of the
overdamped inverted pendulum
The mechanical system under consideration consists of the

movable cart and the stick of length l (figure 1). Without

loss of generality, we assume that the stick’s mass m is con-

centrated at its upper end. The bottom end of the stick and
the cart are connected via the frictionless pivot. The system

is assumed to be embedded in a viscous environment

characterized by the coefficient of viscous friction k.

In the non-inertial reference frame attached to the cart, the

dynamics of the system are described by the equation

ml2 €u ¼ mgl sin u�ml _y cos u� k(ly cos uþ l2 _u), (A 1)

We divide both sides of equation (A 1) by constant factor mgl
and then rescale time t and cart velocity y

t! tt, y! y
l
t

, where t ¼ kl
mg

,

so that equation (A 1) reads

m2g
k2l

€u ¼ sin u�m2g
k2l

_y cos u� (y cos uþ _u), (A 2)

Given that the motion of the cart occurs on the spatial

scale of the stick length l and the same timescale as the

stick’s angular motion, the terms of equation (A 2) containing
€u and _y contribute little to the system’s dynamics in the limit

of high viscosity (k� m
ffiffiffiffiffiffiffi
g=l

p
) and thus can be neglected.

Returning to the original variables, equation (A 2) finally

reads

t _u ¼ sin u� t

l
y cos u: (A 3)
Appendix B. Optimal feedback approximation to
open-loop control
Here, we derive the continuous approximation for the open-

loop actions of the human operator in controlling the over-

damped stick

t _u ¼ u� t

l
y: (B 1)

We use the function

F(y, _y, u) ¼ t2

2l2
(y2 þ t2

m _y 2 )þ u2

2u2
m

,

to measure the current state of the system in its motion near

the equilibrium y ¼ 0, u ¼ 0. The parameter um denotes the

characteristic stick angle regarded by the operator as large

enough to correct the stick’s position. The timescale tm

can be interpreted as the characteristic duration of a single

corrective movement.

A possible course of the future operator actions v(t’), t’ � t
aimed at returning the system (B 1) from the current state

u(t) ¼ u0, y (t) ¼ 0 to the desired state u ¼ 0, y ¼ 0 can be

then characterized by the integral measure

F {y} ¼
ð1

t

t2

2l2
(y2 þ t2

m _y 2 )þ u2

2u2
m

" #
dt0, (B 2)

where for a given y (t0) the time dependence u(t0) of the angle

of the stick is determined by equation (B 1). Integral (B 2)

quantifies the priority of possible operator actions. Assuming

the operator to be able to perfectly predict and measure the

system’s dynamics, the optimal strategy yopt is the solution

of the optimization problem

yopt ¼ arg min
y{t0}

F {y}, (B 3)

subjected to the system dynamics equation (B 1), the initial
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and terminal conditions

y(t) ¼ 0, u(t) ¼ u0, y(1) ¼ 0, u(1) ¼ 0:

We reduce the problem (B 3) to a standard variational

problem using the technique of Lagrange multipliers,

yopt ¼ arg min
y{t0},u{t0},m{t0}

ð1

t
FL(y, _y, u, _u, m) dt0

where

FL(y, _y, u, _u, m) ¼ F(y, _y, u)þ m t _u� uþ t

l
y

h i
:

The Lagrange equation

@FL

@q
� d

dt0
@FL

@ _q
¼ 0 for q ¼ y, u, m

yields the equations determining the optimal actions of

the operator

t2
m€y ¼ yþ l

t
m,

t _m ¼ 1

u2
m
u� m

and t _u ¼ u� t

l
y:

9>>>>>>>=
>>>>>>>;

(B 4)

The eigenvalues of the matrix corresponding to the linear

system (B 4) are the solutions of the equation

(t2
ml

2 � 1)(t2l2 � 1) ¼ � 1

u2
m
: (B 5)

Equation (B 5) has four roots subjected to the condition

l2 ¼ 1

2t2
mt

2
(t2

m þ t2) + i
4t2

mt
2

u2
m
� (t2

m � t2)
2

" #1=2
8<
:

9=
;: (B 6)

Concurring with the experimental results and physical mean-

ing of the parameters tm and um, we make the estimates

tm�t and um � 1, (B 7)

which enable us to simplify expression (B 6),

l2 ¼+
i

ttmum
: (B 8)

Equation (B 8) possesses the roots

l1,2 ¼
1

(2umtmt)1=2
(� 1 + i) (B 9a)

and

l3,4 ¼
1

(2umtmt)1=2
(1 + i): (B 9b)
The minimization problem (B 3) is a temporal boundary

value problem: the solution of the problem (B 3) is determined

by the initial and the target system position. Within the

accepted model, the terminal conditions y(1) ¼ 0, u(1) ¼ 0

enable us to disregard the eigenvectors matching the eigen-

values l3,4, owing to Re l3,4 . 0 This reduces the original

boundary value problem to an initial value problem. The sol-

ution then can be constructed using only the current system

state, v(t) ¼ 0, u(t) ¼ u0. Therefore, a dynamical system posses-

sing the eigenvalues l1,2 specified by Exp. (B 9a) can

equivalently describe the dynamics of the system (B 1) under

control of human operator aiming to compensate for a detected

stick deviation while minimizing the loss function (B 2).

Specifically, the system

_y ¼ alu� by (B 10a)
and

t _u ¼ u� t

l
y, (B 10b)
has the eigenvalues (B 9a) given that b ¼
ffiffiffi
2
p

(umtmt)�1=2 and

a ¼ b2/2.

The optimal feedback defined by equation (B 10a) can be

treated as an approximation to open-loop control. The conven-

tional understanding of the latter implies that, once launched,

the corrective movement is not interrupted until fully executed.

Similar to open-loop control in this traditional sense, the oper-

ator acting as described above calculates the response only once

and then does not change the established control pattern.

Indeed, assume the operator ‘solves’ an optimization problem

to generate the control movement each time some stick devi-

ation u0 triggers the active response. Then, according to

Bellman’s principle of optimality, any potential corrections of

the calculated response during its execution cannot improve

the overall quality of that response. Therefore, such corrections

are not implemented by the optimally acting operator. Of

course, it is a very strong assumption that the operator gener-

ates an open-loop control response yopt(t’) for t’ . t exactly in

a way that it produces the trajectory exhibited by the system

(B 10). That is why we would like to underline that the pro-

posed control mechanism is just an approximation to the

experimentally observed behaviour, and that the appropriate

mathematical formalism should be developed to capture the

open-loop nature of human control.
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