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Preface

How living organisms function and organize themselves is a very attractive
and challenging problem. This problem is extremely complex because living
organisms involve a great number of hierarchy levels from biomacromolecules
up to total organisms functioning as a whole which are related to each other
by energy and mass flow. Nevertheless, one of the possible ways to solve this
problem is to divide the whole hierarchical structure into different levels that
can be considered individually in the framework of a single branch of science.
Living tissue forms a basic level of this hierarchy which in turn contains own
complex hierarchical substructure and, from the stand point of heat and mass
transfer, can be treated as a certain medium.

Traditionally theoretical and mathematical physics deals with continuous
media for investigation of which a large number of various methods have been
developed. It is natural to apply the methods of theoretical and mathemati-
cal physics to analysis of transport phenomena, in particular, heat and mass
transfer in living tissues. In this way one can obtain not only particular results
important for specific problems in biology, medicine and biophysics, but also
penetrate deeply into the main principles of functioning and organization of
living organism as a whole because these principles are likely to be similar for
each of the hierarchy levels.

For the theory of heat and mass transfer in living tissue one of the central
issues is how to create good models that describe these transport phenomena,
at least on the mesoscopic level, in terms of certain physical fields and the
corresponding governing equations accounting for interaction between different
levels of the living tissue hierarchy. In this way it is quite possible to meet
new problems that can be of significant interest from the stand point of other
natural hierarchical systems. The present book states the bioheat transfer prob-
lem, which from our point of view describes the main properties of transport
phenomena peculiar to such media.

Let us make clear the subtitle of the present book which contains three key
characteristics of living tissue, mainly, “hierarchically organized”, “active” and
“heterogeneous” medium.

Roughly speaking, living tissue consists of two subsystems: the cellular tis-
sue treated as a uniform medium and a highly branching hierarchical vascular
network involving arterial and venous beds. Blood flow through the arterial bed
supplies the cellular tissue with oxygen, nutritious products, etc. and controls
heat balance in the system. Through the venous bed blood flow withdraws
products resulting from a life activity of the cellular tissue.

The vascular network is embedded into the cellular tissue and in spite of its
small relative volume the vascular network mainly determines heat and mass
propagation. This is the case due to the fast convective transport with blood
flow in vessels. Such a characteristic feature makes living tissue as highly hetero-
geneous media where low - dimension heterogeneities form fast transport paths
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controlling bioheat transfer in living tissue.

Such significant effect of low - dimensional heterogeneities on transport phe-
nomena is also met in diffusion processes in polycrystals and crystals with dis-
locations where grain boundaries or dislocations form the fast diffusion paths.
However, living tissue differs significantly from such media in that vessels make
up a highly branching network of unique architectonics and blood flow in ves-
sels of one level are directly related to blood flow in all other vessels. Therefore,
in order to describe influence of blood flow on heat and mass propagation the
vascular network should be taken into account as a whole rather than in terms
of individual vessels. This characteristic feature of living tissue is reflected in
the term “hierarchically organized media”.

Living tissue is not only a highly heterogeneous but also an active medium.
The fact is that the cellular tissue under various conditions requires different
amount of oxygen, nutritious products, etc. Therefore, the vascular network
must respond to variations in the cellular tissue state in the proper way. Due
to expansion of a single vessel leading, in principle, to blood flow redistribution
over the whole vascular actually all vessels should take part in the vascular net-
works response to local variations of the tissue state parameters. In other words,
the vascular network response is the cooperative action of all the vessels. Vari-
ations in vessel parameters lead to alterations of heterogeneity characteristics.
Therefore, for example, oxygen and heat propagation affect the state of living
tissue, leading to blood flow redistribution over the vascular network due to its
response, which in turn alter heterogeneity properties and affects oxygen and
heat propagation. Thus, such transport phenomena should exhibit nonlinear
behavior, and living tissue is an active distributed system with self-regulation.

The three inalienable characteristics of living tissue are the essence of the
bioheat transfer problem in its own right.

In this monograph we do not claim the complete solution of the bioheat
transfer problem that could be used in comparing with particular experimental
data. In fact, in the present monograph we formulate a simple model for heat
transfer in living tissue with self-regulation. The initial point of the model is the
governing equations describing heat transfer in living tissue at the mesoscopic
level, i.e. considering different vessels individually. Then, basing on the well
known equivalence of the diffusion type process and random walks, we develop a
certain regular procedure that enables us to average these mesoscopic equations
practically over all scales of the hierarchical vascular network. The microscopic
governing equations obtained in this way describe living tissue in terms of an
active medium with continuously distributed self-regulation.

One of the interesting results obtained in the present monograph is that there
can be the phenomena of ideal self-regulation in large active hierarchical sys-
tems. Large hierarchical systems are characterized by such a great information
flow that none of its elements can possess whole information required of gov-
erning the system behavior. Nevertheless, there exists a cooperative mechanism
of regulation which involves individual response of each element to the corre-
sponding hierarchical piece of information and leads to ideal system response
due to self - processing of information. The particular results are obtained for
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bioheat transfer. However, self-regulation in other natural hierarchical systems
seems to be organized in a similar way.

The characteristics of large hierarchical systems occurring in nature are dis-
cussed from the stand point of regulation problems. By way of example, some
ecological and economic systems are considered. An cooperative mechanism of
self-regulation which enables the system to function ideally is proposed.

The authors are very grateful to Arthur Cadjan, in cooperation with whom
many scientific results of the chapters E«E, @, were obtained.

The results presented in this book were partially supported by research
grants U1I000, U11200 from the International Science Foundation.

Moscow, Russia I.Lubashevsky,
Lviv, Ukraine V.Gafiychuk,
June 1999.
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Chapter 1

INTRODUCTION:
Essentials of the description
of transport phenomena in
highly heterogeneous
media. What the bioheat
transfer problem is

Transport phenomena such as diffusion and heat propagation in solids, liquids as
well as in condensed materials of complex structure can be usually described in
the framework of the phenomenological approach where, for example, gradients
in concentrations of diffusing species and temperature give rise to local mass
and heat flow in the medium. In the simplest case diffusion of a scalar field
c is characterized by its flux J. proportional to the gradient Ve. When the
medium itself can move in space, at least locally, the flux J. contains the term
proportional also to the local velocity v of the medium motion. In other words,

J.=—-DVc+vc (1.1)

and the governing equation of evolution of the field ¢ follows from the conser-
vation law
dc

— =-VIJ.+q. 1.2
5 ctq (1.2)
Here D is the diffusion coefficient and ¢ is the net density of sources and sinks.

There is a large number of various media where kinetic coefficients (for exam-
ple, the diffusion coeflicient D) or the local velocity v vary in space dramatically.

3



4 I. THE BASIS OF THE BIOHEAT TRANSFER THEORY

From a mathematical point of view the consideration of heat and mass transfer
in these media is closely connected with bioheat transfer in living tissue. For
this reason we direct our attention to the discussion of characteristic features
of these media. In particular, in polycrystals and crystals with dislocation dif-
fusion coefficients in the regular crystal lattice and in the vicinity of the grain
boundaries and dislocations differ in magnitude by a factor of 10° — 108. In the
system formed by materials of different structures and composition (compos-
ite materials) the heat conductivity also vary in space considerably. In porous
media transport phenomena are controlled by convective flow of gas or liquid
through channels of complex branched form. Therefore, in such media the local
velocity v(r,t) of convective flux governing mass and heat propagation depends
on the spatial coordinates r and, may be, the time t significantly. Turbulent
fluid is also a highly heterogeneous medium from the standpoint of mass and
heat transfer. Indeed, due to laminar flow instability the velocity v(r,¢) is actu-
ally a random vector whose space-time distribution is characterized by a large
number of scales.

It should be noted that transport phenomena in a biological and natural
environment system can be also treated in such terms, at least qualitatively.
For example, contaminant propagation controlled by rivers, winds blowing in
a forest, and mountains, as well as epidemic propagation over regions of non-
uniform population can be described in this approach.

For such media the substantial spatial (and may be temporal) dependence
of kinetic coefficients and the velocity v on small scales ¢ is actually the essence
of their highly inhomogeneity. Indeed, equations similar to (D) which govern
transport phenomena form practically microscopic description of these processes
because they explicitly contain spatial inhomogeneities of scales £. In particular,
for the scalar field ¢ we get

% =V [D(r,t,0)Vc—v(r,t,0)c] + q(r,t). (1.3)
The solution ¢(r,t,¢) of this equation contains all the details of the field ¢
distribution on small scales of order ¢ as well as on large scales £ characterizing
the medium as a whole. However, evolution of such systems and transport
phenomena in them usually are of importance only on spatial scales much greater
than ¢. So, the theory of mass and heat transfer in these highly heterogeneous
media can be based on the corresponding diffusing field averaged on scales £. In
other words, we should find the field

ca(r,t) = (c(r,t,0)),

where the symbol (...) stands for averaging on scales ¢. In addition, directly
finding the solution of equation ([.3)) is a stubborn mathematical problem.
Therefore, for such heterogeneous media the main aim of the transport problem
is to reduce the microscopic equations similar to (@) to certain macroscopic
equations describing the system evolution in terms of the averaged diffusing



1. INTRODUCTION: ESSENTIALS OF THE DESCRIPTION ... 5

fields (c,). The generality of this problem for different branches of the theoret-
ical and mathematical physics, applied mathematics makes the development of
the corresponding averaging technique an interesting mathematical problem in
its own right.

Obviously that an adequate averaging technique cannot be constructed for
entire system in the general case. When all the microscopic spatial scales as
well as the corresponding temporal scales can be treated as small parameters
such technique has practically been developed and there is a great number
of works devoted to this problem for different systems(for a review see, e.g.,
B [, bY, 9, Bd, 4] and references therein). In this case for media such as
composite materials, polycrystals, porous media, etc. the obtained macroscopic
governing equations usually retain their initial form similar to (@) and contain
certain smoothed effective kinetic coeflicients and the mean local velocity.

When the conditions of the microscopic scales are small they are violated and
the problem becomes more complicated. For example, the macroscopic equation
of grain boundary diffusion will contain the partial derivative of fractal order
with respect to the time when certain temporal microscopic scales are not small

I

For turbulent fluids the velocity field v(r,t,{¢,7,}) is a result of cooper-
ative interaction between a huge number of vortexes characterized by a wide
range of spatial scales {¢} from a characteristic dimension £ of the system as a
whole up to an extremely small scale {1, < £. The corresponding temporal
scales {7/} of the velocity nonuniformities also vary over a wide range [54, P7.
Therefore, although transport phenomena in turbulent fluids have been consid-
ered for many years. The theory of these processes is far from being completed
[@, @, @, @] The basic difficulty is that one should take into account the
simultaneous effect of a large number of different vortexes in diffusion processes
and it is impossible to single out beforehand a vortex controlling transport phe-
nomena. Moreover, diffusing field, for example, temperature can affect liquid
motion. In this case the macroscopic governing equations of heat transfer should
allow for the nonlinear interaction of liquid motion and heat propagation.

Such a problem of multiscale averaging the microscopic equations of turbu-
lent transport is also met in describing transport phenomena in other systems.
Contaminant diffusion in a river flowing through a brush of reeds and the wind
blowing in a forest are two typical examples of these processes [B(].

Heat transfer along with mass transport in living tissue comprises all the
characteristic features inherent in the aforementioned systems. In fact, living
tissue (Fig. @) is a heterogeneous medium involving blood vessels embedded
into cellular tissue and heat propagation in cellular tissue and inside vessels
with blood flow differs significantly in properties. So, like composite materials,
polycrystals and crystals with dislocations living tissue contains certain regions
with various kinetic coefficients and heat transfer is governed by an equation
similar to (.3). The main difference between heat propagation in the cellular
tissue and vessels is that heat slowly diffuses inside the former region and blood
flow in vessels forms paths of its fast convective transport [@]

However, in contrast to such physical systems the heterogeneities of living
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Figure 1.1: Vascular network of real living tissue.

tissue due to vascular network are characterized by hierarchical architectonics:
the vascular network involves vessels of different lengths, from large arteries and
veins of length £ up to small capillaries of length £c,,. Since smaller vessels and
larger ones are connected through the branching points the velocity field v(r,t)
of blood in vessels of one hierarchy level is correlated with that of other levels
rather than independent of each other. From this point of view the problem of
heat and mass transfer in living tissue is closely connected with the turbulent
transport problem in hydrodynamics because heat and mass propagation in
living tissue is also governed by cooperative influence of blood velocity field
v(r,t,£) in vessels of all the lengths from £ to £cap.

Living tissue also possesses a peculiarity that makes it distinct from physical
and mechanical media. This difference is that the vascular network is active and
responds to variations in the cellular tissue state. In cellular tissue the tempera-
ture, oxygen concentration, etc. vary in time the vessels will expand or contract,
increasing or decreasing blood flow in order to supply cellular tissue with blood
amount required. Therefore, in development of the theory of transport phenom-
ena in living tissue one should also take into account the physical parameters of
vessels belonging to all the hierarchy levels vary in such a self—consistent way it
enables the vascular network to respond properly and, so, living tissue to adapt
to new conditions.

Thus, any theory that claims to describe adequately real transport phenom-
ena in living tissue should account for these basic properties. One of the first
steps in this direction is the development of an averaging technique converting
the microscopic equations similar to (E) into macroscopic governing equations
describing evolution of certain smoothed fields. Obtaining such macroscopic
governing equations for heat propagation in living tissue is the essence of the
bioheat transfer problem. It should be noted that, in fact, this problem involves
basic parts, the former is constructing the averaging technique in its own right,
the latter is the description of the living tissue active behavior. Correspondingly,
the present book considers these questions successively.

The book is organized as follows. The theory developed previously treats
heat transfer in living tissue actually at the phenomenological level, based
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mainly on the conservation of blood and energy and practically does not account
details of heat interaction between vessels of different levels. These models and
their background are briefly reviewed in Chapter E Here we also represent the
well known rough classification of all blood vessels according to their influence
on heat propagation which is the first physiological background for any model of
living tissue. Besides, we discuss what macroscopic physical variables (continu-
ous fields) bioheat transfer theory should deal with. In particular, in addition
to the smoothed temperature the blood flow rate j(r,t) is such a state variable.

Real living tissues are extremely complex systems and there is a large num-
ber of processes where heat transfer occurs. So, the model proposed in this
book is certain not to be able to describe real processes of bioheat transfer in
full measure. It solely takes into account the main characteristic features of
living tissue and can be the basis for analysis of temperature distribution under
extreme conditions (e.g., during hyperthermia treatment) when the temperature
is a leading parameter the state. Certain physiological properties of real living
tissues, including architectonics of vascular networks, what determines a region
of living tissue that can be treated as a distributed medium, mechanisms of tis-
sue response to temperature variations are considered in Chapter E In no case
this Chapter can be regarded as an introduction to physiology of living tissues
in its own right. We understand that a large number of important physiological
problems is beyond the scope of our discussion. We consider only those forming
the starting point of the proposed model and motivating the properties to be
ascribed to blood vessels.

In ChapterE we specify microscopic equations, governing temperature distri-
bution in cellular tissue and vessels individually, as well as the vascular network
architectonics. A particular form of vascular network, on one hand, must meet
certain conditions (Chapter ) and, on the other hand, may be chosen for con-
venience. The latter is possible because, as will be shown in Chapters E and ﬁ,
the heat propagation exhibits the self - averaging properties and solely charac-
teristic properties of vessel branching have remarkable effect on heat transfer.
In this Chapter we also formulate the specific model for the vessel response to
temperature variations in cellular tissue.

Then, in Chapters E«ﬂ instead of solving the microscopic temperature evolu-
tion equations directly we describe bioheat transfer in terms of random walks in
living tissue. This is possible due to the well known equivalence of diffusive type
processes and random motion of certain Brownian particles. The characteristic
path of walker motion in living tissue involves an alternating sequence of walker
motion inside the vessels with blood flow and in the cellular tissue. Finding
the mean displacement of a typical walker at a given time we gain capability
to trace the typical way of walker motion through the hierarchical vessel sys-
tem and to propose the desired averaging procedure. In this way we will be
able to obtain specific form of the macroscopic bioheat equation under various
conditions. The developed procedure enables us to classify all the vessels of the
given vascular network according to their influence on heat transfer. The latter
forms the basis of thermoregulation theory dealing with temperature response
of individual vessels.



8 I. THE BASIS OF THE BIOHEAT TRANSFER THEORY

The result of averaging the microscopic description of the hierarchical model
is presented in Chapter E by the generalized bioheat equation. This equation,
first, contains terms, treating living tissue as an effective homogeneous medium.
This medium, however, has additional effective heat sinks caused by blood flow.
In other words, averaging initial microscopic equations of the divergence form
leads to the appearance of sinks whose density is proportional to the blood
flow rate. The fact is that large vessels form traps of the Brownian particles
rather than paths of their fast transport from the standpoint of their motion
in cellular tissue. In addition, it turns out that under certain conditions the
renormalization coefficient of the temperature diffusivity practically does not
depend on the physical parameters of the system. This is a direct consequence
of the vascular network being hierarchically organized. The generalized bioheat
equation contains other terms whose appearance is caused by the discrete dis-
tribution of small vessels in the space and which are regarded as random spatial
inhomogeneities. The corresponding characteristic properties of random spatial
nonuniformities and fluctuations of the tissue temperature are analyzed in detail
in Chapters [4, [[3.

When blood flow distribution over the vascular network becomes substan-
tially non-uniform the bioheat equation should be modified which is the subject
of Chapters E«@ In this case not only the temperature, but also the rate must
be smoothed and the contains two equations: averaged temperature and the
averaged blood flow rate equations.

By Chapter E we complete, the development of the averaging technique.
Then, we consider the active behavior of living tissue, namely, the vascular net-
work response to variations of temperature in cellular tissue. At this point we
meet a certain fundamental problem that can be stated in the general case and
is typical not only for living tissues but also for a large number of hierarchi-
cally organized living systems in nature. All of them need permanent supply
of external products for life activities and inside these systems the products are
delivered to different elements through supplying networks organized hierarchi-
cally. Their peculiar property is the capacity for responding and adapting to
changes in the environment. The latter requires redistribution of the product
flow inside a system over the supplying network. Since, as a rule, the products
for life activity enter a living system centrally there must be a certain mechanism
that governs the proper response of the supplying network at all the hierarchy
levels. Such control of the supplying network dynamics requires processing a
great amount of information characterizing the system behavior at the all hi-
erarchy levels. However, none of its elements can possess all the information
required of the governing system. Therefore, how a natural large hierarchi-
cally organized systems can respond properly to changes in the environment is
a challenging problem. In the present book we deal with the bioheat transfer
problem by showing that there can be a cooperative mechanism of self-regulation
which involves individual response of each element to the corresponding hier-
archical piece of information and leads to the ideal system functioning due to
self-processing of information. It is believed that such a cooperative mechanism
of self-regulation is inherent practically to all natural large hierarchical systems.
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In living tissue blood flows through the vascular network involving arterial
and venous beds supplies cellular tissue with oxygen, nutritious products, etc.
At the same time blood withdraws carbon dioxide and products resulting from
life activities of the cellular tissue. Both the arterial and venous beds are of the
tree form contain a large number of hierarchy levels and are similar in struc-
ture. The living tissue responses to disturbances in life activity, for instance,
through vessel response to variations of the blood temperature, the carbon diox-
ide concentration, which gives rise to expansion or contraction of arteries. These
aspects form the base of the model for vascular network response developed in
Chapters @«@ The general equations governing the active living tissue behav-
ior are reduced to the local relation of the blood flow rate j(r,¢) and the tissue
temperature T'(r,t) in the spatial case which we call the ideal self-regulation.
The existence of the local relationship between j(r,¢) and 7T'(r,t) is a surprise
because it is the consequence of a complicated mutual compensation between
blood flows at all the hierarchy levels.

In Chapter B we apply the developed theory to analysis of heat transfer
in living tissue containing a tumor. We do not pretend to total description
of temperature distribution in this case, we only try to grasp the main rough
characteristics of temperature distribution near small tumors which can occur
in hyperthermia treatment. The same concerns the problems of cryosurgery
treatment.

As it has been mentioned above the cooperative mechanism of self-regulation
is inherent not only in biological organisms, but also in large ecological and
economic systems. So, in Appendix we, firstly, generalize the model for ideal
self-regulation proposed for living tissue. Then, we show that the market with
perfect competition can possess ideal self-regulation too. From this point of
view we also consider some problems that occur in ecological models of the
Lotka—Volterra type.



Chapter 2

Mean field approach to the
bioheat transfer problem

2.1 Modern models for heat transfer in living
tissue

The theory of heat transfer in living tissue that has been developed in the last
years is mainly aimed at promoting a better understanding of real processes
that take place in living tissue during its strong heating or cooling.

Mathematical analysis of temperature distribution in living tissue on scales
of a single organ is, on one hand, of considerable interest for understanding
fundamental problems of human physiology as well as for treatment of specific
diseases. In fact, for example, in hyperthermia treatment of a small tumor a
tissue region containing the tumor is locally heated to high temperature by
external power sources. In this case mathematical modelling of temperature
distribution is required to optimize the treatment (for a review see e.g. @, @,
B3, and references therein).

On the other hand, description of transport phenomena, in particular, heat
transfer in living tissues, is a challenging problem of mathematical biophysics
in its own right. The matter is that blood flow in vessels forms a branching
network of fast heat transport and, from the standpoint of heat transfer, living
tissue is a highly inhomogeneous and hierarchically organized medium. Besides,
due to vessel response to temperature variations this medium is characterized
by nonlinear phenomena responsible for thermoregulation.

By now a number of models for heat transfer in living tissue have been
proposed. Reviews on bioheat transfer in living tissue can be found in [ﬂ, E,
@, @, @] Below we shall outline some of these models and their physical
background.

The simplest approach to description of bioheat transfer is to consider living
tissue in terms of an effective homogeneous continuum where thermal interac-

10
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tion between cellular tissue and blood is treated as a distributed heat sink. In
physical sense, the heat sink is caused, for example, by heating of blood in its
passage through the tissue. Within the framework of this approach we may
write the following equation for the tissue temperature

oT .
Cthr oy = V(kVT) = coppj(T — Tu) + qn, (2.1)

where ¢, p, are the density and heat capacity of the tissue, cp, p, are the same
values for blood, « is the tissue thermal conductivity, g is the heat generation
rate caused by metabolic processes and external power sources, Ty is the tem-
perature of blood in large arteries of a systemic circulation, and j is the blood
flow rate, i.e. the volume of blood flowing through unit tissue volume per unit
time.

This equation has been firstly introduced by Pennes [@] and now is widely
known as the conventional bioheat transfer equation. He assumes that arterial
blood enters capillaries of a tissue domain under consideration without heat
exchange with the surrounding cellular tissue, then attains thermal equilibrium
practically instantaneously , and leaves this tissue domain through a venous bed
without heat exchange again.

Since blood flow in vessels gives rise to convective heat transport it has
been proposed a model [@] where living tissue is treated as a continuum with
effective convective flux veg(r), and the governing bioheat equation is of the
form

oT
CtPrar = V(kVT) = copyVea VT + gn. (2.2)

Chen and Holmes [E] have considered heat transfer in living tissue con-
taining hierarchical system of vessels and analyzed the main properties of heat
exchange between blood in different vessels and the surrounding cellular tissue.
This allowed them to justify adequately the continuum approach to bioheat
description and to propose more adequate equation for the tissue temperature
evolution in small-scale living tissue domain [[[7, [[g]

oT . *
CtPtE =V (keat VT) — coppjn(T —T) — coppver VT + qp. (2.3)

Here keq is the effective thermal conductivity, j¥ — the blood flow rate deter-
mined by arteries where blood practically attains thermal equilibrium with the
cellular tissue for the first time and 7} — the initial blood temperature in these
arteries.

In real living tissues the arterial bed is typically located in the immediate
vicinity of the corresponding venous bed. The blood temperature in arteries
can differ significantly from the blood temperature in veins, so, in principle,
there must be an essential heat exchange between an artery and the nearest
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vein of the same level. This effect is phenomenologically taken into account in
the effective conductivity model [51], b3, [LO]]

oT
Py = V(ketVT) + qn (2.4)

and in [@] the particular relationship between the effective and intrinsic ther-
mal conductivity keg and the blood flow parameters has been found. It should
be noted that effective conductivity model has both the strong and weak sides
(for more details see [d, fl, L3, [4, [L02 04, [Lo7.

All these models allow for various features of the bioheat transfer process.
So, each of them may be valid, at least at the qualitative level, under certain
conditions. Therefore, taking into account the present state of the bioheat trans-
fer theory it has been suggested to use for application the following generalized
bioheat equation which combines the main models mentioned above [RJ):

oT .
CtPr gy = V (ke VT) — ferppi(T — To) + qn- (2.5)

Here the effective thermal conductivity kg and the factor f ranging from 0 to 1
are phenomenological parameters.

Concluding this section we would like to point out that in order to find the
valid limits of the given collection of bioheat equations, including the generalized
equation @), as well as to obtain the specific expressions for the corresponding
kinetic coefficients one needs a successive procedure that would enable to get
a macroscopic equation by averaging directly the corresponding microscopic
governing equations. This procedure should take into account the hierarchical
structure of vascular network, correlations in mutual arrangement of vessels
belonging to different levels, vessel response to temperature variations, etc. In
the present work we intend to develop such a procedure.

2.2 Rough classification of blood vessels accord-
ing to their influence on heat propagation

From the standpoint of heat transfer living tissue may be represented as a homo-
geneous continuum (cellular tissue) in which a hierarchical vascular network is
embedded. Heat propagation in the cellular tissue and in blood flowing through
the vessels is different in properties, viz., in the cellular tissue heat propagation
is controlled by thermal conduction and inside vessels the convective heat trans-
port can play a main role. The number of vessel levels in the vascular network is
typically large N ~ 10—20 @, @], so blood flow in vessels of different hierarchy
levels affects variously heat transfer.

In order to characterize the effect of blood flow in a single vessel on heat
propagation it is usually used the quantity /| defined as the length after which
the blood temperature in the vessel has practically approached the temperature
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of the surrounding tissue in the corresponding tissue cylinder, i.e. the tissue
domain falling on one vessel of the given level. If for a given vessel the value
I is much larger than the vessel length (I > [) blood flow in it will affect
heat transfer significantly. Otherwise, [ <[, the blood flow effect is ignorable
[L6, 7). In order to imagine the extent to which blood flow in vessels of dif-
ferent levels can affect heat transfer we represent Table 1 where characteristic
properties of blood flow in various vessels as

Table 1

vessel type diameter | length [ | flow number | U /1
mm) [ (om) | (em/s) (om)

aorta 10 40 50 1 12500 310
large arteries 3 20 13 40 290 15
main branches 1 10 8 600 20 2.0
secondary branches | 0.6 4 8 1800 7.2 1.8
tertiary branches 0.14 1.4 3.4 7.6 -10% | 0.17 0.1
terminal branches 0.05 0.1 2 10° 0.013 0.1
terminal arteries 0.03 0.15 0.4 1.3 -107 | 0.0009 0.006
arterioles 0.02 0.2 0.3 4107 0.0003 0.002
capillaries 0.008 0.1 0.07 1.2 -10% | 0.00001 | 0.0001
venules 0.03 0.2 0.07 8 107 0.00016 | 0.001
terminal branches 0.07 0.15 0.07 1.3 -107 | 0.0009 0.006
terminal vein 0.13 0.1 0.3 10° 0.013 0.1
tertiary veins 0.28 1.4 0.8 7.6 -10% | 0.16 0.1
secondary veins 1.5 4 1.3 1800 7.3 1.8
main veins 2.4 10 1.5 600 22 2.2
large veins 6 20 3.6 40 320 16
vena cava 12.5 40 33 1 12900 320

well as vessels themselves are introduced [E, @, @, ]

As it follows from Table 1 the vessels where arterial blood attains thermal
equilibrium with the surrounding cellular tissue for the first time are approxi-
mately of the length /) ~ 2cm. Typically a regional vascular network contains
vessels whose length is much larger and much smaller than /. Thus, the bioheat
transfer models should take into account that the vascular network can contain
vessels significantly different in effect on heat transfer. In particular, blood flow
in vessels of length [ > [ forms a complex system of fast heat transport paths,
leading to high heterogeneity of living tissue.

2.3 Mean field approach

In the first section of this chapter we represented various forms of the macro-
scopic bioheat equation proposed by different authors. All these models are
actually based on the mean field approach, firstly used in the simplest form by
Pennes [@] This approach principally grasps the essence of heat transfer in
living tissue so we discuss it in more detail.

Let us consider a certain living tissue domain Q of size ¢ that, on one hand,
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Figure 2.1: A schematic representation of artery and vein trees in living tissue
domain Q.

is not too small and vessels in which blood is in thermal equilibrium with the
surrounding cellular tissue are entirely located in this domain (Fig. R.1]). The
maximal length of such vessels is about [, so £ > [. The averaged temperature
T of the cellular tissue is considered to be approximately constant over the
domain Q. Besides, we assume that only one large artery and vein of length
[ > 1) go into the region Q where they join branching into small vessels.

For the points of the domain Q not belonging to a small neighborhood of
large vessels the true tissue temperature T}, obeys the equation

% = DV2Ty, — v(r)VTi, + %, (2.6)

where D = k/(c1p,) is the temperature diffusivity and for the sake of simplicity
we have ignored the difference between physical parameters of the cellular tissue
and blood. The value of v(r) is determined by blood flow in small vessels
randomly oriented in space, thus, the velocity v(r) is also treated as random
field v(r) = {v1(r),va(r), v3(r)} with a small correlation length lcor < . In
other words, we set

(vir)) =0 @)
and
(e ) = o (). ©9)

where the symbol (...) stands for averaging over the small scales, v; is the
mean amplitude of the velocity v(r), and g;; (r) is a certain function of order
unity for |r| ~ 1 which tends to zero as |r| — co. In addition, due to blood
incompressibility the field v(r) must obey the equation

Vv(r)=0 (2.9)



2. MEAN FIELD APPROACH TO THE BIOHEAT TRANSFER ... 15

which allows us to write
v(r) = V x a(r), (2.10)

where a(r) = [a1(r), az(r), ag(r)] is a certain random field determined practically
by the concentration of the small vessels and the mean velocity of blood flow in
them. The latter allows us to set

(a(r)) =0 (2.11)
and
{ai(r)a;(r')) = a3d;;94 (Irl;or’l) : (2.12)

Here af = vflcor is the mean amplitude of the value a(r), d;; is the Kronecker
delta, and the function g,(r) is such that g,(r) > 0, for r ~ 1 the value of
ga(r) ~ 1, and go(r) — 0 as 7 — oo. In these terms the expression (R.§) may
be rewritten as

/

(6105 )) = ~(opea? 39 = VW) 00 ()0 s
cor

The true tissue temperature T3 involves two parts: one is the averaged
temperature T, the other, T, characterizes random nonuniformities in temper-
ature distribution caused by the field v(r). The value of T is considered to be
small and the averaged temperature distribution T'(r,t) is regarded as a smooth
field varying slowly in time. This allows us to separate equation (E) into the

following two equations governing the fields T, T individually

8T - 2 d dh
S =DV -V <v(r)T> o (2.14)

DV?T —v(r)VT = 0. (2.15)

The solution of equation (R.15) is of the form

T _ 1 / 1 / /
T(r) = D /dr T IJ|v(r YVT(x"). (2.16)
Substituting (R.16) into (R.14)) we get
oT ) R 1 an
E DV dr' —— (vi(r)v; (r')) | V, 7,1 + 2
o V3T + #D 2 [/ L (vi(r)v; (v')) | ViTV,;T + e
(2.17)

where we have also taken into account that the value VT is practically constant
on the scale lco;. Substituting (R.13)) into (R.17) we find that evolution of the
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averaged temperature at such points of living tissue can be described in terms
of the effective medium model, namely

oT 2 qh
— =DegVT + —, 2.18
ot . + Ctpy (2.18)

where the effective temperature diffusivity is

1+ g4 (0) (U'fll)c"r)Q] . (2.19)

In the vicinity of large vessels equation ) does not hold which is due
to heat interaction between the cellular tissue and blood in such arteries and
veins. In order to allow for this interaction let us write the heat conservation
equation for the domain Q as a whole

d 1

— /drT = Deg f dsV, T+ J(T, - T,) + — /drqh. (2.20)

dt CtPs
Q 0Q

Here the first term on the left-hand side of equation (.2() describes heat flow
through the boundary 0Q of the domain Q, the second one is caused by heat
flow going into and out of the domain Q with blood through large artery and
vein, T, and T, are the temperatures of blood in these vessels at the boundary
0Q, and J is the total blood flow going through the given domain. For the value
of J we may write

DCH:D

J = /drj(r). (2.21)
Q

Depending on the vessel architectonics, the temperature T, of blood in the
large vein going out of the domain Q is approximately equal to the averaged
tissue temperature 7' or there can be a substantial difference between these
temperatures. If the venous and arterial beds are not located in a closed vicinity
of each other then any vein is far enough from the arteries of the same length
and thereby T, ~ T because blood in small vessels is in thermal equilibrium
with the surrounding cellular tissue. When the vascular network is organized in
such way that arteries and veins are located in the vicinity of one another there
is a strong heat exchange between blood flows in a vein and in the corresponding
artery (counter current vessels). So, in this case |T,, — T,| < |T — Ty|. In order
to allow for the given heat interaction we may introduce a cofactor f < 1 into
the relation

(T, —T.) = (T~ T). (2.22)

Then assuming the fields 7'(r) and j(r) to be approximately constant over the
domain @ and taking into account expressions (R.21)) and (R.22)) we can convert
equation (R.20) into the following partial differential equation

oT

X DaVT — £H(T —T,) + 2 2.23
ot HV f]( )+Ctpt7 ( )
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which practically exactly coincides with the generalized bioheat equation (@)

Equation ( ) actually is phenomenological rather than the reliable re-
sult of averaging the microscopic bioheat equations. It contains at least two
parameters, the effective diffusivity Deg and the cofactor f which cannot be
found in the framework of the mean field approach. In addition, the question of
whether the averaged tissue temperature can be practically constant on spatial
scales of order /|| is beyond the mean field theory of bioheat transfer. The same
concerns the form of the microscopic bioheat equation when the blood flow rate
is extremely non-uniform distributed over living tissue.

Due to the vessel system being hierarchically organized blood flow distri-
bution over the vascular network as well as over the tissue domain has to be
characterized by strong correlations between different hierarchy levels and also
by spatial correlations. Therefore, in order to describe the blood flow effect
on heat transfer one should take into account the vascular network as a whole
rather than consider vessels of different levels individually. The vascular network
models (see, e.g., [ﬂ, ﬂ, ) dealing with living tissue phantoms containing in-
finitely long vessels or models where the effect of blood flow in different vessels
on heat transfer are treated in the same terms [[t3, [[01, cannot form the
basis of the successive procedure of averaging the microscopic equations. The
next characteristic property of living tissue is its active response to temperature
variations. Living tissue tries to remain it temperature within a certain vital
interval [T_, T ]. Therefore, if a certain tissue domain is, for example, heated,
the vessels supplying this domain with blood will expand and the blood flow
rate will increase. In order to find specific relationship between the blood flow
rate j(r) and the tissue temperature field T'(r) one should, in principle, account
for the temperature response of the vascular network as a whole. Thus, the bio-
heat equations discussed in section can use only phenomenological models
for the relation j(T') (see, e.g., . It should be noted that blood flow rate
can increase locally by tenfold

In order to go out of the framework of the mean field approach we will
describe bioheat transfer in terms of random walks in living tissue, instead of
solving the microscopic temperature evolution equations directly. This is pos-
sible due to the well known equivalence of diffusive type processes and random
motion of certain Brownian particles. For example, in the theory of grain bound-
ary diffusion and diffusion in crystals with dislocations such an approach has
enabled to obtain rigorous equations for anomalous diffusion [fl, 63, b4, 7, bg).



Chapter 3

Physiological background

3.1 Microcirculatory region as a basic funda-
mental domain of bioheat transfer theory

In the theory of bioheat transfer living tissue is regarded as a certain part of
a living organism. The models mentioned in Introduction treat living tissue as
a continuum containing vessels where blood flow is predetermined. So, these
models consider vessels of different levels practically independently of each other
[ﬂ] In the same time blood flow distribution over vessels belonging to different
levels must be self - consistent due to the hierarchical organization of vascular
networks. Therefore, on one hand, in order to develop the desired successive
averaging procedure we need to take into account blood flow distribution over all
hierarchy levels that can affect the blood flow rate at a point under consideration.
On the other hand, it is impossible to describe heat transfer in a living organism
as a whole, including blood flow distribution over its systemic circulation, in the
context of continuous theory. The latter also is of a little consequence when the
tissue region affected directly, for example, heated by external power sources is
not sufficiently large.

Therefore, first of all, we should specify a minimal region of a living organism
for which a complete theory of heat transfer can be developed. In other words,
such a theory has to describe in the self-consistent way the distribution of the
tissue temperature as well as the blood flow rate over the tissue domain under
consideration. This minimal region of living organism will be called the basic
fundamental domain of living tissue.

In living organisms a microcirculatory bed region can be treated as a basic
fundamental domain. In fact, the main aim of systemic circulation is to maintain
the arterial-venous pressure drop P at a given constant. A regional circulation,
i.e. the vascular network of a single organ, varying its resistance to blood flow
supplies different points of the organ with such amount of blood that is needed
for the organ activities [E, @, @] For a relatively simple organ its whole
regional circulation is a microcirculatory bed. In other organs a microcirculatory

18
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bed is a certain part of the organ regional circulation, for example, brain pial
arterial network forms a single microcirculatory bed. In this case blood flow in
different microcirculatory beds, in principle, can be analyzed independently of
each other 7).

In the present work we consider heat transfer in a living tissue domain that
contains a complete vessel system forming a single microcirculatory bed.

We would like to point out that analysis of temperature distribution in liv-
ing tissue under strong local heating touches one of the fundamental problems
in mathematical biophysics, viz. mathematical description of heat and mass
transfer, and associated self-regulation processes in living organisms on scales
of a single microcirculatory bed.

The matter is that, on one hand, a tissue domain containing a single mi-
crocirculatory bed is ordinarily large enough so, that first, transport of oxygen,
possibly other nutrients as well as heat over the domain is mainly caused by
blood flow in the vascular bed. Second, due to self-regulations processes the
distribution of Os, CO4, etc. as well as the temperature field in their turn con-
trol blood flow redistribution over the vascular network. Thus, already on such
scales mass and heat transfer possesses properties peculiar to living organisms.
On the other hand, different parts of the same microcirculatory bed seem to
be similar in physiological function and structure. So, in the context of field
theory there can be a suitable mathematical model for heat and mass transfer in
living tissue on scales of a single microcirculatory bed. In addition, due to the
relative volume of vascular network being typically small, from the viewpoint
of mass and heat transfer living tissue is an active extremely heterogeneous
medium which is characterized by a peculiar geometry of fast transport paths
whose properties depend on the temperature field and concentrations of dif-
fusing elements. Therefore, description of mass and heat transfer also forms a
mathematical problem in its own right.

Let us now discuss some fundamental properties of real microcirculatory
beds and heat transfer in living tissue that form the ground for the following
constructions.

When a living tissue domain containing a microcirculatory bed is in the
normal state, i.e. the temperature as well as the concentration of Os, COs,
etc. are constant over the domain, the blood flow rate is uniformly distributed
over this domain too. If the latter takes place, every small part of the domain
(in comparison with the domain itself) is bound to contain, on the average, an
equal number of vessels, whose lengths are smaller than the size of this part.
In addition, in the normal state the parameters describing blood flow in vessels
of the same level must be equal for these vessels because, otherwise, it would
give rise to nonuniform distribution of the blood flow rate j(r). Therefore,
architectonics of such a microcirculatory bed have to satisfy the condition that
any path along the vascular network from the host artery to a small arteriole
and then from the corresponding venule to the host vein (or, at least, along the
arteries and veins determining the resistance of the vascular network to blood
flow) must be of an equal length.

Typically, a vascular network involves arterial and venous parts in the tree
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form as well as the system of artery-artery, vein-vein and artery-vein anasto-
moses [E, @] However, there are organs containing a few number of anas-
tomoses or practically no one at all. Moreover, it seems that the basic role of
anastomoses is to compensate, for the blood flow redistribution over the vascular
network when self-regulation processes cause, for example, substantial expan-
sion of some vessels [@] and this subject deserves an individual investigation.
Therefore, in the present work we shall ignore anastomoses and assume that
arteries and veins make up the arterial and venous bed of the tree form.

The real capillary system connecting arterioles and venules with each other
involves host and minor capillaries [@] As a rule, the former join arterioles to
the nearest venules, whereas, the latter are transformed into a capillary network
by a large number of capillary anastomoses [@] This capillary network can
connect not only the nearest venules and arterioles but also distant ones. It
should be noted that such a capillary bed has been previously considered in
terms of a porous medium in modelling heat transfer [@I, @] Under certain
conditions rheological properties of blood give rise to switching on or switching
off the minor capillary bed [[f3]. Therefore, as it follows from the percolation
theory, (see. e.g., [@, E, @]) connection between distant arterioles and venules
can play a significant role in heat transport, at least in the vicinity of the
switching points. In addition, in accordance with the results obtained below
(see Section @), capillary influence on heat transport is collective, i.e. only
the mean properties of the capillary system geometry are the factor. We may
use any model for a capillary system which is equivalent to the real one with
respect to the main characteristic details.

From the standpoint of heat transfer the specific geometry of vascular net-
work is not a factor (see Chapters ﬂﬂ), thus, solely the characteristic details of
vessel branching (for example, the mean number of arteries formed by branching
of one artery whose length is twice as large) should be taken into account. The
latter allows us to choose the specific vascular network architectonics for conve-
nience. Typically the resistance of a microcirculatory bed to blood flow is mainly
determined by an artery collection involving vessels of different lengths. There-
fore, we may assume that, at least in normal living tissue venules, capillaries,
and arterioles have no significant direct effect on the blood flow redistribution.
For real microcirculatory beds the resistance to blood flow in venous parts is
not a factor. Arterial and venous parts of the same microcirculatory bed, on
the average, are approximately similar in geometry [, , @, @] Veins have
wider diameters than arteries of the same length, thus, the blood pressure drop
across a microcirculatory bed is mainly caused by the resistance of its arterial
bed. However, as it follows from the results obtained in Chapter ﬂ, heat trans-
fer in living tissue actually depends on blood currents in vessels rather than on
the velocity field of blood flow in the vessels and their radii individually. So,
due to the arterial and venous beds being of the tree form the blood current
patterns on the arterial and venous parts of the same vascular network are ap-
proximately identical. There is a certain self-averaging property of heat transfer
in living tissue (see Chapter E) owing to which specific features of the arterial
and venous beds are not the factor. So, for simplicity we may consider the sym-
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metrical model for the vascular network where the arterial and venous parts are
the mirror images of each other and the total pressure drop is twice as large.

3.2 Characteristics of temperature distribution
in living tissue

Temperature distribution in living tissue is characterized by a number of spatial
scales. One of them is the distance [p on which the tissue temperature variations
are directly controlled by heat conduction in the cellular tissue. According to
the conventional bioheat equation (R.1))

I ~ (?)m (3.1)

where D = k/(cp,) is the tissue thermal diffusivity and we have taken into
account that p, ~ p,;¢, ~ ¢ It will be shown below in the present work,
the estimate () holds also true for living tissue with countercurrent vascular
networks. The spatial scale [p is associated with the temporal scale 7p ~
13,/D ~ 1/j. There is another characteristic spatial scale [, that is the mean
length of a single vessel where arterial blood attains thermal equilibrium with
the surrounding cellular tissue for the first time in its motion through the vessel
system from large arteries to arterioles. The value of [, practically coincides
with the thermal equilibrium length [ after which the blood temperature in
a vessel has approached the temperature of the surrounding tissue: 1, ~ [}.

According to [[Ld, [[0d]

o~ () )

a

where a is the radius of a vessel under consideration, d is the mean distance
between vessels of the same length [ and v is the blood velocity averaged over
the vessel cross section. Typically | ~ d [@], then from the condition I, ~ [,
and expression (@) we get

o~ (T ) )

where we have also taken into account the relation j ~ (a?v)/I® because m2a?v

is the total blood current flowing through the tissue domain falling on one vessel
of this type whose volume is about d?l, ~ [2.

The quantity [, classifies vessels by their influence on heat transfer. For
typical values of the tissue thermal diffusivity D ~ 2-1073(cm?/s), the blood
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flow rate j ~ 6-1072 - s7! and the ratio d/a ~ 40 we get Ip ~ 0,6cm ;
ly, ~ 0,3cm and Tp ~ 3min. For real microcirculatory beds ordinarily the
mean length of the shortest vessels (capillaries, venules, arterioles) is well below
ly , whereas that of host arteries and veins is substantially larger that I, . In
this case, as it will be shown in Chapter E, the value [, divides all vessels of
a microcirculatory bed into two classes according to length. The first class
involves the vessels whose length is larger than [,, , and the second class consists
of the vessels whose length is smaller than [,,.

Blood flowing through the first class vessels has actually no time to attain
thermodynamic equilibrium with the surrounding cellular tissue and, thereby,
may be considered to take no part, on the average, in heat exchange with the
cellular tissue , E] The latter allows us to suppose that at branching points
of the first class vessels not only the conservation law of blood current but
also the conservation law of heat current are true. For this reason in the first
class arteries the blood temperature is practically equal 