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Abstract

Within the rigor typical for physical models a new
type non-symmetric diffusion problem is considered and
the corresponding Brownian motion implementing such
diffusion processes is constructed. As a particular ex-
ample, random walks with internal causality on a square
lattice are studied in detail. By construction, one el-
ementary step of a random walker on the lattice may
consist of its two succeeding jumps to the nearest neigh-
boring nodes along the x- and then y-axis or the y-
and then x-axis ordered, e.g., clock-wise. It is essential
that the second fragment of elementary step is caused
by the first one, meaning that the second fragment can
arise only if the first one has been implemented, but not
vice versa. In particular, if for some reasons the second
fragment is blocked, the first one may be not affected,
whereas if the first fragment is blocked, the second one
cannot be implemented in any case. As demonstrated,
on time scales much larger then the duration of one el-
ementary step these random walks are characterized by
a diffusion matrix with non-zero anti-symmetric com-
ponent, which is also justified by numerical simulation.

1 Introduction

The present paper poses a fundamental question
about the completeness of the modern formalism of
describing stochastic processes based on the Fokker-
Planck equation and stochastic differential equations.
The main attention is focused on the symmetry proper-
ties of the diffusion tensorDij as a characteristic feature
reflecting the premises of this formalism. In particular,
within its frameworks the diffusion tensor must be sym-
metric. Leaping ahead, we note that there can be con-
structed a certain type of random walks for which the
diffusion tensor Dij is not symmetric or, speaking more
strictly, the diffusion tensor relating the diffusion flux
with the gradient of the probability distribution func-
tion does not coincide with the diffusion tensor entering
the Fokker-Planck equation. The first tensor may be
non-symmetric and for the constructed random walks
it is the case, whereas the second one is just its sym-
metric component. Because the boundary conditions
that must be imposed on the Fokker-Planck equation
deal with the diffusion flux, the possible non-symmetry
of diffusion tensor is an essential property. The ob-

tained results allow us to state that a new formalism
should be developed to calculate directly the diffusion
flux and, thus, to find an expression for the diffusion
tensor different from its standard definition appealing
to the walker displacement correlations.

The paper is organized as follows. Section 1.1 dis-
cusses some examples of physical systems, where a non-
symmetric diffusion tensor appears and their relation
with the problem at hand. Section 1.2 presents short in-
troduction to the used formalism of describing stochas-
tic processes analyzed in this paper. Section 2 speci-
fies the proposed model of random walks with a non-
symmetric diffusion tensor, the final section is Conclu-
sion.

1.1 Physical Systems with Non-Symmetric
Diffusion

It is well known that in semiconductors kept in a
magnetic field H the diffusion of electrons or holes in
one of the transverse directions, e.g., along an axis i
(i ⊥ H), causes their transport in the other direction
j = i×H/H transverse to the field H and the axis i
as well. In particular, this property is behind the pho-
tomagnetoelectric effect observed for the first time by
Kikoin & Noskov in 1933 [1] (for a detailed review see
[2]). Namely, when a semiconductor plate placed in a
magnetic field H as shown in Fig. 1 is illuminated by
a beam of light perpendicular to its plane the electron-
hole pairs generated near the illuminated side start to
diffuse towards the opposite side (in the direction i). As
a result, along the axis j a certain electric field is pro-
duced with strength E ∝ H proportional to the mag-
netic field. Via the Lorentz force, the regular drift of
charged particles along the axis i caused by the gradient
∂in of their concentration n in this direction induces
the particle diffusion flux Qj along the axis j. Their
relationship is of the form

Qj = −Dji∂in , (1)

where the coefficient Dji can be regarded as an anti-
symmetric diffusion tensor, Dij = −Dji [3].

Spatial diffusion of cosmic rays in turbulent magnetic
fields is also described by anisotropic diffusion tensor
Dij with an antisymmetric component [4]. The corre-
sponding governing equation for the distribution n of
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Fig. 1: Illustration of the photomagnetoelectric effect.

charged particles is usually written in the form

∂tn =
∑
i,j

∂i [Dij(x, t)∂jn] + non-diffusion terms, (2)

where generally the tensor Dij(x, t) depends on the spa-
tial coordinates x and time t as well. Markov chains de-
scribed by equations similar to Eq. (2), where the tensor
Dij is not symmetric (Dij 6= Dji) and the non-diffusion
terms are absent, are also referred to as the non-
symmetric diffusion processes (see, e.g., [5, 6] and refer-
ences therein). In fact, such equations may be treated
as the Fokker-Planck equation with the drift term ag-
gregated into the effective diffusion tensor Dij(x). Due
to the diffusion tensor Dij(x) depending on the spa-
tial coordinates x, its possible non-symmetry can be
responsible for macroscopic effects.

It should be noted that the description of the pho-
tomagnetoelectric effect does not belong to the given
class of non-symmetric diffusion processes because the
diffusion tensor Dij introduced via relationship (1) be-
tween the diffusion flux and the particle gradient is con-
stant and, so, its asymmetric components do not con-
tribute to Eq. (2). In the photomagnetoelectric effect
the appearance of electric field is due to the semicon-
ductor plate boundaries blocking the motion of elec-
trons and holes in the direction j. The theory of the
photomagnetoelectric effect [3] posits Exp. (1) appeal-
ing to the kinetic theory dealing with the motion of
charged particles in magnetic fields and their scatter-
ing, e.g., by impurities in semiconductors. So, strictly
speaking, the question about what stochastic process
similar to simple Brownian motion of particles without
inertia (simple random walks in physical space) can re-
produce the photomagnetoelectric effect is beyond the
developed theory.

The purpose of the present paper is to consider
Markovian random walks characterized by constant ki-
netic coefficients that require the introduction of non-
symmetric diffusion tensor and, so, may be regarded
as a distinct type of non-symmetric diffusion processes.
However, before passing directly to this problem, it is
worthwhile to remind some basic features in describing
continuous Markovian stochastic processes.

1.2 Continuous Markovian Random Walks and
Their Description

Let us consider Markovian processes that can be mim-
icked in terms of continuous in space and time Brownian
random works in a certain N -dimensional phase space
RN . Among various approaches to describing such ran-
dom walks we note, first, the formalism of stochastic
differential equations written as

dx = V(x, t)dt+ SdW , (3)

where x = {xi}i=Ni=1 ∈ RN is a point of the given
phase space, V = {Vi} is the velocity of the regular
drift in this space, W = {Wα(t)}α=Mα=1 is a collection
of M mutually independent Wiener processes, and the
matrix S = ‖Siα‖ specifies the intensity of the corre-
sponding Langevin forces. Keeping in mind the subject
under consideration the intensity matrix S is assumed
to be constant, which allows us not to distinguish be-
tween possible interpretations of the stochastic differ-
ential equation (3) because all of them are equivalent
in this case. Equation (3) actually relates the walker
displacement dx within one elementary (infinitesimal)
step of duration dt to its regular drift velocity V(x, t)
at a given point x and time t and the random variable
SdW ∝

√
dt caused by the Langevin forces. Within the

rigor of physical constructions we may interpret the so-
lution of Eq. (3) for a given implementation of Wiener
processes as the infinite sequence of elementary walker
jumps (steps) in the phase space (Fig. 2).

Fig. 2: Illustration of a
walker trajectory gener-
ated by Eq. (3).

It should be noted that the question about the de-
tails of the walker motion between the initial xt and
terminal xt+dt points of one elementary step is beyond
this formalism which, actually, specifies the probabilis-
tic properties of the collection of points {xt}. Never-
theless, when the matrix S(x) of the Langevin force
intensity depends on the spatial coordinates x, the in-
troduction of some intermediate points χ(xt,xt+dt) can
be justified in characterizing the walker motion within
one elementary step. In constructing the solution of a
stochastic differential equation similar to Eq. (3) the
matrix S(x) should be taken at the points χ(xt,xt+dt)
and the particular details of χ(xt,xt+dt) determine the
type of stochastic differential equation, exemplified by
the Itô or Stratonovich interpretations [7].

The second approach, we note in the present paper,
is the formalism of partial differential equations exem-
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plified by the forward Fokker-Planck equation

∂tG =
N∑
i=1

∂i


N∑
j=1

∂j [DijG]− Vi(x, t)G

 (4)

subject to the initial condition

G(x, t|x0, t0)
∣∣
t=t0

= δ(x− x0) ,

where G(x, t) is the probability density of funding a
walker at point x at time t provided initially, t = t0, it
was located at the point x0. Here the diffusion matrix
(tensor) D = ‖Dij‖ is related to the matrix S of the
Langevin force intensity by the relation

Dij =
1

2

M∑
α=1

SiαSjα , (5)

which holds also in the case of the matrix S(x) depend-
ing on the spatial coordinates. Actually Exp. (5) stems
from the definition of the diffusion coefficients

Dij(x, t) = lim
dτ→0

〈(xi,dt+t − xi,t)(xj,dt+t − xj,t)〉
2dτ

(6)

accepted in many textbooks (see, e.g., [8, 9]) and imply-
ing the diffusion matrix D = ‖Dij‖ to be symmetric.
Due to the form of the Fokker-Planck equation (4) hold-
ing also for the diffusion matrix depending on time and
spatial coordinates any antisymmetric component Da

ij

(Da
ij = −Da

ji) can be formally added to D,

Dij ⇒ Dij +Da
ij , (7)

because this replacement does not contribute to the
form of the Fokker-Planck equation.

The probability (diffusion) flux Q = {Qi} is intro-
duced by appealing to a certain analogy of Brownian
particle motion assuming such a particle to move along
a smooth trajectory between the initial and terminal
points of one elementary step shown in Fig. 2. Equiv-
alently the Fokker-Planck equation (4) can be inter-
preted as the continuity equation for diffusing particles

∂tG+
N∑
i=1

∂iQi = 0

and the expression

Qi = −
N∑
j=1

∂j [DijG] + Vi(x, t)G , (8)

holding also for D = D(x, t), is employed in order to re-
late the probability flux Q = {Qi} with the local char-
acteristics of random walks (see, e.g., [9]). Naturally,
here replacement (7) cannot be used with an arbitrary
antisymmetric component ‖Da

ij‖.

If for some reasons the regular drift velocity can be
written in the form

Vi =
N∑
j=1

∂jDij(x, t) ,

where ‖Dij(x, t)‖ is not a symmetric matrix, than via
the corresponding replacement (7) the Fokker-Planck
equation is reduced to

∂tG =
N∑

i,j=1

∂i [Dij(x, t)∂jG]

and the probability flux is given by the expression

Qi = −
N∑
j=1

Dij(x, t)∂jG .

Exactly it is the case categorized as the non-symmetric
diffusion problem noted above, where it becomes pos-
sible to introduce the notion of non-symmetric diffu-
sion tensor within the classical approach to modeling
Brownian motion. However, if the regular drift velocity
and the diffusion matrix are constant this interpretation
does not hold.

There is another way to fix a possible antisymmet-
ric component Da

ij of diffusion matrix. It is to employ
the boundary conditions that should be imposed on
the corresponding stochastic differential equation and
the Fokker-Planck equation depending on the physical
properties of the system boundary. The correspond-
ing relationship between the diffusion flux and the gra-
dient of the probability density taken at the bound-
ary can determine the non-symmetric diffusion tensor.
There is a long-term history of studding such conditions
for multi-dimensional diffusion processes starting from
the series of seminal works including ones by Wentzell
[10], Sato & Ueno [11], Hiroshi [12], Watanabe [13],
Skorokhod [14], for a detailed review see also mono-
graphs by Ikeda & Watanabe [15] and Schuss [8]. We
also note an approach to deriving the boundary condi-
tions starting from the Chapman-Kolmogorov equation
and employing the fact that a system boundary breaks
the symmetry of random walker steps, giving rise to
boundary singularities in the Kramers-Moyal expan-
sion. Eliminating these singularities gives rise to the
required boundary conditions [16].

By present paper we intend to attract attention to
a distinct way of introducing the non-symmetric dif-
fusion matrix. It is not related to the properties of
system boundaries; the boundary to be considered be-
low is merely reflecting, i.e., it just does not allow a
walker to leave the region of random walks. Namely,
this approach appeals to rotational type regularities of
walker motion within one elementary step; as far as the
translational regularities are concerned with, the ran-
dom walks to be considered are purely symmetric and,
so, their regular drift velocity is equal to zero.
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2 Brownian Random Walks with
Internal Causality

In this Section we consider discrete random walks on
a square lattice of spacing a, assuming that by one el-
ementary step of duration τ a walker hops to one of
the neighboring lattice nodes. The properties of these
walker jumps are explained in Figs. 3–5. Such discrete
random walks on lattices admit the continuous descrip-
tion on scales t� τ , which enables the introduction of
a diffusion matrix and a drift velocity to describe them.

p =
(1− ε)

4
, q =

ε

4

Fig. 3: The analyzed random
walks on the square lattice:
The diagram showing possi-
ble transitions of the walker
within one elementary step
and their probabilistic weights

Figure 3 illustrates the main characteristics of random
walks treated in the conventional way. Namely, it shows
the neighboring nodes accessible for a walker by one
jump and the corresponding probabilities of hopping
to them. They are the four nearest neighbors gotten
by the walker with the individual probability p = (1−
ε)/4, where 0 ≤ ε ≤ 1 is a given system parameter.
The four nodes of the next shell of nearest neighbors
are also acceptable with the individual probability q =
ε/4. These transitions specify directly the probabilistic
properties of one elementary step treated as whole, in
particular, the regular drift velocity of these random
walks is equal to zero, Vx = Vy = 0, and the diffusion
matrix Ds characterizing them on time scales t� τ is
symmetric (moreover, diagonal) with the components

Ds
xx = Ds

yy = Ds =
(1 + ε)a2

4τ
, Ds

xy = Ds
yx = 0 . (9)

Here the subscript s is used to underline the fact that
exactly this matrix enters the corresponding Fokker-
Planck equation and formally obeys definition (6).

Figure 4 shows all the eight implementations of one
jump which actually mimics the effect of magnetic field
normal to the plane of the given lattice. To avoid pos-
sible misunderstanding it should be noted that such
random walks do not admit the introduction of regu-
lar walker velocity, thereby, the Lorenz force effect is
reduced to some regular rotation within one elemen-
tary step. Namely, the proposed model assumes the
following. When a walker randomly hops, for example,
upward the axis y (jump j+) and gets the upper nearest
node, it either remains at this node with the probability
(1− ε) or immediately hops (jump i−) to the left near-
est node with the probability ε. These composed jumps

Fig. 4: The analyzed random walks on the square lat-
tice: The possible implementations of one elementary
step.

Fig. 5: The analyzed random walks on the square lat-
tice: Diagram and probabilistic weights of the walker
jumps near an impermeable boundary.

are treated as the individual implementations of walker
elementary motion (Fig. 4, right fragment). In a similar
way the other implementations of one elementary step
are constructed.

Keeping in mind the example considered above, the
term internal causality in the name of these random
walks is used to emphasize the fact that the second
jump i− is caused by the first one j+. In other words,
without the jump j+ the jump i− cannot arise but
not vice versa. If something, e.g., the system bound-
ary, blocks the walker motion in the direction i− but
not in the direction j+ the jump j+ of the walker is
not affected. On the contrary, when something blocks
the walker motion in the direction j+ the second jump
i− cannot arise independently of the fact whether the
walker motion in the direction i− is blocked or is not.
Therefore only one trajectory joining the start point
and the left node (Fig. 4, right fragment) is possible,
i.e., it is composed of first j+ then i− but not in the
opposite order. Figure 5 illustrates this effect of the
reflecting (impermeable) boundary on the implementa-
tions of one elementary step just near the boundary and
their probabilistic weights.

The desired diffusion matrix D can be introduced via
constructing the relationship between the probability
(diffusion) flux Q and the gradient ∇G of the probabil-
ity density G(x, t). Appealing the standard definition
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Fig. 6: The diagram illustrating the relationship be-
tween the diffusion flux and possible walker transitions.

of diffusion flux the lattice description of the given ran-
dom walks enables us to calculate it in the following
way. First, for the square lattice we construct the set
of the Wigner-Seitz cells (Fig. 6) and regard the proba-
bility density as the number of walkers P (x, t) located
at a given node x at time t divided by the “volume” a2

of the Wigner-Seitz cell,

G(x, t) =
1

a2
P (x, t) . (10)

Second, taking into account the motion direction, we
count the number of walkers N(t) crossing a given face i
of the Wigner-Seitz cell during the time τ via one ele-
mentary step. Dividing the result by the face “area” a
and the duration of one elementary step τ , we obtain
the diffusion flux Qn normal to this face,

Qn(t) =
1

aτ
Ni(t) . (11)

Finally, the obtained value (11) is ascribed to the center
point of the face i with orientation specified by the face
normal vector. These constructions are illustrated in
Fig. 6 and the presented particular example allows us
to write

Qx(0, t) =
a

τ

{
p
[
G−1,0(t)−G1,0(t)

]
+ q
[
G−1,1(t) +G−1,0(t)−G1,0(t)−G1,−1(t)

]}
. (12)

Here without loss of generality the origin is set at the
center of the face under consideration. Expression (12)
admits the continuous approximation via the Taylor ex-
pansion

Gi,j = G (xi,j , t) = G

(
1

2
ai, aj, t

)
= i

1

2
a∂xG(0, t) + ja∂yG(0, t) , (13)

where i = ±1 and j = 0,±1. The substitution of (13)
into (12) yields

Qx(0, t) = − (1 + ε)a2

4τ
∂xG(0, t) +

εa2

2τ
∂yG(0, t). (14a)

impermeable boundary

Fig. 7: Distribution function of walkers, the probability
density G(x, t), normalized to its maximum. In numer-
ical simulation the asymmetry parameter ε = 0.2, the
trajectory origin {x0 = 150, y0 = 50}, and the number
of steps in one trajectory N = 3y20 were used. The
coordinate labels are the node indices.

In a similar way we get

Qy(0, t) = − (1 + ε)a2

4τ
∂yG(0, t)− εa2

2τ
∂xG(0, t). (14b)

Expressions (14) can be interpreted as the two compo-
nents of relation (8), where the regular drift velocity
V = 0 and the desired non-symmetric diffusion matrix
D is specified by the equalities

Dxx = Dyy = Ds , Dyx = −Dxy = Da =
εa2

2τ
. (15)

The non-symmetry of the diffusion matrix must be re-
flected in the boundary conditions. For example, if the
region of random walks is bounded by the impermeable
(reflecting) interface y = 0 then[

Ds∂yG+Da∂xG
]
y=0

= 0 (16)

must hold at this interface. It should cause the asym-
metry of the probability density G(x, t) with respect
to the boundary point nearest to the origin of random
walks. Numerical simulation justifies this statement
(Fig. 7). In fact, if the diffusion matrix were symmetric,
so should be the distribution function with respect to
the vertical line SS. As seen, the found asymmetry with
respect to the line SS is characterized by spatial scales
much larger than the lattice spacing. Therefore, the
constructed random walks do exhibit non-symmetric
properties on scales much larger than the lattice spac-
ing. Thereby, the continuous approximation of the re-
lationship between the diffusion flux and the gradient
of the probability distribution function does be based
on a non-symmetric tensor.

3 Conclusions

A new type non-symmetric diffusion problem has
been considered and the corresponding Brownian mo-
tion implementing such diffusion processes has been
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constructed. The characteristic feature of these sto-
chastic processes is the non-symmetry of the constant
diffusion matrix. The photomagnetoelectric effect is
noted in justifying the interest to the given problem.

As an example, random walks with internal causality
on a square lattice are studied in detail. By construc-
tion, the elementary step of a random walker on the lat-
tice may consist of two succeeding jumps to the nearest
neighboring nodes along the x- and then y-axis or the y-
and then x-axis ordered, e.g., clock-wise. The causality
means that the second fragment of the elementary step
is due to the first one, i.e., the second fragment can
arise only if the first one has been implemented but not
vice versa. In particular, if something blocks the im-
plementation of the second fragment, the first one may
be not affected, whereas if it blocks the first fragment,
the second one cannot be implemented in any case.

On time scales t� τ , where τ is the duration of one
element step, such random walks admit the continuous
description. Within this description, the found rela-
tionship between the corresponding probability flux and
the gradient of the probability density contains the non-
symmetric diffusion matrix; its symmetric component
enters the Fokker-Plank equation. The non-symmetry
of the diffusion matrix should be reflected in the bound-
ary conditions and the spatial structure of the probabil-
ity density for these random walks in a bounded region.
It is directly demonstrated by numerical simulation.

The constructed random walks are characterized by
a certain rotational regularity being responsible for the
existence of the antisymmetric component of the diffu-
sion matrix; the translational motion of random walker
is purely symmetric, so the regular drift velocity is equal
to zero. It enables us we pose a question about the
completeness of describing stochastic processes in terms
of the Fokker-Planck equation or stochastic differential
equations. Indeed, this formalism ignores the internal
structure of elementary steps, whereas the given exam-
ple demonstrates the fact that particular spatial details
of the walker motion within one elementary step can
affect the macroscopic behavior of diffusion processes.
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