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Abstract
Rapid technological innovations are constantly influencing the complexification and automatization of the work lines pushing 
human operators to use diverse cognitive processes for supervising complex industrial machines. This urges factories to offer 
wearable cognitive assistants to human operators to analyze, integrate and maintain a considerable amount of information. 
The aim of this review is twofold. First, we borrow theoretical elements from the working memory literature to question the 
way these wearable cognitive assistants could optimize human operators’ cognitive load. Second, we argue that Technology 
Acceptance Model (TAM) and Job Characteristics Model (JCM) may theoretically predict the effectiveness of cognitive 
wearable assistants in enhancing the person–job fit, namely their cognitive performance and well-being. A critical review 
method was used to collect and summarize the most studied models associated with application of wearable devices in the 
workplace. Our review suggests that the current literature on working memory give useful insights concerning the way in 
which information should be displayed to operators to optimize the efficiency of wearable cognitive assistants. Moreover, 
JCM suggests original explanations on the way they can facilitate access to information and in turn increase job satisfaction. 
Finally, a small number of studies that used TAM with wearable devices in an industrial setting provide some interesting 
theoretical and empirical evidence on the acceptance of wearable cognitive assistants. As a conclusion, we argue that using 
wearable cognitive assistants properly would enhance both cognitive performance and well-being of human operators through 
promoting the person–job fit.

Keywords Wearable cognitive assistants · Working memory · Technology Acceptance Model · Job Characteristics Model · 
Person–job fit · Human–machine interface

1  Technological alterations 
in the twenty‑first century workplaces

Since the beginning of the twenty-first century many indus-
tries and organizations began to make micro- and macro-
alterations in their technological structure. These technologi-
cal changes aid them to provide wider and swifter services 
to their customer and clients (Lasi et al. 2014; Saucedo-
Martínez et al. 2017), to compete with their counterparts 
for getting a larger portion of the sale market (Holweg 2008; 
Rüßmann et al. 2015; Saucedo-Martínez et al. 2017), and to 
help employees to perform their tasks with lesser job errors 
(Longo et al. 2017; Maguire 2001).

Using these technological innovations in the workplace 
is not always free of charge. In many cases, companies may 
need to redesign their jobs, working procedure (Davis et al. 

 * Marie Izaute 
 marie.izaute@uca.fr

1 Université Clermont-Auvergne, CNRS, Laboratoire de 
Psychologie Sociale et Cognitive (LAPSCO), 34 avenue 
Carnot, 63000 Clermont-Ferrand, France

2 Higher School of Economics National Research University, 
Moscow, Russia, Moscow, Russia

3 Michelin Recherche et Développement, Innovation Procédés 
Industriels, 23 place des Carmes, 63040 Clermont-Ferrand, 
France

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



104 Cognition, Technology & Work (2021) 23:103–116

1 3

2012; Lasi et al. 2014; Rüßmann et al. 2015) or involve their 
employees in particular training programs (Bekker and Long 
2000; Boothby et al. 2010). Besides, companies need to 
know the degree to which their employees can accept these 
innovations before they widely apply them in the workplace.

2  Dealing with technological changes

Due to the rapid technological progresses, scientists tend to 
redesign the way a particular product is produced or a ser-
vice is given to customers. These alterations not only affect 
jobs but also, influence the duties of workers (Pacaux-Lem-
oine et al. 2017). For example, assembly lines of factories 
are increasingly automated and computerized to be flexible 
and modular (Lasi et al. 2014; Zhang et al. 2019).

To deal with this automatization process, factories are 
required to provide employees with equipment that facili-
tates this deal. It means that employees are going to take over 
more supervisory and regulatory tasks than being merely a 
task performer. In doing so, they will need to improve their 
capacities in terms of anticipating, planning, and reacting 
to a problem (Gorecky et al. 2014; Pacaux-Lemoine et al. 
2017; Stoessel et al. 2008; Zamfirescu et al. 2014). As such, 
the operators’ ability to collect and process information is 
crucial for the smooth functioning of nowadays factories 
which can be a problem when considering the limited capac-
ity of humans to treat information (Lindblom and Thorvald 
2014). Moreover, this increase in the complexity of the tasks 
to perform is likely to stretch the operators’ mental models 
(Moray 1998, Rasmussen and Rouse 1981; Rouse and Mor-
ris 1986), namely the psychological representation of the 
situation of work used by the operators to describe, explain 
and predict the functioning of the system they are operating 
(Johnson-Laird 1983; Johnson-Laird et al. 1998; Rasmus-
sen and Rouse 1981; Rouse and Morris 1986; Moray 1998). 
Since mental models rely at least in part on the ability to 
process information (Johnson-Laird 1983; Johnson-Laird 
et al. 1998), increased automation may lead to a cognitive 
overload because more complex mental models are required. 
Accordingly, two-third of the observed technological acci-
dents in the industry would be due to human errors, probably 
because the human limitations are underestimated (Pacaux-
Lemoine et al. 2017).

Different solutions have been suggested to respond to 
these limitations of the human cognitive system, such as 
redesigning the Human–Machine interfaces (e.g., Villani 
et al. 2017) or optimizing the organization of the assem-
bly lines (e.g., Fast-Berglund and Stahre 2013). In this 
review, we will focus on another of these solutions: the 
use of Wearable Cognitive Assistants (Hao and Helo 2017; 
Unzeitig et al. 2015). The specificity of these devices is 
that they aim at reducing the need of the operators to 

research information by giving them the right informa-
tion at the right time, in an adapted form, whatever their 
location in the factory (Unzeitig et al. 2015). In other 
words, these assistants try to simplify the human–machine 
interface by directly providing the needed information to 
the operators, either proactively (when the operators need 
to be informed of an important event such as an error in 
the assembly line) or reactively (when the operators need 
information such as the level of a given stockpile).

As such, the wearable cognitive assistants are supposed 
to enhance the human–machine interaction (Romero et al. 
2016), to minimize cognitive workload and errors (Romero 
et al. 2015) and maximize job attitudes and well-being-
related outcomes in workers (Richter et al. 2018). Some 
of them, such as intelligent virtual assistants (e.g., Lamon-
tagne et al. 2014), ultra-portable devices like smartphones 
and smartwatches (e.g., Aehnelt and Urban 2014; Ziegler 
et al. 2015), and augmented reality devices (e.g., Dunston 
2008; Jetter et al. 2018; Regenbrecht et al. 2005; Schwald 
and De Laval 2003; Syberfeldt et al. 2017) have already 
been tested in industry. Nonetheless, whether these assis-
tants can make up for the cognitive limitations of human 
operators and improve job attitudes and well-being-related 
outcomes in the workplace remains unclear.

3  The current study

Exploring the extent to which wearable cognitive assis-
tants can influence cognitive performance and well-being 
requires an integrated theoretical framework combining 
elements from cognitive, social and organizational psy-
chology. The current study, therefore, aims to conduct a 
critical review of these fields to identify, report and evalu-
ate their most significant works and models in this regard. 
First, we attempt to understand how the current cognitive 
psychology literature can offer interesting leads on how to 
design and test wearable cognitive assistants in the work-
place. We demonstrate that these assistants are likely to 
help operators cope with job requirements, leading to a 
better person–job fit (Edwards 1991, 2008). Second, we 
present two well-established models, the Job Characteris-
tics Model (JCM), and the Technology Acceptance Model 
(TAM), which have been extensively used with technologi-
cal solutions other than wearable cognitive assistants. We 
show that these models provide useful theoretical insight 
for explaining the extent to which these cognitive assis-
tants could also enhance job satisfaction and make the 
job more likely to match workers’ needs, preferences and 
values, in other words the second way of improving the 
job–person fit (Edwards 1991, 2008; Kristof-Brown et al. 
2005).
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4  Contribution of wearable cognitive 
assistants to humans’ cognitive 
limitations

Due to the increasing automatization, human agents 
become more and more the primary bulwark against dys-
functions in the assembly lines. Accordingly, the ability of 
these agents to process information is crucial. Processing 
and storing information, known as working memory, limits 
the processing speed and the amount of information that 
can be stored in individuals (Baddeley 2012; Barrouillet 
and Camos 2015; Cowan 2010; Engle and Kane 2004; 
Logie 2011; Oberauer et al. 2012). Workers may deal with 
situations in a company that can considerably use up their 
working memory (Lindblom and Thorvald 2014). This is 
the case of the situations that generate interfering thoughts 
(i.e., where workers have to think about one task while 
performing another); situations that leads to a cognitive 
tunnel (i.e., where information relevant for the task at hand 
is scattered in several different places); situations where 
operators are required to keep new information in memory; 
or situations of cognitive constraints (i.e., where relevant 
information is not easily accessed because it is swamped 
by other information).

It is, therefore, essential to have a theoretical under-
standing of how working memory works under such cir-
cumstances before applying wearable cognitive assistants 
in the workplace. Working memory is one of the most 
studied structures in cognitive psychology (Baddeley 
2012; Barrouillet and Camos 2015; Cowan 2010; Engle 
and Kane 2004; Logie 2011; Oberauer et al. 2012). Due 
to various definitions of working memory, it is hard to 
provide a precise definition of working memory (Cowan 
2017), however, there are common points in the main 
models and definitions. First, working memory serves to 
manage new, unusual or complex situations as opposed, 
by definition, to well-known, simple situations involving 
automated processes. Second, working memory is strongly 
associated with cognitive task control. Thus, we use work-
ing memory when we have to focus on a specific task, 
to maintain an active goal, or when checking for errors 
requires an effort or our sustained attention. It also comes 
into play when we have to divide or alternate our attention 
between several tasks, or when a conflict between differ-
ent actions must be resolved. Third, we also use work-
ing memory to ignore irrelevant cues, in particular when 
information has to be kept active in a context with a high 
level of distraction.

Working memory models differ when they come to 
the factors that are responsible for its limitation. A first 
limitation is related to the amount of information that can 
be processed simultaneously (Cowan 2010). According 

to Cowan (2016), for example, only four elements of 
information can be stored and processed in the focus of 
attention. These elements may be very basic (e.g., a digit, 
a word) or more elaborated in that they create a chunk 
of elements (e.g., memorizing several digits that form a 
number). Another limitation is related to the time spent to 
focus on the information in working memory (Barrouil-
let and Camos 2015). Indeed, traces in working memory 
would decay with time and would need attention to be 
re-activated and maintained. In other words, when atten-
tion is paid to something other than holding information 
in working memory, this information will deteriorate. A 
third possibility is to see environmental interference as the 
main cause of the deterioration of information in working 
memory (Oberauer et al. 2012). The more the environment 
contains elements that may interfere with information held 
in working memory (e.g., when someone talks when we 
try to retain a list of words), the more traces in work-
ing memory will deteriorate. Alternatively, it may be our 
innate ability to control our attention and, therefore, ignore 
distractors (Engle and Kane 2004) that may be the more 
crucial factor. Finally, the multi-component model (Bad-
deley 2012; Logie 2011, 2018) regards working memory 
as an agglomerate of components specialized in process-
ing a given type of information (e.g., visual, verbal, and 
spatial). For these models, each component could process 
a limited amount of information, but the total amount of 
information processed could be maximized if there are dif-
ferent types of information. In particular, it would appear 
that verbal information could be stored independently of 
other information via a self-repeating mechanism (articu-
latory rehearsal: Camos 2015). Finally, it is worth noting 
that many studies suggest that knowledge already acquired 
(and stored in our long-term memory) has a major impact 
on how working memory operates (e.g., Barrouillet et al. 
2004 and Unsworth 2010). Accordingly, experts would 
have quicker access to their long-term memory, and the 
knowledge stored there would be better organized (Erics-
son and Kintsch 1995). Consequently, their use of working 
memory would be improved using such information which 
is generally more relevant and more accessible.

Interestingly, Wickens (1980, 2002, 2008) developed a 
model aimed at describing information processing in mul-
titasks contexts and having some similarities with classic 
working memory models. In a similar way that the multi-
component model (Baddeley 2012; Logie 2011, 2018), 
Wickens’ model postulates the existence of different 
resources, but his model places more emphasis on the differ-
ent stages of processing (perception, information processing, 
response selection and execution) and especially perception 
by differentiating, for example, focal and ambient vision. 
This model has been used to predict the extent to which a 
multitasking situation leads to an overload in information 
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processing (Wickens 2008). Others have used this model 
to predict why and when operators shift from one task to 
another (Wickens and Gutzwiller 2017).

All the models presented above are based on solid empiri-
cal results, and thus it seems reasonable to assume that all 
the factors set out here explain the limits to working mem-
ory, albeit to differing degrees. In summary, any technologi-
cal solution aimed at discharging the operators’ cognitive 
system should present a small amount of information at 
once, limit information overlapping in time, reduce possible 
environmental interference, favor the use of different mod-
ules, adapt the content and quantity of information to users’ 
level of expertise, and avoid resource overlapping at all the 
levels of information processing. We believe that the wear-
able cognitive assistants are particularly well suited to meet 
these recommendations. Since they display critical informa-
tion to the operators only when needed or when solicited, the 
wearable cognitive assistants are more likely to provide only 
a small amount of information with little overlapping in time 
than other technological solutions. Moreover, the fact that 
wearable cognitive assistants allow to display information to 
each operator individually (and directly at his/her own loca-
tion) opens the opportunity to personalize the format to each 
of them, based on each given environment of work (to avoid 
environmental interference and overlapping in the type of 
information) and to the level of expertise. Altogether, these 
characteristics make the wearable cognitive assistants a very 
promising way of taking into account the more up-to-date 
knowledge about the cognitive system limitations.

It is also possible to address the question of the limits in 
working memory in terms of the more operational concept 
of cognitive load or mental load which focuses more on the 
quantity of demands experienced by operators and the way 
they react to them (Sweller 2011; Sweller et al. 2011; Zheng 
2017). As mentioned earlier, human operators are active 
regulators of information (Bannon 1995), who will, there-
fore, respond to demands coming from their environment. 
In doing so, there are three possible situations they may 
encounter: (1) if the demands of the working environment 
exceed operators’ cognitive capacities, they are assumed to 
be in a situation of mental overload (Lindblom and Thorvald 
2014; Hancock et al. 1995) aligned with a source of errors 
and stress. (2) If the demands of the environment are too 
weak, operators find themselves in a situation of cognitive 
underload (Hancock et al. 1995; Pattyn et al. 2008), which 
manifests itself in task disengagement, a fall in vigilance 
resulting in longer reaction times, and more errors (Pattyn 
et al. 2008). (3) An ideal situation (Hancock et al. 1995), 
between the extremes of 1 and 2, is where the demands of 
the environment are sufficient but do not exceed operators’ 
cognitive capacities. This comfort zone may vary from one 
individual to another (Martin 2013), or change depend-
ing on the circumstances (e.g., night work/day work) and 

corresponds to the ideal situation in terms of both perfor-
mance and well-being. Ideally, wearable cognitive assistants 
would, therefore, aim to offload operators’ working memory, 
to bring them into their cognitive comfort zone.

Several tools have been proposed to directly and reliably 
measure cognitive load (for a discussion on indirect meas-
ures, for example performance based, see: Zheng 2017). One 
possibility is to use validated surveys or interviews filled in 
by operators once they have finished a given activity (e.g., 
Hart 2006; Hart and Staveland 1988; Paas et al. 1994). Many 
studies have used this approach to measure cognitive load in 
different environments. For example, Leppink et al. (2014) 
proposed a scale to distinguish between at least two sub-
components of cognitive load, an intrinsic component that 
corresponds to the complexity of the information to be kept 
in memory, and an extraneous component corresponding to 
poor mastery of the aims of the task that results in unnec-
essary cognitive operations. Nonetheless, this approach of 
measurement has its limits. For instance, operators may be 
unable to differentiate between the difficulty of a task and the 
personal effort invested in it (Veltman and Gaillard 1996).

Another measurement approach would be to use physio-
logical indicators. However, this type of measures is difficult 
to be accepted and used in a factory setting (for a discus-
sion, see: Zheng 2017). Eye tracking is one of the physi-
ological indicators which is commonly used and is based on 
the assumption that what we look at is what is cognitively 
processed (Just and Carpenter 1980). Thus, eye tracking is 
thought to provide indications about internal cognitive pro-
cesses, and among other, about the level of mental load.

Studies using eye tracking have used several indicators 
such as the fixation time (e.g., De Greef et al. 2009; De 
Rivecourt et al. 2008; Duchowski 2002), pupillary dilata-
tion (e.g., De Rivecourt et al. 2008; Schwalm et al. 2008) or 
the blink rate (Benedetto et al. 2011; Recarte et al. 2008). 
Other physiological measures, that can be combined with 
eye-tracking signal (De Rivecourt et al. 2008), have also 
been shown to correlate with the mental load.

For example, an increase in heart rate was observed dur-
ing risky job-related procedures in various studies. In some 
of these studies, heart rate measurements were combined 
with measurements of body accelerations thus as to differ-
entiate between heart rate fluctuations that were due to bursts 
of physical activity and those due to phases of heavy men-
tal load. Similarly, using a flight simulator, heart rate was 
also shown to increase during take-off and landing (Wilson 
2002), both procedures known to generate a high cognitive 
load. Furthermore, a reduction in heart rate variability was 
also observed during a computer-based piloting task (Duran-
tin et al. 2014), in an air-traffic control simulator (Rowe et al. 
1998), and a boat cockpit simulator (Murai et al. 2008). Such 
a reduction was also found with remote measurement using a 
camera (McDuff et al. 2014). Other physiological measures 
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also associated with an increase in mental load, include elec-
trodermal activity (Setz et al. 2010), infrared spectroscopy 
(Durantin et al. 2014), and facial thermography (Murai et al. 
2008, 2015), or electroencephalography (Krol and Zander 
2018; Zander and Kothe 2011).

These measures could also be useful tools for assessing 
whether wearable cognitive assistants can really reduce men-
tal load, and for comparing different iterations of these tech-
nologies. Adapting these measures with real situations that 
are different than those found in a laboratory or a simulator 
is, however, still considered as a real challenge.

5  Theoretical foundations supporting 
the use of wearable cognitive assistants

We have seen that in the context of changes in the indus-
try of the twenty-first century, works imply more and more 
cognitive demands, and applying cognitive assistants seem 
a promising way to help the workers to efficiently respond 
to these demands. Put in different words, cognitive assis-
tants could improve the person–job fit, in that they would 
help employee’s skills and abilities to cope with job require-
ments (Edwards 1991, 2008; Kristof-Brown et al. 2005). 
Person–job fit is linked with important outcomes such as 
job performance (e.g., Bhat and Rainayee 2016 and June and 
Mahmood 2011), and job satisfaction (for a meta-analysis 
see: Kristof-Brown et al. 2005). Nonetheless, job satisfaction 
is probably more linked to a second aspect of the person–job 
fit: the fact that the job fulfills the needs, preferences and 
values of the workers (Edwards 1991, 2008; Kristof-Brown 
et al. 2005). In the following section, we argue that this type 
of person–job fit can be addressed by two well-established 
models: the Job Characteristics Model (JCM) and the Tech-
nology Acceptance Model (TAM). First, we introduce these 
models; and second, we explain the way they are able to 
provide theoretical insights and explanations in support of 
the use of wearable cognitive assistants in the workplace.

5.1  Job Characteristic Model and adaptation 
with new technologies

The Job Characteristics Model was initially developed by 
Hackman and Oldham (1980). The basic idea to develop this 
theory was to find the antecedents of job satisfaction and job 
motivation in the workplaces. Hackman and Lawler (1971) 
found that, although there had been a lot of studies aiming at 
enriching the workplace climates to deter dissatisfaction that 
comes from doing routine tasks, there were very few theories 
and tools to identify the extent to which the characteristics 
of the job can influence the job satisfaction and the job moti-
vation. This theory is basically founded on the following 
propositions: (1) individuals are more likely to behave in 

a certain way if they think they will be rewarded (taken in 
the broad sense to mean both monetary and psychological 
reward); (2) rewards are more valuable to the individuals if 
they meet their physical or psychological needs; (3) work-
ing conditions are assumed to lead to a better performance 
if they enable these needs; (4) those needs related to job 
tend to be high-level needs (personal development, feeling of 
achieving something important) rather than low-level needs 
(safety, well-being); (5) the high-level needs are met when 
the workers are aware that they achieved something valuable 
or meaningful (Hackman and Oldham 1980).

Based on these propositions, it can be theorized that job 
characteristics can indeed influence motivation, and it even 
becomes possible to define the characteristics of a job that 
workers would find motivating. As such, it can be concluded 
that the job characteristics should follow principals includ-
ing: they should yield a psychological reward in the form of 
a sense of achievement or of having done an important job; 
they should allow workers to feel responsible for their work; 
and, lastly, they should enable them to be aware of their 
performance and efficiency. In addition, those who strive 
hardest to achieve would be those who are most sensitive to 
these characteristics.

Relying on this theoretical base, Hackman and Oldham 
(1975) proposed a survey known as the Job Diagnostic Sur-
vey (JDS). They proposed that favorable work outcomes 
(e.g., high motivation, high job satisfaction, good perfor-
mance, low absenteeism and low turnover) are obtained 
when three psychological states are attained (Fig. 1). The 
three states correspond to the aforementioned job charac-
teristics that workers find motivating (Hackman and Lawler 
1971): a sense of achievement or of having done an impor-
tant job; a sense of responsibility with regard to one’s work; 
and awareness of one’s performance and efficiency. Accord-
ing to this theory, underlying these three psychological states 
are five core dimensions: skill variety, task identity (the fact 
that the work requires the jobholder to complete a whole 
task), and task significance (the fact that the job affects other 
people’s lives); autonomy; and, knowledge about perfor-
mance (feedback). How these five core job characteristics 
affect favorable work outcomes is influenced in turn by dif-
ferences in individuals’ needs for personal accomplishment 
(Fig. 1).

The main theory, on which the impact of job characteris-
tics on job satisfaction is mainly based, includes three main 
antecedents among two are associated with the regulation 
of information: autonomy and feedback. It is precisely in 
relation to these two aspects that wearable cognitive assis-
tants can be assumed to contribute. First by giving opera-
tors access to the information they need when they need 
it, and second by enabling them to be more autonomous 
and more aware of the progress achieved as a result of 
their efforts. According to Hackman and Oldham (1975), 
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this improvement should thus enhance operators’ job 
satisfaction.

There are currently a good number of studies supporting 
the Job Characteristics Model (for a review and a discus-
sion see Oldham and Hackman 2010). For example, Fried 
and Ferris (1987) in a meta-analysis with the data obtained 
during laboratory and field studies suggested that all five 
job characteristics of the model correlate, moderately to 
strongly, with the positive work outcomes. In addition, this 
meta-analysis particularly suggested that feedback is the 
concept that correlates most strongly with job satisfaction. 
Furthermore, the model has been enriched repeatedly since 
its primary version. The main move was to complete the 
motivational approach adopted by Hackman and Oldham 
(1975) with other approaches that lead to a more complex 
model (Campion and Thayer 1985; Campion 1988; Edwards 
et al. 1999). More recently, Morgeson and Humphrey (2006) 
continued the integration approach by proposing a model 
combining all data present in the literature regarding the job 
characteristics. Morgeson and Humphrey (2006) identified 
21 job characteristics that are likely to influence job satisfac-
tion, job performance, and absenteeism. Of those, 8 relate 
directly to operators’ regulation of information and thus are 
likely to be positively impacted by the wearable cognitive 
assistants: autonomy (divided in this study into three parts 
between autonomy in terms of decision making, work sched-
uling and work methods), feedback from job, job complex-
ity, information processing, problem solving, and feedback 
from others. In a meta-analysis with sample size more than 
200,000 participants, Humphrey et al. (2007) showed that 
these 8 characteristics (with the different kinds of autonomy 
counting as a single factor) correlate very strongly with job 
satisfaction and moderately with job performance. Over-
all, the meta-analysis supports the model, albeit with a few 

reservations. First, the results vary with the population stud-
ied and, second, the idea of critical psychological states is 
not supported by the data.

Following this short review of the literature on job char-
acteristics, we postulate that wearable cognitive assistants 
are susceptible to enhance job satisfaction because they 
are likely to influence the eight job characteristics related 
to the regulation of information. First, by making critical 
information (such as errors or the completion of a goal) 
proactively accessible to the operators, the wearable cogni-
tive assistants should increase the feedback from the task, 
and if they include a feature allowing the communications 
between the operators, they should also enhance the feed-
back from others. Second, because they allow the operators 
to access reactively to personalized information about their 
work, wearable cognitive assistants should make informa-
tion about the task at hand more accessible, which should 
increase information processing and optimize the job com-
plexity. This better access to information is also susceptible 
to enhance the capacity of the operators to solve problems. 
Indeed, problem solving relies on working memory when 
these problems are analytic in nature (Hambrick and Engle 
2003). We have seen that a better access to a personalized 
information should discharge the working memory of the 
operators, and one could, therefore, infer that it should 
improve analytic problem solving (but not necessarily crea-
tive problem solving, Wiley and Jarosz 2012). Moreover, 
wearable cognitive assistants should also help the operators 
to better plan their activities because they make easily avail-
able information such as the level of stocks and the perfor-
mance of the machines at different level of the assembly line.

In summary, by allowing for better information man-
agement and particularly if it provides feedback on work 
progress, wearable cognitive assistants should make work 

Fig. 1  Job Characteristics 
Model (Hackman and Oldham 
1980, p. 90). Reprinted by 
permission of person Education. 
Upper Saddle River. New Jersey
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regulation tasks easier and, therefore, promote job satisfac-
tion as suggested by the meta-analysis of Humphrey et al. 
(2007).

5.2  Technology Acceptance Model and adaptation 
with new technologies

To sum up, cognitive assistants seems to be a promising way 
to enhance person–job interaction, by helping employees to 
cope with the cognitive demands of a more complex work, 
but also by enhancing job characteristics that have been 
shown to be linked with job satisfaction. Nonetheless, these 
improvements are conditioned to the fact that the workers 
actually make use of the technology (Alexandre et al. 2018). 
In other words, by adding a technological solution, one risk 
is basically to trade a bad human–machine interaction for 
a bad human–technology interaction. This risk has been 
widely studied with other technologies in the framework of 
the Technology Acceptance Model that aims at predicting 
the degree to which individuals tend to apply a new technol-
ogy. But as we shall see, only few studies have examined 
the question of acceptance in the case of wearable cognitive 
assistants in the factory. Before reviewing these studies, we 
will first quickly present the TAM and its extensions.

The TAM has been the subject of many recent studies and 
led to developing various research measures and tools in the 
field of experimental social psychology. Case-based studies 
show that whenever a new technology has not been success-
fully accepted it has failed to have a positive impact. As an 
example, Venkatesh and Bala (2008) stated that the unsuc-
cessful implementation of IT systems at Hewlett–Packard in 
2004 resulted in 160 million-dollar losses. One of the major 
causes of this failure was to exclude human users in the 
implementation process (Regenbrecht et al. 2005). There-
fore, it is crucial to find a research tool to measure the degree 
to which employees tend to accept a new technology at their 
workplace before we widely use or order a new technology.

Technology Acceptance Model (TAM) initially was 
developed by Davis (1989). According to this model (Fig. 2), 
the degree to which a technology is adopted will depend on 

the intention of individuals to use it. In turn, this intent to 
use can be predicted by individuals’ attitude towards the 
technology or their positive or negative perceptions of it. 
These perceptions are conditioned, in turn, by two factors, 
namely perceived ease-of-use and perceived usefulness. 
Consequently, insofar as repeated use may alter these two 
factors (an assistive device may appear easier to use with 
time, or its perceived usefulness may decline the more it 
is used, etc.), the attitude towards a given technology, the 
intention to use it, and, ultimately, its actual use may also 
change over time.

Up to present time, there are numerous studies conducted 
on TAM to examine its simplicity of use and robustness. 
As an example, Ma and Liu (2004) in a meta-analysis sum-
marizing 26 studies found evidence for the structure of the 
model and the links it assumes between the different vari-
ables. The model has also been revised on several occasions, 
mainly with a view of enriching it with additional varia-
bles. For example, a second version of the model includes 
background variables in respect of perceived usefulness 
(Venkatesh and Davis 2000), including social norms (e.g., 
how individuals think people close to them expect them to 
behave), which seem to have a direct influence on the inten-
tion to use a given technology. This version of the model 
also leaves out the concept of attitude and proposes per-
ceived ease-of-use as the determinant for intent to use and 
perceived usefulness. Other authors suggested to include 
perceived system performance (Liu and Ma 2006). Lastly, 
we should take into account the Unified Theory of Accept-
ance and Use of Technology developed by Venkatesh et al. 
(2003) and Venkatesh and Bala (2008) because this theory 
includes variables of the Technology Acceptance Model and 
incorporates them in a more complex model (Fig. 3). In con-
clusion, despite the many add-ons, the original structure of 
the model devised by Davis (1989) is virtually unchanged 
and, for the moment at least, does not appear to be brought 
into question (but for discussions on other possible improve-
ments of the model see for example: Belletier et al. 2018; 
De Oca and Nistor 2014; Harrison et al. 2014; Nistor 2014; 
Nistor et al. 2014a, b; Venkatesh et al. 2012).

Fig. 2  Technology acceptance 
model developed by Davis 
(1989). Diagram taken from 
Yousafzai et al. (2010)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



110 Cognition, Technology & Work (2021) 23:103–116

1 3

Several authors already suggested to use the TAM and/
or the UTAUT in the context of industrial implementation 
of wearable devices (e.g., Hannola et al. 2017; Zhao et al. 
2018). These results may give some interesting insight 
about the acceptance of wearable cognitive assistants. 
For example, Son et al. (2012) studied the use of laptop 
computers for managing job-related tasks in construction 
projects in three construction industries in South Korea. 
They sent a questionnaire measuring the classic TAM’s 
variables as well as several probable antecedents of these 
classic variables such as social influence or top manage-
ment support. Their results showed that the main deter-
minant for the acceptance of computers is their perceived 
usefulness, which was in turn predicted by social influence 
(how the operator thinks his/her social circle views the 
technology), job relevance (to what extent the operator 
thinks the technology is applicable to his/her job), and top 
management support (to what extent the operator thinks 
that management understands the technology and sup-
ports its use). Calisir et al. (2014) obtained similar results 
with the introduction of a web-based learning system in 
a Turkish car factory. This learning system was deployed 
in a training center, and was based on existing training 
that targeted blue collar workers. Behavioral intention to 
use the system was found to be predicted by perceived 
usefulness which was in turn predicted by content quality, 
namely the extent to which learning content was designed 
to match workers’ needs. In the same context of automo-
tive industry in Italy and United Kingdom, Jetter et al. 
(2018) used the TAM during the implementation of an 
augmented reality software on tablets. The software was 
designed to help operators during maintenance, service, 
repair and inspection operations, and was, for example, 
able to make hidden components visible, to display the 

required work steps or real-time information about vehicle 
parts. The authors measured the TAM’s variables and dif-
ferent aspects of perceived performance (time and errors, 
cognitive load, spatial representation) before and after per-
forming a representative task (proof of concept) with the 
augmented reality software. Once again, perceived use-
fulness proved to be a good predictor of the intention to 
use of the device. Interestingly, perceived usefulness was 
positively impacted by the subjective reduction of time and 
errors but not by the subjective cognitive load or by the 
subjective improvement on the spatial representations of 
the task. These results give first indications on how work-
ers would judge the usefulness of such device. To sum up, 
perceived usefulness seems to be the more crucial pre-
dictor of technology acceptance in the industrial context, 
although more research is still needed to better understand 
what factors influence this representation, to maximize the 
probability that cognitive assistants would be accepted.

In conclusion, the original Technology Acceptance 
Model is still a popular model by dint of its simplicity. In 
its classic version, it includes only three variables (which 
means it is easy to use in a factory setting), and is consid-
ered very useful for predicting, explaining and monitor-
ing acceptance. Besides these advantages, a more updated 
acceptance model may also prove very useful in the future 
to enrich the understanding of the acceptance of wear-
able cognitive assistants in industry. Such a model could 
make use of more comprehensive versions of the TAM, 
for example the UTAUT (Dwivedi et al. 2011; Venkatesh 
et al. 2003), or of other supplementary models (see for 
example: Arnold et al. 2018). By edging towards a more 
complex model, it should be possible to draw up special 
recommendations for industry with a view to optimizing 
acceptance of the wearable cognitive assistants.

Fig. 3  Technology Acceptance Model, Revised Version (Venkatesh and Bala 2008)
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6  Integrations, challenges 
and opportunities

A recent challenge for many industries has been to make 
a good fit between workers and their job (Edwards 2008). 
Several approaches attempted in the past to improve this 
fit by focusing on the characteristics of the workplace such 
as changing the organization of the workplace, increasing 
the automatization of the assembly lines, or reducing the 
physical demand of work. Another possibility is also a 
human-centered approach (Bannon 1995; Edwards 1991). 
According to this view, the person–job fit is two-sided 
(Edwards 1991, 2008; Kristof-Brown et al. 2005). First, 
workers should have enough capacity to optimally realize 
and perform their job. Second, the job should provide a 
good level of satisfaction and motivation for the workers. 
In this article, we argued that these two issues could be 
theoretically addressed and discussed in the case of wear-
able cognitive assistants. Indeed, we have seen that cogni-
tive assistants should be able to reach an optimum load of 
working memory by providing information when needed 
and under the right format. Moreover, according to the Job 
Characteristics Model, because they are likely to improve 
the feedback on the performance provided to workers as 
well their autonomy, wearable cognitive assistants should 
improve job satisfaction.

Nonetheless, the implementation of wearable cogni-
tive assistants in the factory should be done with several 
precautions. For example, one can imagine that a poorly 
designed cognitive assistant could overload the working 
memory of workers by given them too much information. 
If cognitive psychology provides several indications on 
the form in which the information should be displayed, it 
remains necessary to assess which of these indications are 
the more critical in the context of the factory. One valuable 
tool for this may be the cognitive task analysis (Crandall 
et al. 2006; Schraagen et al. 2000), a set of methods for 
collecting, analyzing and describing what the operators are 
thinking. More specifically, these methods aim to capture 
what has the operators’ attention, what strategies they are 
using, and how they are making decision. In other words, 
the idea is to determine the mental models used by opera-
tors and how they are using them. These tools are thus 
particularly well designed for identifying what information 
is central but difficult to access and, therefore, needs to be 
displayed by a cognitive assistant. Moreover, job charac-
teristics theory indicates that cognitive assistants that are 
designed to provide feedback about the performance are 
most likely to increase job satisfaction, but the exact way 
in which such feedback should be given remains to be 
examined. To summarize, the integration of the technol-
ogy of cognitive assistance in the industry seems to be 

promising, and opens a new field of research. We believe 
that future studies in this topic should be theoretically 
driven to optimize the efficacy of the wearable cognitive 
assistants. Finally, the last important point is the work-
ers’ acceptance of new technology. Some recent studies 
began to apply this model to wearable devices in the indus-
try. Pursuing this line of research and building a reliable 
model of technology acceptance is of primary importance, 
because an objectively efficient solution would be of lim-
ited interest if its deployment failed.

7  Discussion

Our review suggested that wearable cognitive assistants 
could be efficient candidates to improve the person–job 
interaction through enhancing the capacities of the employ-
ees to answer job demands more efficiently, and by making 
the job more likely to fulfill the employee’s needs. Moreover, 
we specified these two advantages using recent results in 
cognitive psychology and the two well-founded models of 
JCM and TAM.

First, we showed the way wearable cognitive assistants 
can contribute to offload working memory and optimize 
cognitive load of operators by providing a fast and person-
alized access to information. In agreement with the JCM, 
using wearable cognitive assistants should, therefore, lead 
to a more flexible work plan which could in turn enhance 
work autonomy. Second, as the JCM also suggested, these 
assistants could contribute to other job characteristics such 
as feedback. When employees wear the cognitive assistants, 
they will be informed by segmental information that pro-
vide them direct and immediate feedback on the quality 
and quantity of their performance. This should allow them 
to keep themselves updated on the way they perform the 
tasks. In case it is necessary, they will be, therefore, able to 
make small, fast and efficient modifications. In addition, as 
the feedback can be presented to them in an adapted format 
(visual, textual, aural, and taking into account the level of 
expertise) it can reduce any misunderstanding and confusion 
that may arise if they would receive it through a more clas-
sic human–machine interface. Finally, wearable cognitive 
assistants may also offer a way to improve communication 
between the operators. They indeed allow exchanging criti-
cal information very quickly without the absolute need for 
a physical move in the assembly line. In the case of impor-
tant and concise messages, the feedback between operators 
could, therefore, be increased. In overall, the immediate 
feedback (either from the machine or from other humans) 
is likely to reduce the work errors and save time and energy 
of employees leading to better person–machine interaction.

Second, we suggested that, as it has been extensively 
shown with other technologies, these improvements are 
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conditioned by the worker’s acceptance of the wearable 
cognitive assistants. We suggested that the use of the TAM 
would allow answering this challenge, first by providing 
a very simple and robust model, and second by offering 
numerous ways to enrich it. We also reviewed some stud-
ies that already suggest that the perceived usefulness of the 
devices is the most critical point to ensure their acceptance. 
As such, according to TAM a wearable cognitive assistant 
is anticipated to be mostly used if the employees find it as 
useful as possible. Perceived usefulness can be improved 
when a wearable cognitive assistant aid employees to per-
form the same tasks with lesser amount of effort and energy 
and greater amount of efficacy and accuracy.

Altogether, the models that we reviewed indicate that, 
by facilitating the access of information, wearable cognitive 
assistants can lead to several improvements in the workplace 
upon the acceptance level of employees. Combing JCM and 
TAM provided a solid foundation to identify the contribu-
tions of both models in improving the human–job interac-
tion. Both models separately and together, showed not only 
the advantages of using of wearable cognitive assistants in 
the factory but they also provided a condition to detect where 
the human limitations can be decreased by these devices and 
where still needs further improvements in designing these 
devices to be well-matched the need of employees in the 
workplaces.

8  Limitations and suggestions

It should be noted that although new wearable technologies 
seem to be promising for our industries, the scientific litera-
ture still warns us to be skeptical in applying them (Regen-
brecht et al. 2005). One way to maximize the chances of 
these technologies becoming really innovative solutions in 
the workplaces is to conduct rigorous experiments in the 
factory settings (for studies that used this approach see for 
example: Gorecky et al. 2017; Prinz et al. 2016). These stud-
ies have the advantage of directly involving end-users which 
is likely to optimize operator acceptance (Aedo et al. 2010). 
Moreover, as mentioned earlier, cognitive task analysis 
(Crandall et al. 2006; Schraagen et al. 2000) may provide 
a good understanding of the task and how it is performed 
by the operators. This analysis is useful for selecting what 
information a cognitive assistant should display, and for 
maximizing its perceived usefulness.

However, field studies still require adaptations to the 
traditional study tools used in the context of experimen-
tal psychology. This shortage, for example, is particularly 
important in the case of physiological measures of mental 
load. Even using surveys may prove to be complicated if 
they take too much time to be completed. All too often, 
operators can only devote a limited amount of time to 

experiments and, on top of their work, are expected to 
take part in training courses, optimization workshops, etc. 
In addition, to prioritize data that are as close as possible 
to normal factory conditions, experiments need to be as 
unobtrusive as possible. They must take up as little of 
operators’ time as possible, and, ideally, must not get in 
the way of their work.

Another point that needs to be taken into account when 
carrying out a scientific study in a factory setting is the 
wide range of different occupations and jobs encountered 
there. Since producing a representative sample means find-
ing people who are doing a similar job it is essential to 
start by clearly defining the scope of the study. A particular 
machine must be chosen that is representative of the particu-
lar research topic and that has enough operators performing 
the same task on it (on different cycles). Ideally, therefore, 
there should be several identical machines in the factory. It 
is also important to bear in mind that results can be extrapo-
lated and, therefore, only extended to similar machines. For 
the study to have a satisfactory impact, it is, therefore, pref-
erable to choose a key machine for the group (for example 
a machine that will soon be used in greater numbers) or one 
found in several factories. Lastly, each machine may be used 
to perform different tasks, but what is important is to define 
which task is of interest to the study and to focus on that. 
Further experiments will be needed to explore other interest-
ing tasks performed by the same machine.

In this review, we mentioned several times that the wear-
able cognitive assistants should be able to proactively give 
important information (such as an error) to the operators. 
However, it is important to remember that work interrup-
tions are often very costly for operators (e.g., Schultz et al. 
2003). To avoid being counter-productive, wearable cogni-
tive assistants should, therefore, give priority to the infor-
mation requested by operators rather than the information 
imposed by external circumstances that could interrupt the 
task being carried out. This proactive way of providing 
information should be restricted to the most critical informa-
tion and, at the very least, less important information should 
be given during work breaks (Bailey and Iqbal 2008; Kol-
beinsson et al. 2017a, b). One way to identify this critical 
information is to involve operators in the studies early on, 
since they can provide useful indications on their specific 
work conditions. More generally, inappropriate design of 
cognitive assistants may result in a decrement of perfor-
mance instead of the expected improvement. For example, 
Bolstad et al. (2006) list several designs that impaired the 
users’ situational awareness (SA), namely their capacity to 
perceive, understand and predict the critical elements of the 
environment (Endsley 1995; Endsley and Connors 2008). 
This SA (which the cognitive assistants aim to improve) can 
be impaired in specific situations called SA Demons (e.g., 
the out-of-the-loop syndrome where exaggerated automation 
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leads the user to disengage from the task) which the design 
of cognitive assistants should try to avoid.

Notably, we saw that several scales can be used to meas-
ure the operators’ feeling of difficulty and their perception 
of cognitive load and risk of errors. We also saw that the 
perceived reduction of errors is probably a good predictor of 
the perceived usefulness of the wearable cognitive assistants, 
and, in fine, of their acceptance (Jetter et al. 2018). Interest-
ingly, operators might not be aware of their real performance 
in terms of the occurrence of omission errors (Vanderhae-
gen et al. 2019). This attentional dissonance between atten-
tion that is felt and effective attention can be detected using 
hearth rate recording (Vanderhaegen et al. 2019). This type 
of measurement thus offers an interesting alley of research 
concerning the probable link between attentional dissonance 
and acceptance.

Finally, in this review, we only focused on the way wear-
able cognitive assistants can bring information to the opera-
tors. Nonetheless, wearable assistants could be also used as 
wearable sensors collecting information about the operator 
(such as cardiac measurement, motion, and sleep) or the 
surrounding environment (such as a level of gas and a dan-
gerous area). These data could be in turn used to personalize 
the information sent to the operators. For example, a piece of 
information could be displayed for a longer time if the opera-
tor is tired, or the display of a minor information could be 
delayed if the operator is experiencing a high level of stress. 
Although very interesting, the topic of wearable sensors in 
the factory brings its own scientific and ethical questions 
(e.g., Heikkilä et al. 2018; Zander and Kothe 2011; Osswald 
et al. 2013; Zander and Kothe 2011) and is, therefore, out of 
the scope of our review.

9  Conclusion

To conclude, with the development of industry in the twenty-
first century, operators have to integrate more information 
to regulate the working of machines that are increasingly 
automated, modular and flexible. To relieve operators of 
this heavy mental load, wearable cognitive assistants offer 
a way of facilitating access to information and information 
processing.

When developing and studying the application of these 
technologies in the workplace, we suggest that research in 
cognitive psychology and the JCM and TAM should be 
taken into account. Together, they theoretically provided 
solid grounds in support of using wearable cognitive assis-
tants to enhance the person–job fit. The research in cognitive 
psychology suggests that the aim of the wearable cognitive 
assistant should be to maintain the cognitive load in a “com-
fort zone” and provides some useful insight into their design. 
JCM suggests that wearable cognitive assistants should also 

increase autonomy and rapid feedback to increase job per-
formance and satisfaction. TAM further specifies that these 
improvements are dependent upon the acceptance of the 
operators that would be maximized when two aspects of 
wearable cognitive assistants, namely usefulness and ease 
of use, are seriously taken into consideration. In all, these 
findings provide a context to design surveys and experi-
ments measuring the established hypothesized associations 
for future studies.
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