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BOUNDEDNESS FOR FINITE SUBGROUPS OF LINEAR

ALGEBRAIC GROUPS

CONSTANTIN SHRAMOV AND VADIM VOLOGODSKY

Abstract. We show the boundedness of finite subgroups in any anisotropic
reductive group over a perfect field that contains all roots of 1. Also, we
provide explicit bounds for orders of finite subgroups of automorphism groups
of Severi–Brauer varieties and quadrics over such fields.

1. Introduction

In this paper we study finite subgroups of linear algebraic groups. We say that
a field K contains all roots of 1, if, for every positive integer n, the polynomial
xn − 1 splits completely in K[x]. An example of such a field is the field of rational
functions on an irreducible variety defined over an algebraically closed field. Recall
that a linear algebraic group is called anisotropic if it does not contain a subgroup
isomorphic to the split one-dimensional torus Gm. Our main result is the following.

Theorem 1.1. Let K be a perfect field that contains all roots of 1, and let G be an
anisotropic reductive group over K. Then there exists a constant L = L(G) such
that any finite subgroup of G(K) has order at most L.

Actually, we will prove a more precise Theorem 3.7 that gives some boundedness
result for non-perfect fields and non-reductive linear algebraic groups as well, and
also provides an explicit (multiplicative) bound for the orders of finite subgroups in
terms of the rank of G, the number of its connected components, and the minimal
dimension of a faithful representation of the maximal reductive quotient of the
neutral component of GK̄. Moreover, we will see in Corollary 3.8 that there is a
bound that depends only on the rank and the number of connected components
of G.

A particular case of Theorem 1.1 for the projective orthogonal groups was proved
by T.Bandman and Yu. Zarhin in [BZ17, Corollary 4.11, Theorem 4.14]. They
applied its rank 1 case to analyze fiberwise birational maps of varieties fibered into
rational curves.

Let us say that a group G has bounded finite subgroups, if there exists a con-
stant L = L(G) such that, for any finite subgroup Γ ⊂ G, one has |Γ| � L. If this
is not the case, we say that G has unbounded finite subgroups. Thus, Theorem 1.1
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2 CONSTANTIN SHRAMOV AND VADIM VOLOGODSKY

claims that every anisotropic reductive group over a perfect field that contains all
roots of 1 has bounded finite subgroups.

Recall that a Severi–Brauer variety is a variety X over a field K such that
its scalar extension to the algebraic closure of K is isomorphic to a projective
space. For instance, one-dimensional Severi–Brauer varieties are conics over K.
The automorphism group scheme of an (n − 1)-dimensional Severi–Brauer variety
is an inner form of the algebraic group PGLn. One can apply Theorem 1.1 to study
the automorphism groups of Severi–Brauer varieties. For a Severi–Brauer variety X
associated to a central simple algebra A over a perfect field K that contains all roots
of 1, Theorem 1.1 implies that Aut(X) has bounded finite subgroups if and only if
A is a division algebra; see Remark 4.6 for details. The following theorem, which
we prove directly, amplifies this observation.

Theorem 1.2. Let K be a field that contains all roots of 1. Let X be a Severi–
Brauer variety of dimension n − 1 over K, and let A be the corresponding central
simple algebra. Assume that the characteristic charK of K does not divide n. The
following assertions hold.

(i) The group Aut(X) has bounded finite subgroups if and only if A is a division
algebra; in particular, if n is a prime number, then Aut(X) has bounded
finite subgroups if and only if X(K) = ∅, i.e., X is not isomorphic to Pn−1.

(ii) Suppose that A is a division algebra. Let g ∈ Aut(X) be an element of
finite order, and Γ ⊂ Aut(X) be a finite subgroup. Then gn = 1, and Γ is
an abelian group whose order divides n2.

In particular, if K is a perfect field that contains all roots of 1, then Theorem 1.2
applies to all Severi–Brauer varieties over K; indeed, in this case charK cannot
divide the dimension of a central division algebra over K, see Remark 4.7 below.
In the case of an arbitrary field whose characteristic p divides the dimension of the
corresponding division algebra, the structure of finite subgroups of the automor-
phism group is still rather simple, see Proposition 4.5; in particular, finite subgroups
of the automorphism groups are always abelian in this case as well. However, for
such Severi–Brauer varieties finite p-subgroups of the automorphism group can have
arbitrarily large order, see Example 4.8.

Applying Theorem 1.1 to a projective orthogonal group, one can prove that
the automorphism group of a smooth quadric Q over a field K of characteristic
different from 2 that contains all roots of 1 has bounded finite subgroups if and
only if Q(K) = ∅. We find explicit bounds for orders of finite automorphism groups
of quadrics over appropriate fields, thus generalizing the results of [BZ17, §4] and
making them more precise.

Theorem 1.3. Let K be a field that contains all roots of 1. Assume that charK �= 2
or K is perfect. Let n � 3 be an integer, and let Q ⊂ Pn−1 be a smooth quadric
hypersurface over K. The following assertions hold.

(i) The group Aut(Q) has bounded finite subgroups if and only if Q(K) = ∅.
(ii) If n is odd and Q(K) = ∅, then every finite subgroup of Aut(Q) is isomor-

phic to (Z/2Z)m, where m � n− 1.
(iii) If n is even and Q(K) = ∅, then every non-trivial element of finite order in

the group Aut(Q) has order 2 or 4, and the order of every finite subgroup
of Aut(Q) divides 8n−1.
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FINITE SUBGROUPS OF LINEAR ALGEBRAIC GROUPS 3

According to Theorem 1.3(ii), if Q is a smooth odd-dimensional quadric without
points over a field of characteristic different from 2 that contains all roots of 1, then
every finite group faithfully acting on Q is abelian. If Q has even dimension, this
is not always the case, see Example 5.5.

Note that Theorem 1.3 fails over a non-perfect field of characteristic 2, see Ex-
ample 4.8. Note also that one cannot drop the assumption on the existence of roots
of 1 in Theorems 1.2 and 1.3. Indeed, the conic over the field of real numbers defined
by the equation x2 + y2 + z2 = 0 has automorphisms of arbitrary finite order.

The plan of our paper is as follows. In §2 we prove Theorem 1.1 in the case when
G is a torus. The proof is based on the Minkowski theorem on finite subgroups of
GLn(Z) and elementary Galois theory.

In §3 we study finite subgroups of linear algebraic groups and prove Theorem 3.7,
which is a more precise version of Theorem 1.1. The idea of the proof is the fol-
lowing. According to a result of Borel and Tits, for every connected anisotropic
reductive group G over a perfect field K, every element g ∈ G(K) is contained
in T (K), for some torus T ⊂ G. Using the results of §2 we bound the order of
g. On the other hand, choosing a faithful representation of G we get an embed-
ding G(K) ⊂ GLN (K) for some positive integer N . This, together with a Burnside
type result due to [HP76] (see Theorem 3.6 below), proves that G(K) has bounded
finite subgroups.

In §4 we describe automorphism groups of Severi–Brauer varieties and prove
Theorem 1.2. In §5 we prove Theorem 1.3.

Throughout the paper by K̄ we denote an algebraic closure of a field K, and by
Ksep we denote a separable closure of K (recall that Ksep = K̄ provided that K is
perfect). Given a variety X defined over K, for an arbitrary field extension K ⊃ K

we denote byXK the corresponding scalar extensions toK, and by X(K) we denote
the set of K-points of X. Abusing notation a bit, we write Pn for a projective space
over a field K, and similarly write Gm and Ga for the multiplicative and additive
groups, respectively.

2. Tori

In this section we study elements of finite order in algebraic tori.
The following result is a famous theorem of H.Minkowski, see [M1887, §1]

or [Ser07, Theorem 1].

Theorem 2.1. For any positive integer n, the group GLn(Z) has bounded finite
subgroups.

Theorem 2.1 tells us that the maximal order ΥA(n) of a finite subgroup in GLn(Z)
and the least common multiple ΥM (n) of the orders of such subgroups are well de-
fined constants depending only on n. For small n, one can compute the values of
ΥA(n) and ΥM (n). For instance, we have

ΥA(1) = ΥM (1) = 2, ΥA(2) = 12, ΥM (2) = 24, ΥA(3) = ΥM (3) = 48,

see e.g. [Ser07, §1.1] and [Tah71, §1]. In particular, neither of the bounds given by
ΥA(2) and ΥM (2) is strictly stronger than the other one.

The following is the main technical result of this section.

Lemma 2.2. Let n and d be positive integers. Let K be a field such that the char-
acteristic of K does not divide d, and K contains a primitive d-th root of 1. Let T
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4 CONSTANTIN SHRAMOV AND VADIM VOLOGODSKY

be an anisotropic n-dimensional algebraic torus over K such that T (K) contains a
point of order d. Then d � ΥA(n) and d divides ΥM (n).

Proof. Let Ť = Hom(Gm, TKsep) be the lattice of cocharacters of T . Recall
(see [Bor91, §8.12]) that the functor T �→ Ť induces an equivalence between the
category of algebraic tori over K and the category of free abelian groups of finite
rank equipped with an action of the Galois group Gal(Ksep/K) such that the image
of the homomorphism Gal(Ksep/K) → Aut(Ť ) is finite. Denote this image by Θ.

The group of d-torsion elements of T (Ksep) is isomorphic, as a Galois module,
to Ť ⊗ μd, where μd is the group of d-th roots of unity in Ksep. Since K contains
a primitive d-th root of 1, the Galois module μd is the trivial module Z/dZ, so
that the Galois module Ť ⊗ μd is isomorphic to Ť /dŤ . Hence, a point x ∈ T (K)
of order d can be viewed as a Gal(Ksep/K)-invariant element v̄ ∈ Ť /dŤ of order d
(so that mv̄ �= 0 for m < d). Let v ∈ Ť be any preimage of v̄ under the projection
Ť → Ť /dŤ , and let

w =
∑
θ∈Θ

θ(v).

Since v̄ is Gal(Ksep/K)-invariant, the image of w in Ť /dŤ is equal to |Θ|v̄. On the
other hand, it is clear that w is a Gal(Ksep/K)-invariant element of Ť . By the above
mentioned equivalence of categories, w gives rise to a non-trivial homomorphism
Gm → T , provided that w itself is non-zero. Since T is anisotropic, we conclude
that w = 0. Therefore, |Θ| divides d, and the required assertion follows. �

Remark 2.3. J.-L. Colliot-Thélène pointed out to us that the proof of Lemma 2.2
can be reformulated in the following way. The short exact sequence of Θ-modules

0 −→ Ť
d−→ Ť −→ Ť /dŤ −→ 0

gives rise to the long exact sequence of cohomology groups

(2.1) . . . → H0(Θ, Ť ) → H0(Θ, Ť /dŤ ) → H1(Θ, Ť ) → . . .

Since T is anisotropic, we have that H0(Θ, Ť ) = 0. Thus, the second map in (2.1)
is injective. On the other hand, the group H1(Θ, Ť ) is annihilated by |Θ| (see
for instance [CF67, Proposition IV.6.3]). It follows that the group H0(Θ, Ť /dŤ ) of
d-torsion points of T (K) is also annihilated by |Θ|.

Lemma 2.2 implies the following result.

Corollary 2.4. Let K be a field that contains all roots of 1, and let T be an
anisotropic n-dimensional torus over K. Let g ∈ T (K) be an element of finite order
d, and let Γ ⊂ T (K) be a finite subgroup. Then d is not divisible by charK, one
has d � ΥA(n), and d divides ΥM (n). Moreover, one has |Γ| � ΥA(n)

n, and |Γ|
divides ΥM (n)n.

Proof. Note that if charK = p is positive, then T (K) does not contain elements of
order p, because TKsep ∼= Gn

m, and there are no such elements in (Ksep)∗. Thus, if
there is an element of finite order d in T (K), then d is not divisible by p, so that
d � ΥA(n) and d divides ΥM (n) by Lemma 2.2. It remains to notice that every
finite subgroup Γ of T (K) is an abelian group generated by at most n elements.
Therefore, |Γ| � ΥA(n)

n and |Γ| divides ΥM (n)n. �
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FINITE SUBGROUPS OF LINEAR ALGEBRAIC GROUPS 5

Example 2.5. Let K be a field that contains all roots of 1, and let T be a one-
dimensional torus over K that is different from Gm. Since ΥA(2) = ΥM (2) = 2,
we conclude from Corollary 2.4 that every non-trivial finite subgroup of T (K) has
order 2. If charK = 2, then T (K) does not contain non-trivial finite subgroups at
all, because there are no elements of order 2 in (Ksep)∗.

In certain cases the bound provided by Corollary 2.4 can be improved.

Example 2.6. Let K be a field that contains all roots of 1, and let K ⊂ L be a
Galois extension of degree n. Consider the torus T = RL/KGm/Gm over K, where
RL/K denotes the Weil restriction of scalars, and the embedding Gm ↪→ RL/KGm

comes by adjunction from the identity morphism Gm → Gm. Let Γ be a finite
subgroup of T (K) ∼= L∗/K∗. We claim that |Γ| divides n. Indeed, since K contains
all roots of 1, there is a well-defined homomorphism

ζ : (L∗/K∗)tors → Hom
(
Gal(L/K), μ∞(K)

)

which sends a torsion element α ∈ L∗/K∗ to the map

γ �→ γ(α̃)

α̃
,

where α̃ is an arbitrary preimage of α in L∗. It is easy to see that ζ is injective.
Since Γ is a subgroup of (L∗/K∗)tors, this implies that |Γ| divides n.

3. Linear algebraic groups

In this section we study finite subgroups of linear algebraic groups and prove
Theorem 1.1.

Recall that a linear algebraic group G over a field K is a smooth closed subgroup
scheme of GLN over K. In particular, the group G(K) of its K-points has a faithful
finite-dimensional representation in a K-vector space. We refer the reader to [Bor91]
and [Spr98] for the basics of the theory of linear algebraic groups.

A connected semi-simple algebraic group G is said to be simply connected if every
central isogeny G̃ → G, where G̃ is a connected semi-simple group, is necessarily an
isomorphism. Recall that every connected semi-simple group G admits a universal
cover which is a pair consisting of a connected semi-simple simply connected group
G̃ and a central isogeny G̃ → G. The group scheme theoretic kernel of the latter
isogeny is called the algebraic fundamental group of G and is denoted by π1(G).
This is a finite group scheme whose order |π1(G)| equals the order of the topological
fundamental group of the connected semi-simple group over C constructed from the
the root datum of G

K̄
.

Let H be a quasi-simple algebraic group over an algebraically closed field (that
is, H has no proper infinite normal closed subgroups). One defines the set T (H) of
torsion primes of H to be the empty set if H has type An or Cn. If H has type Bn,
Dn, or G2, we set T (H) = {2}; if H has type F4, E6, or E7, we set T (H) = {2, 3}; if
H has type E8, we set T (H) = {2, 3, 5}. Given any connected semi-simple algebraic
group G over a field K we say that a prime p is a torsion prime of G if p is a torsion
prime for some quasi-simple direct factor of G̃

K̄
, where G̃ is the universal cover of

G.
Similarly to the case of an algebraically closed field, many properties of linear

algebraic groups are determined by their maximal tori. Note that in general a
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6 CONSTANTIN SHRAMOV AND VADIM VOLOGODSKY

linear algebraic group G over a non-algebraically closed field K may contain non-
isomorphic maximal tori, but their dimension still equals the dimension of maximal
tori in GK̄, see [Spr98, Theorem 13.3.6(i)] and [Spr98, Remark 13.3.7]; this dimen-
sion is called the rank of G.

Recall that an element g ∈ G(K) is called semi-simple if its image in GLN (K)
is diagonalizable over an algebraic closure K̄ of K. The notion of a semi-simple
element is intrinsic, that is, it does not depend on the choice of N and an embed-
ding G ↪→ GLN (K); see [Spr98, §2.4]. The main tool that will allow us to apply the
results of §2 is the following theorem.

Theorem 3.1 (see [Spr98, Corollary 13.3.8(i)]). Let G be a connected linear alge-
braic group over a field K, and let g ∈ G(K) be a semi-simple element. Then there
exists a torus T ⊂ G such that g is contained in T (K).

Corollary 3.2. Let G be a connected linear algebraic group over a field K, and
let g ∈ G(K) be a finite order element whose order is not divisible by the character-
istic of K. Then there exists a torus T ⊂ G such that g is contained in T (K).

For anisotropic reductive groups over perfect fields and for simply connected
semi-simple anisotropic groups over arbitrary fields whose characteristic is large
enough, one has a stronger result.

Theorem 3.3 (see [BT71, Corollary 3.8] and [Tit86, Corollary 2.6]). Let G be a
connected anisotropic reductive group over K. Assume, in addition, that either K is
perfect, or G is semi-simple, simply connected, and charK = p > 0 is not a torsion
prime for G. Then, for every element g ∈ G(K), there exists a torus T ⊂ G such
that g is contained in T (K).

Corollary 3.4. Under the assumptions of Theorem 3.3 the order of every finite
order element of G(K) is not divisible by the characteristic of K.

Proof. By Theorem 3.3 it suffices to prove the assertion in the case when G is a
torus, in which case it is given by Corollary 2.4. �

Note that over fields of positive characteristic non-reductive linear algebraic
groups may have unbounded finite subgroups. For instance, the p-torsion sub-
group of Ga over an infinite field of characteristic p is an infinite-dimensional vector
space over the field Fp of p elements. However, this example is in a certain sense
the only source of unboundedness for unipotent groups.

Lemma 3.5. Let G be a unipotent group over a field K. If charK = 0, then the
group G(K) does not contain elements of finite order greater than 1. If charK =
p > 0, then G(K) is a p-primary torsion group.

Proof. Without loss of generality we may assume that K is algebraically closed.
Then G is isomorphic to a closed subgroup of the group Un of unipotent upper
triangular matrices (see e.g. [Spr98, Proposition 2.4.12]). Thus, we may assume
that G = Un. The lemma follows since Un can be obtained as a consecutive
extension of groups isomorphic to Ga. �

We will need the following auxiliary fact about orders of finite groups with given
exponents proved in [HP76].
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FINITE SUBGROUPS OF LINEAR ALGEBRAIC GROUPS 7

Theorem 3.6. Let n and d be positive integers, and let K be a field. Let Γ ⊂ GLn(K)
be a finite subgroup. If charK > 0, denote by |Γ|′ the largest factor of |Γ| which
is not divisible by charK; otherwise put |Γ|′ = |Γ|. Suppose that for every g ∈ Γ
such that the order of g is not divisible by the characteristic of K, one has gd = 1.
Then |Γ|′ divides dn.

Proof. It is proved in [HP76, Theorem 1] that under the above assumptions one
has |Γ|′ � dn. Applying this to the q-Sylow subgroups Γq for all primes q �= charK,
we see that |Γq| � dnq , where dq is the largest power of q dividing d. This imme-
diately implies that |Γq| divides dnq , and hence |Γ|′ =

∏
q |Γq| divides the number∏

q dq, which in turn divides d. �

Now we state and prove a more precise version of Theorem 1.1.

Theorem 3.7. Let r and n be positive integers. Let K be a field that contains all
roots of 1, and let G be an anisotropic linear algebraic group over K such that the
number of K-points of the group of connected components of G is at most r and
the rank of G is at most n. Denote by N(G) the minimal dimension of a faithful
representation of the maximal reductive quotient of the neutral component of GK̄.
Let Γ be a finite subgroup of G(K). The following assertions hold.

(i) If G is reductive and K is perfect, then |Γ| divides rΥM (n)N(G).
(ii) Suppose that G is an arbitrary linear algebraic group. If charK > 0, denote

by |Γ|′ the largest factor of |Γ| which is not divisible by charK; otherwise
put |Γ|′ = |Γ|. Then |Γ|′ divides rΥM (n)N(G).

(iii) Assume that G is connected, semi-simple, and charK = p > 0 is not a
torsion prime for G. Write |π1(G)| = lpm, for some non-negative integers
m and l such that l is not divisible by p. Then Γ is a semi-direct product
Γ = Γ1 � Γ2 of its normal subgroup Γ1 whose order is not divisible by p,
and an abelian p-group Γ2 of exponent less than or equal to pm. Moreover,
|Γ1| divides rΥM (n)N(G).

Proof. Clearly, we may assume that G is connected, so that in particular r = 1.
Also, we assume that the rank of G equals n. Note that assertion (i) follows from
assertion (ii) and Corollary 3.4.

Let g ∈ G(K) be an element of finite order not divisible by charK. Then, by
Corollary 3.2, the element g is contained in some subtorus of G. Thus, it follows
from Corollary 2.4 that

gΥM (n) = 1.

Let Ru(GK̄
) be the unipotent radical of G

K̄
. (Note that unless K is perfect the

group Ru(GK̄
) need not be defined over K.) Then G

K̄
/Ru(GK̄

) is a reductive group
over K̄. By assumption, the group (GK̄/Ru(GK̄))(K̄) admits a faithful representa-
tion in an N(G)-dimensional vector space over K̄:

(G
K̄
/Ru(GK̄

))(K̄) ↪→ GLN(G)(K̄).

Composing this embedding with the projection G(K) → (GK̄/Ru(GK̄))(K̄) we con-
struct a homomorphism

φ : G(K) → GLN(G)(K̄),

whose kernel is contained in Ru(GK̄)(K̄). By Lemma 3.5, every element of finite
order in Ru(GK̄)(K̄) has order divisible by charK. This means that the image
φ(Γ) of a finite subgroup Γ ⊂ G(K) in GLN(G)(K̄) has order divisible by the largest

Licensed to NATRESMAMOS. Prepared on Tue Nov  2 06:18:14 EDT 2021 for download from IP 92.242.58.41.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8 CONSTANTIN SHRAMOV AND VADIM VOLOGODSKY

factor |Γ|′ of |Γ| not divisible by charK; in particular, if charK = 0, then Γ projects
isomorphically to (G

K̄
/Ru(GK̄

))(K̄). Theorem 3.6 applied to φ(Γ) implies that |Γ|′
divides ΥM (n)N(G). This proves assertion (ii).

For the proof of assertion (iii), observe that since the group scheme π1(G) is
commutative, we have that π1(G) ∼= Z×Z ′, where Z is a group scheme of order pm

and Z ′ is a group scheme whose order is not divisible by p. The central extensions

Z ′ → G̃ → G̃/Z ′,

Z → G̃/Z ′ → G

give rise to the exact sequences of groups

Z ′(K) −→ G̃(K) −→ (G̃/Z ′)(K) −→ H1
fl(specK, Z ′),

Z(K) −→ (G̃/Z ′)(K) −→ G(K)
N−→ H1

fl(specK, Z),

where the groups on the right stand for cohomology of Z ′ and Z regarded as sheaves
for the fppf topology on specK, and H1

fl denotes the first cohomology group for the

fppf topology (see, for example, [Mil80, § III.4]). Set Γ1 = Γ ∩ kerN . By Corollary

3.4 the group G̃(K) has no elements of order p. Since the multiplication by p is
invertible in Z ′, the same is true for H1

fl(specK, Z ′). Hence Γ1 has no elements

of order p. Thus, by assertion (ii) the order of Γ1 divides ΥM (n)N(G). On the
other hand, by construction Γ1 is a normal subgroup of Γ, and Γ/Γ1 is a subgroup
of H1

fl(specK, Z). The latter is an abelian group annihilated by pm. Hence, the

same is true for Γ/Γ1. Finally, since Γ1 has no elements of order p, a p-Sylow
subgroup of Γ projects isomorphically to Γ/Γ1. Thus, the group Γ is isomorphic to
a semi-direct product of Γ1 and Γ/Γ1. �

Recall that for every positive integer n there exists a finite collection of re-
ductive group schemes G1, . . . ,Gr(n) over specZ, such that every connected re-
ductive group of rank at most n over an algebraically closed field K can be ob-
tained from one of Gi’s via the base change along the morphism specK → specZ
(see [SGA3, Theorem XXV.1.1]). By [SGA3, Proposition VIB.13.2], every such Gi

admits an embedding into a group GLNi
over specZ for some positive integer Ni.

Thus, there exists a number N(n) with the following property: for every alge-
braically closed field K and every connected reductive group G of rank at most n
over K, the group G(K) has a faithful representation of dimension at most N(n).

Corollary 3.8. In the notation of assertions (i), (ii), and (iii) of Theorem 3.7,
the orders |Γ|, |Γ|′, and |Γ1|, respectively, divide the number rΥM (n)N(n).

Proof. Let us use the notation of the proof of Theorem 3.7. The group G
K̄
/Ru(GK̄

)
has the same rank as G

K̄
(which is equal to the rank of G). Indeed, the rank of a

unipotent algebraic group is zero. Hence, the rank of GK̄/Ru(GK̄) is greater than
or equal to the rank of GK̄. On the other hand, by [Bor91, Theorem 10.6(4)],
every extension of a torus by a connected unipotent group over K̄ admits a section,
which means that the rank of G

K̄
is greater than or equal to the rank of the

quotient GK̄/Ru(GK̄). On the other hand, GK̄/Ru(GK̄) is a connected reductive
group. Therefore, it admits a faithful representation in an N(n)-dimensional vector
space over K̄. �
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FINITE SUBGROUPS OF LINEAR ALGEBRAIC GROUPS 9

4. Severi–Brauer varieties

In this section we describe automorphism groups of Severi–Brauer varieties and
prove Theorem 1.2, as well as some more special results for Severi–Brauer varieties
over non-perfect fields. We refer the reader to [Art82] for the definition and basic
facts concerning Severi–Brauer varieties.

Let A be a central simple algebra of dimension n2 over an arbitrary field K, and
let A∗ be the corresponding inner form of the algebraic group GLn. By definition,
for every scheme S over K, the group A∗(S) is the group of invertible elements in the
algebra A⊗K O(S). Also denote by A∗/Gm the quotient of A∗ by its center. The
latter is an inner form of PGLn. Let X be the Severi–Brauer variety corresponding
to A. Recall that X represents the functor that takes a scheme S over K to the set
of right ideals I in the sheaf of algebras A⊗K OS which are locally free of rank n
as OS-modules and such that the quotient (A⊗K OS)/I is also locally free. The
action of the group A∗(S) on A⊗K OS by conjugation induces a homomorphism

(4.1) A∗/Gm → Aut(X),

where the target is the group scheme of automorphisms of X.
The following fact is well known to experts (cf. Theorem E on page 266 of [Châ44],

or [Art82, §1.6.1]), but for the reader’s convenience we provide a proof.

Lemma 4.1. Homomorphism (4.1) is an isomorphism. Moreover, it induces an
isomorphism Aut(X) ∼= A∗/K∗.

Proof. For the first assertion, it suffices to prove that (4.1) is an isomorphism after
the base change to Ksep. But A⊗K Ksep is the matrix algebra and XKsep ∼= Pn−1

Ksep .
Thus, the base change (4.1) boils down to the natural homomorphism PGLn →
Aut(Pn−1

Ksep) which is known to be an isomorphism.
For the second assertion, consider the exact sequence of groups with Gal(Ksep/K)-

action

1 → (Ksep)∗ → A∗(Ksep) → Aut(X)(Ksep) → 1

and the corresponding exact sequence of Galois cohomology groups

1 → K∗ → A∗ → Aut(X) → H1(Gal(Ksep/K), (Ksep)∗).

The latter cohomology group vanishes by Hilbert’s Theorem 90, and the assertion
of the lemma follows. �

Recall the reduced norm homomorphism:

Norm: A∗ → K∗.

One has Norm(cx) = cn Norm(x), for every c ∈ K∗ and x ∈ A∗. Hence, Norm
induces a homomorphism

(4.2) A∗/K∗ → K∗/(K∗)n,

where (K∗)n ⊂ K∗ is the subgroup of n-th powers.

Lemma 4.2. Let n be a positive integer, let K be a field that contains all roots
of 1, and let A be a central division algebra of dimension n2 over K. Then, for
every finite subgroup Γ ⊂ A∗/K∗, the restriction of the homomorphism (4.2) to Γ
is injective:

Γ ↪→ K∗/(K∗)n.
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10 CONSTANTIN SHRAMOV AND VADIM VOLOGODSKY

In particular, Γ is abelian and, for every element g ∈ A∗/K∗ of finite order, the
order of g divides n.

Proof. Denote by A∗
1 the kernel of the reduced norm homomorphism Norm: A∗ →

K∗. We have an exact sequence of groups

1 → μn(K) → A∗
1 → A∗/K∗ → K∗/(K∗)n,

where μn(K) ⊂ K∗ is the subgroup of n-th roots of unity. In particular, every
element g ∈ A∗/K∗ of finite order whose image in K∗/(K∗)n is 1 lifts to an ele-
ment g̃ ∈ A∗

1 ⊂ A∗, which also has finite order. Thus it suffices to prove that every
element x ∈ A∗ of finite order belongs to K∗ ⊂ A∗. Assume that xd = 1. Using
that K contains all roots of 1, we get

0 = xd − 1 =
∏

ε∈μd(K)

(x− ε).

Since A has no zero divisors, we conclude that x ∈ μd(K) as desired. �
We need an auxiliary result about bilinear forms on finite abelian groups.

Lemma 4.3. Let Γ be a finite abelian group, and let B : Γ ⊗Z Γ → Q/Z be a
homomorphism such that B(g, g) = 0 for every g ∈ Γ. Then there exists a subgroup
Λ ⊂ Γ such that the restriction of B to Λ⊗Z Λ is zero, and |Γ| divides |Λ|2.

Proof. It is enough to prove the assertion in the case when Γ is an 
-group for some
prime number 
. We will do this by induction on the order of Γ.

Choose an element g of maximal possible order 
r in Γ, and let 〈g〉 ∼= Z/
rZ be
the cyclic group generated by g. Set

Γ′ = {g′ ∈ Γ | B(g, g′) = 0}.
Then Γ′ is a subgroup of Γ, and there is an injective homomorphism

Γ/Γ′ ↪→ Hom(〈g〉,Q/Z) ∼= Z/
rZ.

Thus
|Γ| � |〈g〉| · |Γ′| = 
r|Γ′|.

Note that Γ′ contains the cyclic group 〈g〉. Since g has maximal possible order
in Γ, we have Γ′ ∼= 〈g〉 × Γ′′ for some subgroup Γ′′ ⊂ Γ′. By induction, the group
Γ′′ contains a subgroup Λ′′ such that the restriction of B to Λ′′ ⊗Z Λ′′ is zero, and
|Γ′′| � |Λ′′|2. Set Λ = 〈g〉 × Λ′′. Then the restriction of B to Λ⊗Z Λ is zero, and

|Λ|2 = 
2r|Λ′′|2 � 
2r|Γ′′| = 
r|Γ′| � |Γ|.
Since all these numbers are powers of 
, the assertion of the lemma follows. �

Corollary 4.4. Let n be a positive integer, let K be a field of characteristic p � 0
that contains all roots of 1, and let A be a central division algebra of dimension n2

over K. Let Γ ⊂ A∗/K∗ be a finite subgroup. Then Γ ∼= Γ1 × Γ2, where Γ2 is a
p-group, while the order of Γ1 is not divisible by p and divides n2.

Proof. According to Lemma 4.2, the group Γ is abelian. Thus, if p > 0, then

Γ ∼= Γ1 × Γ2

for its p-Sylow subgroup Γ2 and a subgroup Γ1 of order not divisible by p. If p = 0,
we set Γ1 = Γ and let Γ2 be a trivial group. Denote by μ∞(K) the subgroup of
roots of 1 in K.
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FINITE SUBGROUPS OF LINEAR ALGEBRAIC GROUPS 11

Let the (infinite) group Γ̃ ⊂ A∗ be the preimage of Γ under the projection

A∗ → A∗/K∗.

Consider the commutator pairing

B : Γ⊗Z Γ → μ∞(K), (g, h) �→ g̃h̃g̃−1h̃−1,

where g̃ and h̃ are arbitrary preimages of g and h in Γ̃. Since Γ̃ is a central extension
of the abelian group Γ, the map B is a well-defined homomorphism. Choosing an
embedding μ∞(K) ↪→ Q/Z, we may consider B as a Z-bilinear pairing with values
in Q/Z.

Apply Lemma 4.3 to the restriction of the pairing B to Γ1 ⊗Z Γ1. We infer that
there exists a subgroup Λ ⊂ Γ1 such that B is trivial on Λ ⊗Z Λ and |Γ1| divides
|Λ|2. In particular, the preimage Λ̃ of Λ in Γ̃ is abelian. Let L be the subalgebra of

A generated by Λ̃. Then L is commutative, and thus it is a field. Furthermore, L
is contained in the composite of field extensions such that each of them is obtained
by adjoining to K some element a ∈ A with ak ∈ K for some positive integer k not
divisible by p. Since K contains all roots of 1, an extension of this form is a splitting
field of the polynomial xk − a; thus, it is a Galois extension of K. Therefore, L is a
Galois extension of K as well. On the other hand, the number |Gal(L/K)| = [L : K]
divides n, see for instance [Bou58, §10.3].

Finally, recall from Example 2.6 that |Λ| divides |Gal(L/K)|. Therefore, |Γ1|
divides n2. �

The following is a more precise version of Theorem 1.2(ii).

Proposition 4.5. Let K be a field of characteristic p � 0 that contains all roots of 1.
Let A be a central division algebra over K of dimension n2, and let X be the corre-
sponding Severi–Brauer variety. Write n = n′pm for some non-negative integers m
and n′ such that n′ is not divisible by p. Then every finite subgroup Γ ⊂ Aut(X) is
a direct product Γ = Γ1 × Γ2 of an abelian group Γ1 whose exponent divides n′ and
whose order divides n′2, and an abelian p-group Γ2 whose exponent divides pm.

Proof. By Lemma 4.1, one has Γ ⊂ A∗/K∗. Therefore, the assertion about the
product structure and about the order of Γ1 follows from Corollary 4.4. The asser-
tion about the exponents of Γ1 and Γ2 follows from Lemma 4.2. �

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Assertion (ii) is a particular case of Proposition 4.5. Also,
Proposition 4.5 tells us that if A is a central division algebra, then the group Aut(X)
has bounded finite subgroups.

Now suppose that A is not a division algebra. Then

A ∼= D ⊗K Matm(K)

for some 2 � m � n, where Matm(K) denotes the algebra of m × m-matrices,
and D is a central division algebra over K, see for instance [GS06, Theorem 2.1.3].
Thus A contains a subalgebra isomorphic to Matm(K). Since the field K contains
roots of 1 of arbitrarily large degree, we see from Lemma 4.1 that the group Aut(X)
contains elements of arbitrarily large finite order. This completes the proof of
assertion (i). �
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12 CONSTANTIN SHRAMOV AND VADIM VOLOGODSKY

Remark 4.6. Let A be a central simple algebra over a field K. Denote by A∗ the
algebraic group whose S-points are invertible elements in the algebra A ⊗K OS .
We have a natural embedding Gm ↪→ A∗ induced by the homomorphism O∗

S ↪→
(A⊗K OS)

∗. The quotient group scheme A∗/Gm is anisotropic if and only if A is a
division algebra (see, for instance, [Bor91, §23.1]). In particular, if K is perfect, then
Theorem 1.2(i) follows from Theorem 1.1 applied to the reductive group A∗/Gm.

Similarly, under the assumptions of Proposition 4.5, the fact that every finite
subgroup of A∗/K∗ is a semi -direct product of its abelian p-Sylow subgroup and a
normal subgroup of bounded order is a special case of Theorem 3.7(iii) applied to
the reductive group A∗/Gm. Indeed, the algebraic fundamental group of A∗/Gm is

isomorphic to the group scheme μn = ker(Gm
n−→ Gm), which has order n. Also,

since A∗/Gm has type An−1, the set of torsion primes for A∗/Gm is empty.

Remark 4.7. Let K be a perfect field of positive characteristic p, and let A be a
central division algebra of dimension n2 over K. Then p does not divide n. Indeed,
the Frobenius morphism Fr: K̄∗ → K̄∗ is an isomorphism and, hence, the Brauer
group

Br(K) ∼= H2(Gal(K̄/K), K̄∗)

of K has no p-torsion elements and it is p-divisible. Therefore, our claim follows
from the fact that, over any field, the dimension of a central division algebra and
the order of its class in the Brauer group have the same prime factors (see for
instance [Lie08, Lemma 2.1.1.3]).

The restriction on the characteristic of K in Theorem 1.2 is essential for validity
of the statement.

Example 4.8. Let F be a field of characteristic p > 0, and let K = F (x, y) be
the field of rational functions in two variables, so that K is a non-perfect field of
characteristic p. Let A be an algebra over K with generators u and v and relations

vp = x, up = y, vu− uv = 1.

Then A is a central division algebra of dimension p2 over K. This is a special case
of the Azumaya property of the ring of differential operators in characteristic p
(see [BMR08, Theorem 2.2.3]), but can be also checked directly. Indeed, it suffices
to check that A

K̄
= A⊗K K̄ is the algebra of p× p-matrices. To see this, take the

elements
v′ = v − x

1
p , u′ = u− y

1
p

in A
K̄
with x

1
p , y

1
p ∈ K̄. Then v′p = u′p = 0 and v′u′ − u′v′ = 1. Define an action

of A
K̄
on the K̄-vector space V = K̄[z]/(zp) letting u′ act as the multiplication by z

and v′ as d
dz . It is easy to verify that V is an irreducible representation of AK̄.

Hence, by the Jacobson density theorem the homomorphism AK̄ → EndK̄(V ) is
surjective. Since the dimension of A

K̄
is at most p2 for obvious reasons, the latter

homomorphism is actually an isomorphism.
Now, since the intersection of F (v)∗ with K∗ is F (x)∗ = F (vp)∗, we see that

the group A∗/K∗ contains F (v)∗/F (vp)∗ as a subgroup. The latter group is p-
torsion, because the p-th power of any rational function in v is a rational function
in vp. In other words, it can be regarded as a vector space over the field Fp of p
elements. At the same time, F (v) is a vector space of dimension p over F (vp), so
that F (v)∗/F (vp)∗ can be thought of as a projective space of dimension p− 1 > 0
over an infinite field F (vp). Thus, the set F (v)∗/F (vp)∗ is infinite, which implies
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FINITE SUBGROUPS OF LINEAR ALGEBRAIC GROUPS 13

that F (v)∗/F (vp)∗ is infinite-dimensional as a vector space over Fp. In particular,
for p = 2 this construction provides an example of a conic C over a non-perfect field
of characteristic 2 such that C is acted on by elementary 2-groups of arbitrarily large
order.

However, for central division algebras whose dimension is divisible by the char-
acteristic of K one can prove the following result.

Proposition 4.9. Let A be a central division algebra of dimension n2 over a field
K of finite characteristic p. If there exists an element v ∈ A that is inseparable
over K (i.e., the field extension K(v) ⊃ K is inseparable), then the group A∗/K∗

has unbounded finite subgroups. On the other hand, if K contains all roots of 1,
and every element v ∈ A is separable over K, then the group A∗/K∗ has bounded
finite subgroups.

Proof. If v ∈ A is not separable, then there exists a subfield

K ⊂ L ⊂ K(v)

which is a purely inseparable extension of K of degree p. Then every non-trivial
element of the group L∗/K∗ has order p. Since |L∗/K∗| = ∞, we conclude that the
group L∗/K∗ ⊂ A∗/K∗ has unbounded finite subgroups.

Conversely, suppose that every element of A is separable overK. Denote by n′ the
largest factor of n which is not divisible by charK. Then for every element v ∈ A∗

whose image in A∗/K∗ has finite order, one has vn
′ ∈ K∗. Indeed, otherwise vn

′

would be inseparable over K, because
(
vn

′
) n

n′
= vn ∈ K∗

by Lemma 4.2. Hence, the assertion follows from Proposition 4.5. �

Remark 4.10. If p = 2 or p = 3, then every central division algebra A of dimension
p2 over a field K of characteristic p contains an element v ∈ A which is inseparable
over K. For p = 3 this result was proved in [Wed21]. For p = 2 the assertion is
easy. Indeed, choose a subfield L ⊂ A of degree 2 over K. If the extension K ⊂ L

is inseparable, then we are done. Suppose that it is separable. Then K ⊂ L is
a Galois extension. Let σ be the generator of its Galois group. By the Skolem–
Noether theorem (see e.g. [Bou58, §10.1, Théorème 1]) the action of σ on L extends
to an inner automorphism of A given by an element v ∈ A∗, that is,

vuv−1 = σ(u)

for every u ∈ L. Since the degree of L over K is 2, the automorphism σ2 is trivial.
Hence v2 commutes with L. On the other hand, the centralizer of L in A is L itself,
and so we have v2 ∈ L. Observe that

σ(v2) = vv2v−1 = v2.

Since L is a Galois extension of K, this means that the element v2 is, in fact,
contained in K. Thus the field extension K ⊂ K(v) is not separable as desired.
In particular, using Proposition 4.9 we see that, for p = 2 or p = 3 and a central
division algebra A of dimension p2 over a field K of characteristic p, the group
A∗/K∗ has unbounded finite subgroups.
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14 CONSTANTIN SHRAMOV AND VADIM VOLOGODSKY

5. Quadrics

In this section we study automorphism groups of quadrics and prove Theo-
rem 1.3.

Let V be a finite-dimensional vector space over a field K, and let q be a non-
degenerate quadratic form on V . Recall that a quadratic form q is said to be
non-degenerate if the associated symmetric bilinear form

Bq : V × V → K, Bq(v, w) = q(v + w)− q(v)− q(w),

is non-degenerate. If charK = 2 the form Bq is also alternating. Hence, in this case
the dimension of V must be even.

Denote by O(V, q) the orthogonal (linear algebraic) group corresponding to q.
The following result is well-known (see, for instance, [Bor91, §§22.4, 22.6]).

Lemma 5.1. The group O(V, q) is reductive. It is anisotropic if and only if q does
not represent 0.

We will also need the following structural result on quadratic forms over a perfect
field of characteristic 2 due to Arf ([Arf41]).

Lemma 5.2. Let V be a finite-dimensional vector space over a perfect field K of
characteristic 2, and let q be a non-degenerate quadratic form on V (so that in
particular dimV = 2k is even). Then, for some coordinates x1, . . . , x2k on V , the
quadratic form q is given by

(5.1) qa(x1, . . . , x2k) = x2
1 + x1x2 + ax2

2 + x3x4 + . . .+ x2k−1x2k,

where a is an element of K. Moreover, two quadratic forms qa(x1, . . . , x2k) and

qa′(x1, . . . , x2k)

are equivalent if and only if a and a′ have the same image in the cokernel of Artin–
Schreier homomorphism

K → K, c �→ c2 − c,

which is the Arf invariant of the quadratic form. In particular, if dimV > 2 then
every non-degenerate quadratic form on V represents 0.

Lemma 5.3 (cf. [GA13, Lemma 2.1]). Let K be a field of characteristic p > 2. Let
V be a vector space over K, and let q be a non-degenerate quadratic form on V .
Assume that q does not represent 0. Then the group of K-points of O(V, q) has no
elements of order p.

Proof. Assuming the contrary, let g ∈ O(V, q)(K) be an element of order p. Viewing
g as a linear endomorphism of V , we have

gp − 1 = (g − 1)p = 0.

Applying the Jordan Normal Form theorem to g − 1, we can find linearly inde-
pendent vectors v1, v2 ∈ V such that g(v1) = v1 and g(v2) = v1 + v2. Thus, we
have

Bq(v1, v2) = Bq(g(v1), g(v2)) = Bq(v1, v1) +Bq(v1, v2).

Hence, we obtain 2q(v1) = Bq(v1, v1) = 0, that is, q represents 0. �
Lemma 5.4 (cf. [BZ17, Corollary 4.4]). Let K be a field that contains all roots of 1.
Assume that charK �= 2 or K is perfect. Suppose that q does not represent 0. Then
every finite subgroup of O(V, q)(K) is isomorphic to (Z/2Z)m, where m � dimV .
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FINITE SUBGROUPS OF LINEAR ALGEBRAIC GROUPS 15

Proof. By Lemma 5.2, if K is perfect and charK = 2, then we must have dimV = 2.
In this case, by Lemma 5.1, the group O(V, q) is anisotropic and, thus, isomorphic
to a semi-direct product of an anisotropic torus T of rank 1 and the finite group
Z/2Z. According to Example 2.5, the group T (K) does not contain non-trivial finite
subgroups, and hence every non-trivial finite subgroup of O(V, q) is isomorphic
to Z/2Z.

Now assume that charK �= 2. Let g ∈ O(V, q)(K) be an element of finite order.
By Lemma 5.3 the order of g is not divisible by the characteristic of K. Since
K contains all roots of unity, it follows that every such element g ∈ O(V, q)(K)
viewed as a linear endomorphism of V is diagonalizable in an appropriate basis for
V . Moreover, since q does not represent 0, the diagonal entries of the matrix of
g in this basis must be equal to ±1. Hence g2 = 1. It follows that every finite
subgroup Γ ⊂ O(V, q)(K) is isomorphic to (Z/2Z)m for some non-negative integer
m. In particular, Γ is abelian, and thus it is conjugate to a subgroup of the group
of diagonal matrices in GL(V ). Hence, one has m � dimV . �

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let V be an n-dimensional vector space such that Pn−1 is
identified with the projectivization P(V ), and let q be a quadratic form correspond-
ing to the quadric Q.

First, assume that K is a perfect field of characteristic 2. If n is even, then
the quadratic form is non-degenerate; indeed, otherwise its kernel T would be at
least two-dimensional, so that the singular locus of Q, which is Q ∩ P(T ), would
be non-empty. Thus, by Lemma 5.2 one has Q(K) �= ∅. Moreover, writing q in
the form (5.1), we see that Aut(Q) contains a subgroup isomorphic to K∗. Hence,
Aut(Q) has unbounded finite subgroups. If n is odd, the symmetric bilinear form
Bq : V ×V → K associated to q has a one-dimensional kernel. In this case q can be
written as

q(x1, . . . , xn) = x2
1 + r(x2, . . . , xn)

for some coordinates x1, . . . , xn on V and some non-degenerate quadratic form r
in n − 1 variables. Applying Lemma 5.2 to r, we see that Q(K) �= ∅ and Aut(Q)
has unbounded finite subgroups. In fact, in this case Aut(Q) is isomorphic to
the group of linear transformations of the quotient V̄ of V by T which preserve
the induced bilinear form B̄q on V̄ , i.e., to the symplectic group Sp(V̄ , B̄q)(K);
see [Bor91, §22.6]. We see that in the case when charK = 2, assertion (i) holds,
while the assumptions of assertions (ii), (iii), and (iv) do not hold.

From now on we assume that charK �= 2. The group Aut(Q) is isomorphic
to the group of K-points of the group scheme quotient G = O(V, q)/μ2, where
μ2 ⊂ O(V, q) is the central subgroup of order 2. (More geometrically, Aut(Q) can
be identified with the group PO(V, q) of automorphisms of the projective space
P(V ) that preserve q up to a scalar multiple.) By Lemma 5.1, the group G is
anisotropic if and only if Q(K) = ∅. The connected component of identity G◦ ⊂ G
is a connected semi-simple algebraic group. Moreover, the algebraic fundamental
group of G◦ has order 2 if n is odd and order 4 if n is even. Also, note that no
prime other than 2 is a torsion prime for G◦. Thus, assertion (i) of the proposition
follows from Theorem 1.1 applied to G◦. (It also follows that the group Aut(Q) has
no elements of order charK; cf. Lemma 5.1.) The reader will see that the argument
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16 CONSTANTIN SHRAMOV AND VADIM VOLOGODSKY

we give below for the remaining assertions of the proposition also furnishes a direct
proof of (i).

If n is odd, then the embedding μ2 ↪→ O(V, q) splits, so that Aut(Q) is isomorphic
to the subgroup SO(V, q)(K) ⊂ O(V, q)(K) of the orthogonal group that consists
of matrices whose determinant is equal to 1. Thus, assertion (ii) follows from
Lemma 5.4.

Suppose that n is even. We know from Lemma 5.4 that every non-trivial element
of O(V, q)(K) of finite order has order 2. Hence, using the exact sequence

0 → μ2 → O(V, q)(K) → Aut(Q) → K∗/(K∗)2,

we see that every non-trivial element of Aut(Q) of finite order has order 2 or 4.
Let Γ ⊂ Aut(Q) be a finite subgroup. Consider the embedding

Aut(Q) ∼= G(K) ↪→ G(K̄) ∼= O(V, q)(K̄)/{±1},
and let Γ̃ be the preimage of Γ in O(V, q)(K̄). The order of every element of Γ̃

divides 8, and the same is true for the subgroup Γ̂ ⊂ GL(V )(K̄) generated by Γ̃ and

scalar matrices whose orders divide 8. Thus, we conclude from Theorem 3.6 that |Γ̂|
divides 8n. On the other hand, we have |Γ̂| = 8|Γ|. This proves assertion (iii). �

The next example shows that there exist even-dimensional quadrics satisfying
the assumptions of Theorem 1.3 and having a faithful action of non-abelian finite
groups.

Example 5.5. Choose an integer k � 3. Let k be an algebraically closed field
of characteristic zero, and let a1, . . . , ak be independent transcendental variables.
Set K = k(a1, . . . , ak). Consider the Pfister quadratic form

qk =
∑
I

aIx
2
I

in the variables xI , I ⊂ {1, . . . , k}, where aI =
∏

i∈I ai. Let Q be the quadric

defined by the equation qk = 0 in the projective space P2k−1 with homogeneous
coordinates xI .

We claim that Q(K) = ∅. Indeed, if P is a K-point on Q, its homogeneous coor-
dinates can be written as polynomials pI in a1, . . . , ak, such that at least one of them
is a non-zero polynomial. Let M denote the maximal degree of the polynomials pI
in the variable ak. Write

pI = cI,MaMk + cI,M−1a
M−1
k + . . .+ cI,0,

where cI,j are polynomials in a1, . . . , ak−1; at least one of cI,M is a non-zero poly-
nomial. The fact that the quadratic form qk vanishes at P implies that

a2Mk
∑
k �∈I

aIc
2
I,M = 0, a2M+1

k

∑
k �∈I

aIc
2
I∪{k},M = a2Mk

∑
k∈I

aIc
2
I,M = 0.

Thus, at least one of the 2k−1-tuples(
cI,M

)
, k �∈ I,

(
cI∪{k},M

)
, k �∈ I,

provides a point of the projective space P2k−1−1 over the field k(a1, . . . , ak−1) where
the quadratic form

qk−1 =
∑
I

aIx
2
I , I ⊂ {1, . . . , k − 1},
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vanishes. Proceeding by induction, we arrive to the conclusion that the quadratic
form

q1(x0, x1) = x2
∅
+ a{1}x

2
{1}

represents zero over the field k(a1), which is absurd.
Now consider the elements σ, τ ∈ PGL2k(K) acting as

σ(x{1}) = −x{1}, σ(x{2}) = −x{2}, σ(xI) = xI for I �= {1}, {2},
and

τ (xI) = aIxI ,

where I = {1, . . . , k}\I. Then both σ and τ preserve the quadricQ, and σ2 = τ2 = 1.
The commutator ι = σ ◦ τ ◦ σ ◦ τ acts as

ι(xI) = −xI for I = {1}, {2}, {1}, {2},
ι(xI) = xI for I �= {1}, {2}, {1}, {2}.

In particular, ι is a non-trivial element of PGL2k(K), i.e. σ and τ do not commute
with each other. On the other hand, it is clear that σ and τ generate a finite
subgroup in Aut(Q).

Note that the algebraic group Aut(Q) has two connected components (both
over K and over K̄), corresponding to the connected components of the orthogonal
group O(qk). The element σ ∈ Aut(Q) clearly lifts to an element in the neutral
component SO(qk) of O(qk), while τ lifts to an element of SO(qk)K̄. Thus, both σ
and τ are contained in the neutral component of Aut(Q). This gives an example
of a finite non-abelian subgroup of a connected anisotropic reductive group over a
field containing all roots of unity, cf. Lemma 4.2.
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